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Abstract: This research article deals with novel two species of initial value problems, one of them, the fractional
neutral functional integrodifferential equations, and the other one, the coupled system of fractional neutral functional
integrodifferential equations, with finite delay and involving a ψ–Caputo fractional operator. The existence and
uniqueness results are studied through Banach’s contraction principle and Krasnoselskii’s fixed point theorem. We
also establish two various kinds of Ulam stability results for the proposed problems. Further, two pertinent examples
are presented to demonstrate the reported results.

Key words: Delay fractional differential equations, ψ–Caputo fractional derivative, existence and stability theory,
coupled system, neutral, fixed point theorem

1. Introduction
Fractional order derivatives (FODs) [34] grant catching the memory impacts because of its nonlocal nature,
therefore, modeling of genuine dynamics having memory impact is more reasonable with FDOs than the
traditional integer order derivatives (IODs). Numerous FODs can be found in the literature with the point
that various types of real-world phenomena can be demonstrated appropriately (see [18, 19, 27, 37, 40, 42, 43]
and the references therein.

Besides, the stated FOD must maintain the classical properties of IODs. Among the current classical
FODs, most generally utilized FODs, are Riemann–Liouville and Caputo derivatives. However, as a rule, FODs
with the singular kernel cannot characterize the nonlocality of many real-world dynamics. Along these lines, new
FODs with nonsingular kernel have been introduced, namely, fractional Caputo–Fabrizio exponential derivative
[24] and fractional Atangana–Baleanu–Caputo Mittag–Leffler derivative [17].

Neutral functional differential equations (NFDEs) emerge in the mathematical modelling of biological,
physical and engineering problems, see, for instance, the texts [26, 28, 32, 46] and the references referred to in
that. Initial value problems (IVPs) for fractional NFDEs with finite delay is a subject of high interest. Various
investigators have elaborated various techniques and methods for examining some qualitative results to such
equations involving classical FODs, see [1, 3–5, 8–10, 20, 38, 41, 46].

The Ulam–Hyers (HU) stability notion has been taken into consideration in the several pieces of literature.
∗Correspondence: boutiara_a@yahoo.com
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The announced stability analysis is a simple manner in this consideration. This specie of stability was done
formulated for the primary time by Ulam [44], then it was evolved with the aid of Hyers [29] and Urs [45].
A series of papers have been devoted to the investigation of UH-type stability of solutions of the FDEs with
various species of FODs.

On the other side, ψ -fractional operators were introduced by Kilbas [34] as a generalization of Riemann–
Liouville operators. These fractional operators are different from the other classical fractional operator due
to the kernel appears in terms of another function ψ . Several generalized FODs and their applications were
introduced by Agarwal [7].

Recently, Almeida in [12] introduced a version generalized of Caputo FOD with some interesting prop-
erties. Several properties of this operator could be found in [12–15]. For some particular cases of ψ , one can
realize that ψ -Caputo FOD can be reduced to the (Caputo [34], Caputo–Hadamard [30], Caputo–Katugampola
[31], Caputo–Erde’lyi–Kober [35]) FODs.

Motivated by novel developments in ψ -fractional calculus, in the present research, we investigate the
existence and uniqueness of the solutions and UH-type stability of the fractional neutral functional integrodif-
ferential equations (FNFIEs) with finite delay described by{

cDν;ψa+
[
z(τ)−

∑m
k=1 I

σk;ψ
a+ Fk(τ, zτ )

]
= H(τ, zτ ), τ ∈ J := [a, b],

z(τ) = α(τ), τ ∈ [a− δ, a],
(1.1)

and the coupled system of FNFIEs formulated by
cDν;ψa+

[
ω(τ)−

∑m
k=1 I

σk;ψ
a+ F∗

k(τ, ωτ , ϖτ )
]
= H1(τ, ωτ , ϖτ ),

cDς;ψa+
[
ϖ(τ)−

∑m
k=1 I

ξk;ψ
a+ Gk(τ, ωτ , ϖτ )

]
= H2(τ, ωτ , ϖτ ),

τ ∈ J, (1.2)

with the coupled finite delay {
ω(τ) = φ1(τ),

ϖ(τ) = φ2(τ).
τ ∈ [a− δ, a], (1.3)

where cDβ;ψa+ is the ψ -Caputo FOD of order β ∈ {ν, ς} ∈ (0, 1], Iθ;ψa+ is the ψ -RL fractional integral of order
θ > 0, θ ∈ {σ1, σ2, . . . , σm, ξ1, ξ2, ..., ξm}, σk, ξk > 0, k = 1, 2, . . . ,m, Fk,H : J×Cδ −→ R (k = 1, 2, . . . ,m) are
given continuous functions such that Fk(a, za) = 0 , where Cδ = C([−δ, 0],R), F∗

k,Gk,H1 ,H2 : J×Cδ×Cδ −→ R
are given continuous functions, such that F∗

k(a, ωa, ϖa) = 0,G(a, ωa, ϖa) = 0 , and α, φ1, φ2 : [a− δ, a] −→ R is
a continuous functions with α(a) = 0, φ1(a) = 0 and φ2(a) = 0 . For any function u defined on [a− δ, a] and
any τ ∈ J , we denote by uτ the element of Cδ defined by

uτ (ρ) = u(τ + ρ), ρ ∈ [−δ, 0].

Remark 1.1

• Problem (1.1) and coupled system (1.2)–(1.3) are formulated in an overall form that combines both inte-
grodifferential problems and neutral functional equations associated with finite delay involving generalized
FOD. In fact, the choices of ψ(t) ≡ t, log t, and tρ (ρ > 0) , reduce problem (1.1) and coupled sys-
tem (1.2)–(1.3) into corresponding problems involving standard Caputo type, Caputo–Hadamard type, and
Caputo–Katugumpola type, respectively.
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• On problem (1.1), σk = 0, for k = 1, ...,m, and ψ(t) ≡ t incorporates the results of Agarwal et al. [8] for
fractional neutral FDE.

• On problem (1.1), a = 1, ψ(t) ≡ log t incorporates the results of Abbas [1] for fractional neutral functional
integrodifferential equations.

• On problem (1.1), a = t0, Fk(τ, ωτ , ϖτ ) = 0, for k = 1, ...,m, and H1(τ, ωτ , ϖτ ) = f(τ, ω, ω(τ −
δ) incorporates the results of Ameen et al. [16] for fractional delay FDE.

According to the above remark, our proposed problems cover many of the corresponding problems in the
literature, which are considered special cases.

Here is a brief outline of the work. Section 2 provides the definitions and preliminary results that we will
require to prove our essential results. Moreover, we give an auxiliary lemma that supplies solution representation
for the solutions of the problem (1.1) and system (1.2)–(1.3). In Section 3, we establish existence, uniqueness and
stability in the sense of Ulam for the proposed problems. In Section 4, we provide two examples to demonstrate
the acquired results.

2. Auxiliary results

In this section, we recall some notations, definitions, and preliminary results of advanced fractional calculus and
nonlinear analysis needed in the proofs later.

Consider the space of real and continuous functions C = C(J,R) space with the norm

‖ω‖C = sup
τ∈J

|ω(τ)|.

Then the product space U := C × C defined by U = {(ω,ϖ) : ω ∈ C, ϖ ∈ C} is Banach space under the norm

‖(ω,ϖ)‖U = ‖ω‖C + ‖ϖ‖C .

Also Cδ = C([−δ, 0],R) is endowed with norm

‖φ‖Cδ
= sup
τ∈[−δ,0]

|φ(τ)|, and ‖ωτ‖Cδ
= sup
ρ∈[−δ,0]

|ω(τ + ρ)| .

Consider Cb = C([a− δ, b],R) the Banach space defined on [a− δ, b] with the norm

‖ω‖Cb
= ‖ω‖Cδ

+ ‖ω‖C = sup
τ∈[a−δ,b]

|ω(τ)| .

Then the product space Cb × Cb is Banach space under the norm

‖(ω,ϖ)‖Cb
= ‖ω‖Cb

+ ‖ϖ‖Cb
.

Let ψ ∈ C1 = C1(J,R) be an increasing differentiable function such that ψ′(τ) 6= 0 , for all τ ∈ J.

Now, we start by defining ψ -FODs as follows:
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Definition 2.1 [34] The ψ–Riemann–Liouville fractional integral of order α > 0 for an integrable function
ω : J −→ R is given by

Iα;ψa+ ω(τ) =
1

Γ(α)

∫ τ

a

ψ′(s)(ψ(τ)− ψ(s))α−1ω(s)ds, (2.1)

where Γ is the Gamma function.

Definition 2.2 [34] Let n− 1 < α < n (n ∈ N) , ω : J → R is an integrable function, and ψ ∈ Cn(J,R) , the
ψ–Riemann–Liouville FOD of a function ω of order α is given by

Dα;ψa+ ω(τ) =

(
Dt

ψ′(τ)

)n
In−α;ψa+ ω(τ),

where n = [α] + 1 and Dt =
d
dt .

Definition 2.3 [12] For n− 1 < α < n (n ∈ N) and ω, ψ ∈ Cn(J,R) , the ψ–Caputo FOD of a function ω of
order α is given by

cDα;ψa+ ω(τ) = In−α;ψa+ ω
[n]
ψ (τ),

where n = [α] + 1 for α /∈ N , n = α for α ∈ N , and ω
[n]
ψ (τ) =

(
Dt

ψ′(τ)

)n
ω(τ).

From the above definition, we can express ψ–Caputo FOD by formula

cDα;ψa+ ω(τ) =

{∫ τ
a
ψ′(s)(ψ(τ)−ψ(s))n−α−1

Γ(n−α) ω
[n]
ψ (s)ds , if α /∈ N,

ω
[n]
ψ (τ) , if α ∈ N.

(2.2)

Also, the ψ–Caputo FOD of order α of ω is defined as

cDα;ψa+ ω(τ) = Dα;ψa+

[
ω(τ)−

n−1∑
k=0

ω
[k]
ψ (a)

k!
(ψ(τ)− ψ(a))k

]
.

For more details see [12, Theorem 3].

Lemma 2.4 [34] For α, β > 0, and ω ∈ C(J,R) , we have

Iα;ψa+ Iβ;ψa+ ω(τ) = Iα+β;ψa+ ω(τ), a.e. τ ∈ J.

Lemma 2.5 [13] Let α > 0.

If ω ∈ C(J,R), then
cDα;ψa+ Iα;ψa+ ω(τ) = ω(τ), τ ∈ J,

and if ω ∈ Cn−1(J,R), then

Iα;ψa+
cDα;ψa+ ω(τ) = ω(τ)−

n−1∑
k=0

ω
[k]
ψ (a)

k!
[ψ(τ)− ψ(a)]

k
, τ ∈ J.
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Lemma 2.6 [12, 34] For τ > a, α ≥ 0, β > 0, and let χ(τ) = ψ(τ)− ψ(a). Then

• Iα;ψa+ (χ(τ))β−1 = Γ(β)
Γ(β+α) (χ(τ))

β+α−1,

• cDα;ψa+ (χ(τ))β−1 = Γ(β)
Γ(β−α) (χ(τ))

β−α−1,

• cDα;ψa+ (χ(τ))k = 0, for all k ∈ {0, . . . , n− 1}, n ∈ N.

3. Main result
In this section, we consider a general type of FFDEs (1.1) and (1.2)–(1.3) involving the arbitrary function ψ .
For the sake of convenience, we setting the following symbols.

∆ = Λ1 + Λ2 =
(ψ(b)− ψ(a))ν

Γ(ν + 1)
‖µ‖+

m∑
k=1

(ψ(b)− ψ(a))σk

Γ (σk + 1)
‖υk‖ , (3.1)

Θ1 =

(
(ψ(b)− ψ(a))

ν

Γ(ν + 1)
‖L1‖+

m∑
k=1

(ψ(b)− ψ(a))
σk

Γ (σk + 1)
‖ωk,1‖

)
,

Θ2 =

(
(ψ(b)− ψ(a))

ς

Γ(ς + 1)
‖L2‖+

m∑
k=1

(ψ(b)− ψ(a))
ξk

Γ (ξk + 1)
‖ωk,2‖

)
,

Θ1 =

(
(ψ(b)− ψ(a))

ν

Γ(ν + 1)
‖K1‖+

m∑
k=1

(ψ(b)− ψ(a))
σk

Γ (σk + 1)
‖ϖk,1‖

)
,

Θ2 =

(
(ψ(b)− ψ(a))

ς

Γ(ς + 1)
‖K2‖+

m∑
k=1

(ψ(b)− ψ(a))
ξk

Γ (ξk + 1)
‖ϖk,2‖

)
,

3.1. ψ -Caputo FNFIE (1.1)

Let us define exactly what we mean by a solution of problem (1.1).

Definition 3.1 A function z ∈ Cb is said to be a solution of (1.1) if z fulfills the equation
cDνa+

[
z(τ)−

∑m
k=1 Iσk;ψFk (τ, zτ )

]
= H (τ, zτ ) on J , and the condition z(τ) = φ(τ) on [a− δ, a] .

To demonstrate the existence of solutions to (1.1), we need the following Lemma.

Lemma 3.2 Let 0 < ν ≤ 1, α(a) = 0, and g, h : J → R are continuous functions with h(a) = 0 . The linear
problem

cDν;ψa+ [z(τ)− h(τ)] = g(τ), τ ∈ J,z(τ) = α(τ), τ ∈ [a− δ, a],

has a unique solution z(t) defined by:

z(t) =

{
h(τ) + Iν,ψa+ g(τ), if τ ∈ J,
α(τ), if τ ∈ [a− δ, a].

For the proof of Lemma 3.2, it is useful to refer to [11, 15, 25, 34].
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Now, we give the following hypotheses.

(G1) The functions H,Fk : J× Cδ → R are continuous.

(G2) There exist positive functions µ, υk , k = 1, 2, · · · ,m, with bounds ‖µ‖ and ‖υk‖ , k = 1, 2, · · · ,m ,
respectively such that

|H(τ, z)−H(τ, z)| ≤ µ(τ)‖z − z‖Cδ
,

and
|Fk(τ, z)− Fk(τ, z)| ≤ υk(τ)‖z − z‖Cδ

.

for τ ∈ J and z, z ∈ Cδ .

(G3) There exist two constants φ,φk ≥ 0, for k = 1, 2, · · · ,m such that

|H(τ, z)| ≤ φ‖z‖Cδ
, |Fk(τ, z)| ≤ φk, ∀(τ, z) ∈ J× Cδ.

3.1.1. Uniqueness result via Banach FPT

Theorem 3.3 Suppose that assumptions (G1)–(G2) holds. If

∆ < 1 (3.2)

where ∆ is given by (3.1), then there exists a unique solution for (1.1) on the interval [a− δ, b] .

Proof
Define the set

U :=
{
z ∈ Cb : z|[a−δ,a] ∈ Cδ, z|J ∈ C; cDνa+z ∈ C

}
,

and the operator K : U → U

K(z)(t) :=

{
Iν,ψa+ H (τ, zτ ) + F (τ, zτ ) , if τ ∈ J,
α(τ), if τ ∈ [a− δ, a].

(3.3)

Notice that K is well defined. Indeed, for z ∈ U, the map τ 7→ K(z)(τ) is continuous, for all τ ∈ [a−δ, b].

Also, for all τ ∈ J, cDa,ψa+ K[z(τ) − Iσk,ψ
a+ Fk (τ, zτ )] = H (τ, zτ ) exists and is continuous too due to continuity of

H and Lemma 2.5. Now we need to show that K is a contraction map. Let z, z ∈ U and τ ∈ [a− δ, a]. Then,
|K(z)(τ)−K(z)(τ)| = 0. On the other side, for τ ∈ J, and use (G2), it follows that

|K(z)(τ)−K(z)(τ)| ≤ Iν,ψa+ |H (τ, zτ )−H (τ, zτ )|+
m∑
k=1

Iσk,ψ
a+ |Fk (τ, zτ )− Fk (τ, zτ )|

≤ ‖µ‖‖zτ − zτ‖Cδ
Iν,ψa+ (1)(τ) +

m∑
k=1

‖υk‖ ‖zτ − zτ‖Cδ
Iσk,ψ
a+ (1)(τ)

≤

(
(ψ(b)− ψ(a))

ν

Γ(ν + 1)
‖µ‖+

m∑
k=1

(ψ(b)− ψ(a))
σk

Γ (σk + 1)
‖υk‖

)
‖zτ − zτ‖Cδ

≤ (Λ1 + Λ2) ‖z − z‖Cb
,
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which implies
‖K(z)−K(z)‖Cb

≤ ∆‖z − z‖Cb
.

Since ∆ < 1 , the operator K is a contraction. Hence the theorem of Banach fixed point shows that K admits
a unique fixed point. 2

3.1.2. Existence result via Kransnoselskii’s FPT

Here, we apply the fixed point theorem of Krasnoselskii [33] to obtain the existence result.

Theorem 3.4 Assume that (G1)–(G3) hold. Then (1.1) has at least one solution on [a− δ, b] , provided

(ψ(b)− ψ(a))
ν

Γ(ν + 1)
φ < 1. (3.4)

Proof By the assumption (G3), we can fix

ρ ≥
∑m
k=1

(ψ(b)−ψ(a))σk

Γ(σk+1) φk

1− (ψ(b)−ψ(a))ν
Γ(ν+1) φ

,

where Bρ = {z ∈ Cb : ‖z‖Cb
≤ ρ}. Let us split the operator K : Cb → Cb defined by Equation (3.3) as

K = K1 +K2, where K1 and K2 are given by

K1(z)(t) :=

{
Iν,ψa+ H (τ, zτ ) , if τ ∈ J,
0, if τ ∈ [a− δ, a].

K2(z)(t) :=

{ ∑m
k=1 I

σk,ψ
a+ Fk (τ, zτ ) , if τ ∈ J,

α(τ), if τ ∈ [a− δ, a].

The proof will be split into numerous steps:
Step 1: K1(z) +K2(z) ∈ Bρ .

Case 1. For any z, z ∈ Bρ , and τ ∈ [a− δ, a] we have

|K1(z)(τ) +K2(z)(τ)| ≤ |α(τ)| ≤ ‖α‖Cδ
≤ ‖α‖Cb

≤ ρ.

Case 2. Let z, z ∈ Bρ and τ ∈ J. Then

|K1(z)(τ) +K2(z)(τ)| ≤ Iν,ψa+ |H (τ, zτ )|+
m∑
k=1

Iσk,ψ
a+ |Fk (τ, zτ )| ds

≤ φ‖zτ‖Cδ
Iν,ψa+ (1)(τ) +

m∑
k=1

φkIσk,ψ
a+ (1)(τ)

≤ (ψ(τ)− ψ(a))
ν

Γ(ν + 1)
φ‖z‖Cb

+

m∑
k=1

(ψ(τ)− ψ(a))
σk

Γ (σk + 1)
φk

≤ (ψ(b)− ψ(a))
ν

Γ(ν + 1)
φρ+

m∑
k=1

(ψ(b)− ψ(a))
σk

Γ (σk + 1)
φk

≤ ρ.
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Hence
‖K1(z) +K2(z)‖Cb

≤ ρ,

which shows that K1z +K2z ∈ Bρ.

Step 2: K1 is a contration map on Bρ .
Due to the contractility of K as in Theorem 3.3, then K1 is a contraction map too.

Step 3: K2 is completely continuous on Bρ .
From the continuity of Fk

(
·, z(·)

)
and α(·) , it follows that K2 is continuous.

Since

‖K2z‖Cδ
= sup

τ∈[−δ,0]
|K2z(τ)| = sup

τ∈[−δ,0]
|α(τ)|

= ‖α‖Cδ
= ‖α‖Cb

− ‖α‖C ≤ ‖α‖Cb
≤ ρ, z ∈ Bρ,

and

‖K2z‖C = sup
τ∈J

|K2z(τ)| ≤
m∑
k=1

(ψ(b)− ψ(a))
σk

Γ (σk + 1)
φk := L, z ∈ Bρ.

we get ‖K2z‖Cb
≤ ρ+ L which emphasize that K2 uniformly bounded on Bρ .

Finally, we prove the compactness of K2 .
For z ∈ Bρ and τ ∈ J , we can estimate the operator derivative as follows:

∣∣∣(K2z)
(1)
ψ (τ)

∣∣∣ ≤ m∑
k=1

Iσk−1,ψ
a+ |Fk (τ, zτ )| ≤

m∑
k=1

φkIσk−1,ψ
a+ (1)(τ)

≤
m∑
k=1

(ψ(b)− ψ(a))
σk−1

Γ (σk)
φk := ℓ,

where we used the fact

Dk
ψ Iα,ψa+ = Iα−k,ψa+ , ω

(k)
ψ (τ) =

(
1

ψ′(τ)

d

dτ

)k
ω(τ) for k = 0, 1, ..., n− 1.

Hence, for each τ1, τ2 ∈ J with a < τ1 < τ2 < b and for z ∈ Bρ , we get

|(K2z) (t2)− (K2z) (t1)| =
∫ τ2

τ1

|(K2z)
′(s)| ds ≤ ℓ(τ2 − τ1).

which as (τ2 − τ1) → 0 tends to zero independent of z . So, K2 is equicontinuous. The equicontinuity for the
case τ1, τ2 ∈ [a − δ, a] is obvious. In view of the foregoing arguments along with Arzela–Ascoli theorem, we
infer that K2 is compact on Bρ . Thus, the hypotheses of Krasnoselskii fixed point theorem [33] holds, so there
exists at least one solution of (1.1) on [a− δ, b] . 2

3.1.3. UH stability of the solutions of problem (1.1)

Here, we discuss the UH and generalized UH stability types of (1.1).
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Definition 3.5 Problem (1.1) is UH stable if there exists a c ∈ R+ such that, for each ϵ ∈ R+ and for each
z ∈ Cb satisfying { ∣∣∣ cDν;ψa+ [z(τ)−∑m

k=1 I
σk;ψ
a+ Fk(τ, zτ )

]
= H(τ, zτ )

∣∣∣ ≤ ϵ, τ ∈ J,

|z(τ)− α(τ)| ≤ ϵ, τ ∈ [a− δ, a],
(3.5)

there exists a unique solution z ∈ Cb of (1.1) with

‖z − z‖ ≤ cϵ.

Definition 3.6 Problem (1.1) is generalized UH if there exists σ ∈ C (R+,R+) , σ(0) = 0 such that for each
ϵ ∈ R+ and for each z ∈ Cb satisfying (3.5), there exists a unique solution z ∈ Cb of (1.1) with

‖z − z‖ ≤ σ(ϵ).

Remark 3.7 A function z ∈ Cb is a solution of the inequality (3.5) if and only if there exists a function g ∈ C
such that (i) |g(τ)| ≤ ϵ, τ ∈ J ,

(ii) cDν;ψa+
[
z(τ)−

∑m
k=1 I

σk;ψ
a+ Fk(τ, zτ )

]
= H(τ, zτ ) + g(τ), τ ∈ J.

Theorem 3.8 Suppose that the conditions (G2) and (3.2) are fulfilled. Then, the solution of (1.1) is UH and
GUH stable.

Proof Let ϵ ∈ R+ and z ∈ Cb be any solution of the inequality (3.5). Then, there exists g ∈ C such that
|g(τ)| ≤ ϵ, τ ∈ [a, b], and satisfying

{
cDν;ψa+

[
z(τ)−

∑m
k=1 I

σk;ψ
a+ Fk(τ, zτ )

]
= H(τ, zτ ) + g(τ), τ ∈ J,

z(τ) = α(τ), τ ∈ [a− δ, a].
(3.6)

Using Lemma 3.2, problem (3.6) has a solution given as

z(t) :=

{
Iν,ψa+ [H (τ, zτ ) + g(t)] +

∑m
k=1 I

σk,ψ
a+ Fk (τ, zτ ) , if τ ∈ J,

α(τ), if τ ∈ [a− δ, a].

Theorem 3.3 ensures the existence of a unique solution z ∈ Cb of equation (1.1) and satisfies the integral equation

z(t) :=

{
Iν,ψa+ H (τ, zτ ) +

∑m
k=1 I

σk,ψ
a+ Fk (τ, zτ ) , if τ ∈ J,

α(τ), if τ ∈ [a− δ, a].
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Therefore, for any τ ∈ J , we obtain

|z(τ)− z(τ)| ≤ Iν,ψa+ |H (τ, zτ )−H (τ, zτ )|+ Iν,ψa+ |g(τ)|

+

m∑
k=1

Iσk,ψ
a+ |Fk (τ, zτ )− Fk (τ, zτ )|

≤ (ψ(τ)− ψ(a))
ν

Γ(ν + 1)
‖µ‖‖zτ − zτ‖Cδ

+
(ψ(τ)− ψ(a))

ν

Γ(ν + 1)
ϵ

+

m∑
k=1

(ψ(τ)− ψ(a))
σk

Γ (σk + 1)
‖υk‖ ‖zτ − zτ‖Cδ

≤

(
(ψ(b)− ψ(a))

ν

Γ(ν + 1)
‖µ‖+

m∑
k=1

(ψ(b)− ψ(a))
σk

Γ (σk + 1)
‖υk‖

)
‖z − z‖Cb

+ κϵ.

where κ = (ψ(b)−ψ(a))ν
Γ(ν+1) . Therefore, we have proved that

‖z − z‖Cb
≤ ∆‖z − z‖Cb

+ κϵ.

By the condition in Theorem (3.3), one can deduce that

‖z − z‖Cb
≤ κ

1−∆
ϵ.

For c = κ
1−∆ > 0 , we infer that the solution of (1.1) is UH stable. Similarly, it shows the existence of a function

σ ∈ C (R+,R+) such that σ(ϵ) = κ
1−∆ϵ with σ(0) = 0 . Hence, the solution of (1.1) is GUH stable. 2

3.2. Coupled systems of ψ -Caputo FNFIEs
3.2.1. Uniqueness result via Banach FPT

Let us defining what we mean by a solution of problem (1.2)–(1.3).
A pair of coupled functions (ω,ϖ) ∈ Cb×Cb is said to be a solution of the system (1.2)–(1.3) if it satisfies

ω(t) =

{
Iν,ψa+ H1 (τ, ωτ , ϖτ ) +

∑m
k=1 I

σk,ψ
a+ F∗

k (τ, ωτ , ϖτ ) , if τ ∈ J,
φ1(τ), if τ ∈ [a− δ, a],

ϖ(t) =

{
Iς,ψa+ H2 (τ, ωτ , ϖτ ) +

∑m
k=1 I

ξk,ψ
a+ Gk (τ, ωτ , ϖτ ) , if τ ∈ J,

φ2(τ), if τ ∈ [a− δ, a].

In the sequel, the following assumptions will be considered fulfilled:

(H1) The functions Hi,F∗
k,Gk : J× Cδ × Cδ → R are continuous, for i = 1, 2 and k = 1, ..,m .

(H2) There exist positive functions Li,Ki, ωk,i, and ϖk,i , i = 1, 2 , K = 1, ...,m, with bounds ‖Li‖, ‖Ki‖, ‖ωk,i‖
and ‖ϖk,i‖ , i = 1, 2 , k = 1, 2, · · · ,m, respectively such that:

|H1 (τ, ω,ϖ)−H1 (τ, ω,ϖ)| ≤ L1(τ)‖ω − ω‖Cδ
+K1(τ)‖ϖ −ϖ‖Cδ

,
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|H2 (t, ω,ϖ)−H2 (t, ω,ϖ)| ≤ L2(τ)‖ω − ω‖Cδ
+K2(τ)‖ϖ −ϖ‖Cδ

,

and
|F∗
k (t, ω,ϖ)− F∗

k (t, ω,ϖ)| ≤ ωk,1(τ)‖ω − ω‖Cδ
+ϖk,1(τ)‖ϖ −ϖ‖Cδ

,

|Gk (t, ω,ϖ)−Gk (t, ω,ϖ)| ≤ ωk,2(τ)‖ω − ω‖Cδ
+ϖk,2(τ)‖ϖ −ϖ‖Cδ

,

for τ ∈ J and ω,ϖ, ω,ϖ ∈ Cδ .

(H3) There exist positive functions φi, φk,i , i = 1, 2 , k = 1, ...,m, with bounds ‖φi‖ and
∥∥φk,i∥∥ , i = 1, 2 ,

k = 1, 2, · · · ,m, respectively such that:

|H1(τ, ω,ϖ)| ≤ φ1(τ) (‖ω‖Cδ
+ ‖ϖ‖Cδ

) , |F∗
k(τ, ω,ϖ)| ≤ φk,1(τ), ∀(τ, ω,ϖ) ∈ J× Cδ × Cδ,

|H2(τ, ω,ϖ)| ≤ φ2(τ) (‖ω‖Cδ
+ ‖ϖ‖Cδ

) , |Gk(τ, ω,ϖ)| ≤ φk,2(τ), ∀(τ, ω,ϖ) ∈ J× Cδ × Cδ.

The following result shows the uniqueness of solution for system (1.2)–(1.3) relying on Banach FPT.

Theorem 3.9 Assume that assumptions (H1)–(H2) holds. If

Ω :=

2∑
i=1

Ωi = max

(
2∑
i=1

Θi,

2∑
i=1

Θi

)
< 1, (3.7)

then there exists a unique solution for (1.2)–(1.3) on the interval [a− δ, b] .

Proof Define the set

U :=
{
(ω,ϖ) ∈ Cb × Cb : (ω,ϖ)|[a−δ,a] ∈ Cδ, (ω,ϖ)|J ∈ C; cDνa+(ω,ϖ) ∈ C × C

}
,

and the operators K∗
1 : U → U and K∗

2 : U → U defined by{
K∗

1ω(τ) = ϖ(τ),
K∗

2ϖ(τ) = ω(τ),

That is,

K∗
1(ω)(τ) : =

{
Iν,ψa+ H1 (τ, ωτ , ϖτ ) +

∑m
k=1 I

σk,ψ
a+ F∗

k (τ, ωτ , ϖτ ) , if τ ∈ J,
φ1(τ), if τ ∈ [a− δ, a],

(3.8)

K∗
2(ϖ)(τ) : =

{
Iς,ψa+ H2 (τ, ωτ , ϖτ ) +

∑m
k=1 I

ξk,ψ
a+ Gk (τ, ωτ , ϖτ ) , if τ ∈ J,

φ2(τ), if τ ∈ [a− δ, a].

Therefore, we define the operator K∗ : U → U by

K∗(ω,ϖ)(τ) = K∗
1(ω)(τ) +K∗

2(ϖ)(τ).

Thus, K∗ is well defined. Indeed, for (ω,ϖ) ∈ U, the map τ 7→ K∗(ω,ϖ)(τ) is continuous, for all τ ∈ [a− δ, b].
Also, for all τ ∈ J ,

cDν,ψa+ K∗[ω(τ)− Iσk,ψ
a+ F∗

k (τ, ωτ , ϖτ )] = H1 (τ, ωτ , ϖτ ) ,
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and

cDς,ψa+ K∗[ϖ(τ)− Iξk,ψa+ Gk (τ, ωτ , ϖτ )] = H2 (τ, ωτ , ϖτ ) .

exist and are continuous due to continuity of H1 , H2 and Lemma 2.5. It rest for us to prove that K∗ is
contraction. Let (ω,ϖ), (ω,ϖ) ∈ U and τ ∈ [a− δ, a] . Then,

|K∗(ω,ϖ)(τ)−K∗(ω,ϖ)(τ)| = 0.

On the other side, for τ ∈ J, and using (H2), we have that

|K∗
1(ω)(τ)−K∗

1(ω)(τ)| ≤ Iν,ψa+ |H1 (τ, ωτ , ϖτ )−H1 (τ, ωτ , ϖτ )|

+

m∑
k=1

Iσk,ψ
a+ |F∗

k (τ, ωτ , ϖτ )− F∗
k (τ, ωτ , ϖτ )|

≤ Iν,ψa+
(
L1(τ) ‖ωτ − ωτ‖Cδ

+K1(τ) ‖ϖτ −ϖτ‖Cδ

)
(τ)

+

m∑
k=1

Iσk,ψ
a+

(
ωk,1(τ) ‖ωτ − ωτ‖Cδ

+ϖk,1(τ) ‖ϖτ −ϖτ‖Cδ

)
(τ)

≤
(
‖L1‖ ‖ωτ − ωτ‖Cδ

+ ‖K1‖ ‖ϖτ −ϖτ‖Cδ

)
Iν,ψa+ (1)(τ)

+

m∑
k=1

(
‖ωk,1‖ ‖ωτ − ωτ‖Cδ

+ ‖ϖk,1‖ ‖ϖτ −ϖτ‖Cδ

)
Iσk,1,ψ

a+ (1)(τ)

≤ (ψ(τ)− ψ(a))
ν

Γ(ν + 1)

(
‖L1‖ ‖ω − ω‖Cb

+ ‖K1‖ ‖ϖ −ϖ‖Cb

)
+

m∑
k=1

(ψ(τ)− ψ(a))
σk

Γ (σk + 1)

(
‖ωk,1‖ ‖ω − ω‖Cb

+ ‖ϖk,1‖ ‖ϖ −ϖ‖Cb

)
,

which gives

‖K1(ω)−K1(ω)‖Cb

≤

(
(ψ(b)− ψ(a))

ν

Γ(ν + 1)
‖L1‖+

m∑
k=1

(ψ(b)− ψ(a))
σk

Γ (σk + 1)
‖ωk,1‖

)
‖ω − ω‖Cb

+

(
(ψ(b)− ψ(a))

ν

Γ(ν + 1)
‖K1‖+

m∑
k=1

(ψ(b)− ψ(a))
σk

Γ (σk + 1)
‖ϖk,1‖

)
‖ϖ −ϖ‖Cb

= Θ1 ‖ω − ω‖Cb
+Θ1 ‖ϖ −ϖ‖Cb

. (3.9)
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In a similar way, we get

‖K∗
2(ϖ)−K∗

2(ϖ)‖Cb

≤

(
(ψ(b)− ψ(a))

ς

Γ(ς + 1)
‖L2‖+

m∑
k=1

(ψ(b)− ψ(a))
ξk

Γ (ξk + 1)
‖ωk,2‖

)
‖ω − ω‖Cb

+

(
(ψ(b)− ψ(a))

ς

Γ(ς + 1)
‖K2‖+

m∑
k=1

(ψ(b)− ψ(a))
ξk

Γ (ξk + 1)
‖ϖk,2‖

)
‖ϖ −ϖ‖Cb

= Θ2 ‖ω − ω‖Cb
+Θ2 ‖ϖ −ϖ‖Cb

. (3.10)

From (3.9) and (3.10), we obtain

‖K∗(ω,ϖ)−K∗(ω,ϖ)‖U ≤
2∑
i=1

Θi ‖ω − ω‖Cb
+

2∑
i=1

Θi ‖ϖ −ϖ‖Cb

≤ Ω ‖(ω,ϖ)− (ω,ϖ)‖U .

As Ω < 1, K∗ is a contraction, and hence K∗ has a unique fixed point by Banach FPT. 2

3.2.2. Existence result via Kransnoselskii’s FPT

The following existence theorem based on Krasnoselskii’s FPT.

Theorem 3.10 Suppose (H1)-(H3) hold. Then system (1.2)–(1.3) has at least one solution on [a − δ, b] ,
provided that Λ1,1 + Λ2,2 < 1, where

Λ1,1 :=
(ψ(b)− ψ(a))

ν

Γ(ν + 1)
‖φ1‖, Λ2,2 :=

(ψ(b)− ψ(a))
ς

Γ(ς + 1)
‖φ2‖. (3.11)

Proof Setting
BR = {(ω,ϖ) ∈ Cb × Cb : ‖(ω,ϖ)‖Cb

≤ R}.

By Assumption (H3) we can fix

R ≥
{

Λ1,2 + Λ2,1

1− (Λ1,1 + Λ2,2)

}
, (3.12)

where

Λ1,2 =

m∑
k=1

(ψ(b)− ψ(a))
σk

Γ (σk + 1)

∥∥φk,1∥∥ , (3.13)

Λ2,1 =

m∑
k=1

(ψ(b)− ψ(a))
ξk

Γ (ξk + 1)

∥∥φk,2∥∥ , (3.14)

Let us split the operator K∗ : Cb × Cb → Cb × Cb defined by (3.8) as

K∗
1(ω,ϖ)(τ) = K1,1(ω,ϖ)(τ) +K1,2(ω,ϖ)(τ),
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and
K∗

2(ω,ϖ)(τ) = K2,1(ω,ϖ)(τ) +K2,2(ω,ϖ)(τ),

where K1,1,K1,2,K2,1 and K2,2 are given by

K1,1(ω,ϖ)(τ) :=

{
Iν,ψa+ H1 (τ, ωτ , ϖτ ) , τ ∈ J,
φ1(τ), τ ∈ [a− δ, a],

,

K1,2(ω,ϖ)(τ) :=

{ ∑m
k=1 I

σk,ψ
a+ F∗

k (τ, ωτ , ϖτ ) , τ ∈ J,
0, τ ∈ [a− δ, a],

,

K2,1(ω,ϖ)(τ) :=

{
Iς,ψa+ H2 (τ, ωτ , ϖτ ) , τ ∈ J,
φ2(τ), τ ∈ [a− δ, a],

,

K2,2(ω,ϖ)(τ) :=

{ ∑m
k=1 I

ξk,ψ
a+ Gk (τ, ωτ , ϖτ ) , τ ∈ J,

0, τ ∈ [a− δ, a],
,

The proof of the case τ ∈ [a− δ, a] will be omitted. For any (ω,ϖ), (ω,ϖ) ∈ BR , and τ ∈ J , we have

|K1,1(ω,ϖ)(τ) +K1,2(ω,ϖ)(τ)|

≤ Iν,ψa+ |H1 (τ, ωτ , ϖτ )|+
m∑
k=1

Iσk,ψ
a+ |F∗

k (τ, ωτ , ϖτ )|

≤ ‖φ1‖ (‖ω‖Cδ
+ ‖ϖ‖Cδ

) Iν,ψa+ (1)(τ) +

m∑
k=1

∥∥φk,1∥∥ Iσk,ψ
a+ (1)(τ)

≤ (ψ(τ)− ψ(a))
ν

Γ(ν + 1)
‖φ1‖ (‖ω‖Cb

+ ‖ϖ‖Cb
) +

m∑
k=1

(ψ(τ)− ψ(a))
σk

Γ (σk + 1)

∥∥φk,1∥∥
≤ (ψ(b)− ψ(a))

ν

Γ(ν + 1)
‖φ1‖‖ (ω,ϖ) ‖Cb

+

m∑
k=1

(ψ(b)− ψ(a))
σk

Γ (σk + 1)

∥∥φk,1∥∥
≤ (ψ(b)− ψ(a))

ν

Γ(ν + 1)
‖φ1‖R+

m∑
k=1

(ψ(b)− ψ(a))
σk

Γ (σk + 1)

∥∥φk,1∥∥ .
Therefore, we proved that

‖K1,1(ω,ϖ) +K1,2(ω,ϖ)‖Cb
≤ Λ1,1R+ Λ1,2. (3.15)

Similarly, we obtian
‖K2,1(ω,ϖ) +K2,2(ω,ϖ)‖Cb

≤ Λ2,2R+ Λ2,1. (3.16)

From (3.12), (3.15) and (3.16), we get

‖K∗
1(ω,ϖ) +K∗

2(ω,ϖ)‖Cb
≤ (Λ1,1 + Λ2,2)R+ (Λ1,2 + Λ2,1) ≤ R,

which shows that K∗
1(ω,ϖ) + K∗

2(ω,ϖ) ∈ BR. The condition Λ1,1 + Λ2,2 < 1 implies that K∗
1 =

(K1,1 +K1,2) is contraction. From the continuity of H2 and Gk , it follows that K∗
2 is continuous. By (H3)

with the help of (3.14) and (3.16), we attain

‖K∗
2(ω,ϖ)‖Cb

= ‖(K2,1 +K2,2) (ω,ϖ)‖Cb
≤ Λ2,2R+ Λ2,1.
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This means that K∗
2 is uniformly bounded on BR .

Finally, we show the compactness of K∗
2 . Take τ1 , τ2 ∈ J , with τ1 < τ2, and (ω,ϖ) ∈ BR. Then,

|K∗
2(ω,ϖ)(τ2)−K∗

2(ω,ϖ)(τ1)|

≤
∣∣∣Iς,ψa+ H2 (s, ωs, ϖs) (τ2)− Iς,ψa+ H2 (s, ωs, ϖs) (τ1)

∣∣∣
+

∣∣∣∣∣
m∑
k=1

Iξk,ψa+ Gk (s, ωs, ϖs) (τ2)−
m∑
k=1

Iξk,ψa+ Gk (s, ωs, ϖs) (τ1)

∣∣∣∣∣
≤ 1

Γ(ς)

∫ τ1

a

ψ′(s)
∣∣(ψ(τ1)− ψ(s))ς−1 − (ψ(τ2)− ψ(s))ς−1

∣∣ |H2 (s, ωs, ϖs)| ds

+
1

Γ(ς)

∫ τ2

τ1

ψ′(s)(ψ(τ2)− ψ(s))ς−1 |H2 (s, ωs, ϖs)| ds

+

m∑
k=1

1

Γ(ξk)

∫ τ1

a

ψ′(s)
∣∣(ψ(τ1)− ψ(s))ξk−1 − (ψ(τ2)− ψ(s))ξk−1

∣∣ |Gk (s, ωs, ϖs)| ds

+

m∑
k=1

1

Γ(ξk)

∫ τ2

τ1

ψ′(s)(ψ(τ2)− ψ(s))ξk−1 |Gk (s, ωs, ϖs)| ds

≤ 2‖φ2‖R
Γ(ς + 1)

(ψ(τ2)− ψ(τ1))
ς
+

m∑
k=1

2
∥∥φk,2∥∥

Γ(ξk + 1)
(ψ(τ2)− ψ(τ1))

ξk .

which tends to zero as τ1 → τ2. For τ1, τ2 ∈ [a− δ, a], then

|K∗
2(ω,ϖ)(τ2)−K∗

2(ω,ϖ)(τ1)| = |φ2(τ2)− φ2(τ1)| → 0, as τ1 → τ2.

The equicontinuity for the case τ1 ∈ [a − δ, a] and , τ2 ∈ J is obvious.Thus, the set {K∗
2(ω,ϖ) : (ω,ϖ) ∈ BR}

is equicontinuous on BR . In view of the foregoing arguments along with Arzela–Ascoli theorem, we infer that
K∗

2 is compact on BR .
Thus all the assumptions of Krasnoselskii FPT are satisfied. So, Theorem 3.10 shows that (1.2)–(1.3) has at
least one solution on [a− δ, b] . 2

3.2.3. UH stability on system (1.2)–(1.3)

In the current subsection, we are interesting to study UH and generalized UH stability types of system (1.2)–
(1.3).

Definition 3.11 System (1.2)–(1.3) is UH stable if there exists a real number c = max(c1, c2) > 0 such that
for each ϵ = max(ϵ1, ϵ2) > 0 and for each (ω,ϖ) ∈ Cb × Cb satisfying

∣∣∣ cDν;ψa+ [ω(τ)−∑m
k=1 I

σk;ψ
a+ F∗

k(τ, ωτ , ϖτ )
]
−H1(τ, ωτ , ϖτ )

∣∣∣ ≤ ϵ1, τ ∈ J,

|ω(τ)− φ1(τ)| ≤ ϵ1, τ ∈ [a− δ, a],∣∣∣ cDς;ψa+ [ϖ(τ)−
∑m
k=1 I

ξk;ψ
a+ Gk(τ, ωτ , ϖτ )

]
−H2(τ, ωτ , ϖτ )

∣∣∣ ≤ ϵ1, τ ∈ J,

|ϖ(τ)− φ2(τ)| ≤ ϵ2, τ ∈ [a− δ, a],

(3.17)
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there exists a unique solution (ω,ϖ) ∈ Cb × Cb of (1.2)–(1.3) with

‖ (ω,ϖ)− (ω,ϖ) ‖Cb×Cb
≤ cϵ.

Definition 3.12 System (1.2)–(1.3) is generalized UH stable if there exists σ = max(σ1, σ2) ∈ C (R+,R+) with
σ(0) = 0 such that for each ϵ = max(ϵ1, ϵ2) > 0 and for each (ω,ϖ) ∈ Cb × Cb satisfying (4.3), there exists a
unique solution (ω,ϖ) ∈ Cb × Cb of (1.2)–(1.3) with

‖ (ω,ϖ)− (ω,ϖ) ‖Cb×Cb
≤ σ(ϵ).

Remark 3.13 A solution (ω,ϖ) ∈ Cb × Cb satisfying the system (4.3) if and only if there exists a function
(η1, η2) ∈ Cb × Cb (which depend on (ω,ϖ)) such that

(i) |η1(τ)| ≤ ϵ1, and |η2(τ)| ≤ ϵ2, for τ ∈ J.

(ii) For τ ∈ J, 
cDν;ψa+

[
ω(τ)−

∑m
k=1 I

σk;ψ
a+ F∗

k(τ, ωτ , ϖτ )
]
= H1(τ, ωτ , ϖτ ) + η1(τ),

cDς;ψa+
[
ϖ(τ)−

∑m
k=1 I

ξk;ψ
a+ Gk(τ, ωτ , ϖτ )

]
= H2(τ, ωτ , ϖτ ) + η1(τ).

Theorem 3.14 Suppose that (H2) and (4.3) are fulfilled. Then, the solution of system (1.2)–(1.3) is UH and
generalized UH stable, provided that (1−Θ1)

(
1−Θ2

)
−Θ2Θ1 6= 0.

Proof For ϵ1, ϵ2 > 0 and let (ω,ϖ) ∈ Cb × Cb be any solution of (4.3). By Remark 3.13 and Lemma 3.2, we
have {

ω(τ) = Iν;ψa+ H1(τ, ωτ , ϖτ ) +
∑m
k=1 I

σk;ψ
a+ F∗

k(τ, ωτ , ϖτ ) + Iν;ψa+ η1(τ),
ϖ(τ) = Iς;ψa+ H2(τ, ωτ , ϖτ ) +

∑m
k=1 I

ξk;ψ
a+ Gk(τ, ωτ , ϖτ ) + Iς;ψa+ η2(τ).

τ ∈ J, (3.18)

and {
ω(τ) = φ1(τ),

ϖ(τ) = φ2(τ),
τ ∈ [a− δ, a],

From (3.18), for τ ∈ J,
∣∣∣ω(τ)− Iν;ψa+ H1(τ, ωτ , ϖτ )−

∑m
k=1 I

σk;ψ
a+ F∗

k(τ, ωτ , ϖτ )
∣∣∣ ≤ Iν;ψa+ |η1(τ)| ≤ (ψ(τ)−ψ(a))ν

Γ(ν+1) ϵ1,∣∣∣ϖ(τ)− Iν;ψa+ H2(τ, ωτ , ϖτ )−
∑m
k=1 I

ξk;ψ
a+ Gk(τ, ωτ , ϖτ )

∣∣∣ ≤ Iν;ψa+ |η2(τ)| ≤ (ψ(τ)−ψ(a))ς
Γ(ς+1) ϵ2.

(3.19)

and for τ ∈ [a− δ, a], {
|ω(τ)− φ1(τ)| ≤ 0,

|ϖ(τ)− φ2(τ)| ≤ 0,

Let (ω,ϖ) ∈ Cb × Cb be the solution of the system
cDν;ψa+

[
ω(τ)−

∑m
k=1 I

σk;ψ
a+ F∗

k(τ, ωτ , ϖτ )
]
= H1(τ, ωτ , ϖτ ),

cDς;ψa+
[
ϖ(τ)−

∑m
k=1 I

ξk;ψ
a+ Gk(τ, ωτ , ϖτ )

]
= H2(τ, ωτ , ϖτ ),

τ ∈ J, (3.20)
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with finite delay {
ω(τ) = ω(τ) = φ1(τ),

ϖ(τ) = ϖ(τ) = φ2(τ),
τ ∈ [a− δ, a], (3.21)

Thanks to Lemma 3.2, the equivalent fractional integral system to problem (3.20)–(3.21) is

ω(τ) : =

{
Iν,ψa+ H1 (τ, ωτ , ϖτ ) +

∑m
k=1 I

σk,ψ
a+ F∗

k (τ, ωτ , ϖτ ) , if τ ∈ J,
φ1(τ), if τ ∈ [a− δ, a],

(3.22)

ϖ(τ) : =

{
Iς,ψa+ H2 (τ, ωτ , ϖτ ) +

∑m
k=1 I

ξk,ψ
a+ Gk (τ, ωτ , ϖτ ) , if τ ∈ J,

φ2(τ), if τ ∈ [a− δ, a].

Since ω(τ) = ω(τ) and ϖ(τ) = ϖ(τ), |ω(τ)− ω(τ)| = 0, and |ϖ(τ)−ϖ(τ)| = 0, for τ ∈ [a − δ, a]. On the
other hand, for τ ∈ J, then by same arrguments in Theorem 3.9 with (3.19) and (3.22) we get

|ω(τ)− ω(τ)| =

∣∣∣∣∣ω(τ)− Iν,ψa+ H1 (τ, ωτ , ϖτ )−
m∑
k=1

Iσk,ψ
a+ F∗

k (τ, ωτ , ϖτ )

∣∣∣∣∣
≤

∣∣∣∣∣ω(τ)− Iν;ψa+ H1(τ, ωτ , ϖτ )−
m∑
k=1

Iσk;ψ
a+ F∗

k(τ, ωτ , ϖτ )

∣∣∣∣∣
+

∣∣∣Iν,ψa+ |H1(τ, ωτ , ϖτ )−H (τ, ωτ , ϖτ )|

+

m∑
k=1

Iσk,ψ
a+ |F∗

k(τ, ωτ , ϖτ )− F∗
k (τ, ωτ , ϖτ )|

∣∣∣∣∣
≤ (ψ(τ)− ψ(a))

ν

Γ(ν + 1)
ϵ1 +Θ1 ‖ω − ω‖Cb

+Θ1 ‖ϖ −ϖ‖Cb
,

which implies
(1−Θ1) ‖ω − ω‖Cb

−Θ1 ‖ϖ −ϖ‖Cb
≤ A1ϵ1, (3.23)

where A1 := (ψ(b)−ψ(a))ν
Γ(ν+1) . Similarly, we have

|ϖ(τ)−ϖ(τ)| ≤ (ψ(τ)− ψ(a))
ς

Γ(ς + 1)
ϵ2 +Θ2 ‖ω − ω‖Cb

+Θ2 ‖ϖ −ϖ‖Cb
,

which gives
(1−Θ2) ‖ϖ −ϖ‖Cb

−Θ2 ‖ω − ω‖Cb
≤ A2ϵ2, (3.24)

where A2 := (ψ(b)−ψ(a))ς
Γ(ς+1) .

Representing (3.23) and (3.24) as matrices as follows:(
1−Θ1 −Θ1

−Θ2 1−Θ2

)(
‖ω − ω‖Cb

‖ϖ −ϖ‖Cb

)
≤
(

A1ϵ1
A2ϵ2

)
. (3.25)

After straightforward calculations of (3.25), we find that

‖ω − ω‖Cb
≤ 1−Θ1

∆
A1ϵ1 +

Θ1

∆
A2ϵ2, (3.26)
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‖ϖ −ϖ‖Cb
≤ Θ2

∆
A1ϵ1 +

1−Θ2

∆
A2ϵ2, (3.27)

where ∆ = (1−Θ1)
(
1−Θ2

)
−Θ2Θ1 6= 0. By collecting (3.26) and (3.27), we obtain

‖ω − ω‖Cb
+ ‖ϖ −ϖ‖Cb

≤
(
1−Θ1

∆
+

Θ2

∆

)
A1ϵ1 +

(
Θ1

∆
+

1−Θ2

∆

)
A2ϵ2.

For ϵ = max(ϵ1, ϵ2) and c =

(
(1−Θ1+Θ2)A1+(Θ1+1−Θ2)A2

∆

)
, we get

‖(ω,ϖ)− (ω,ϖ)‖Cb×Cb
= ‖ω − ω‖Cb

+ ‖ϖ −ϖ‖Cb
≤ cϵ.

Therefore, according to Definition 3.11, the solution of problem (1.2)–(1.3) is UH stable. Similarly, it shows the
existence of a function σ ∈ C (R+,R+) such that σ(ϵ) = cϵ with σ(0) = 0 . Therefore, the solution of system
(1.2)–(1.3) is generalized UH stable. 2

4. Examples
In this section, in order to justify our results, we consider two examples.

Example 4.1 Let us consider problem (1.1) with specific data:

ψ(τ) = ln(τ) , a = 1 , b = e , ν = 1/2 , σ1 = 1/4 , ξ1 = 5/2 .

and H(τ, u) , Fk(τ, u) are fixed below.
Using the given data, we find that Λ1 = 0.1128,Λ2 = 0.1103, where Λ1 and Λ2 are, respectively, given

by (3.1). Let us take

Fk(τ, u) =
ln(τ) cosu√
100 + ln(τ)

, H(τ, u) =
1

10 (1 + ln(τ))
sinu+

ln(τ)

25τ
, (4.1)

and note that H(τ, u) and Fk(τ, u) satisfy the hypothesis of Theorem 3.3 with Fk(0, u0) = 0, and υ1(τ) =

1
10(1+ln(τ)) + 1

25 , µ(τ) = ln(τ)√
100+ln(τ)

and φ = 1/10 . In addition, (ψ(b)−ψ(a))ν
Γ(ν+1) φ ≈ 0.1128 < 1. Thus, the

conclusion of Theorem 3.4 applies to the problem in (1.1) with H(τ, u) and Fk(τ, u) given by (4.1).
To explain Theorem 3.3, let us take H(τ, u) and Fk(τ, u) given by (4.1). Clearly, the conditions (G1)

and (G2) hold with ‖υ1‖ = 1/10 and ‖µ‖ = 1/10. In addition, ∆ ≈ 0.2231 < 1 . Hence, all hypotheses of
Theorem 3.3 are satisfied. So, the problem (1.1) has an existence of a unique solution on [1, e] with H(τ, u)

and Fk(τ, u) given by (4.1).

Example 4.2 Consider the following coupled system:

D 1
2 ,e

τ
[
u(τ)− I 1

3 ,e
τ

e(τ−1)
(

|uτ |
2(4+eτ )(1+|uτ |) +

|vτ |
9+

√
eτ

)]
=

√
3|uτ | cos2(2πτ)

3(27−eτ ) +
√
2π|vτ |

eτ (7π−τ)2

(
|vτ |

|vτ |+3 + 1
)
,

τ ∈ J = [0, 1],

D 1
4 ,e

τ

[
u(τ)− I 2

3 ,e
τ 1
1+eτ2

(
|uτ |

8(1+|uτ |) +
|u2

τ |
10(1+|uτ |)

)]
=

√
2π|uτ |

164eτ2

(
|uτ |

|uτ |+3 + 1
)
+ |vτ | sin2(2πτ)

(9+eτ ) ,

τ ∈ J = [0, 1],
u(τ) = φ1(τ), v(τ) = φ2(τ), τ ∈ J = [−δ, 0].

(4.2)
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Here

ψ(τ) = eτ , a = 0 , b = 1 , ν = 1/2 , ς = 1/4 , σ1 = 1/3 , ξ1 = 2/3 , δ = 1/5 .

Using the given data, we find that F∗
k(0, u0, v0) = Gk(0, u0, v0) = 0, and

|H1 (τ, u, v)−H1 (τ, u, v)| ≤
√
3 cos2(2πτ)
3(27−eτ ) ‖u− u‖Cδ

+
√
2π

eτ (7π−τ)2 ‖v − v‖Cδ
,

|H2 (τ, u, v)−H2 (τ, u, v)| ≤
√
2π

164eτ2 ‖u− u‖Cδ
+ sin2(2πτ)

(9+eτ ) ‖v − v‖Cδ
,

|F∗
1 (τ, u, v)− F∗

1 (τ, u, v)| ≤ 1
2(4+eτ ) ‖u− u‖Cδ

+ τ
9+

√
eτ

‖v − v‖Cδ
,

|G1 (τ, u, v)−G1 (τ, u, v)| ≤ 1
8(1+eτ2 )

‖u− u‖Cδ
+ τ

10(1+eτ2 )
‖v − v‖Cδ

.

Hence, the hypothesis (H2) is satisfied with ‖L1‖ =
√
3

78 , ‖K1‖ =
√
2

49π , ‖L2‖ =
√
2π

164 , ‖K2‖ = 1
10 , ‖ω1,1‖ = 1

10 ,
‖ϖ1,1‖ = 1

10 , ‖ω1,2‖ = 1
16 and ‖ϖ1,2‖ = 1

20 . We shall show that condition (3.7) holds with J = [0, 1] . Indeed,
for any τ ∈ [0, 1] . Then, Hi, i = 1, 2 , F∗

1 and G1 satisfying (H1) and (H2) . We find that

Θ1 = 0.1670, Θ2 = 0.1335,

Θ1 = 0.1477, Θ2 = 0.2058.

Hence Ω = 0.3728 < 1 .
Then, the conditions of Theorem 3.9 are satisfied. Then, there exists a unique solution for (4.2) in [0, 1] .
Moreover, Theorem 3.14 ensures the UH and generalized UH stability for problem (4.2). Furthermore, as shown
in Theorem 3.14, for every ϵ = max (ϵ1, ϵ2) > 0, if (ω,ϖ) ∈ Cb × Cb satisfies

∣∣∣ cDν;ψa+ [ω(τ)−∑m
k=1 I

σk;ψ
a+ F∗

k(τ, ωτ , ϖτ )
]
−H1(τ, ωτ , ϖτ )

∣∣∣ ≤ ϵ1,∣∣∣ cDς;ψa+ [ϖ(τ)−
∑m
k=1 I

ξk;ψ
a+ Gk(τ, ωτ , ϖτ )

]
−H2(τ, ωτ , ϖτ )

∣∣∣ ≤ ϵ1.

(4.3)

there exists a unique solution (ϖ,ω) ∈ Cb × Cb such that

‖(ω,ϖ)− (ω,ϖ)‖Cb×Cb
≤ cϵ.

where c =

(
(1−Θ1+Θ2)A1+(Θ1+1−Θ2)A2

∆

)
≈ 4.2295 > 0.

A1 = 1.4791 , A2 = 1.2631 and (1−Θ1)
(
1−Θ2

)
−Θ2Θ1 = 0.6419 6= 0. Hence coupled system (4.2)

is UH and generalized UH stable.
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