тӥвітак

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/
Research Article

Turk J Math
(2020) 44: 2402 - 2414
© TÜBİTAK
doi:10.3906/mat-1904-61

Ascending chains of ideals in the polynomial ring

Grzegorz PASTUSZAK* ${ }^{\text {(1) }}$
Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toruń, Poland

Received: 09.04.2019 \quad Accepted/Published Online: 23.10.2020 \quad • \quad Final Version: 16.11.2020

Abstract: Assume that K is a field and $I_{1} \subsetneq \ldots \subsetneq I_{t}$ is an ascending chain (of length t) of ideals in the polynomial ring $K\left[x_{1}, \ldots, x_{m}\right]$, for some $m \geq 1$. Suppose that I_{j} is generated by polynomials of degrees less or equal to some natural number $f(j) \geq 1$, for any $j=1, \ldots, t$. In the paper we construct, in an elementary way, a natural number $\mathcal{B}(m, f)$ (depending on m and the function f) such that $t \leq \mathcal{B}(m, f)$. We also discuss some applications of this result.

Key words: Polynomial rings, ascending chains of ideals, Gröbner bases, common invariant subspaces, quantifier elimination, quantum information theory

1. Introduction

Assume that K is a field and $K\left[x_{1},, \ldots, x_{m}\right]$ is the polynomial ring over K in $m \geq 1$ variables. Denote by \mathbb{N}_{1} the set of all natural numbers greater or equal to 1 and let $f: \mathbb{N}_{1} \rightarrow \mathbb{N}_{1}$ be an arbitrary function. Assume that $I_{1} \subsetneq \ldots \subsetneq I_{t} \subseteq K\left[x_{1},, \ldots, x_{m}\right]$ is an ascending chain (of length t) of ideals such that I_{j} is generated by polynomials of degrees less or equal to $f(j)$, for any $j=1, \ldots, t$.

In [24] Seidenberg shows that there exists a natural number $g_{m}(f)$, for an increasing f, such that $t \leq g_{m}(f)$. He proposes rather complicated, but an explicit formula for $g_{m}(f)$ in terms of m and f. In [18] Moreno Socías finds a better bound for the number t and expresses it, in terms of m and f, in a quite optimal way. He also shows, among other things, that the number $g_{m}(f)$ is primitive recursive in f, for any $m \geq 1$. Another approach to the problem is given in [5] where the authors obtain more general facts in somewhat extended context. For example, Proposition 3.22 from [5] implies some of the main results of [24] and [18]. Note that both [18] and [5] widely use the Hilbert-Samuel polynomials and related concepts, see for example [8, Chapter 4] and [9, Section 19.5]. Further approaches to the problem are presented in $[12,15]$ where authors apply many nontrivial techniques from algebraic geometry.

This paper is devoted to construct the number $g_{m}(f)$, denoted here by $\mathcal{B}(m, f)$, in an elementary way, using mainly combinatorial arguments. We apply only some basic facts from the theory of Gröbner bases.

The paper is organized as follows. In Section 2, we fix the notation and recall some information about Gröbner bases, e.g., the renowned algorithm for constructing a Gröbner basis of a given ideal, due to B . Buchberger.

Section 3 is the core of the paper. In Theorem 3.5 (concluding all the preceding results) we define a function \mathcal{B} with the bounding property which sets a bound on the length of antichains in \mathbb{N}^{m}, see Sections 2

[^0]
PASTUSZAK/Turk J Math

and 3 for all the definitions. Our arguments are combinatorial and rather elementary. Theorem 3.5 is further applied in the next section.

In Section 4, we present the main results of the paper. We show how to reduce the general problem studied in the paper to the situation considered in Section 3. The main result on ascending chains of ideals in $K\left[x_{1}, \ldots, x_{m}\right]$ is given in Theorem 4.2. Furthermore, we derive some interesting consequences of Theorem 4.2 in Corollaries 4.4 and 4.5 .

In the last section of the paper we describe our motivation to study bounds of ascending chains of ideals in the polynomial ring. As we write in detail in Section 5, the motivation comes from quantifier elimination theory and linear algebra. Namely, in the subsequent paper [19] we apply Corollary 4.5 in a constructive proof of Tarski's theorem on quantifier elimination in the theory of algebraically closed fields. Then we use this constructive version to give a computable criterion for the existence of d-dimensional common invariant subspace of $s \geq 2$ matrices $A_{1}, \ldots, A_{s} \in \mathbb{M}_{n}(\mathbb{C})$, for $d \leq n$. The problem of providing such a criterion in known as the common invariant subspace problem or the CIS problem. In a sense, the present paper rediscovers some of the main results of [18] and [5] in order to prove Tarski's theorem in a constructive way and give a solution of the CIS problem.

2. Gröbner bases and Buchberger's algorithm

We denote by \mathbb{N} the set of all natural numbers and by \mathbb{N}_{1} the set $\mathbb{N} \backslash\{0\}$. Assume that K is a field and $m \in \mathbb{N}_{1}$. Then $K\left[x_{1}, \ldots, x_{m}\right]$ is the polynomial ring over K in m variables x_{1}, \ldots, x_{m}. The set of all monomials in $K\left[x_{1}, \ldots, x_{m}\right]$ is denoted by \mathbb{T}_{m}. If $\alpha=\left(a_{1}, \ldots, a_{m}\right) \in \mathbb{N}^{m}$, then the monomial $x_{1}^{a_{1}} \ldots x_{m}^{a_{m}} \in \mathbb{T}_{m}$ is denoted by \underline{x}^{α}. The degree of $\underline{x}^{\alpha}=x_{1}^{a_{1}} \ldots x_{m}^{a_{m}}$ is the sum $a_{1}+\ldots+a_{m}$. A polynomial $f \in K\left[x_{1}, \ldots, x_{m}\right]$ is denoted by $\sum_{\alpha} a_{\alpha} \underline{x}^{\alpha}$ where $a_{\alpha} \in K$ and $a_{\alpha}=0$ for almost all $\alpha \in \mathbb{N}^{m}$. If $f=\sum_{\alpha} a_{\alpha} \underline{x}^{\alpha}$, then the set $\left\{\underline{x}^{\alpha} ; a_{\alpha} \neq 0\right\}$ is the support of f. The degree of f, denoted by $\operatorname{deg}(f)$, is the maximum of degrees of monomials from the support of f.

Assume that $m \in \mathbb{N}_{1}$. We view the set \mathbb{N}^{m} as a monoid with respect to the pointwise addition, denoted by + . We denote by $\underline{0}$ the neutral element $(0, \ldots, 0) \in \mathbb{N}^{m}$ of + . If $\alpha, \beta \in \mathbb{N}^{m}$ and $\alpha+\gamma=\beta$ for some $\gamma \in \mathbb{N}^{m}$, then we write $\alpha \| \beta$. Note that $\|$ defines an order on \mathbb{N}^{m} and \mathbb{N}^{m} is an ordered monoid with respect to + and $\|$. Obviously, $\alpha \| \beta$ if and only if \underline{x}^{α} divides \underline{x}^{β}. If $\alpha \in \mathbb{N}^{m}$ and $\alpha=\left(a_{1}, \ldots, a_{m}\right)$, then we set $|\alpha|=a_{1}+\ldots+a_{m}$ and hence $\operatorname{deg}\left(\underline{x}^{\alpha}\right)=|\alpha|$. Recall that a binary relation \preccurlyeq on \mathbb{N}^{m} is an admissible relation (or an admissible ordering) if and only if the following three conditions are satisfied: \preccurlyeq is a linear ordering, $\underline{0} \preccurlyeq \alpha$ for any $\alpha \in \mathbb{N}^{m}$ and $\alpha \preccurlyeq \beta$ yields $\alpha+\gamma \preccurlyeq \beta+\gamma$ for any $\alpha, \beta, \gamma \in \mathbb{N}^{m}$. Note that $\alpha \| \beta$ implies $\alpha \preccurlyeq \beta$ and any admissible relation is a well-order, see Chapter 1 of [3]. We call an admissible relation \preccurlyeq on $^{\mathbb{N}^{m}}$ graded if and only if $\alpha \preccurlyeq \beta$ implies $|\alpha| \leq|\beta|$ for any $\alpha, \beta \in \mathbb{N}^{m}$. A basic example of an admissible relation is the lexicographical order. Its graded version is called the degree lexicographical order. We send the reader to [3] for definitions of these orders, as well as for other examples.

It is easy to see that an admissible relation on \mathbb{N}^{m} induces a relation on the set \mathbb{T}_{m} of all monomials in $K\left[x_{1}, \ldots, x_{m}\right]$ via the natural identification $\left(a_{1}, \ldots, a_{m}\right) \leftrightarrow x_{1}^{a_{1}} \ldots x_{m}^{a_{m}}$. We call such a relation a monomial ordering.

Assume that \preccurlyeq is an admissible relation on \mathbb{N}^{m}. If $f=\sum_{\alpha} a_{\alpha} \underline{x}^{\alpha}$ and η is the greatest element of the set $\left\{\alpha \in \mathbb{N}^{m} ; a_{\alpha} \neq 0\right\}$ with respect to \preccurlyeq, then \underline{x}^{η} is the leading monomial of f (denoted by $\left.\operatorname{lm}(f)\right)$ and $a_{\eta} \underline{x}^{\eta}$ is the leading term of $f($ denoted by $\operatorname{lt}(f))$. If I is a subset of $K\left[x_{1}, \ldots, x_{m}\right]$, then we set $\operatorname{LM}(I)=\{\operatorname{lm}(f) ; f \in I\}$

PASTUSZAK/Turk J Math

and $\operatorname{LT}(I)=\{\operatorname{lt}(f) ; f \in I\}$.
Assume that $f, f_{1}, \ldots, f_{s} \in K\left[x_{1}, \ldots, x_{m}\right]$ and set $F=\left\{f_{1}, \ldots, f_{s}\right\}$. Then there are $a_{1}, \ldots, a_{s}, r \in$ $K\left[x_{1}, \ldots, x_{m}\right]$ such that $f=a_{1} f_{1}+\ldots+a_{s} f_{s}+r, \operatorname{lm}(f)$ is the greatest element of $\left\{\operatorname{lm}\left(a_{1} f_{1}\right), \ldots, \operatorname{lm}\left(a_{s} f_{s}\right), \operatorname{lm}(r)\right\}$ and r is reduced modulo F, that is, $\operatorname{lm}\left(f_{i}\right)$ does not divide any element of support of r, for any $i=1, \ldots, s$. In this case we say that r is a reduction of f modulo F and we write $f \xrightarrow{F} r$ or $r=f_{F}$. A reduction r of f modulo F is the result of the multivariable division algorithm, see for example [3, I.5].

Assume that I is an ideal in $K\left[x_{1}, \ldots, x_{m}\right]$ and \preccurlyeq is an admissible relation on \mathbb{N}^{m}. A set $G=\left\{g_{1}, \ldots, g_{t}\right\} \subseteq$ I is a Gröbner basis of I (with respect to \preccurlyeq) if and only if, for any $f \in I$, there is $i=1, \ldots, t$ such that $\operatorname{lm}\left(g_{i}\right)$ divides $\operatorname{lm}(f)$.

For the rest of the section \preccurlyeq denotes a fixed admissible relation on \mathbb{N}^{m}. The following theorem is a basic result in the theory of Gröbner bases.

Theorem 2.1 Assume that I is a nonzero ideal in $K\left[x_{1}, \ldots, x_{m}\right]$ and $G=\left\{g_{1}, \ldots, g_{t}\right\}, G \subseteq I$, is a set of nonzero polynomials. The following conditions are equivalent.
(1) The set G is a Gröbner basis of I.
(2) $f \in I$ if and only if $f \xrightarrow{G} 0$.
(3) $f \in I$ if and only if there are polynomials h_{1}, \ldots, h_{t} such that $f=\sum_{i=1}^{t} h_{i} g_{i}$ and

$$
\operatorname{lm}(f)=\max \left\{\operatorname{lm}\left(h_{1} g_{1}\right), \ldots, \operatorname{lm}\left(h_{1} g_{1}\right)\right\}
$$

(4) $\langle\operatorname{LM}(G)\rangle=\langle\operatorname{LM}(I)\rangle$.

Proof See the proof of [3, Theorem 1.6.2].
The above theorem yields that if G is a Gröbner basis of I, then $\langle G\rangle=I$. Hence we say that a finite set of polynomials G is a Gröbner basis if and only if G is a Gröbner basis of $\langle G\rangle$. Theorem 2.1 also implies that any nonzero ideal in $K\left[x_{1}, \ldots, x_{m}\right]$ has a Gröbner basis.

The definition of Gröbner basis was introduced by Buchberger in [6]. Now we present a fundamental method for constructing a Gröbner basis of a given ideal, known as the Buchberger's algorithm, which is also given in [6]. We start with the following crucial notion of S-polynomial.

Assume that $f, g \in K\left[x_{1}, \ldots, x_{m}\right], f, g \neq 0$ and \underline{x}^{α} is the least common multiple of $\operatorname{lm}(f)$ and $\operatorname{lm}(g)$. Then the polynomial

$$
S(f, g)=\frac{\underline{x}^{\alpha}}{\operatorname{lt}(f)} f-\frac{\underline{x}^{\alpha}}{\operatorname{lt}(g)} g
$$

is the S-polynomial of f and g. If $B=\left\{b_{1}, \ldots, b_{s}\right\}$ is a finite set of polynomials in $K\left[x_{1}, \ldots, x_{m}\right]$, then we define S_{B} to be the set of all nontrivial reductions of S-polynomials of b_{i} and b_{j} modulo B, that is, $S_{B}=\left\{S\left(b_{i}, b_{j}\right)_{B} ; b_{i}, b_{j} \in B\right\} \backslash\{0\}$.

The following fact from [6] (see also [7]) sets the ground for the succeeding Buchberger's algorithm.
Theorem 2.2 Assume that $G=\left\{g_{1}, \ldots, g_{t}\right\}$ is a set of nonzero polynomials in $K\left[x_{1}, \ldots, x_{m}\right]$. Then G is a Gröbner basis if and only if $S\left(g_{i}, g_{j}\right) \xrightarrow{G} 0$ for any i, j.

Proof See the proof of [3, Theorem 1.7.4].
Algorithm (B. Buchberger). Input: a set $F=\left\{f_{1}, \ldots, f_{s}\right\} \subseteq K\left[x_{1}, \ldots, x_{n}\right]$ of nonzero polynomials. Output: a set $G=\left\{g_{1}, \ldots, g_{t}\right\} \subseteq K\left[x_{1}, \ldots, x_{n}\right]$ such that $F \subseteq G$ and G is a Gröbner basis of $\langle F\rangle$.
(1) Set $B_{0}:=F$ and $i:=0$.
(2) Put $B_{i+1}:=B_{i} \cup S_{B_{i}}$. If $B_{i+1} \neq B_{i}$, then put $i:=i+1$ and return to (2). Otherwise put $G:=B_{i}$ and finish.

Theorem 2.2 yields that the Buchberger's algorithm is correct. Note that this algorithm halts, because $\left\langle\operatorname{LT}\left(B_{i}\right)\right\rangle \subsetneq\left\langle\operatorname{LT}\left(B_{i+1}\right)\right\rangle$ for any $i \geq 0$ and, in a noetherian ring, any ascending chain of ideals is finite.

3. Antichains in \mathbb{N}^{m}

A sequence $\alpha_{1}, \ldots, \alpha_{t} \in \mathbb{N}^{m}$ is an antichain if and only if $\alpha_{i} \nVdash \alpha_{j}$ for any $i<j$. Denote by \mathbb{F} the set of all nondecreasing functions $\mathbb{N}_{1} \rightarrow \mathbb{N}_{1}$ and let $f \in \mathbb{F}$. We say that an antichain $\alpha_{1}, \ldots, \alpha_{t} \in \mathbb{N}^{m}$ is f-bounded if and only if $\left|\alpha_{i}\right| \leq f(i)$ for any $i=1, \ldots, t$.

In this section we give a bound on the length of f-bounded antichains in \mathbb{N}^{m} depending on $m \in \mathbb{N}_{1}$ and $f \in \mathbb{F}$. Let us start with some notation and terminology.

Given $f, f^{\prime} \in \mathbb{F}$, we write $f \leq f^{\prime}$ if and only if $f(n) \leq f^{\prime}(n)$ for any $n \in \mathbb{N}_{1}$. Assume that $m \geq 1$ is a natural number. We say that a function $\mathcal{B}_{m}: \mathbb{F} \rightarrow \mathbb{N}$ has the bounding property for m if and only if the following conditions are satisfied:
(1) $t \leq \mathcal{B}_{m}(f)$ for any $f \in \mathbb{F}$ and f-bounded antichain $\alpha_{1}, \ldots, \alpha_{t} \in \mathbb{N}^{m}$ of length t,
(2) $\mathcal{B}_{m}(f) \leq \mathcal{B}_{m}\left(f^{\prime}\right)$ for any $f, f^{\prime} \in \mathbb{F}$ such that $f \leq f^{\prime}$.

We say that a function $\mathcal{B}: \mathbb{N}_{1} \times \mathbb{F} \rightarrow \mathbb{N}$ has the bounding property if and only if, for any $m \in \mathbb{N}_{1}$, the function $\mathcal{B}_{m}: \mathbb{F} \rightarrow \mathbb{N}$ defined by $\mathcal{B}_{m}(f)=\mathcal{B}(m, f)$, for any $f \in \mathbb{F}$, has the bounding property for m.

This section is devoted to construct a function with the bounding property in the above sense. As an equivalent, we construct a sequence $\left(\mathcal{B}_{m}\right)_{m \in \mathbb{N}_{1}}$ of functions such that \mathcal{B}_{m} has the bounding property for m. Our construction is inductive with respect to the number m.

The existence of a function with the bounding property is rather straightforward consequence of the compactness theorem of first order logic, see [5, Proposition 3.25] for more details. However, this approach does not provide the explicit form of a function with the bounding property.

In the following proposition we construct a function $\mathcal{B}_{1}: \mathbb{F} \rightarrow \mathbb{N}$ with the bounding property for $m=1$. This is the first step of our induction.

Proposition 3.1 The function $\mathcal{B}_{1}: \mathbb{F} \rightarrow \mathbb{N}$ such that $\mathcal{B}_{1}(f)=f(1)+1$, for any $f \in \mathbb{F}$, has the bounding property for $m=1$.

Proof Assume that $f \in \mathbb{F}$ and $\alpha_{1}, \ldots, \alpha_{t} \in \mathbb{N}$ is an f-bounded antichain. Then $f(1) \geq \alpha_{1}>\alpha_{2}>\ldots>\alpha_{t}$ and so $t \leq f(1)+1=\mathcal{B}_{1}(f)$. Moreover, if $f, g \in \mathbb{N}_{1}$ and $f \leq g$, then $\mathcal{B}_{1}(f)=f(1)+1 \leq g(1)+1=\mathcal{B}_{1}(g)$. This yields $\mathcal{B}_{1}: \mathbb{F} \rightarrow \mathbb{N}$ has the bounding property for $m=1$.
Before the second step of the induction, we introduce the following terminology which generalizes, in some sense, the one given before.

Assume that $m \geq 1, \alpha_{1}=\left(a_{11}, a_{12}, \ldots, a_{1 m}\right), \ldots, \alpha_{t}=\left(a_{t 1}, a_{t 2}, \ldots, a_{t m}\right) \in \mathbb{N}^{m}$ is an antichain, $\beta=$ $\left(b_{1}, \ldots, b_{k}\right) \in \mathbb{N}^{k}$, for some $k \in\{1, \ldots, m\}$ (we treat β as the sequence b_{1}, \ldots, b_{k}), and $f \in \mathbb{F}$. We say that the antichain $\alpha_{1}, \ldots, \alpha_{t}$ is (f, β)-bounded (or $\left(f, b_{1}, \ldots, b_{k}\right)$-bounded) if and only if it is f-bounded and

$$
\begin{gathered}
a_{11}, a_{21}, \ldots, a_{t 1} \leq b_{1} \\
a_{12}, a_{22}, \ldots, a_{t 2} \leq b_{2} \\
\vdots \\
a_{1 k}, a_{2 k}, \ldots, a_{t k} \leq b_{k}
\end{gathered}
$$

We say that a function $\mathcal{B}_{m}^{k}: \mathbb{F} \times \mathbb{N}^{k} \rightarrow \mathbb{N}$ has the k-bounding property for m if and only if the following conditions are satisfied:
(1) $t \leq \mathcal{B}_{m}^{k}(f, \beta)$ for any $f \in \mathbb{F}, \beta \in \mathbb{N}^{k}$ and (f, β)-bounded antichain $\alpha_{1}, \ldots, \alpha_{t} \in \mathbb{N}^{m}$ of length t,
(2) $\mathcal{B}_{m}^{k}(f, \beta) \leq \mathcal{B}_{m}^{k}\left(f^{\prime}, \beta^{\prime}\right)$ for any $f, f^{\prime} \in \mathbb{F}$ and $\beta, \beta^{\prime} \in \mathbb{N}^{k}$ such that $f \leq f^{\prime}$ and $\beta \| \beta^{\prime}$.

Recall that if $\beta=\left(b_{1}, \ldots, b_{k}\right)$ and $\beta^{\prime}=\left(b_{1}^{\prime}, \ldots, b_{k}^{\prime}\right)$, then the condition $\beta \| \beta^{\prime}$ means $b_{i} \leq b_{i}^{\prime}$ for any $i=1, \ldots, k$.

We agree that a function $\mathcal{B}_{m}: \mathbb{F} \rightarrow \mathbb{N}$ with the bounding property for m has the 0 -bounding property for m (and vice versa).

Assume that the function $\mathcal{B}_{m-1}: \mathbb{F} \rightarrow \mathbb{N}, m \geq 2$, has the bounding property for $m-1$. Our aim is to construct a function $\mathcal{B}_{m}: \mathbb{F} \rightarrow \mathbb{N}$ with the bounding property for m. In order to do this, we construct functions $\mathcal{B}_{m}^{k}: \mathbb{F} \times \mathbb{N}^{k} \rightarrow \mathbb{N}$ having k-bounding properties for m by the backward induction with respect to k. To be more precise, we first construct the function $\mathcal{B}_{m}^{m}: \mathbb{F} \times \mathbb{N}^{m} \rightarrow \mathbb{N}$ having the m-bounding property for m (this construction is general and does not depend on $\mathcal{B}_{m-1}: \mathbb{F} \rightarrow \mathbb{N}$, see Proposition 3.2). Then we show how to obtain $\mathcal{B}_{m}^{k}: \mathbb{F} \times \mathbb{N}^{k} \rightarrow \mathbb{N}$ from $\mathcal{B}_{m}^{k+1}: \mathbb{F} \times \mathbb{N}^{k+1} \rightarrow \mathbb{N}$. This process provides a function with the 0 -bounding property for m, that is, a function with the bounding property for m.

The first step of the backward induction is given in the following fact.
Proposition 3.2 Assume that $m \geq 1$. The function $\mathcal{B}_{m}^{m}: \mathbb{F} \times \mathbb{N}^{m} \rightarrow \mathbb{N}$ such that $\mathcal{B}_{m}^{m}\left(f, b_{1}, \ldots, b_{m}\right)=$ $\left(b_{1}+1\right) \cdot \ldots \cdot\left(b_{m}+1\right)$ has the m-bounding property for m.

Proof Assume that $f \in \mathbb{F}$ and $b_{1}, \ldots, b_{m} \in \mathbb{N}$. The set of all m-tuples $\left(a_{1}, \ldots, a_{m}\right)$ of natural numbers such that $a_{i} \leq b_{i}$, for $i=1, \ldots, m$, has $\left(b_{1}+1\right) \cdot \ldots \cdot\left(b_{m}+1\right)$ elements. This shows that if $\alpha_{1}, \ldots, \alpha_{t} \in \mathbb{N}^{m}$ is an $\left(f, b_{1}, \ldots, b_{m}\right)$-bounded antichain, then $t \leq\left(b_{1}+1\right) \cdot \ldots \cdot\left(b_{m}+1\right)=\mathcal{B}_{m}^{m}\left(f, b_{1}, \ldots, b_{m}\right)$. Moreover, if $b_{i} \leq b_{i}^{\prime}$ for $i=1, \ldots, m$, then $\mathcal{B}_{m}^{m}\left(f, b_{1}, \ldots, b_{m}\right) \leq \mathcal{B}_{m}^{m}\left(g, b_{1}^{\prime}, \ldots, b_{m}^{\prime}\right)$ for any $f, g \in \mathbb{F}$. Hence $\mathcal{B}_{m}^{m}: \mathbb{F} \times \mathbb{N}^{m} \rightarrow \mathbb{N}$ has the m-bounding property for m.

Now we introduce some notation. If $\alpha=\left(a_{1}, \ldots, a_{m}\right) \in \mathbb{N}^{m}$ and $s \in\{1, \ldots, m\}$, then we set $\widehat{\alpha}^{s}=$ $\left(a_{1}, \ldots, a_{s-1}, a_{s+1}, \ldots, a_{m}\right) \in \mathbb{N}^{m-1}$.

If $f \in \mathbb{F}$ and $s \in \mathbb{N}$, then ${ }^{s} f: \mathbb{N}_{1} \rightarrow \mathbb{N}_{1}$ is a function such that ${ }^{s} f(n)=f(s+n)$ for any $n \in \mathbb{N}_{1}$. Observe that ${ }^{s} f \in \mathbb{F}$.

Assume that $m \geq 2, k \in\{0, \ldots, m-1\}$ and the function $\mathcal{B}_{m}^{k+1}: \mathbb{F} \times \mathbb{N}^{k+1} \rightarrow \mathbb{N}$ has the $(k+1)$-bounding property for m. Suppose $f \in \mathbb{F}, \beta \in \mathbb{N}^{k}$ and define recursively a function $g: \mathbb{N}_{1} \rightarrow \mathbb{N}_{1}$ in the following way:

PASTUSZAK/Turk J Math

(1) $g(1)=1$,
(2) $g(n+1)=1+g(n)+\mathcal{B}_{m}^{k+1}(g(n) f, \beta, f(g(n)))$ for any $n \geq 1$.

Obviously $g \in \mathbb{F}$ and hence we get a function $\mathcal{F}_{m}^{k}: \mathbb{F} \times \mathbb{N}^{k} \rightarrow \mathbb{F}$ such that $(f, \beta) \mapsto g$. We use this function in the following lemma which is the key ingredient of the second step of the backward induction.

Lemma 3.3 Assume that $m \geq 2, k \in\{0, \ldots, m-1\}$ and $\mathcal{B}_{m}^{k+1}: \mathbb{F} \times \mathbb{N}^{k+1} \rightarrow \mathbb{N}$ has the $(k+1)$-bounding property for m. Assume that $f \in \mathbb{F}, \beta \in \mathbb{N}^{k}$ and $\alpha_{1}, \ldots, \alpha_{t}$ is an (f, β)-bounded antichain in \mathbb{N}^{m} of length t.
(1) Assume that $\alpha_{s_{1}}, \ldots, \alpha_{s_{r}}$ is a subsequence of $\alpha_{1}, \ldots, \alpha_{t}$ such that the sequence $\widehat{\alpha}_{s_{1}}^{k+1}, \ldots, \widehat{\alpha}_{s_{r}}^{k+1} \in \mathbb{N}^{m-1}$ is an antichain. Set $\mu=s_{r}+\mathcal{B}_{m}^{k+1}\left({ }^{s_{r}} f, \beta, f\left(s_{r}\right)\right)$. If we have $\mu+1 \leq t$, then there $i s$ a natural number $c \in\left\{s_{r}+1, \ldots, \mu+1\right\}$ such that the sequence $\widehat{\alpha}_{s_{1}}^{k+1}, \ldots, \widehat{\alpha}_{s_{r}}^{k+1}, \widehat{\alpha}_{c}^{k+1}$ is an antichain in \mathbb{N}^{m-1}.
(2) Set $g=\mathcal{F}_{m}^{k}(f, \beta)$, fix a natural number $n \geq 1$ and suppose that $g(n) \leq t$. Then there is a subsequence $\alpha_{p_{1}}, \ldots, \alpha_{p_{n}}$ of length n of the sequence $\alpha_{1}, \ldots, \alpha_{t}$ such that the sequence $\widehat{\alpha}_{p_{1}}^{k+1}, \ldots, \widehat{\alpha}_{p_{n}}^{k+1}$ is an $(f \circ g)$-bounded antichain in \mathbb{N}^{m-1}.

Proof (1) Set $\alpha_{1}=\left(a_{11}, a_{12}, \ldots, a_{1 m}\right), \ldots, \alpha_{t}=\left(a_{t 1}, a_{t 2}, \ldots, a_{t m}\right)$ and assume $\mu+1 \leq t, d \geq s_{r}+1$. Suppose that, for any $n \in\left\{s_{r}+1, \ldots, d\right\}$, the sequence $\widehat{\alpha}_{s_{1}}^{k+1}, \ldots, \widehat{\alpha}_{s_{r}}^{k+1}, \widehat{\alpha}_{n}^{k+1}$ is not an antichain in \mathbb{N}^{m-1}. We show that $d \leq \mu$. Indeed, for a fixed n we have $\widehat{\alpha}_{s_{i}}^{k+1} \| \widehat{\alpha}_{n}^{k+1}$ for some i, because $\widehat{\alpha}_{s_{1}}^{k+1}, \ldots, \widehat{\alpha}_{s_{r}}^{k+1}$ is an antichain in \mathbb{N}^{m-1}. Note that $\alpha_{s_{1}}, \ldots, \alpha_{s_{r}}, \alpha_{n}$ is an antichain in \mathbb{N}^{m}, so $\alpha_{s_{i}} \nVdash \alpha_{n}$. Hence we get $a_{s_{i}(k+1)}>a_{n(k+1)}$ and $f\left(s_{r}\right) \geq f\left(s_{i}\right) \geq a_{s_{i}(k+1)}>a_{n(k+1)}$.

Consequently, $a_{n(k+1)} \leq f\left(s_{r}\right)$ for any $n \in\left\{s_{r}+1, \ldots, d\right\}$ and thus the sequence $\alpha_{s_{r}+1}, \alpha_{s_{r}+2}, \ldots, \alpha_{d} \in \mathbb{N}^{m}$ is $\left({ }^{s_{r}} f, \beta, f\left(s_{r}\right)\right)$-bounded. This implies that $d-s_{r} \leq \mathcal{B}_{m}^{k+1}\left({ }^{s_{r}} f, \beta, f\left(s_{r}\right)\right)$, so $d \leq \mu$ and (1) follows.
(2) We use induction with respect to n. Assume that $n=1$ and set $p_{1}=1$. Then $\widehat{\alpha}_{1}^{k+1}$ is an $(f \circ g)$-bounded antichain in \mathbb{N}^{m-1}, because $\left|\widehat{\alpha}_{1}^{k+1}\right| \leq f(1)=f(g(1))$.

Assume that the thesis holds for some $n \geq 1$. Moreover, assume a technical condition $p_{1} \leq g(1), \ldots, p_{n} \leq$ $g(n)$. We show that the thesis holds for $n+1$ and $p_{1} \leq g(1), \ldots, p_{n+1} \leq g(n+1)$. Indeed, if $g(n+1) \leq t$, then $g(n) \leq t$ and hence there is an antichain in \mathbb{N}^{m-1} of the form $\widehat{\alpha}_{p_{1}}^{k+1}, \ldots, \widehat{\alpha}_{p_{n}}^{k+1}$. Since $p_{n} \leq g(n)$, we get the following inequalities:

$$
\begin{gathered}
1+p_{n}+\mathcal{B}_{m}^{k+1}\left({ }^{p_{n}} f, \beta, f\left(p_{n}\right)\right) \leq \\
\leq 1+g(n)+\mathcal{B}_{m}^{k+1}\left({ }^{g(n)} f, \beta, f(g(n))\right)=g(n+1) \leq t
\end{gathered}
$$

Therefore, applying (1) for $s_{r}=p_{n}$, we conclude that there exists

$$
c \in\left\{p_{n}+1, \ldots, 1+p_{n}+\mathcal{B}_{m}^{k+1}\left({ }^{p_{n}} f, \beta, f\left(p_{n}\right)\right)\right\}
$$

such that the sequence $\widehat{\alpha}_{p_{1}}^{k+1}, \ldots, \widehat{\alpha}_{p_{n}}^{k+1}, \widehat{\alpha}_{c}^{k+1}$ is an antichain in \mathbb{N}^{m-1}. This antichain is $(f \circ g)$-bounded, because $c \leq g(n+1)$ and thus $\left|\widehat{\alpha}_{c}^{k+1}\right| \leq f(c) \leq f(g(n+1))$. Hence we set $p_{n+1}=c$ and the proof is finished.

Given the above lemma we are able to prove the second step of the backward induction with respect to k and hence the second step of the main induction (with respect to m).

PASTUSZAK/Turk J Math

Corollary 3.4 Assume $m \geq 2, k \in\{0, \ldots, m-1\}, \mathcal{B}_{m}^{k+1}: \mathbb{F} \times \mathbb{N}^{k+1} \rightarrow \mathbb{N}$ has the $(k+1)$-bounding property for m and $\mathcal{B}_{m-1}: \mathbb{F} \rightarrow \mathbb{N}$ has the bounding property for $m-1$.
(1) The function $\mathcal{B}_{m}^{k}: \mathbb{F} \times \mathbb{N}^{k} \rightarrow \mathbb{N}$ defined by

$$
\mathcal{B}_{m}^{k}(f, \beta)=g\left(\mathcal{B}_{m-1}(f \circ g)+1\right)
$$

for any $f \in \mathbb{F}, \beta \in \mathbb{N}^{k}$ and $g=\mathcal{F}_{m}^{k}(f, \beta)$, has the k-bounding property for m.
(2) The function $\mathcal{B}_{m}^{0}: \mathbb{F} \rightarrow \mathbb{N}$ has the bounding property for m.

Proof (1) Assume that the antichain $\alpha_{1}, \ldots, \alpha_{t} \in \mathbb{N}^{m}$ of length t is (f, β)-bounded. If $g\left(\mathcal{B}_{m-1}(f \circ g)+1\right) \leq t$, then Lemma $3.3(2)$ implies there is an $(f \circ g)$-bounded antichain in \mathbb{N}^{m-1} of length $\mathcal{B}_{m-1}(f \circ g)+1$, a contradiction. Hence $t<g\left(\mathcal{B}_{m-1}(f \circ g)+1\right)$ and it remains to prove that $\mathcal{B}_{m}^{k}(f, \beta) \leq \mathcal{B}_{m}^{k}\left(f^{\prime}, \beta^{\prime}\right)$ for any $f, f^{\prime} \in \mathbb{F}$ and $\beta, \beta^{\prime} \in \mathbb{N}^{k}$ such that $f \leq f^{\prime}$ and $\beta \| \beta^{\prime}$. Set $g=\mathcal{F}_{m}^{k}(f, \beta)$ and $g^{\prime}=\mathcal{F}_{m}^{k}\left(f^{\prime}, \beta^{\prime}\right)$. It follows easily from the construction of g, g^{\prime} that $g \leq g^{\prime}$. Thus $f \circ g \leq f^{\prime} \circ g^{\prime}, \mathcal{B}_{m-1}(f \circ g) \leq \mathcal{B}_{m-1}\left(f^{\prime} \circ g^{\prime}\right)$ and finally $g\left(\mathcal{B}_{m-1}(f \circ g)+1\right) \leq g\left(\mathcal{B}_{m-1}\left(f^{\prime} \circ g^{\prime}\right)+1\right)$.
(2) Proposition 3.2 shows that the function $\mathcal{B}_{m}^{m}: \mathbb{F} \times \mathbb{N}^{m} \rightarrow \mathbb{N}$ given by the formula $\mathcal{B}_{m}^{m}\left(f, b_{1}, \ldots, b_{m}\right)=$ $\left(b_{1}+1\right) \cdot \ldots \cdot\left(b_{m}+1\right)$ has the m-bounding property for m. Then (1) yields a construction of the function $\mathcal{B}_{m}^{k}: \mathbb{F} \times \mathbb{N}^{k} \rightarrow \mathbb{N}$ having the k-bounding property for m given $\mathcal{B}_{m-1}: \mathbb{F} \rightarrow \mathbb{N}$ (with the bounding property for $m-1$) and $\mathcal{B}_{m}^{k+1}: \mathbb{F} \times \mathbb{N}^{k+1} \rightarrow \mathbb{N}$ (with the $(k+1$)-bounding property for m), for any $k \in\{0, \ldots, m-1\}$. This shows that the function $\mathcal{B}_{m}^{0}: \mathbb{F} \rightarrow \mathbb{N}$ has the bounding property for m.

Recall that Proposition 3.1 is the first step of the induction with respect to m. The second step of this induction is given in Corollary 3.4 (2). Hence we get the following main result of the section.

Theorem 3.5 The function $\mathcal{B}: \mathbb{N}_{1} \times \mathbb{F} \rightarrow \mathbb{N}$ defined recursively in the following way:
(1) $\mathcal{B}(1, f)=\mathcal{B}_{1}(f)$ for any $f \in \mathbb{F}$,
(2) $\mathcal{B}(m, f)=\mathcal{B}_{m}^{0}(f)$ for any $m \geq 2$ and $f \in \mathbb{F}$
has the bounding property.
Proof It follows from Proposition 3.1 that the function $\mathcal{B}_{1}: \mathbb{F} \rightarrow \mathbb{N}$ such that $\mathcal{B}_{1}(f)=f(1)+1$ has the bounding property for $m=1$. It follows from Corollary $3.4(2)$ that the function $\mathcal{B}_{m}^{0}: \mathbb{F} \rightarrow \mathbb{N}$ has the bounding property for m, for any $m \geq 2$. This shows that the construction given in the thesis is correct.

4. Main results

In this section we prove the main results of the paper. Throughout we assume that our admissible ordering \preccurlyeq is graded, e.g., \preccurlyeq is the degree lexicographical order.

Assume $m \geq 1$ and $f: \mathbb{N}_{1} \rightarrow \mathbb{N}_{1}$ is a function (we do not assume here that $f \in \mathbb{F}$). An ascending chain $I_{1} \subsetneq \ldots \subsetneq I_{t}$ of ideals in $K\left[x_{1}, \ldots, x_{m}\right]$ is f-bounded if and only if I_{j} is generated by polynomials of degrees less or equal to $f(j)$, for any $j=1, \ldots, t$.

PASTUSZAK/Turk J Math

Our first goal is to give a bound on the length of f-bounded ascending chains of ideals in $K\left[x_{1}, \ldots, x_{m}\right]$ depending on m and f. The following proposition shows that this problem reduces to the situation studied in Section 3.

Proposition 4.1 Assume that $m \geq 1, f: \mathbb{N}_{1} \rightarrow \mathbb{N}_{1}$ is a function and $I_{1} \subsetneq \ldots \subsetneq I_{t}$ is an f-bounded ascending chain of ideals in $K\left[x_{1}, \ldots, x_{m}\right]$. Then there exist monomials $\underline{x}^{\alpha_{1}}, \ldots, \underline{x}^{\alpha_{t}} \in \mathbb{T}_{m}$ such that $\operatorname{deg}\left(\underline{x}^{\alpha_{i}}\right) \leq f(i)$ for $i=1, \ldots, t$ and $\underline{x}^{\alpha_{i+1}} \notin\left\langle\underline{x}^{\alpha_{1}}, \ldots, \underline{x}^{\alpha_{i}}\right\rangle$ for $i=1, \ldots, t-1$. If $f: \mathbb{N}_{1} \rightarrow \mathbb{N}_{1}$ is nondecreasing, this condition is equivalent to the fact that the sequence $\alpha_{1}, \ldots, \alpha_{t}$ is an f-bounded antichain.

Proof Assume that $I_{j}=\left\langle h_{j 1}, h_{j 2}, \ldots, h_{j s_{j}}\right\rangle$ and $\operatorname{deg}\left(h_{j i}\right) \leq f(j)$ for any $j=1, \ldots, t$ and $i=1, \ldots, s_{j}$. It is easy to see that there are polynomials h_{1}, \ldots, h_{t} such that $h_{j} \in\left\{h_{j 1}, h_{j 2}, \ldots, h_{j s_{j}}\right\}$ and $h_{j} \notin\left\langle h_{1}, h_{2}, \ldots, h_{j-1}\right\rangle$. Thus we get an ascending chain of ideals of the form $\left\langle h_{1}\right\rangle \subsetneq\left\langle h_{1}, h_{2}\right\rangle \subsetneq \ldots \subsetneq\left\langle h_{1}, h_{2}, \ldots, h_{t}\right\rangle$ of length t with the property that $h_{j+1} \notin\left\langle h_{1}, h_{2}, \ldots, h_{j}\right\rangle$ and $\operatorname{deg}\left(h_{j}\right) \leq f(j)$ for any j. We set $H_{1}=\left\{h_{1}\right\}$, $H_{2}=\left\{h_{1},\left(h_{2}\right)_{H_{1}}\right\}, H_{3}=\left\{h_{1},\left(h_{2}\right)_{H_{1}},\left(h_{3}\right)_{H_{2}}\right\}$ and so on. We show that $\left\langle H_{t}\right\rangle=\left\langle h_{1}, h_{2}, \ldots, h_{t}\right\rangle$ and the sequence $\operatorname{lm}\left(h_{1}\right), \operatorname{lm}\left(\left(h_{2}\right)_{H_{1}}\right), \ldots, \operatorname{lm}\left(\left(h_{t}\right)_{H_{t-1}}\right)$ of monomials satisfies the required condition. Indeed, since the admissible ordering \preccurlyeq is graded, we get $\operatorname{deg}\left(\operatorname{lm}\left(h_{1}\right)\right)=\operatorname{deg}\left(h_{1}\right) \leq f(1)$ and thus the assertion holds for $t=1$. Assume that the assertion holds for some $t \geq 1$ and there is an ascending chain of ideals

$$
\left\langle h_{1}\right\rangle \subsetneq\left\langle h_{1}, h_{2}\right\rangle \subsetneq \ldots \subsetneq\left\langle h_{1}, h_{2}, \ldots, h_{t}\right\rangle \subsetneq\left\langle h_{1}, h_{2}, \ldots, h_{t}, h_{t+1}\right\rangle
$$

of length $t+1$ such that $h_{j+1} \notin\left\langle h_{1}, h_{2}, \ldots, h_{j}\right\rangle$ and $\operatorname{deg}\left(h_{j}\right) \leq f(j)$ for any j. There are polynomials a_{1}, \ldots, a_{t} such that

$$
h_{t+1}=a_{1} h_{1}+a_{2}\left(h_{2}\right)_{H_{1}}+\ldots+a_{t}\left(h_{t}\right)_{H_{t-1}}+\left(h_{t+1}\right)_{H_{t}}
$$

and $\operatorname{lm}\left(h_{t+1}\right)=\max \left\{\operatorname{lm}\left(a_{1} h_{1}\right), \operatorname{lm}\left(a_{2}\left(h_{2}\right)_{H_{1}}\right) \ldots, \operatorname{lm}\left(a_{t}\left(h_{t}\right)_{H_{t-1}}\right), \operatorname{lm}\left(\left(h_{t+1}\right)_{H_{t}}\right)\right\}$. This yields $h_{t+1} \in\left\langle H_{t+1}\right\rangle$ and since $\left\langle h_{1}, h_{2}, \ldots, h_{t}\right\rangle=\left\langle H_{t}\right\rangle \subseteq\left\langle H_{t+1}\right\rangle$, we get that $\left\langle h_{1}, h_{2}, \ldots, h_{t}, h_{t+1}\right\rangle \subseteq H_{t+1}$. Moreover, we have $h_{1},\left(h_{2}\right)_{H_{1}}, \ldots,\left(h_{t+1}\right)_{H_{t}} \in\left\langle h_{1}, h_{2}, \ldots, h_{t}, h_{t+1}\right\rangle$ and so $\left\langle H_{t+1}\right\rangle=\left\langle h_{1}, h_{2}, \ldots, h_{t}, h_{t+1}\right\rangle$. Observe that $\left(h_{t+1}\right)_{H_{t}} \neq$ 0 , because otherwise $h_{t+1} \in\left\langle H_{t}\right\rangle=\left\langle h_{1}, \ldots, h_{t}\right\rangle$, a contradiction. Since $\operatorname{lm}\left(\left(h_{t+1}\right)_{H_{t}}\right) \preccurlyeq \operatorname{lm}\left(h_{t+1}\right)$ and the ordering \preccurlyeq is graded, we get $\operatorname{deg}\left(\operatorname{lm}\left(h_{t+1}\right)_{H_{t}}\right) \leq \operatorname{deg}\left(\operatorname{lm}\left(h_{t+1}\right)\right) \leq f(t+1)$. Finally, the elements of $\operatorname{LM}\left(H_{t}\right)$ do not divide $\operatorname{lm}\left(\left(h_{t+1}\right)_{H_{t}}\right)$, because $\left(h_{t+1}\right)_{H_{t}}$ is reduced modulo H_{t}. This implies $\operatorname{lm}\left(\left(h_{t+1}\right)_{H_{t}}\right) \notin\left\langle\operatorname{LM}\left(H_{t}\right)\right\rangle$ which finishes the induction.

To prove the second assertion, assume that $\alpha_{i}=\left(a_{i 1}, a_{i 2}, \ldots, a_{i m}\right) \in \mathbb{N}^{m}$ for $i=1, \ldots, t$. Then $\alpha_{1}, \ldots, \alpha_{t}$ is an antichain if and only if for any $i<j$ there is k such that $a_{i k}>a_{j k}$. This implies that the sequence $\underline{x}^{\alpha_{1}}, \ldots, \underline{x}^{\alpha_{t}}$ of monomials in $K\left[x_{1}, \ldots, x_{m}\right]$ satisfies the conditions $\underline{x}^{\alpha_{i+1}} \notin\left\langle\underline{x}^{\alpha_{1}}, \ldots, \underline{x}^{\alpha_{i}}\right\rangle$ (for $i=1, \ldots, t-1$) and $\operatorname{deg}\left(\underline{x}^{\alpha_{i}}\right) \leq f(i)$ (for $\left.i=1, \ldots, t\right)$ if and only if the sequence $\alpha_{1}, \ldots, \alpha_{t}$ is an f-bounded antichain.

The above proposition shows that one can associate an f-bounded antichain of length t to an f-bounded ascending chain of ideals of the same length t (if f is nondecreasing). Therefore we get the following theorem on the length of ascending chains of ideals as a direct consequence of Theorem 3.5 and Proposition 4.1.

Theorem 4.2 Assume that $m \geq 1$ and $f: \mathbb{N}_{1} \rightarrow \mathbb{N}_{1}$ is a function. Suppose that $I_{1} \subsetneq \ldots \subsetneq I_{t}$ is an f bounded ascending chain of ideals in $K\left[x_{1}, \ldots, x_{m}\right]$ of length t. Moreover, let $g: \mathbb{N}_{1} \rightarrow \mathbb{N}_{1}$ be the nondecreasing function defined by $g(n)=\max \{f(1), f(2), \ldots, f(n)\}$, for any $n \in \mathbb{N}$. Then $t \leq \mathcal{B}(m, g)$. In particular, we have $t \leq \mathcal{B}(m, f)$, if f is nondecreasing.

PASTUSZAK/Turk J Math

Proof The chain $I_{1} \subsetneq \ldots \subsetneq I_{t}$ is g-bounded, so the assertion follows from Theorem 3.5 and Proposition 4.1. Note that if f is nondecreasing, then $f=g$.

Now we deduce some consequences of Theorem 4.2 (and hence of Theorem 3.5) in the context of Gröbner bases. We start with the following preparatory fact.

Proposition 4.3 Assume that $F=\left\{f_{1}, \ldots, f_{s}\right\} \subseteq K\left[x_{1}, \ldots, x_{m}\right]$ is a set of nonzero polynomials and $d \geq 1$ is a natural number such that $\operatorname{deg}\left(f_{i}\right) \leq d$ for $i=1, \ldots, s$. Let $\left\langle\operatorname{LT}\left(B_{0}\right)\right\rangle \subsetneq\left\langle\operatorname{LT}\left(B_{1}\right)\right\rangle \subsetneq \ldots$ be the associated ascending chain of monomial ideals arising from the Buchberger's algorithm. Assume that $n \geq 0$ and $b \in B_{n}$.
(1) There exist polynomials $a_{1}, \ldots, a_{s} \in K\left[x_{1}, \ldots, x_{m}\right]$ such that $b=a_{1} f_{1}+\ldots+a_{s} f_{s}$ and $\operatorname{deg}\left(a_{1}\right), \ldots, \operatorname{deg}\left(a_{s}\right) \leq$ $\left(3^{n}-1\right) d$.
(2) We have $\operatorname{deg}(\operatorname{lt}(b)) \leq 3^{n} d$.

Proof Set $\chi(n)=\left(3^{n}-1\right) d$ for any $n \in \mathbb{N}$. Observe that (1) implies (2). Indeed, if $b=a_{1} f_{1}+\ldots+a_{s} f_{s}$ for some a_{1}, \ldots, a_{s} with $\operatorname{deg}\left(a_{1}\right), \ldots, \operatorname{deg}\left(a_{s}\right) \leq \chi(n)$, then $\operatorname{deg}\left(a_{1} f_{1}\right), \ldots, \operatorname{deg}\left(a_{s} f_{s}\right) \leq \chi(n)+d=3^{n} d$. This implies $\operatorname{deg}(\operatorname{lt}(b)) \leq 3^{n} d$, because the ordering \preccurlyeq is graded.

Thus it is enough to show (1). We use induction with respect to n. In the case $n=0$, we have $B_{0}=F$ and $\chi(0)=0$, so the assertion holds. Assume that the assertion holds for some $n \geq 0$, that is, set $B_{n}=\left\{b_{1}, \ldots, b_{r}\right\}$ and $b_{i}=a_{i 1} f_{1}+\ldots+a_{i s} f_{s}$ for some $a_{i 1}, \ldots, a_{i s} \in K\left[x_{1}, \ldots, x_{m}\right]$ such that $\operatorname{deg}\left(a_{i 1}\right), \ldots, \operatorname{deg}\left(a_{i s}\right) \leq$ $\chi(n)$, for any $i=1, \ldots, r$. We show that the assertion holds for $n+1$.

Assume that $b_{i}, b_{j} \in B_{n}$ and $b_{i} \neq b_{j}$. Recall that $B_{n+1}=B_{n} \cup S_{B_{n}}$ and thus it is enough to show the assertion for $S\left(b_{i}, b_{j}\right)_{B_{n}}$. Observe that

$$
\begin{gathered}
S\left(b_{i}, b_{j}\right)=\frac{\underline{x}^{\alpha}}{\operatorname{lt}\left(b_{i}\right)} b_{i}-\frac{\underline{x}^{\alpha}}{\operatorname{lt}\left(b_{j}\right)} b_{j}= \\
=\left(\frac{\underline{x}^{\alpha}}{\operatorname{lt}\left(b_{i}\right)} a_{i 1}-\frac{\underline{x}^{\alpha}}{\operatorname{lt}\left(b_{j}\right)} a_{j 1}\right) f_{1}+\ldots+\left(\frac{\underline{x}^{\alpha}}{\operatorname{lt}\left(b_{i}\right)} a_{i s}-\frac{\underline{x}^{\alpha}}{\operatorname{lt}\left(b_{j}\right)} a_{j s}\right) f_{s}
\end{gathered}
$$

where \underline{x}^{α} denotes the least common multiple of $\operatorname{lm}\left(b_{i}\right)$ and $\operatorname{lm}\left(b_{j}\right)$. Since (1) implies (2), we get

$$
\operatorname{deg}\left(\frac{\underline{x}^{\alpha}}{\operatorname{lt}(b)}\right) \leq \operatorname{deg}\left(\operatorname{lt}\left(b^{\prime}\right)\right) \leq \chi(n)+d
$$

where $b=b_{i}, b^{\prime}=b_{j}$ or vice versa. This yields

$$
(*) \quad \operatorname{deg}\left(\frac{\underline{x}^{\alpha}}{\operatorname{lt}\left(b_{i}\right)} a_{i k}-\frac{\underline{x}^{\alpha}}{\operatorname{lt}\left(b_{j}\right)} a_{j k}\right) \leq 2 \chi(n)+d
$$

for any $k=1, \ldots, s$, and consequently $\operatorname{deg}\left(S\left(b_{i}, b_{j}\right)\right) \leq 2 \chi(n)+2 d$. Moreover, there are polynomials c_{1}, \ldots, c_{r} such that

$$
\begin{gathered}
S\left(b_{i}, b_{j}\right)_{B_{n}}=S\left(b_{i}, b_{j}\right)-c_{1} b_{1}-\ldots-c_{r} b_{r}= \\
=S\left(b_{i}, b_{j}\right)-c_{1}\left(a_{11} f_{1}+\ldots+a_{1 s} f_{s}\right)-\ldots-c_{r}\left(a_{r 1} f_{1}+\ldots+a_{r s} f_{s}\right)
\end{gathered}
$$

PASTUSZAK/Turk J Math

and $\operatorname{lm}\left(c_{l} b_{l}\right) \preccurlyeq \operatorname{lm}\left(S\left(b_{i}, b_{j}\right)\right)$ for any $l=1, \ldots, r$. Because \preccurlyeq is graded, we get

$$
\operatorname{deg}\left(c_{l}\right) \leq \operatorname{deg}\left(c_{l} b_{l}\right) \leq \operatorname{deg}\left(S\left(b_{i}, b_{j}\right)\right) \leq 2 \chi(n)+2 d
$$

and thus $(* *) \operatorname{deg}\left(c_{l} a_{l k}\right) \leq 3 \chi(n)+2 d$ for any $l=1, \ldots, r$ and $k=1, \ldots, s$.
It follows by $(*)$ and $(* *)$ that the polynomial $S\left(b_{i}, b_{j}\right)_{B_{n}}$ can be written in the form $a_{1}^{\prime} f_{1}+\ldots+a_{s}^{\prime} f_{s}$ where $\operatorname{deg}\left(a_{i}^{\prime}\right) \leq 3 \chi(n)+2 d$. Since $3 \chi(n)+2 d=\chi(n+1)$, this shows the assertion for $n+1$.

By a string $3^{n} d$ we mean the function $f: \mathbb{N}_{1} \rightarrow \mathbb{N}_{1}$ such that $f(n)=3^{n} d(d \geq 1$ is a fixed natural number).

Corollary 4.4 Assume that $F=\left\{f_{1}, \ldots, f_{s}\right\} \subseteq K\left[x_{1}, \ldots, x_{m}\right]$ is a set of nonzero polynomials and d is a natural number such that $\operatorname{deg}\left(f_{i}\right) \leq d$ for $i=1, \ldots, s$. Let

$$
\left\langle\mathrm{LT}\left(B_{0}\right)\right\rangle \subsetneq\left\langle\mathrm{LT}\left(B_{1}\right)\right\rangle \subsetneq \ldots \subsetneq\left\langle\operatorname{LT}\left(B_{r}\right)\right\rangle
$$

be the associated ascending chain of monomial ideals arising from the Buchberger's algorithm such that B_{r} is the Gröbner basis of $\langle F\rangle$. Then $r+1 \leq \mathcal{B}\left(m, 3^{n} d\right)$.

Proof It follows from Proposition 4.3 (2) that the ascending chain $\left\langle\mathrm{LT}\left(B_{0}\right)\right\rangle \subsetneq\left\langle\mathrm{LT}\left(B_{1}\right)\right\rangle \subsetneq \ldots \subsetneq\left\langle\operatorname{LT}\left(B_{r}\right)\right\rangle$ is $3^{n} d$-bounded. Hence Theorem 4.2 yields the condition $r+1 \leq \mathcal{B}\left(m, 3^{n} d\right)$.

Set $m \geq 1, d \geq 1$ and define the function $\gamma_{m, d}: \mathbb{N} \rightarrow \mathbb{N}$ in the following way

$$
\gamma_{m, d}(i)=\left(3^{\mathcal{B}\left(m, 3^{n} d\right)-1}-1\right) d+i
$$

for any $i \in \mathbb{N}$. The function $\gamma_{m, d}$ has the following property.
Corollary 4.5 Assume that $m \geq 1$ and $d \geq 1$. Then for any $g \in K\left[x_{1}, \ldots, x_{m}\right]$ and $f_{1}, \ldots, f_{s} \in K\left[x_{1}, \ldots, x_{m}\right]$ such that $\operatorname{deg}\left(f_{i}\right) \leq d$ for $i=1, \ldots, s$ the following condition is satisfied: $g \in\left\langle f_{1}, \ldots, f_{s}\right\rangle$ if and only if there exist $h_{1}, \ldots, h_{s} \in K\left[x_{1}, \ldots, x_{m}\right]$ such that $g=h_{1} f_{1}+\ldots+h_{s} f_{s}$ and $\operatorname{deg}\left(h_{i}\right) \leq \gamma_{m, d}(\operatorname{deg}(g))$ for $i=1, \ldots, s$.

Proof Proof. Assume that $g, f_{1}, \ldots, f_{s} \in K\left[x_{1}, \ldots, x_{m}\right]$ and $\operatorname{deg}\left(f_{i}\right) \leq d$ for $i=1, \ldots, s$. Set $F=\left\{f_{1}, \ldots, f_{s}\right\}$ and let $\left\langle\mathrm{LT}\left(B_{0}\right)\right\rangle \subsetneq\left\langle\mathrm{LT}\left(B_{1}\right)\right\rangle \subsetneq \ldots \subsetneq\left\langle\mathrm{LT}\left(B_{r}\right)\right\rangle$ be the ascending chain of monomial ideals arising from the Buchberger's algorithm such that $B_{r}=G=\left\{g_{1}, \ldots, g_{t}\right\}$ is the Gröbner basis of $\langle F\rangle$.

Assume that $g \in\left\langle f_{1}, \ldots, f_{s}\right\rangle$. Since G is a Gröbner basis of $\langle F\rangle$, there are polynomials p_{1}, \ldots, p_{t} such that $g=p_{1} g_{1}+\ldots+p_{t} g_{t}$ and $\operatorname{lm}(g)$ is the maximal element of $\left\{\operatorname{lm}\left(p_{1} g_{1}\right), \ldots, \operatorname{lm}\left(p_{t} g_{t}\right)\right\}$. Hence $\operatorname{lm}\left(p_{i} g_{i}\right) \preccurlyeq \operatorname{lm}(g)$ so $\operatorname{deg}\left(p_{i} g_{i}\right) \leq \operatorname{deg}(g)$ and consequently $\operatorname{deg}\left(p_{i}\right) \leq \operatorname{deg}(g)$, for any $i=1, \ldots, t$.

Corollary 4.4 yields $r+1 \leq \mathcal{B}\left(m, 3^{n} d\right)$. Furthermore, Proposition 4.3 (1) implies that $g_{i}=a_{i 1} f_{1}+\ldots+a_{i s} f_{s}$ for some polynomials $a_{i 1}, \ldots, a_{i s}$ with

$$
\operatorname{deg}\left(a_{i 1}\right), \ldots, \operatorname{deg}\left(a_{i s}\right) \leq\left(3^{r}-1\right) d \leq\left(3^{\mathcal{B}\left(m, 3^{n} d\right)-1}-1\right) d
$$

for $i=1, \ldots, t$. It follows that

$$
\operatorname{deg}\left(p_{i} a_{i k}\right) \leq\left(3^{\mathcal{B}\left(m, 3^{n} d\right)-1}-1\right) d+\operatorname{deg}(g)=\gamma_{m, d}(\operatorname{deg}(g))
$$

for $i=1, \ldots, t$ and $k=1, \ldots, s$. This shows the assertion.
Let us note that the main results of this section (Theorem 4.2 and Corollaries 4.4 and 4.5) do not depend on the choice of the base field K of the polynomial ring $K\left[x_{1}, \ldots, x_{m}\right]$.

PASTUSZAK/Turk J Math

5. Remarks

Our interest in problems studied in the paper comes from the first order logic and linear algebra. We want to give a constructive proof of the renowned Tarski's theorem on quantifier elimination in the theory of algebraically closed fields. The final goal is to solve the common invariant subspace problem.

Tarski showed that the theory of algebraically closed fields admits quantifier elimination in 1948. He has never published his proof, but one can find it implicitly in [23], see also [22, 26, 28] for more information. Roughly, Tarski's theorem states that if $\varphi\left(x_{1}, \ldots, x_{n}\right)$ is a formula in the first order language of fields with n free variables x_{1}, \ldots, x_{n}, then there exists a quantifier-free formula $\varphi^{\prime}\left(x_{1}, \ldots, x_{n}\right)$ (a formula in which quantifiers do not occur), with the same free variables, such that $\varphi\left(x_{1}, \ldots, x_{n}\right)$ is equivalent with $\varphi^{\prime}\left(x_{1}, \ldots, x_{n}\right)$. This means that for any algebraically closed field K and any elements $a_{1}, \ldots, a_{n} \in K$ we have $\varphi\left(a_{1}, \ldots, a_{n}\right) \leftrightarrow \varphi^{\prime}\left(a_{1}, \ldots, a_{n}\right)$. We refer to [16] for the necessary details.

As an example, consider the formula $\varphi(A)=\exists_{B} A B=B A=I_{n}$ where A, B are $n \times n$ complex matrices and I_{n} is the $n \times n$ identity matrix $(\varphi(A)$ can be suitably written in the first order language of fields). This formula states that A is nonsingular and thus $\varphi(A)$ holds if and only if $\operatorname{det}(A) \neq 0$. The latter formula is quantifier-free and very easy to verify. Generally, this is the case for any quantifier-free formula.

By a constructive proof (or constructive version) of Tarski's theorem we mean a proof of Tarski's theorem which yields a concrete quantifier-free form of a given formula. In some sense, the original proof given by Tarski is already constructive.

Tarski's theorem has a number of proofs. Proofs which are constructive are part of algorithmic quantifier elimination theory. There is an extensive literature on this topic. The reader is referred to [17] for some review of important results in the field. Here we only mention [11] by Heintz where the author presents a detailed and comprehensive analysis of the complexity of quantifier elimination in the theory of algebraically closed fields. In the paper Heintz gives a concrete algorithm for quantifier elimination, see Section 4 of [11].

In the subsequent paper [19] we apply Corollary 4.5 to give another constructive (and very natural) proof of Tarski's theorem. We apply it in the solution of the common invariant subspace problem (or the CIS problem). This is a problem of providing a computable criterion (a procedure employing only finite number of arithmetic operations) for the existence of d-dimensional common invariant subspace of $s \geq 2$ matrices $A_{1}, \ldots, A_{s} \in \mathbb{M}_{n}(\mathbb{C})$. The existence of such a subspace can be expressed as a first order formula ψ of the language of fields. By the constructive Tarski's theorem we are able to give a quantifier-free formula ψ^{\prime} which is equivalent to ψ. The formula ψ^{\prime} may be considered as a computable criterion for the existence of a common invariant subspace of A_{1}, \ldots, A_{s}.

There are many partial solutions of the CIS problem, see for example $[1,2,10,13,14,20,21,25,27]$. The general version of the CIS problem is solved in [4], using techniques of Gröbner bases theory and algebraic geometry. Hence the results of the present paper and the subsequent one give another (substantially different) complete solution of the CIS problem. This solution is elementary and natural.

In the series of papers $[13,14,20,21]$ we consider computable conditions for the existence of various common invariant subspaces of complex linear operators. We further apply these conditions in some problems of quantum information theory. All the problems we consider can be expressed in the first order language of fields, and hence the constructive Tarski's theorem is applicable. This gives a new general context for this research and opens the possibility for other applications.

Acknowledgements

This research has been supported by grant No. DEC-2011/02/A/ST1/00208 of National Science Center of Poland. We are grateful to the anonymous referee for careful reading of the paper and some valuable suggestions which helped to improve the initial version.

References

[1] Alpin Y, George A, Ikramov K. Solving the two dimensional CIS problem by a rational algorithm. Linear Algebra and its Applications 2000; 312: 115-123.
[2] Alpin Y, Ikramov K. Rational procedures in the problem of common invariant subspaces of two matrices. Journal of Mathematical Sciences 2003; 114 (6): 1757-1764.
[3] Adams W, Loustaunau P. An Introduction to Gröbner Bases. Graduate Studies in Mathematics, Vol. 3. Providence, RI, USA: American Mathematical Society, 1994.
[4] Arapura D, Peterson C. The common invariant subspace problem: an approach via Gröbner bases. Linear Algebra and its Applications 2004; 384: 1-7.
[5] Aschenbrenner M, Pong W. Orderings of monomial ideals. Fundamenta Mathematicae 2004; 181: 27-74.
[6] Buchberger B. Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes naech einen nulldimensionalen Polynomideal. PhD, University of Innsbruck, Innsbruck, Tyrol, Austria, 1965 (in German).
[7] Buchberger B. Gröbner Bases: an algorithmic method in polynomial ideal theory. In: Bose NK (editor). Multidimensional Systems Theory. Dordrecht, Netherlands: D. Reidel Publishing Company, 1985, pp. 184-232.
[8] Bruns W, Herzog J. Cohen-Macaulay Rings. Cambridge Studies in Advanced Mathematics, Vol. 39. Cambridge, UK: Cambridge University Press, 1993.
[9] Eisenbud D. Commutative Algebra with a View Toward Algebraic Geometry. Graduate Texts in Mathematics, Vol. 150. Berlin, Germany: Springer, 1995.
[10] George A, Ikramov K. Common invariant subspaces of two matrices. Linear Algebra and its Applications 1999; 287: 171-179.
[11] Heintz J. Definability and fast quantifier elimination in algebraically closed fields. Theoretical Computer Science 1983; 24 (3): 239-277.
[12] Jelonek Z. On the effective Nullstellensatz. Inventiones Mathematicae 2005; 162 (1): 1-17.
[13] Jamiołkowski A, Kamizawa T, Pastuszak G. On invariant subspace in quantum control systems and some concepts of integrable quantum systems. International Journal of Theoretical Physics 2015; 54 (8): 2662-2674.
[14] Jamiołkowski A, Pastuszak G. Generalized Shemesh criterion, common invariant subspaces and irreducible completely positive superoperators. Linear and Multilinear Algebra 2015; 63 (2): 314-325.
[15] Kollár J. Sharp effective Nullstellensatz. Journal of the American Mathematical Society 1988; 1: 963-975.
[16] Marker D. Model Theory: An Introduction. Berlin, Gemany: Springer, 2002.
[17] Mishra B. Algorithmic Algebra. Texts and Monographs in Computer Science. Berlin, Germany: Springer-Verlag, 1993.
[18] Moreno Socías G. Length of polynomial ascending chains and primitive recursiveness. Mathematica Scandinavica 1992; 71: 181-205.
[19] Pastuszak G. The common invariant subspace problem and Tarski's theorem. Electronic Journal of Linear Algebra 2017; 32: 343-356.
[20] Pastuszak G, Jamiołkowski A. Common reducing unitary subspaces and decoherence in quantum systems. Electronic Journal of Linear Algebra 2015; 30: 253-270.
[21] Pastuszak G, Kamizawa T, Jamiołkowski A. On a Criterion for Simultaneous Block-Diagonalization of Normal Matrices. Open Systems and Information Dynamics 2016; 23 (01).
[22] Robinson A. Introduction to Model Theory and to the Metamathematics of Algebra. Studies in Logic and the Foundations of Mathematics, Vol. 66. Amsterdam, Netherlands: North-Holland Publishing Company, 1965.
[23] Seidenberg A. A new decision method for elementary algebra. Annals of Mathematics 1954; 60: 365-374.
[24] Seidenberg A. On the length of a Hilbert ascending chain. Proceedings of the American Mathematical Society 1971; 29: 443-450.
[25] Shemesh D. Common eigenvectors of two matrices. Linear Algebra and its Applications 1984; 62: 11-18.
[26] Tarski A. A Decision Method for Elementary Algebra and Geometry. Santa Monica, CA, USA: RAND Corporation, 1948.
[27] Tsatsomeros M. A criterion for the existence of common invariant subspaces of matrices. Linear Algebra and its Applications 2001; 322: 51-59.
[28] Van den Dries L. Alfred Tarski's elimination theory for real closed fields. Journal of Symbolic Logic 1988; 53 (1): 7-19.

[^0]: *Correspondence: past@mat.umk.pl
 2010 AMS Mathematics Subject Classification: 13F20 05E40, 13P10, 03C10.

