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Abstract: Assume that K is a field and I1 ⊊ ... ⊊ It is an ascending chain (of length t) of ideals in the polynomial ring
K[x1, ..., xm] , for some m ≥ 1 . Suppose that Ij is generated by polynomials of degrees less or equal to some natural
number f(j) ≥ 1 , for any j = 1, ..., t . In the paper we construct, in an elementary way, a natural number B(m, f)

(depending on m and the function f ) such that t ≤ B(m, f) . We also discuss some applications of this result.
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1. Introduction
Assume that K is a field and K[x1, , ..., xm] is the polynomial ring over K in m ≥ 1 variables. Denote by N1

the set of all natural numbers greater or equal to 1 and let f : N1 → N1 be an arbitrary function. Assume
that I1 ⊊ ... ⊊ It ⊆ K[x1, , ..., xm] is an ascending chain (of length t) of ideals such that Ij is generated by
polynomials of degrees less or equal to f(j) , for any j = 1, ..., t .

In [24] Seidenberg shows that there exists a natural number gm(f) , for an increasing f , such that
t ≤ gm(f) . He proposes rather complicated, but an explicit formula for gm(f) in terms of m and f . In [18]
Moreno Socías finds a better bound for the number t and expresses it, in terms of m and f , in a quite optimal
way. He also shows, among other things, that the number gm(f) is primitive recursive in f , for any m ≥ 1 .
Another approach to the problem is given in [5] where the authors obtain more general facts in somewhat
extended context. For example, Proposition 3.22 from [5] implies some of the main results of [24] and [18].
Note that both [18] and [5] widely use the Hilbert–Samuel polynomials and related concepts, see for example
[8, Chapter 4] and [9, Section 19.5]. Further approaches to the problem are presented in [12, 15] where authors
apply many nontrivial techniques from algebraic geometry.

This paper is devoted to construct the number gm(f) , denoted here by B(m, f) , in an elementary way,
using mainly combinatorial arguments. We apply only some basic facts from the theory of Gröbner bases.

The paper is organized as follows. In Section 2, we fix the notation and recall some information about
Gröbner bases, e.g., the renowned algorithm for constructing a Gröbner basis of a given ideal, due to B.
Buchberger.

Section 3 is the core of the paper. In Theorem 3.5 (concluding all the preceding results) we define a
function B with the bounding property which sets a bound on the length of antichains in Nm , see Sections 2
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and 3 for all the definitions. Our arguments are combinatorial and rather elementary. Theorem 3.5 is further
applied in the next section.

In Section 4, we present the main results of the paper. We show how to reduce the general problem
studied in the paper to the situation considered in Section 3. The main result on ascending chains of ideals in
K[x1, ..., xm] is given in Theorem 4.2. Furthermore, we derive some interesting consequences of Theorem 4.2 in
Corollaries 4.4 and 4.5.

In the last section of the paper we describe our motivation to study bounds of ascending chains of ideals
in the polynomial ring. As we write in detail in Section 5, the motivation comes from quantifier elimination
theory and linear algebra. Namely, in the subsequent paper [19] we apply Corollary 4.5 in a constructive
proof of Tarski’s theorem on quantifier elimination in the theory of algebraically closed fields. Then we use
this constructive version to give a computable criterion for the existence of d -dimensional common invariant
subspace of s ≥ 2 matrices A1, ..., As ∈ Mn(C) , for d ≤ n . The problem of providing such a criterion in known
as the common invariant subspace problem or the CIS problem. In a sense, the present paper rediscovers some
of the main results of [18] and [5] in order to prove Tarski’s theorem in a constructive way and give a solution
of the CIS problem.

2. Gröbner bases and Buchberger’s algorithm

We denote by N the set of all natural numbers and by N1 the set N \ {0} . Assume that K is a field and
m ∈ N1 . Then K[x1, ..., xm] is the polynomial ring over K in m variables x1, ..., xm . The set of all monomials
in K[x1, ..., xm] is denoted by Tm . If α = (a1, ..., am) ∈ Nm , then the monomial xa1

1 ...x
am
m ∈ Tm is denoted

by xα . The degree of xα = xa1
1 ...x

am
m is the sum a1 + ...+ am . A polynomial f ∈ K[x1, ..., xm] is denoted by∑

α aαx
α where aα ∈ K and aα = 0 for almost all α ∈ Nm . If f =

∑
α aαx

α , then the set {xα; aα 6= 0} is the
support of f . The degree of f , denoted by deg(f) , is the maximum of degrees of monomials from the support
of f .

Assume that m ∈ N1 . We view the set Nm as a monoid with respect to the pointwise addition, denoted
by + . We denote by 0 the neutral element (0, ..., 0) ∈ Nm of + . If α, β ∈ Nm and α + γ = β for some
γ ∈ Nm , then we write α ‖β . Note that ‖ defines an order on Nm and Nm is an ordered monoid with respect
to + and ‖ . Obviously, α ‖β if and only if xα divides xβ . If α ∈ Nm and α = (a1, ..., am) , then we set
|α| = a1 + ...+ am and hence deg(xα) = |α| . Recall that a binary relation ≼ on Nm is an admissible relation
(or an admissible ordering) if and only if the following three conditions are satisfied: ≼ is a linear ordering,
0≼α for any α ∈ Nm and α≼β yields α+ γ≼β+ γ for any α, β, γ ∈ Nm . Note that α ‖β implies α≼β and
any admissible relation is a well-order, see Chapter 1 of [3]. We call an admissible relation ≼ on Nm graded
if and only if α≼β implies |α| ≤ |β| for any α, β ∈ Nm . A basic example of an admissible relation is the
lexicographical order. Its graded version is called the degree lexicographical order. We send the reader to [3]
for definitions of these orders, as well as for other examples.

It is easy to see that an admissible relation on Nm induces a relation on the set Tm of all monomials
in K[x1, ..., xm] via the natural identification (a1, ..., am)↔xa1

1 ...x
am
m . We call such a relation a monomial

ordering.
Assume that ≼ is an admissible relation on Nm . If f =

∑
α aαx

α and η is the greatest element of the
set {α ∈ Nm; aα 6= 0} with respect to ≼ , then xη is the leading monomial of f (denoted by lm(f)) and aηx

η is
the leading term of f (denoted by lt(f)). If I is a subset of K[x1, ..., xm] , then we set LM(I) = {lm(f); f ∈ I}
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and LT(I) = {lt(f); f ∈ I} .
Assume that f, f1, ..., fs ∈ K[x1, ..., xm] and set F = {f1, ..., fs} . Then there are a1, ..., as, r ∈

K[x1, ..., xm] such that f = a1f1+ ...+asfs+r , lm(f) is the greatest element of {lm(a1f1), ..., lm(asfs), lm(r)}
and r is reduced modulo F , that is, lm(fi) does not divide any element of support of r , for any i = 1, ..., s .

In this case we say that r is a reduction of f modulo F and we write f
F→ r or r = fF . A reduction r of f

modulo F is the result of the multivariable division algorithm, see for example [3, I.5].
Assume that I is an ideal in K[x1, ..., xm] and ≼ is an admissible relation on Nm . A set G = {g1, ..., gt} ⊆

I is a Gröbner basis of I (with respect to ≼) if and only if, for any f ∈ I , there is i = 1, ..., t such that lm(gi)

divides lm(f) .
For the rest of the section ≼ denotes a fixed admissible relation on Nm . The following theorem is a basic

result in the theory of Gröbner bases.

Theorem 2.1 Assume that I is a nonzero ideal in K[x1, ..., xm] and G = {g1, ..., gt} , G ⊆ I , is a set of
nonzero polynomials. The following conditions are equivalent.

(1) The set G is a Gröbner basis of I .

(2) f ∈ I if and only if f G→ 0 .

(3) f ∈ I if and only if there are polynomials h1, ..., ht such that f =
∑t

i=1 higi and

lm(f) = max{lm(h1g1), ..., lm(h1g1)}.

(4) 〈LM(G) 〉 = 〈LM(I) 〉 .

Proof See the proof of [3, Theorem 1.6.2]. 2

The above theorem yields that if G is a Gröbner basis of I , then 〈G 〉 = I . Hence we say that a finite
set of polynomials G is a Gröbner basis if and only if G is a Gröbner basis of 〈G 〉 . Theorem 2.1 also implies
that any nonzero ideal in K[x1, ..., xm] has a Gröbner basis.

The definition of Gröbner basis was introduced by Buchberger in [6]. Now we present a fundamental
method for constructing a Gröbner basis of a given ideal, known as the Buchberger’s algorithm, which is also
given in [6]. We start with the following crucial notion of S -polynomial.

Assume that f, g ∈ K[x1, ..., xm] , f, g 6= 0 and xα is the least common multiple of lm(f) and lm(g) .
Then the polynomial

S(f, g) =
xα

lt(f)f − xα

lt(g)g

is the S -polynomial of f and g . If B = {b1, ..., bs} is a finite set of polynomials in K[x1, ..., xm] , then
we define SB to be the set of all nontrivial reductions of S -polynomials of bi and bj modulo B , that is,
SB = {S(bi, bj)B ; bi, bj ∈ B} \ {0} .

The following fact from [6] (see also [7]) sets the ground for the succeeding Buchberger’s algorithm.

Theorem 2.2 Assume that G = {g1, ..., gt} is a set of nonzero polynomials in K[x1, ..., xm] . Then G is a

Gröbner basis if and only if S(gi, gj)
G→ 0 for any i, j .
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Proof See the proof of [3, Theorem 1.7.4]. 2

Algorithm (B. Buchberger). Input: a set F = {f1, ..., fs} ⊆ K[x1, ..., xn] of nonzero polynomials.
Output: a set G = {g1, ..., gt} ⊆ K[x1, ..., xn] such that F ⊆ G and G is a Gröbner basis of 〈F 〉 .

(1) Set B0 := F and i := 0 .

(2) Put Bi+1 := Bi ∪ SBi
. If Bi+1 6= Bi , then put i := i + 1 and return to (2). Otherwise put G := Bi and

finish.

Theorem 2.2 yields that the Buchberger’s algorithm is correct. Note that this algorithm halts, because
〈LT(Bi) 〉 ⊊ 〈LT(Bi+1) 〉 for any i ≥ 0 and, in a noetherian ring, any ascending chain of ideals is finite.

3. Antichains in Nm

A sequence α1, ..., αt ∈ Nm is an antichain if and only if αi ∦αj for any i < j . Denote by F the set of all
nondecreasing functions N1 → N1 and let f ∈ F . We say that an antichain α1, ..., αt ∈ Nm is f -bounded if
and only if |αi| ≤ f(i) for any i = 1, ..., t .

In this section we give a bound on the length of f -bounded antichains in Nm depending on m ∈ N1 and
f ∈ F . Let us start with some notation and terminology.

Given f, f ′ ∈ F , we write f ≤ f ′ if and only if f(n) ≤ f ′(n) for any n ∈ N1 . Assume that m ≥ 1 is
a natural number. We say that a function Bm : F → N has the bounding property for m if and only if the
following conditions are satisfied:

(1) t ≤ Bm(f) for any f ∈ F and f -bounded antichain α1, ..., αt ∈ Nm of length t ,

(2) Bm(f) ≤ Bm(f ′) for any f, f ′ ∈ F such that f ≤ f ′ .

We say that a function B : N1 ×F → N has the bounding property if and only if, for any m ∈ N1 , the
function Bm : F → N defined by Bm(f) = B(m, f) , for any f ∈ F , has the bounding property for m .

This section is devoted to construct a function with the bounding property in the above sense. As an
equivalent, we construct a sequence (Bm)m∈N1

of functions such that Bm has the bounding property for m .
Our construction is inductive with respect to the number m .

The existence of a function with the bounding property is rather straightforward consequence of the
compactness theorem of first order logic, see [5, Proposition 3.25] for more details. However, this approach does
not provide the explicit form of a function with the bounding property.

In the following proposition we construct a function B1 : F → N with the bounding property for m = 1 .
This is the first step of our induction.

Proposition 3.1 The function B1 : F → N such that B1(f) = f(1) + 1 , for any f ∈ F , has the bounding
property for m = 1 .

Proof Assume that f ∈ F and α1, ..., αt ∈ N is an f -bounded antichain. Then f(1) ≥ α1 > α2 > ... > αt

and so t ≤ f(1) + 1 = B1(f) . Moreover, if f, g ∈ N1 and f ≤ g , then B1(f) = f(1) + 1 ≤ g(1) + 1 = B1(g) .
This yields B1 : F → N has the bounding property for m = 1 . 2

Before the second step of the induction, we introduce the following terminology which generalizes, in some sense,
the one given before.
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Assume that m ≥ 1 , α1 = (a11, a12, ..., a1m), ..., αt = (at1, at2, ..., atm) ∈ Nm is an antichain, β =

(b1, ..., bk) ∈ Nk , for some k ∈ {1, ...,m} (we treat β as the sequence b1, ..., bk ), and f ∈ F . We say that the
antichain α1, ..., αt is (f, β) -bounded (or (f, b1, ..., bk) -bounded) if and only if it is f -bounded and

a11, a21, ..., at1 ≤ b1,

a12, a22, ..., at2 ≤ b2,

...
a1k, a2k, ..., atk ≤ bk.

We say that a function Bk
m : F×Nk → N has the k -bounding property for m if and only if the following

conditions are satisfied:

(1) t ≤ Bk
m(f, β) for any f ∈ F , β ∈ Nk and (f, β) -bounded antichain α1, ..., αt ∈ Nm of length t ,

(2) Bk
m(f, β) ≤ Bk

m(f ′, β′) for any f, f ′ ∈ F and β, β′ ∈ Nk such that f ≤ f ′ and β ‖β′ .

Recall that if β = (b1, ..., bk) and β′ = (b′1, ..., b
′
k) , then the condition β ‖β′ means bi ≤ b′i for any

i = 1, ..., k .
We agree that a function Bm : F → N with the bounding property for m has the 0 -bounding property

for m (and vice versa).
Assume that the function Bm−1 : F → N , m ≥ 2 , has the bounding property for m − 1 . Our aim is to

construct a function Bm : F → N with the bounding property for m . In order to do this, we construct functions
Bk
m : F × Nk → N having k -bounding properties for m by the backward induction with respect to k . To be

more precise, we first construct the function Bm
m : F × Nm → N having the m -bounding property for m (this

construction is general and does not depend on Bm−1 : F → N , see Proposition 3.2). Then we show how to
obtain Bk

m : F × Nk → N from Bk+1
m : F × Nk+1 → N . This process provides a function with the 0 -bounding

property for m , that is, a function with the bounding property for m .
The first step of the backward induction is given in the following fact.

Proposition 3.2 Assume that m ≥ 1 . The function Bm
m : F × Nm → N such that Bm

m(f, b1, ..., bm) =

(b1 + 1) · ... · (bm + 1) has the m-bounding property for m .

Proof Assume that f ∈ F and b1, ..., bm ∈ N . The set of all m -tuples (a1, ..., am) of natural numbers such
that ai ≤ bi , for i = 1, ...,m , has (b1 + 1) · ... · (bm + 1) elements. This shows that if α1, ..., αt ∈ Nm is an
(f, b1, ..., bm) -bounded antichain, then t ≤ (b1 + 1) · ... · (bm + 1) = Bm

m(f, b1, ..., bm) . Moreover, if bi ≤ b′i for
i = 1, ...,m , then Bm

m(f, b1, ..., bm) ≤ Bm
m(g, b′1, ..., b

′
m) for any f, g ∈ F . Hence Bm

m : F × Nm → N has the
m -bounding property for m . 2

Now we introduce some notation. If α = (a1, ..., am) ∈ Nm and s ∈ {1, ...,m} , then we set α̂s =

(a1, ..., as−1, as+1, ..., am) ∈ Nm−1 .
If f ∈ F and s ∈ N , then sf : N1 → N1 is a function such that sf(n) = f(s + n) for any n ∈ N1 .

Observe that sf ∈ F .
Assume that m ≥ 2 , k ∈ {0, ...,m− 1} and the function Bk+1

m : F×Nk+1 → N has the (k+1) -bounding
property for m . Suppose f ∈ F , β ∈ Nk and define recursively a function g : N1 → N1 in the following way:
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(1) g(1) = 1 ,

(2) g(n+ 1) = 1 + g(n) + Bk+1
m (g(n)f, β, f(g(n))) for any n ≥ 1 .

Obviously g ∈ F and hence we get a function Fk
m : F× Nk → F such that (f, β) 7→ g . We use this function in

the following lemma which is the key ingredient of the second step of the backward induction.

Lemma 3.3 Assume that m ≥ 2 , k ∈ {0, ...,m − 1} and Bk+1
m : F × Nk+1 → N has the (k + 1)-bounding

property for m . Assume that f ∈ F , β ∈ Nk and α1, ..., αt is an (f, β)-bounded antichain in Nm of length t .

(1) Assume that αs1 , ..., αsr is a subsequence of α1, ..., αt such that the sequence α̂k+1
s1 , ..., α̂k+1

sr ∈ Nm−1 is
an antichain. Set µ = sr + Bk+1

m (srf, β, f(sr)) . If we have µ + 1 ≤ t , then there is a natural number
c ∈ {sr + 1, ..., µ+ 1} such that the sequence α̂k+1

s1 , ..., α̂k+1
sr , α̂k+1

c is an antichain in Nm−1 .

(2) Set g = Fk
m(f, β) , fix a natural number n ≥ 1 and suppose that g(n) ≤ t . Then there is a subsequence

αp1
, ..., αpn

of length n of the sequence α1, ..., αt such that the sequence α̂k+1
p1

, ..., α̂k+1
pn

is an (f ◦g)-bounded
antichain in Nm−1 .

Proof (1) Set α1 = (a11, a12, ..., a1m), ..., αt = (at1, at2, ..., atm) and assume µ + 1 ≤ t , d ≥ sr + 1 . Suppose
that, for any n ∈ {sr + 1, ..., d} , the sequence α̂k+1

s1 , ..., α̂k+1
sr , α̂k+1

n is not an antichain in Nm−1 . We show
that d ≤ µ . Indeed, for a fixed n we have α̂k+1

si ||α̂k+1
n for some i , because α̂k+1

s1 , ..., α̂k+1
sr is an antichain in

Nm−1 . Note that αs1 , ..., αsr , αn is an antichain in Nm , so αsi ∦αn . Hence we get asi(k+1) > an(k+1) and
f(sr) ≥ f(si) ≥ asi(k+1) > an(k+1) .

Consequently, an(k+1) ≤ f(sr) for any n ∈ {sr+1, ..., d} and thus the sequence αsr+1, αsr+2, ..., αd ∈ Nm

is (srf, β, f(sr)) -bounded. This implies that d− sr ≤ Bk+1
m (srf, β, f(sr)) , so d ≤ µ and (1) follows.

(2) We use induction with respect to n . Assume that n = 1 and set p1 = 1 . Then α̂k+1
1 is an

(f ◦ g) -bounded antichain in Nm−1 , because |α̂k+1
1 | ≤ f(1) = f(g(1)) .

Assume that the thesis holds for some n ≥ 1 . Moreover, assume a technical condition p1 ≤ g(1), ..., pn ≤
g(n) . We show that the thesis holds for n + 1 and p1 ≤ g(1), ..., pn+1 ≤ g(n + 1) . Indeed, if g(n + 1) ≤ t ,
then g(n) ≤ t and hence there is an antichain in Nm−1 of the form α̂k+1

p1
, ..., α̂k+1

pn
. Since pn ≤ g(n) , we get the

following inequalities:
1 + pn + Bk+1

m (pnf, β, f(pn)) ≤

≤ 1 + g(n) + Bk+1
m (g(n)f, β, f(g(n))) = g(n+ 1) ≤ t.

Therefore, applying (1) for sr = pn , we conclude that there exists

c ∈ {pn + 1, ..., 1 + pn + Bk+1
m (pnf, β, f(pn))}

such that the sequence α̂k+1
p1

, ..., α̂k+1
pn

, α̂k+1
c is an antichain in Nm−1 . This antichain is (f ◦g) -bounded, because

c ≤ g(n+ 1) and thus |α̂k+1
c | ≤ f(c) ≤ f(g(n+ 1)) . Hence we set pn+1 = c and the proof is finished. 2

Given the above lemma we are able to prove the second step of the backward induction with respect to
k and hence the second step of the main induction (with respect to m).
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Corollary 3.4 Assume m ≥ 2 , k ∈ {0, ...,m − 1} , Bk+1
m : F × Nk+1 → N has the (k + 1)-bounding property

for m and Bm−1 : F → N has the bounding property for m− 1 .

(1) The function Bk
m : F× Nk → N defined by

Bk
m(f, β) = g(Bm−1(f ◦ g) + 1),

for any f ∈ F , β ∈ Nk and g = Fk
m(f, β) , has the k -bounding property for m .

(2) The function B0
m : F → N has the bounding property for m .

Proof (1) Assume that the antichain α1, ..., αt ∈ Nm of length t is (f, β) -bounded. If g(Bm−1(f ◦g)+1) ≤ t ,
then Lemma 3.3 (2) implies there is an (f ◦ g) -bounded antichain in Nm−1 of length Bm−1(f ◦ g) + 1 , a
contradiction. Hence t < g(Bm−1(f ◦ g) + 1) and it remains to prove that Bk

m(f, β) ≤ Bk
m(f ′, β′) for any

f, f ′ ∈ F and β, β′ ∈ Nk such that f ≤ f ′ and β||β′ . Set g = Fk
m(f, β) and g′ = Fk

m(f ′, β′) . It follows easily
from the construction of g, g′ that g ≤ g′ . Thus f ◦ g ≤ f ′ ◦ g′ , Bm−1(f ◦ g) ≤ Bm−1(f

′ ◦ g′) and finally
g(Bm−1(f ◦ g) + 1) ≤ g(Bm−1(f

′ ◦ g′) + 1) .
(2) Proposition 3.2 shows that the function Bm

m : F× Nm → N given by the formula Bm
m(f, b1, ..., bm) =

(b1 + 1) · ... · (bm + 1) has the m -bounding property for m . Then (1) yields a construction of the function
Bk
m : F × Nk → N having the k -bounding property for m given Bm−1 : F → N (with the bounding property

for m− 1) and Bk+1
m : F×Nk+1 → N (with the (k + 1) -bounding property for m), for any k ∈ {0, ...,m− 1} .

This shows that the function B0
m : F → N has the bounding property for m . 2

Recall that Proposition 3.1 is the first step of the induction with respect to m . The second step of this
induction is given in Corollary 3.4 (2). Hence we get the following main result of the section.

Theorem 3.5 The function B : N1 × F → N defined recursively in the following way:

(1) B(1, f) = B1(f) for any f ∈ F ,

(2) B(m, f) = B0
m(f) for any m ≥ 2 and f ∈ F

has the bounding property.

Proof It follows from Proposition 3.1 that the function B1 : F → N such that B1(f) = f(1) + 1 has the
bounding property for m = 1 . It follows from Corollary 3.4 (2) that the function B0

m : F → N has the bounding
property for m , for any m ≥ 2 . This shows that the construction given in the thesis is correct. 2

4. Main results
In this section we prove the main results of the paper. Throughout we assume that our admissible ordering ≼
is graded, e.g., ≼ is the degree lexicographical order.

Assume m ≥ 1 and f : N1 → N1 is a function (we do not assume here that f ∈ F). An ascending chain
I1 ⊊ ... ⊊ It of ideals in K[x1, ..., xm] is f -bounded if and only if Ij is generated by polynomials of degrees
less or equal to f(j) , for any j = 1, ..., t .
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Our first goal is to give a bound on the length of f -bounded ascending chains of ideals in K[x1, ..., xm]

depending on m and f . The following proposition shows that this problem reduces to the situation studied in
Section 3.

Proposition 4.1 Assume that m ≥ 1 , f : N1 → N1 is a function and I1 ⊊ ... ⊊ It is an f -bounded ascending
chain of ideals in K[x1, ..., xm] . Then there exist monomials xα1 , ..., xαt ∈ Tm such that deg(xαi) ≤ f(i) for
i = 1, ..., t and xαi+1 /∈ 〈xα1 , ..., xαi 〉 for i = 1, ..., t − 1 . If f : N1 → N1 is nondecreasing, this condition is
equivalent to the fact that the sequence α1, ..., αt is an f -bounded antichain.

Proof Assume that Ij = 〈hj1, hj2, ..., hjsj 〉 and deg(hji) ≤ f(j) for any j = 1, ..., t and i = 1, ..., sj . It is
easy to see that there are polynomials h1, ..., ht such that hj ∈ {hj1, hj2, ..., hjsj} and hj /∈ 〈h1, h2, ..., hj−1 〉 .
Thus we get an ascending chain of ideals of the form 〈h1 〉 ⊊ 〈h1, h2 〉 ⊊ ... ⊊ 〈h1, h2, ..., ht 〉 of length
t with the property that hj+1 /∈ 〈h1, h2, ..., hj 〉 and deg(hj) ≤ f(j) for any j . We set H1 = {h1} ,
H2 = {h1, (h2)H1

} , H3 = {h1, (h2)H1
, (h3)H2

} and so on. We show that 〈Ht 〉 = 〈h1, h2, ..., ht 〉 and the
sequence lm(h1), lm((h2)H1

), ..., lm((ht)Ht−1
) of monomials satisfies the required condition. Indeed, since the

admissible ordering ≼ is graded, we get deg(lm(h1)) = deg(h1) ≤ f(1) and thus the assertion holds for t = 1 .
Assume that the assertion holds for some t ≥ 1 and there is an ascending chain of ideals

〈h1 〉 ⊊ 〈h1, h2 〉 ⊊ ... ⊊ 〈h1, h2, ..., ht 〉 ⊊ 〈h1, h2, ..., ht, ht+1 〉

of length t+1 such that hj+1 /∈ 〈h1, h2, ..., hj 〉 and deg(hj) ≤ f(j) for any j . There are polynomials a1, ..., at
such that

ht+1 = a1h1 + a2(h2)H1
+ ...+ at(ht)Ht−1

+ (ht+1)Ht

and lm(ht+1) = max{lm(a1h1), lm(a2(h2)H1)..., lm(at(ht)Ht−1), lm((ht+1)Ht)} . This yields ht+1 ∈ 〈Ht+1 〉
and since 〈h1, h2, ..., ht 〉 = 〈Ht 〉 ⊆ 〈Ht+1 〉 , we get that 〈h1, h2, ..., ht, ht+1 〉 ⊆ Ht+1 . Moreover, we have
h1, (h2)H1

, ..., (ht+1)Ht
∈ 〈h1, h2, ..., ht, ht+1 〉 and so 〈Ht+1 〉 = 〈h1, h2, ..., ht, ht+1 〉 . Observe that (ht+1)Ht

6=
0 , because otherwise ht+1 ∈ 〈Ht 〉 = 〈h1, ..., ht 〉 , a contradiction. Since lm((ht+1)Ht

)≼ lm(ht+1) and the
ordering ≼ is graded, we get deg(lm(ht+1)Ht

) ≤ deg(lm(ht+1)) ≤ f(t + 1) . Finally, the elements of LM(Ht)

do not divide lm((ht+1)Ht
) , because (ht+1)Ht

is reduced modulo Ht . This implies lm((ht+1)Ht
) /∈ 〈LM(Ht) 〉

which finishes the induction.
To prove the second assertion, assume that αi = (ai1, ai2, ..., aim) ∈ Nm for i = 1, ..., t . Then α1, ..., αt

is an antichain if and only if for any i < j there is k such that aik > ajk . This implies that the sequence
xα1 , ..., xαt of monomials in K[x1, ..., xm] satisfies the conditions xαi+1 /∈ 〈xα1 , ..., xαi 〉 (for i = 1, ..., t−1) and
deg(xαi) ≤ f(i) (for i = 1, ..., t) if and only if the sequence α1, ..., αt is an f -bounded antichain. 2

The above proposition shows that one can associate an f -bounded antichain of length t to an f -bounded
ascending chain of ideals of the same length t (if f is nondecreasing). Therefore we get the following theorem
on the length of ascending chains of ideals as a direct consequence of Theorem 3.5 and Proposition 4.1.

Theorem 4.2 Assume that m ≥ 1 and f : N1 → N1 is a function. Suppose that I1 ⊊ ... ⊊ It is an f -
bounded ascending chain of ideals in K[x1, ..., xm] of length t . Moreover, let g : N1 → N1 be the nondecreasing
function defined by g(n) = max{f(1), f(2), ..., f(n)} , for any n ∈ N . Then t ≤ B(m, g) . In particular, we have
t ≤ B(m, f) , if f is nondecreasing.
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Proof The chain I1 ⊊ ... ⊊ It is g -bounded, so the assertion follows from Theorem 3.5 and Proposition 4.1.
Note that if f is nondecreasing, then f = g . 2

Now we deduce some consequences of Theorem 4.2 (and hence of Theorem 3.5) in the context of Gröbner
bases. We start with the following preparatory fact.

Proposition 4.3 Assume that F = {f1, ..., fs} ⊆ K[x1, ..., xm] is a set of nonzero polynomials and d ≥ 1 is
a natural number such that deg(fi) ≤ d for i = 1, ..., s . Let 〈LT(B0) 〉 ⊊ 〈LT(B1) 〉 ⊊ ... be the associated
ascending chain of monomial ideals arising from the Buchberger’s algorithm. Assume that n ≥ 0 and b ∈ Bn .

(1) There exist polynomials a1, ..., as ∈ K[x1, ..., xm] such that b = a1f1 + ...+ asfs and deg(a1), ..., deg(as) ≤
(3n − 1)d .

(2) We have deg(lt(b)) ≤ 3nd .

Proof Set χ(n) = (3n − 1)d for any n ∈ N . Observe that (1) implies (2) . Indeed, if b = a1f1 + ...+ asfs for
some a1, ..., as with deg(a1), ..., deg(as) ≤ χ(n) , then deg(a1f1), ..., deg(asfs) ≤ χ(n) + d = 3nd . This implies
deg(lt(b)) ≤ 3nd , because the ordering ≼ is graded.

Thus it is enough to show (1) . We use induction with respect to n . In the case n = 0 , we have
B0 = F and χ(0) = 0 , so the assertion holds. Assume that the assertion holds for some n ≥ 0 , that is, set
Bn = {b1, ..., br} and bi = ai1f1+...+aisfs for some ai1, ..., ais ∈ K[x1, ..., xm] such that deg(ai1), ..., deg(ais) ≤
χ(n) , for any i = 1, ..., r . We show that the assertion holds for n+ 1 .

Assume that bi, bj ∈ Bn and bi 6= bj . Recall that Bn+1 = Bn ∪ SBn and thus it is enough to show the
assertion for S(bi, bj)Bn . Observe that

S(bi, bj) =
xα

lt(bi)
bi −

xα

lt(bj)
bj =

= (
xα

lt(bi)
ai1 −

xα

lt(bj)
aj1)f1 + ...+ (

xα

lt(bi)
ais −

xα

lt(bj)
ajs)fs

where xα denotes the least common multiple of lm(bi) and lm(bj) . Since (1) implies (2) , we get

deg(
xα

lt(b) ) ≤ deg(lt(b′)) ≤ χ(n) + d

where b = bi , b′ = bj or vice versa. This yields

(∗) deg(
xα

lt(bi)
aik − xα

lt(bj)
ajk) ≤ 2χ(n) + d,

for any k = 1, ..., s , and consequently deg(S(bi, bj)) ≤ 2χ(n) + 2d . Moreover, there are polynomials c1, ..., cr
such that

S(bi, bj)Bn
= S(bi, bj)− c1b1 − ...− crbr =

= S(bi, bj)− c1(a11f1 + ...+ a1sfs)− ...− cr(ar1f1 + ...+ arsfs)
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and lm(clbl)≼ lm(S(bi, bj)) for any l = 1, ..., r . Because ≼ is graded, we get

deg(cl) ≤ deg(clbl) ≤ deg(S(bi, bj)) ≤ 2χ(n) + 2d

and thus (∗∗) deg(clalk) ≤ 3χ(n) + 2d for any l = 1, ..., r and k = 1, ..., s .
It follows by (∗) and (∗∗) that the polynomial S(bi, bj)Bn

can be written in the form a′1f1 + ... + a′sfs

where deg(a′i) ≤ 3χ(n) + 2d . Since 3χ(n) + 2d = χ(n+ 1) , this shows the assertion for n+ 1 . 2

By a string 3nd we mean the function f : N1 → N1 such that f(n) = 3nd (d ≥ 1 is a fixed natural
number).

Corollary 4.4 Assume that F = {f1, ..., fs} ⊆ K[x1, ..., xm] is a set of nonzero polynomials and d is a natural
number such that deg(fi) ≤ d for i = 1, ..., s . Let

〈LT(B0) 〉 ⊊ 〈LT(B1) 〉 ⊊ ... ⊊ 〈LT(Br) 〉

be the associated ascending chain of monomial ideals arising from the Buchberger’s algorithm such that Br is
the Gröbner basis of 〈F 〉 . Then r + 1 ≤ B(m, 3nd) .

Proof It follows from Proposition 4.3 (2) that the ascending chain 〈LT(B0) 〉 ⊊ 〈LT(B1) 〉 ⊊ ... ⊊ 〈LT(Br) 〉
is 3nd -bounded. Hence Theorem 4.2 yields the condition r + 1 ≤ B(m, 3nd) . 2

Set m ≥ 1 , d ≥ 1 and define the function γm,d : N → N in the following way

γm,d(i) = (3B(m,3nd)−1 − 1)d+ i

for any i ∈ N . The function γm,d has the following property.

Corollary 4.5 Assume that m ≥ 1 and d ≥ 1 . Then for any g ∈ K[x1, ..., xm] and f1, ..., fs ∈ K[x1, ..., xm]

such that deg(fi) ≤ d for i = 1, ..., s the following condition is satisfied: g ∈ 〈 f1, ..., fs 〉 if and only if there
exist h1, ..., hs ∈ K[x1, ..., xm] such that g = h1f1 + ...+ hsfs and deg(hi) ≤ γm,d(deg(g)) for i = 1, ..., s .

Proof Proof. Assume that g, f1, ..., fs ∈ K[x1, ..., xm] and deg(fi) ≤ d for i = 1, ..., s . Set F = {f1, ..., fs}
and let 〈LT(B0) 〉 ⊊ 〈LT(B1) 〉 ⊊ ... ⊊ 〈LT(Br) 〉 be the ascending chain of monomial ideals arising from the
Buchberger’s algorithm such that Br = G = {g1, ..., gt} is the Gröbner basis of 〈F 〉 .

Assume that g ∈ 〈 f1, ..., fs 〉 . Since G is a Gröbner basis of 〈F 〉 , there are polynomials p1, ..., pt such
that g = p1g1+ ...+ ptgt and lm(g) is the maximal element of {lm(p1g1), ..., lm(ptgt)} . Hence lm(pigi)≼ lm(g)

so deg(pigi) ≤ deg(g) and consequently deg(pi) ≤ deg(g) , for any i = 1, ..., t .
Corollary 4.4 yields r+1 ≤ B(m, 3nd) . Furthermore, Proposition 4.3 (1) implies that gi = ai1f1+...+aisfs

for some polynomials ai1, ..., ais with

deg(ai1), ..., deg(ais) ≤ (3r − 1)d ≤ (3B(m,3nd)−1 − 1)d,

for i = 1, ..., t . It follows that

deg(piaik) ≤ (3B(m,3nd)−1 − 1)d+ deg(g) = γm,d(deg(g))

for i = 1, ..., t and k = 1, ..., s . This shows the assertion. 2

Let us note that the main results of this section (Theorem 4.2 and Corollaries 4.4 and 4.5) do not depend
on the choice of the base field K of the polynomial ring K[x1, ..., xm] .
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5. Remarks

Our interest in problems studied in the paper comes from the first order logic and linear algebra. We want to give
a constructive proof of the renowned Tarski’s theorem on quantifier elimination in the theory of algebraically
closed fields. The final goal is to solve the common invariant subspace problem.

Tarski showed that the theory of algebraically closed fields admits quantifier elimination in 1948. He
has never published his proof, but one can find it implicitly in [23], see also [22, 26, 28] for more information.
Roughly, Tarski’s theorem states that if φ(x1, ..., xn) is a formula in the first order language of fields with n

free variables x1, ..., xn , then there exists a quantifier-free formula φ′(x1, ..., xn) (a formula in which quantifiers
do not occur), with the same free variables, such that φ(x1, ..., xn) is equivalent with φ′(x1, ..., xn) . This means
that for any algebraically closed field K and any elements a1, ..., an ∈ K we have φ(a1, ..., an) ↔ φ′(a1, ..., an) .
We refer to [16] for the necessary details.

As an example, consider the formula φ(A) = ∃B AB = BA = In where A,B are n×n complex matrices
and In is the n × n identity matrix (φ(A) can be suitably written in the first order language of fields). This
formula states that A is nonsingular and thus φ(A) holds if and only if det(A) 6= 0 . The latter formula is
quantifier-free and very easy to verify. Generally, this is the case for any quantifier-free formula.

By a constructive proof (or constructive version) of Tarski’s theorem we mean a proof of Tarski’s theorem
which yields a concrete quantifier-free form of a given formula. In some sense, the original proof given by Tarski
is already constructive.

Tarski’s theorem has a number of proofs. Proofs which are constructive are part of algorithmic quantifier
elimination theory. There is an extensive literature on this topic. The reader is referred to [17] for some review
of important results in the field. Here we only mention [11] by Heintz where the author presents a detailed and
comprehensive analysis of the complexity of quantifier elimination in the theory of algebraically closed fields.
In the paper Heintz gives a concrete algorithm for quantifier elimination, see Section 4 of [11].

In the subsequent paper [19] we apply Corollary 4.5 to give another constructive (and very natural)
proof of Tarski’s theorem. We apply it in the solution of the common invariant subspace problem (or the CIS
problem). This is a problem of providing a computable criterion (a procedure employing only finite number
of arithmetic operations) for the existence of d -dimensional common invariant subspace of s ≥ 2 matrices
A1, ..., As ∈ Mn(C) . The existence of such a subspace can be expressed as a first order formula ψ of the
language of fields. By the constructive Tarski’s theorem we are able to give a quantifier-free formula ψ′ which
is equivalent to ψ . The formula ψ′ may be considered as a computable criterion for the existence of a common
invariant subspace of A1, ..., As .

There are many partial solutions of the CIS problem, see for example [1, 2, 10, 13, 14, 20, 21, 25, 27].
The general version of the CIS problem is solved in [4], using techniques of Gröbner bases theory and algebraic
geometry. Hence the results of the present paper and the subsequent one give another (substantially different)
complete solution of the CIS problem. This solution is elementary and natural.

In the series of papers [13, 14, 20, 21] we consider computable conditions for the existence of various
common invariant subspaces of complex linear operators. We further apply these conditions in some problems
of quantum information theory. All the problems we consider can be expressed in the first order language of
fields, and hence the constructive Tarski’s theorem is applicable. This gives a new general context for this
research and opens the possibility for other applications.
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