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Abstract: We prove the well-definedness of some deformations of the fibred biset category in characteristic zero.
The method is to realize the fibred biset category and the deformations as the invariant parts of some categories
whose compositions are given by simpler formulas. Those larger categories are constructed from a partial category of
subcharacters by linearizing and introducing a cocycle.
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1. Introduction
One approach to finite group theory involves linear categories whose objects are finite groups. Examples include
the biset category studied in Bouc [5], the fibred biset category in Boltje–Coşkun [3], the p -permutation category
in Ducellier [7] and many subcategories of those. The work behind the present paper has been an attempt, in
some cases successful, to characterize such categories in terms of categories that are larger but easier to describe.
For the biset category, the theme was initiated in Boltje–Danz [4] and developed in [2]. Our presentation, though,
is self-contained and does not presume familiarity with those two papers.

Throughout, we let G be a nonempty set of finite groups. It is always to be understood that F , G , H ,
I denote arbitrary elements of G . We let R be a commutative unital ring such that every positive integer has
an inverse in R . The inversion condition, expressed differently, is that the field of rational numbers Q embeds
in R . We let K be an algebraically closed field of characteristic zero. We let A be a multiplicatively written
abelian group.

After reviewing some background in Section 2, we shall introduce the notion of an interior R -linear
category L with set of objects G . Each G acts on the endomorphism algebra EndL(G) via an algebra map
from the group algebra RG . We shall construct a category L , called the invariant category of L .

Informally, borrowing a term from algebraic geometry, we call L a “polarization” of L . Let us retain
the scare-quotes, because we do not propose a general definition, and we wish only to use the term when the
composition for L is easier to describe than the composition for L . A “polarization” of the biset category was
introduced in [4], and that was extended to some deformations of the biset category in [2]. In Section 3, as
rather a toy illustration, we shall introduce a “polarization” of a K -linear category associated with K -character
rings. More substantially, in Section 4, we shall introduce a partial category called the A -subcharacter partial
category and, in Section 5, we shall show that a twisted R -linearization of the A -subcharacter partial category
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serves as a “polarization” of the R -linear A -fibred biset category discussed in Boltje–Coşkun [3]. One direction
for further study may be towards reassessing the classification, in [3], of the simple A -fibred biset functors. We
shall comment further on that at the end of the paper.

Also in Section 5, we shall present some deformations of the R -linear A -fibred biset category. To prove
the associativity of the deformed composition, we shall make use of the fact that those deformations, too, admit
“polarizations” in the form of twisted R -linearizations of the A -subcharacter partial category.

Our hypothesis on R is not significantly more general than the case of an arbitrary field of characteristic
zero. Adaptations to other coefficient rings would require further techniques.

2. Interior linear categories

Categories and partial categories arise in our topic mainly as combinatorial structures (in the sense that some
familar “up to” qualifications are absent, to wit, all the equivalences of categories below are isomorphisms
of categories). Let us organize our notation and terminology accordingly. The main idea behind the less
standard among the following definitions goes back at least as far as Schelp [9]. For clarity, let us present the
material in a self-contained way. We define a partial magma to be a set P equipped with a relation ∼ , called
the matching relation, together with a function P 3 φψ 7→(φ,ψ) ∈ Γ(P) , called the multiplication, where
Γ(P) = {(φ,ψ) ∈ P × P : φ ∼ ψ} .

We call P a partial semigroup provided the following associativity condition holds: given θ, φ, ψ ∈ P
such that θ ∼ φ and φ ∼ ψ , then θ ∼ φψ if and only if θφ ∼ ψ , in which case θ(φψ) = (θφ)ψ . When θ ∼ φψ ,
we say that θφψ is defined.

Suppose P is a partial semigroup. An element ι ∈ P satisfying ι ∼ ι and ι2 = ι is called an idempotent
of P . Let X be a set and I = (idPX : X ∈ X ) a family of idempotents idPX ∈ P satisfying the following filtration
condition: for all φ ∈ P , we have idPX ∼ φ ∼ idPY for unique X,Y ∈ X , furthermore, idPXφ = φ = φιPY . We
write cod(φ) = X and dom(φ) = Y , which we call the codomain and domain of φ , respectively. We call the
triple (P, I,X ) a small partial category on X . As an abuse of notation, we often write P instead of (P, I,X ) .
We call an element φ ∈ P a P -morphism cod(φ) ← dom(φ) , we call an element X ∈ X an object of P and
we call idPX the identity P -morphism on X . We write

P(X,Y ) = {φ ∈ P : cod(φ) = X, dom(φ) = Y }

and EndP(X) = P(X,X) . In the context of partial categories, products are called composites. Observe that,
given P -morphisms φ and ψ such that φ ∼ ψ , then dom(φ) = cod(ψ) . If, conversely, φ ∼ ψ for all P -
morphisms φ and ψ satisfying dom(φ) = cod(ψ) , then we call P a small category. Of course, the latest
definition coincides with the usual definition of the same term; a small category in the above sense determines
all the structural features of a small category in the conventional sense, and conversely.

Another approach to the above material is as follows, directly generalizing the notion of a small category
expressed in Bourbaki [6, II Section 3 Définition 2]. A small partial category (P, I,X ) uniquely determines a
quiver equipped with a composition operation, where X , P , dom() , cod() are the vertex set, arrow set, source
function, target function, respectively, and the composition operation P ← Γ(P) satisfies evident versions of
the associativity and identity axioms. The reason for our treatment using semigroups rather than quivers is
that the former will be more convenient when discussing the algebras RP and RγP , defined below. One special
case worth bearing in mind will be that where P is a group, whereupon RγP is a twisted group algebra.
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All the categories and partial categories discussed below are deemed to be small, and we shall omit the
term small, though the material extends easily to locally small cases.

Given categories C and D on a set X , then a functor λ : C ← D is said to be object-identical provided
λ(X) = X for all X ∈ X . Note that, if such λ is an equivalence, then λ is an isomorphism.

Recall, a category is said to be R -linear when the morphism sets are R -modules and the composition
maps are R -bilinear. Functors between R -linear categories are required to be R -linear on morphisms. We
define an interior R -linear category on G to be an R -linear category L on G equipped with a family (σG) of
algebra maps

σG : EndL(G)← RG

called the structural maps of L . We write elements of F×G in the form f×g instead of the conventional
(f, g) (because the unconventional notation is the more readable when familiarity has been acquired). We make
L(F,G) become an R(F×G) -module such that f×g sends an element φ ∈ L(F,G) to the element

f×gφ = σF (f)φσG(g
−1) .

We write fφg = (f×g−1)φ and we also use the notation fφ = fφ1 and φg = 1φg .

Proposition 2.1 Given an interior R -linear category L on G , then there is an R -linear category L on G
such that, for all F,G ∈ G , the R -module of L-morphisms F ← G is the F×G-fixed R -submodule

L(F,G) = L(F,G)F×G

and the composition for L is restricted from the composition for L .

Proof We define eG =
1

|G|
∑
g∈G

g which is an idempotent in Z(RG) . We have

L(F,G) = σF (eF )L(F,G)σG(eG) .

So L is a category as specified, with identity morphisms idLG = σG(eG) . 2

We call L the invariant category of L . Note that L need not be a subcategory of L , since idLG may be
distinct from idLG .

We define the R -linearization of a partial semigroup P to be the algebra RP over R such that RP is
freely generated over R by P and the multiplication on RP is given by R -linear extension of the multiplication
for P , with the understanding that φψ = 0 whenever φ 6∼ ψ . Let R× denote the unit group of R . We define
a cocycle for P over R to be a function γ : R← P ×P satisfying the following two conditions:

Nondegeneracy: Given φ,ψ ∈ P , then γ(φ,ψ) ∈ R× if φ ∼ ψ , whereas γ(φ,ψ) = 0 if φ 6∼ ψ .
Associativity: Given θ, φ, ψ ∈ P with θφψ defined, then γ(θ, φ)γ(θφ, ψ) = γ(θ, φψ)γ(φ,ψ) .

Fixing γ , let RγP be the R -module freely generated by the set of formal symbols {pφ : φ ∈ P} . We make
RγP become an (associative, not necessarily unital) algebra over R by taking the multiplication to be such
that

pφpψ = γ(φ,ψ)pφψ .
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We call RγP the twisted linearization of P with cocycle γ . When γ(φ,ψ) = 1 for all (φ,ψ) ∈ Γ(P) , we call
γ the trivial cocycle for P . In that case, we have an algebra isomorphism RγP ∼= P given by pφ ↔ φ .

In later sections, we shall be considering scenarios having the following form. Suppose, now, that P is a
partial category on G . It is easy to see that the R -linearization RP is an R -linear category and idRP

G = idPG .
Assume also that RP is equipped with the structure of an interior R -linear category such that, for all F,G ∈ G ,
the action of F×G on RP(F,G) restricts to an action on P(F,G) . Define

φ = σF (eF )φσG(eG) =
1

|F |.|G|
∑

f∈F,g∈G

fφg

for φ ∈ P(F,G) . Note that φ = fφg and, if we let φ run over representatives of the F×G -orbits in P(F,G) ,
then φ runs over the elements of an R -basis for RP(F,G) . We have

φψ = σF (eF )φσG(eG)ψσH(eH) =
1

|G|
∑
g∈G

σF (eF )φ.
gψσH(eH) =

1

|G|
∑
g∈G

φ . gψ

for all φ ∈ P(F,G) and ψ ∈ P(G,H) , the dot in the formula inserted only for readability. Similar comments
hold for the twisted linearizations. Let us make those comments, because some modification is needed. Let
γ be a cocycle for the partial category P . To confirm that the twisted R -linearization RγP is an R -linear
category, observe that, writing ι = idPG , then γ(φ, ι) = γ(ι, ι) , whence

id
RγP
G = γ(ι, ι)−1pι .

Assume now that the structure of an interior R -linear category is imposed on RγP instead of RP , furthermore,
for all F,G ∈ G , the action of F×G on RγP(F,G) restricts to the action on P(F,G) and each γ(φg, gψ) =

γ(φ,ψ) . Again, the elements

pφ = σF (eF )pφσG(eG) =
1

|F |.|G|
∑

f∈F,g∈G

f(pφ)
g

comprise an R -basis for RγP(F,G) . A manipulation similar to that for φψ yields

pφpψ =
1

|G|
∑
g∈G

γ(φ, gψ) pφ.gψ .

3. The ordinary character category

After Romero [8, Section 4], whose study was in the richer context of Green biset functors, we shall describe
a K -linear category KAK associated with ordinary K -character rings of finite groups. We shall then realize
KAK as the invariant category KR of an interior K -linear category KR .

For a finite group E , we write AK(E) to denote the ring of K -characters of E . That is to say, AK(E)

is the Grothendieck ring of the category of finitely generated KE -modules. Incidentally, the multiplication on
AK(E) is given by tensor product over K , but we shall not be making use of that. Given a KE -module M ,
we identify the isomorphism class of M with the K -character χK : K ← E of M . Thus, AK(E) has a basis
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consisting of the irreducible K -characters of E . The K -linear extension KAK(E) can be identified with the
K -module of class functions K ← E .

Any KF -KG -bimodule X can be regarded as a K(F×G) -module by writing fxg−1 = (f×g)x for
f ∈ F , g ∈ G , x ∈ X . In particular, the isomorphism class of X can be identified with the K -character χX :

K ← F×G . We form the K -linear category KAK with morphism K -modules KAK(F,G) = KAK(F×G)
and with composition KAK(F,H)← KAK(F,G)×KA(G,H) such that, given a KF -KG -bimodule X and
a KG -KH -bimodule Y , writing Z = X ⊗KG Y , then the composite is χXχY = χZ . The next result, from
Bouc [5, 7.1.3], describes the composition more explicitly. Let us give a quick alternative proof.

Lemma 3.1 (Bouc.) Let ξ ∈ KA(F,G) and η ∈ KA(G,H) . Let f ∈ F and h ∈ H . Then

(ξη)(f×h) = 1

|G|
∑
g∈G

ξ(f×g)η(g×h) .

Proof Let X , Y , Z be as above. By K -linearity, we may assume that ξ = χX and η = χY . Let ζ = χZ .
Then ζ(f×h) = (ξη)(f×h) . Let Ẑ = X ⊗K Y regarded as a module of K(F×G×H) such that

(f×g×h)(x⊗K y) = fxg−1 ⊗K gyh−1 = (f×g)x⊗K (g×h)y

for g ∈ G , x ∈ X , y ∈ Y . Then χẐ(f×g×h) = ξ(f×g)η(g×h) . Let F×H and G act on Ẑ via the canonical

embeddings in F×G×H . As a direct sum of K(F×H) -modules, Ẑ = ẐG ⊕ Ẑ(G) , where ẐG denotes the
G -fixed submodule and

Ẑ(G) = spanK{xg−1 ⊗K gy − x⊗K y} = spanK{xg−1 ⊗K y − x⊗K gy} .

So the G -cofixed quotient ẐG = Ẑ/Ẑ(G) is a K(F×H) -module and Z ∼= ẐG ∼= ẐG = eGẐ . Therefore, the

trace of the action of f×h on Z is equal to the trace of the action of
∑
g(f×g×h)/|G| on Ẑ . That is to say,

ζ(f×h) =
∑
g χẐ(f×g×h)/|G| . 2

Let R be the partial category on G such that R(F,G) = F×G and, given u×v ∈ R(F×G) and
v′×w ∈ R(G×H) , then (u×v) ∼ (v′×w) if and only if v = v′ , furthermore, (u×v)(v×w) = u×w . We make
the K -linearization KR become an interior K -linear category by defining

σG(g) =
∑
v∈G

(gv)×v

where gv = gvg−1 . Thus, F×G acts on R(F,G) by f(u×v)g = (fu)×(vg) , where vg = g−1vg . Let

µF,G : KR(F,G)← KAK(F,G)

be the K -linear map given by

µF,G(ξ) =
1

|F |
∑

u∈F,v∈G
ξ(u×v)u×v .

Proposition 3.2 The maps µF,G , for F,G ∈ G , determine an object-identical isomorphism of K -linear
categories µ : KR← KAK .
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Proof For u×v ∈ R(F×G) , let ξu×v be the element of KAK(F,G) such that, given u1×v1 ∈ F×G ,
then ξu×v(u1×v1) = 1 when u×v and u1×v1 are F×G -conjugate, otherwise ξu×v(u1×v1) = 0 . Letting u×v
run over representatives of the conjugacy classes of F×G , then u×v runs over the elements of a K -basis for
KR(F,G) , while ξu×v runs over the elements of a K -basis for KAK(F,G) . We have

|[u×v]F×G|u×v = |F |µF×G(ξu×v) .

So µF,G is a K -isomorphism.
Now fix u×v ∈ R(F×G) and v′×w ∈ R(G×H) . Write [v]G for the G -conjugacy class of v . Substituting

φ = u×v and ψ = v′×w , the general formula for φψ in Section 2 becomes

u×v.v′×w =
1

|G|
∑
g∈G

(u×v)((gv′)×w) .

So u×v.v′×w = 0 unless [v]G = [v′]G , in which case, u×v.v′×w = u×w |CG(v)|/|G| = u×w/|[v]G| . Therefore,

µF,G(ξ)µG,H(η) =
1

|F |.|G|
∑

u×v∈F×G,v′×w∈G×H
ξ(u×v)η(v′×w)u×v.v′×w

=
1

|F |.|G|
∑

u∈F,v∈G,w∈H
ξ(u×v)η(v×w)u×w = µF,H(ξη)

for all ξ and η as in Lemma 3.1. 2

4. The subcharacter partial category

We shall introduce a category SA on G , called the A -subcharacter partial category on G . We shall construct
a twisted R -linearization RℓSA of SA parameterized by a multiplicative monoid homomorphism ℓ : R× ←
N− {0} . After equipping RℓSA with structural maps to make RℓSA become an interior R -linear algebra, we
shall explicitly describe the invariant category RℓSA . That description will be applied to deformations of the
R -linear A -fibred biset category in the next section. Some of our terminology and notation is adapted from [1],
[2] and Boltje–Coşkun [3], but our account is self-contained.

To introduce some notation that we shall be needing, let us review the definition of the subgroup category
S on G . (The category would be written as SG in the notation of [2].) Consider the groups F,G,H, I ∈ G . We
let S(F,G) denote the set of subgroups of F×G . Let U ∈ S(F,G) , V ∈ S(G,H) , W ∈ S(H, I) . We define

Γ(U, V ) = {f×g×h : f×g ∈ U, g×h ∈ V } .

After Bouc [5, 2.3.19], we define the star product U ∗ V ∈ S(F,H) to be

U ∗ V = {f×h :
(
∃g

)(
f×g×h ∈ Γ(U, V )

)
} .

Plainly, ∗ is associative. We point out that, defining

Γ(U, V,W ) = {f×g×h×i :
(
∃g, h

)(
f×g ∈ U, g×h ∈ V, h×i ∈W

)
}
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then U ∗ V ∗W = {f×i :
(
∃g, h

)(
f×g×h×i ∈ Γ(U, V,W )

)
} . We make S become a category by taking the

composition to be star product.
Below, when we have established the construction of the partial category SA , it will be clear that SA

coincides with S when A is trivial. First, though, we need the patience for a few definitions. As in Boltje–Danz
[4], we write p2(U) and p1(V ) , respectively, for the images of the projections of U and V to G . We define
k2(U) = {g : 1×g ∈ U} and k1(V ) = {g : g×1 ∈ V } . Let

Γ∩(U, V ) = k1(U) ∩ k2(V ) = {g ∈ G : 1×g×1 ∈ Γ(U, V )} .

The following lemma is part of [4, 3.5].

Lemma 4.1 (Boltje–Danz.) With the notation above,

|Γ∩(U, V )|.|Γ∩(U ∗ V,W )| = |Γ∩(U, V ∗W )|.|Γ∩(V,W )| .

Lemma 4.2 With the notation above, |U |.|V | = |p2(U)p1(V )|.|Γ∩(U, V )|.|U ∗ V | .

Proof Let Γ = {f×g×h : f×g ∈ U, g×h ∈ V } and

Λ = p2(U) ∩ p1(V ) = {g :
(
∃f×h ∈ F×H

)(
f×g×h ∈ Γ

)
} .

Observe that |Λ| = |p2(U)|.|p1(V )|/|p2(U)p1(V )| . Fix f×g×h ∈ Γ . Given g′ ∈ G , then f×g′×h ∈ Γ if and
only if g′g−1 ∈ Γ∩(U, V ) . So

|Γ| = |Γ∩(U, V )|.|U ∗ V | .

Meanwhile, given f ′×h′ ∈ F×H , then f ′×g×h′ ∈ Γ if and only if f ′f−1 ∈ k1(U) and h′h−1 ∈ k2(V ) . So
|Γ| = |Λ|.|k1(U)|.|k2(V )| . Since |U | = |p2(U)|.|k1(U)| and |V | = |p1(V )|.|k2(V )| , we have

|Γ| = |Λ|.|U |.|V |
|p2(U)|.|p1(V )|

=
|U |.|V |

|p2(U)p1(V )|
.

Eliminating Γ , we obtain the required equality. 2

For a finite group E , we define an A-character of E to be a homomorphism A ← E . We define an
A-subcharacter to be a pair (T, τ) consisting of a subgroup T of E and an A -character τ of E . The set
SA(E) of A -subcharacters of E becomes an E -set via the conjugation actions of E on the two coordinates,
that is, given g ∈ G and t ∈ T , then g(T, τ) = (gT, gτ) where gτ(gt) = τ(t) . When E is understood from
the context, we write [T, τ ] to denote the E -orbit of (T, τ) . We write SA[E] to denote the set of E -orbits in
SA(E) .

Define SA(F,G) = SA(F×G) and SA[F,G] = SA[F×G] . Let (U, µ) , (V, ν) , (W,ω) be A -subcharacters
in SA(F,G) , SA(G,H) , SA(H, I) , respectively. We write (U, µ) ∼ (V, ν) provided µ(1×g)ν(g×1) = 1 for
all g ∈ Γ∩(U, V ) . When that condition holds, we define µ ∗ ν to be the A -character of U ∗ V given by
(µ ∗ ν)(f×h) = µ(f×g)ν(g×h) for f×g×h ∈ Γ(U, V ) .

Proposition 4.3 Defining composition by (U, µ)∗(V, ν) = (U ∗V, µ∗ν) when (U, µ) ∼ (V, ν) , then SA becomes
a partial category.
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Proof We claim that the conditions
• (U, µ) ∼ (V, ν) and (U ∗ V, µ ∗ ν) ∼ (W,ω) ,
• (V, ν) ∼ (W,ω) and (U, µ) ∼ (V ∗W,ν ∗ ω) ,

are equivalent and, when they hold, (µ ∗ ν) ∗ ω = µ ∗ (ν ∗ ω) . It is straightforward to confirm that the two
conditions are equivalent to:

• for all g×h ∈ G×H satisfying 1×g×h×1 ∈ Γ(U, V,W ) , we have µ(1×g)ν(g×h)ω(h×1) = 1 .

Plainly, when the three equivalent conditions hold, the expression µ ∗ ν ∗ ω is unambiguous and

(µ ∗ ν ∗ ω)(f×i) = µ(f×g)ν(g×h)ω(h×i)

for all f×g×h×i ∈ Γ(U, V,W ) . The claim is established. To finish the proof, we observe that idS
A

G = (∆(G), 1) ,
where ∆(G) = {y×y : y ∈ G} and 1 denotes the trivial A -character. 2

By Lemma 4.1 there is a cocycle γℓ for SA given by

γℓ((U, µ), (V, ν)) = ℓ(|Γ∩(U, V )|)

when (U, µ) ∼ (V, ν) . Note, the condition that γℓ is a cocycle implies that γℓ((U, µ), (V, ν)) = 0 when
(U, µ) 6∼ (V, ν) . We define RℓSA = RγℓSA . Thus,

RℓSA(F,G) =
⊕

(U,µ)∈SA(F,G)

RsF,GU,µ

as a direct sum of regular R -modules, where sF,GU,µ is a formal symbol and

sF,GU,µ s
G,H
V,ν =

{
ℓ(|Γ∩(U, V )|) sF,HU∗V,µ∗ν if (U, µ) ∼ (V, ν),
0 otherwise.

Given g ∈ G , we define ∆(G, g,G) = {gy×y : y ∈ G} . Since ∆(G, g,G) ∗∆(G, g′, G) = ∆(G, gg′, G) for
g′ ∈ G , we have

sG,G∆(G,g,G),1s
G,G
∆(G,g′,G),1 = sG,G∆(G,gg′,G),1 .

Since ∆(F, f, F ) ∗ U ∗∆(G, g−1, G) = f×gU for f ∈ F , we have

sF,F∆(F,f,F ),1s
F,G
U,µ s

G,G
∆(G,g−1,G),1 = sF,Gf×gU,f×gµ

= f×gsF,GU,µ .

We make RℓSA become an interior R -linear category such that σG(g) = sG,G∆(G,g,G),1 . The calculations just
above confirm that σG is an algebra map and our notation is consistent.

In view of the comments we made in Section 2 concerning an R -basis for RP(F,G) , the element

sF,GU,µ = σF (eF )s
F,G
U,µ σG(eG)

depends only on F , G and the F×G -orbit [U, µ] of (U, µ) , furthermore,

RℓSA(F,G) =
⊕

[U,µ]∈SA[F,G]

RsF,GU,µ .
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To complete an explicit description of the category RℓSA , we now supply a formula for the composition. By
viewing SA(F,G) as an (F,G) -biset, the notation in the equation g(V, ν) = g×1(V, ν) makes sense for any
g ∈ G , similarly for the notation gV and gν .

Theorem 4.4 Let F,G,H ∈ G . Let [U, µ] ∈ SA[F,G] and [V, ν] ∈ SA[G,H] . Then

(sF,GU,µ /|U |)(s
G,H
V,ν /|V |) =

1

|G|
∑
g

ℓ(|Γ∩(U,
gV )|)

|Γ∩(U, gV )|
(sF,HU∗gV,µ∗gν/|U ∗

gV |)

where g runs over representatives of the double cosets p2(U)gp1(V ) ⊆ G such that (U, µ) ∼ g(V, ν) .

Proof By the last line of Section 2,

sF,GU,µ s
G,H
V,ν =

1

|G|
∑
y

γ(y)sF,HU∗yV,µ∗yν

where γ(y) = ℓ(|Γ∩(U,
yV )|) and y runs over those elements of G such that (U, µ) ∼ y(V, ν) . We have

(U, µ) ∼ y′(V, ν) and γ(y) = γ(y′) for all y′ ∈ p2(U)yp1(V ) . So

sF,GU,µ s
G,H
V,ν =

1

|G|
∑
g

|p2(U)gp1(V )|γ(g)sF,HU∗gV,µ∗gν .

Since |p2(U)gp1(V )| = |p2(U)p1(
gV )| and |gV | = |V | , Lemma 4.2 yields the required equality. 2

5. The fibred biset category

We shall review the notion of the R -linear A -fibred biset category RBA on G . Then we shall introduce, more
generally, an R -linear category RℓBA on G . To confirm the associativity of the composition for RℓBA , we shall
apply Theorem 4.4.

A discussion about RBA , including an interpretation as the R -linear extension of a Grothendieck ring,
can be found in Boltje–Coşkun [3, Sections 1, 2]. We shall work with the following characterization of RBA .
The morphism R -modules are

RBA(F,G) =
⊕

[U,µ]∈SA[F,G]

R[(F×G)/(U, µ)]

where, for our purposes, we can regard [(F×G)/(U, µ)] as a formal symbol uniquely determined by the F×G -
orbit [U, µ] . See [3, Section 1] for an interpretation, not needed below, of [(F ×G)/(U, µ)] as the isomorphism
class of an A -fibred biset (F×G)/(U, µ) . The composition for RBA is given by

[(F×G)/(U, µ)].[(G×H)/(V, ν)] =
∑
g

[(F×H)/(U ∗ gV, µ ∗ gν)]

where g runs as in Theorem 4.4. It is easy to check that the right-hand side of the formula is well-defined,
independently of the choices of double coset representatives g and orbit representatives (U, µ) and (V, ν) . The
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associativity of the composition follows from [3, 2.2, 2.5] or, alternatively, Theorem 5.1 below. The identity
RBA -morphism on G is [(G×G)/(∆(G), 1)] .

Generalizing, we define

RℓBA(F,G) =
⊕

[U,µ]∈SA[F,G]

RdF,GU,µ

where dF,GU,µ is a formal symbol uniquely determined by F , G and [U, µ] . We make RℓBA become an R -linear
category on G by defining the composition to be such that

dF,GU,µ .d
G,H
V,ν =

∑
g

ℓ(|Γ∩(U,
gV )|)

|Γ∩(U, gV )|
dF,HU∗gV,µ∗gν

again with g running as in Theorem 4.4. In a moment, to confirm that RℓBA is an R -linear category, we shall
make use of the ”polarization” RℓSA . We let

νF,G : RℓSA(F,G)← RℓBA(F,G)

be the R -linear map given by νF,G(d
F,G
U,µ ) = |G| sF,GU,µ / |U | . The elements dF,GU,µ comprise an R -basis for

RℓBA(F,G) , while the elements sF,GU,µ comprise an R -basis for RℓSA(F,G) , so νF,G is an R -isomorphism.

Theorem 5.1 The composition for RℓBA is associative and RℓBA is an R -linear category on G . The maps
νF,G , for F,G ∈ G , determine an object-identical isomorphism of R -linear categories ν : RℓSA ← RℓBA .

Proof Theorem 4.4 implies that νF,G(dF,GU,µ )νG,H(dG,HV,ν ) = νF,H(dF,GU,µ d
G,H
V,ν ) . By R -linearity, the composition

is associative. The identity RℓBA -morphism on G is dG,G∆(G),1 . 2

We have the following immediate corollary, realizing RBA as the invariant category not of RSA but of
a deformation of RSA .

Corollary 5.2 Suppose ℓ(n) = n for all positive integers n . Then there is an object-identical isomorphism of
R -linear categories RℓSA ∼= RBA given by |U |dF,GU,µ ↔ |G|[(F×G)/(U, µ)] .

In [2], it is shown that KℓS is locally semisimple when ℓ satisfies the following nondegeneracy condition:
as q runs over the prime numbers, the values ℓ(q) are algebraically independent over the minimal subfield Q
of K . At the time of writing, we do not know whether the same conclusion holds for KℓSA under the same
non-degeneracy condition. An approach to directly adapting the argument in [2] would be to make use of a
suitable analogue of [3, 3.7]. More speculatively, if such a generic semisimplicity result does hold, then it might
have a bearing on the problem of classifying the simple KℓSA -modules and, from there, via Theorem 5.1, the
problem of classifying the simple KℓBA -modules.
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