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Abstract: This work is devoted to the study of existence of a bounded solution of the differential equation, defined on a
family of time scales Ty, provided the graininess function py converges to zero as A — 0. We obtained the conditions,
under which the existence of a bounded solution of differential equation implies the existence of a bounded solution of

the corresponding equation, defined on time scales, and vice versa.
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1. Introduction

Differential (dynamic) equations on time scales were introduced by Hilger in [8] as an attempt to create a unified
theory for both discrete and continuous dynamical systems. The theory of equations on time scales was further
developed in [1, 2]. The behavior of the solutions of the dynamic equations, defined on a family of time scales
T, when graininess function puy goes to 0 as A — 0, is of particular interest to us. In this case intervals of the
time scale [to,t1]x = [to,t1] N Tx approach [to, 1] ( e.g., in the Hausdorff metric). The natural question arises
is whether the solutions of the equations on time scales and the corresponding differential equations share the
same properties. While on the bounded time intervals it is not difficult to establish the convergence of solutions
of dynamic time scale equations to the corresponding solutions of differential equations, for infinite intervals
this problem is highly nontrivial.

In our work we consider the family of dynamical equations for sufficiently small py, which possesses a
global bounded solution. Here the natural question arises whether the corresponding differential equation has
a bounded solution as well, provided Ty — R!',A — 0. Conversely, suppose we have a ordinary differential
equation which has a bounded solution for ¢ € R. Is it true that the corresponding equation on time scale T)
will have a bounded solution as well, provide A is sufficiently small.

It is worth mentioning that the question of existence of two-sided solutions for dynamic equations on time
scales is not trivial by itself. In contrast with the classic theorem on the existence of solutions of the system

of ordinary differential equations, where local double-sided existence with respect to the initial point holds, the
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situation for the equations on time scales is significantly more complicated. In particular, in order to extend the
solution to the left, one needs to impose a very strong regression condition [5]. In our case, we got the existence
of the two-sided global bounded solution without using this regression condition.

The proof of the main result requires a continuous dependence of the solutions on the initial data uniformly
over all time scales. This question is nontrivial due to the topological complexity of the time scale. Our approach
is different from the one considered in [9], where the analysis was done on the fixed scale.

The relation between the properties of solutions of the system of ordinary differential equation and the
solutions of equations on Eulerian time scales was studied earlier. In particular, the paper [3] showed that the
solutions of differential and the corresponding difference equations have the same oscillatory properties. The
relation between the stability and the attractors of differential and difference equations was studied in [13]. The
optimal control problems for the systems of ordinary differential equations and the corresponding dynamical
equations on time scales were considered in [4, 6, 12]. The stability of perturbed dynamic system on time scales
was addressed in [15] using the appropriate analogs of Lyapunov functions .

This work is devoted to the study of existence of a bounded solution of the the differential equation,
defined on a family of time scales T, provided the graininess function u, converges to zero as A — 0. Our
work extends the results on the relation between the existence of bounded solutions of differential equations and
the corresponding difference equations, obtained in [14], to the case of generic time scales. The main difficulty
in our work is to compare the solutions of differential equations and equations on time scale for any T, . This
makes our analysis significantly different from [14], where only special case of time scale, namely T = Z, was

considered.
This paper is organized as follows. In section 2.1 we provide some definitions and statements necessary

for our research. In section 2.2 we state and prove the main results about the existence of a bounded solution
of differential equation, defined on time scales. Examples of application of main results are provided in section
3.

2. Preliminaries and main results
2.1. Basic notions of time scale theory

For the convenience of the reader, we present the necessary concepts and notation, consistent with the ones

introduced in the monograph [1].

A time scale T is an arbitrary, nonempty, closed subset of the real axis.
e For every A C R, denote Ar:=ANT.

e A forward jump operator o : T — T is
o(t):=inf{s € T:s > t}.
o Similarly, a backward jump operator p: T — T is
p(t) =sup{s e T: s <t}
Here we assume inf () := sup T and sup () := inf T).

o The graininess function pu: T — [0,00) is defined as p(t) := o(t) —t.
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e A point t € T is called left-dense (LD), (left-scattered (LS), right-dense (RD) or right-scattered (RS)) if
p(t) =1t (p(t) <t, o(t) =t or o(t) > t) hold. If T has a left-scattered maximum M , then we define
T*F = T\ {M}; otherwise, we set TF = T.

o A function f:T — R? is said to be A-differentiable at t € T* if the limit

£3(0) — tim 10 = 1)

s=t o(t)—s
exists in R?.
Let us recall the following classic results (see [1]):

a) if t € T* is right-dense point of T, then f is A-differentiable at ¢ if and only if the limit

exists in R?.

b) if t € T is a right-scattered point of T and if f is continuous at ¢, then f is A differentiable at ¢ and

2.2. Main results

Let D C R? be a domain. Consider the system of differential equations:

%:X(t,m), teR,zeD. (2.1)

Let Ty be a set of time scales and the system (2.1) defined on T) now reads as
(1) = X (t, ). (2.2)

Here t € Ty, zy : Ty — R, and xf(t) is delta-derivative of z(t) on T,. We assume that inf T, = —oo,
supTy = 0o, A € A C R, and A = 0 is a limit point of A. We also assume that the function X (¢,z) is
continuously differentiable and bounded together with its partial derivatives, i.e. 3C > 0 such that

OX(t,x)
ot

| X (t,2)| + ‘

OX (t,x)
+ H Ox

’ <C (2.3)
for t e R,z € D, where % is the corresponding Jacobi matrix.

Denote piy 1= supier, pia(t), where py: Ty — [0,00) is the graininess function. it is straightforward to
see that if px(t) — 0 as A — 0, then T, coincides (e.g., in Hausdorff metric) with a continuous time scale

To =R (see e.g., [7]). We start with the following lemma:
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Lemma 2.1 Let tg € Ty, to+T € Ty, x(t) and xx(t) are the solutions of (2.1) and (2.2) on [to,to+T], and
on [to,to + T, respectively. Then if x(tg) = xA(to) = xg € D the following inequality holds

lz(t) — 22 ()] < FONK(T),
where K is constant, f(\) = SUPtelto,to+T)r, ux(t) for t € [to,to + Tty -

Proof Without loss of generality, consider to =0, T'=1 and x,(0) = z(0). We have

x(t) = xo —|—/O X (s,x(s))ds,

and

zA(t) =z + / X(s,zx(s))As. (2.4)

[07t]j]'/\

Let us construct the function Zy(t), defined for ¢ € [0,1]. Assume that on the time scale this function coincides
with xy(t), i.e.

TA(t) = 2a(t),t € T

On the remaining intervals this function is defined to be constant:

@ { xx(t),t € [0,1]7, 2.5
Tx(t) = .
T lme) e o),
Here r € RS, and o(r) is the forward jump operator. We have
|[(t) —xx(B)] < [x(t) = Zx()] + [Zx(8) — 2A(D)]. (2.6)

The second term in (2.6) is automatically zero for ¢ € Ty. Let us estimate first term in (2.6). By the analog of

Gronwall’s inequality on time scales [1] and Theorem 2 [11], for any r > 0 there exists constant C(r) > 0 that

[za(B)] < C(r), t € [0, 1]z,

(2.7)
lz(t)] < C(r),t € [0,1],|zo| <.
Moreover first inequality holds uniformly in ¢ € Ty . Therefore there exists constant C(r) > 0 such that
(Xt 2x(t)] < Ci(r),
[ X (¢, 2(t))] < Ca(r),
(2.8)
| X5 (t 2x(2)]] < Ci(r),Vt € [0,1]1,, VA,
[ Xz (8, 2()]| < Ca(r), vt € [0,1].
We now rewrite (2.4) as
zA(t) =z + / X(s,zx(s))ds + Z X(ryxa(r))p(r). (2.9)

(0,t]r\ \ RS reRS
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By (2.8) the sum (2.9) is bounded from above by convergent series C1 ) g ia(r). Then

N

D Xk, aa(ri))pre) = > X (resax(re)pa(re) + Y X (rg, wa(re))pa(ry)-
reRS k=1 k>N+1
For every A choose N(A,T) > 1 such that
Z pa(re) < % (2.10)
E>N+1

Now let us remove the right-scattered points from the time scale in (2.10). Let A = U,(r,o(r)), where the
union is taken over all right scattered r. Without loss of generality, we assume that the time scale Ty has the

following structure:

0 o] o(r) T o(rs) Thy r3 o(rs) T4 Thy 0(Thy)
Figure . 777

Here the solid lines stand for the line segments which consist of the limit points, and the dashed lines
illustrate the line segments [r;,o(r;)), with the right-scattered points r; included. Finally, the boldface solid
lines denote the set A. The proof for others time scale structures is analogues.

In order to proceed, we will carefully consider all possible scenarios.

1) On [0,71] we have Z)(t) = zx(t) = z(¢).
2) On [r1,0(r1)], we have Zx(t) = zx(r1) = x(r1) but z(t) = z(r1) + f:lX(s,x(s))ds. Therefore for

t € [r1,0(r1)] x(t) is a smooth function. By Taylor’s theorem with the remainder in Lagrange form, we get

x(t) = x(r1) + X(r1,2(r))(t — 1) + X.(s1,2(s1)) - X(Sl,aﬁ(sl))%7 (2.11)
where s, is in [r1,0(r)], and X, is Jacobi matrix. By (2.8), we have
mazieo 1| X0t 2 (1) X (¢, z(t))| < CF. (2.12)
Therefore, if ¢ € (r1,0(r1)), we get
oft) ()1 < | X (a0t < o). (2.13)
At the point o(r1) we have
Ex(0(r1)) = 2a(r1) + X(r1,aa(ra)a(ra) = o(r1) + X (1,2 a(ra).
Thus, by (2.11) and (2.12) we get
[r(otr)) — Ex(otr))] < 03101 (214
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3) For t € [o(r1),72], we have

hence

t
|2(t) — 2A(E)] < |za(o(re)) — 2(o(r))] + C/ |[Zx(s) — (s)|ds.
o(r1)
By (2.14) and Gronwall’s inequality we have
2
3 — ()] < *“Agl)C%eC“f"(“”- (2.15)

4) On [rg,0(r2)] we have

Ix(t) = Zx(r2), x(t) =x(rq) —|—/ X (s,x(s))ds.

Thus

_ 5 E3(r) o C(ra—0o(r1))+pa(r2)C1
|x(t) — ZA| < 5 Cie . (2.16)

At t = o(rg) we get

2(0(r2)) = a(r2) + X(ra,2(r2))pn(r2) + 5 Xl 2(52)) - X o, () =2
for some sg € [re,0(r2)], and Zx(o(r2)) = Za(re) + X (re, Ta(re))pa(re). Therefore
[2(0(r) — E(o ()] < Jalra) — B (r2)| + a(r2) Cl(ra) — a )| + 22 0

i 2(, 2(p ()2 2(p
= (1+ Cpux(re))|z(ra) — Ta(r2)| + MAé 2)6’12 <1+ CMA(TQ))%C%Q?C(M a(r))” 4 #C’f

5) Next consider the line segment [o(rz2),74,]. We have
|Z(rn,) — 2(o(r2))| < Ci(rn, —1r2) = Crpu,
|(rn,) —(o(r2))| < Crpm.

Consequently

) 20, ~ 20,
|ZA(Thy) — x(rp,)] <2C 1 + (1 + C[LA(TQ))#C%@C(W o(r)) 4 #Cf (2.17)
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6) The interval [ry,,r3) consists entirely of limit points, hence we have

|ZA(t) =2 ()] < eI 200+

2 2
+(1+ C’MA(rz))L(;l) C2eC(ra=o(r)) 4 Lgb) Ctl. (2.18)

7) The estimate on the interval [r3,o(r3)) is similar to the one on [ra,o(r2)):

~ Ni(rl) 2 _C(ra—o(r1)) Ni(ﬁ) 2\ K(rs—rp,)

[2A(t) = 2(t)] < (201 + =5 Crem 7L+ Cpa(re)) + +=25=C01)e 7 + () Cu,

hence

2 r
[Zx(0(rs)) — x(o(rs))| < |2x(rs) — x(r3)[(1 + Cua(rs)) + MA(Q 3)012.

In view of (2.18), we get

Er(o(r) — alotra)] < @Cun + A 0260700 (1 4 Oy )+

2 r 2 r
HAL) gy (1 4 Gy (ry)) + 20 02

8) In a similar way, on the segment [o(r3),r4] we have

2
@A () — (1)) < [(2C1pm + %Cfecw—amﬂ(l + Cpalr2))+

_’_@012)60(7«3—7%)(1 + Cps(rs)) + Mi;r?))ClQ]eC(m—a(rs)); 5.
9) The interval (r4,7h,), whose length is at most ps, is removed from the time scale. Therefore,
|Za(rhy) — 2(rp,)| < 0k + 2C1 pa.
10) On the interval [rp,,o(rp,)) we have
[ZA(t) — 2(t)] < 0x + 2C 2 + px(rp,)Ch. (2.19)
Hence

lui (Thz) 02 <

|22 (0 (1hy)) = 2(0(ha))] < [EA(Thy ) — 2 ()1 + Cpia(rny)) + =25 1<

ui(rhz) 2
< [6* + 201/1‘2](1 + CM)\(Tfm)) + 2 CT: = b

11) Then on the segment [o(rp,), 5] we have:
|EA(t) — 2 (t)] < 6, eCe 7)) <

2105



KARPENKO et al./Turk J Math

< (14 Cpalrag)) (1 + Cpa(r3))2C1 puy e a0 ralHrs =)

1
45 (14 Cpa ()47 ) R0 (14 Cpp () (1 + O (1) +

1
5 (L Craa(r)) oD (1) CFeC =R (1 + Copn )+

1 —o(r 1 rs—o(r
5 (1+ Caun(rn, ) e 70D 3 (r5) CF + 2C (1 + Cpaa(rn,)) + 43 (rny ) O (2.20)

Denote
II= (14 Cpux(r1))(1 + Cpu(r2))(1 + Cpua(rs)) (1 + Cpua(rny)) - .- (1 + Cpua(ra)).

where the product is taken over all right-scattered points on Figure. This way
InTI < C(px(ry) + pa(ra) + pa(rs) ...) < C.

Note that the sum of all powers of exponents appearing in (2.20) does not exceed C, since these exponents are

essentially the lengths of disjoint subintervals of [0,1]. Consequently, for ¢ ¢ [ry,o(ry)) we obtain

- 1
|Zx(t) — z(t)] < Ie“20 Z i + 5ncfec Z,uz(ri) <

1 1
<Ie“Chpy + Z,u)\HCIQeC Z,u(ri) < pa(Ie€Cy + ZHC’feC): =L —»0,A—0. (2.21)
Similarly to (2.19) and (2.21) , if t € [rk,0(rk)), we have
- o ct o ct
|ZA(t) — 2(t)| < uaIle” (Ch + T) +2C; Z/“ + 12 C1 < px(Tle¥ (Ch + T) +3C1): =Ly —0,A—0. (2.22)
i

Therefore |z(t) — 2A(t)] < f(N)K(T), where K(T) = maxr, 1,], and the proof of Lemma 2.1 follows from
(2.6):
jz(t) — ax(®)] < FVE(T), f(A) = 0,A = 0.

Under the condition (2.3), the following lemma holds.

Lemma 2.2 The solution of system (2.2) x{(t) continuously depends on the initial data until the moment it

leaves the region D.

Proof Let ) and yy be the solutions of (2.2) with xx(tg) = xo, ya(to) = yo, respectively. In other words

T :m0+/ X (s,zx(s))As and yx :y0+/ X(s,yx(s))As.
[to,t]T, [

to,t]T,
By the analog of Gronwall’s inequality [1, p.257] for s € [to, t]r, , we have
lzA(t) — ya(t)] < |0 — yolec(t,to),
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where e (t,to) is an exponential function on time scale [1]. By Lemma 3.1 [12] the exponential function e (¢, o)

is bounded on [tg, t]r, uniformly for all time scales, i.e:
lzA(s) = ya(s)| < Cilzo — ol

for any s € [to,t]r,, =,y € R?, and the constant C; > 0 is independent of ¢,z and y. This completes the
proof of Lemma 2.2. O

Theorem 2.3 Suppose the system (2.1) has a bounded on R, asymptotically stable uniformly in to € R solution
x(t), which belongs to the p - neighborhood of the domain D, for some p > 0. Then there exists Ao > 0 such
that for all X < Ao the system (2.2) has a bounded on Ty solution xx(t).

Proof Since z(t) is asymptotically stable, for any € > 0 and t; € R there exist § > 0 and T > 0 such that
for any other solution y(t) of (2.1) satisfying

lz(to) — y(to)| <6

we have
[2(t) —y(t)| <e if t=>to,

() ~y@)| < 5 i 121047,

where 6 and T are independent of t;. Let 2 (¢) be a solution of (2.2) such that x,(t9) = y(to) at the initial
point to(A) € Ty. By lemma 2.1

ly(t) —zx(t)] < FINK(T), (2.23)
for some K > 0 and f(\) = supier, ur(t), to(A) € Ty, to + T € Ty. The stability implies that y(t) as well as
its neighborhood belongs to the domain D for t > to. Then, it follows from (2.23) that for sufficiently small A,
zA(t) isin D for ¢ € [to,to + T|1, . Consider the interval [to,to + T]. In case to + T ¢ Ty, take the first point
from the time scale ¢t € Tx: to+7T < t; < to+ T + 1. The condition ux(t) = 0, A — 0 makes such choice
possible. Next we choose A such that f(A\)K(t;) < $. Altogether we have

y(t) — A ()] < 3t € [to, ]y

N

Therefore, for any solution y(t) of (2.1) with z(t9) = y(to) we have
[2(t) — za ()] < [a(t) —y(@)] + [y(t) —zA(t)] < 2,

|z(t1) — za(t1)| <9

for ¢ € [to,t1]T, . Now consider the interval [t1,t1 + T, t1 +7T € Ty. In case t; +T ¢ Ty, as earlier, we choose
the first point from the time scale to € Ty: t1 +T < to < t; +T + 1. Let g(t) be a solution of (2.1) with
A (t1) = g(t1). Then

lz(t) — g(ta)] <6,

|£B(t) - ﬂ(t)| S Evt € [tlatQ]a
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and we have

|z(t) — zA(t)] < 2¢

|z(t2) — za(t2)] < 0.
Continuing this process, we construct the solution zy(t) of (2.2), which is in 2e-neighborhood of the bounded
solution (2.1) z(t) for ¢ > to. Thus z(t) is itself bounded. In other words, for any ¢y € Ty, and for sufficiently
small A € A we constructed a solution xy(¢) of (2.2), which is bounded for ¢ > t;.

Let us now construct solution x(t) of (2.2), which is a bounded on the entire axis. To this end, note
that all solutions of (2.2) that start in the d-neighborhood of the solution x(t) at to = to(A) € Ty stay in its
2e-neighborhood. Furthermore, due to asymptotic stability, for ¢ > tg + ¢t1(A), with t; € [T,T + 1], xx(t) is
in d-neighborhood of z(t) again. Therefore, there exists Ag € A such that if A < Ay for every time scale T
exists a sequence t,(\) € Ty with the following properties:

1t, - —o0;

2) tu_1 —tn € [T,T +1];

3) if |zx(tn) — x(tn)| < 0, then zx(t) for t > t,, does not leave the 2e-neighborhood of x(t) and at the
moment t,_1 gets back into the d-neighborhood of the bounded solution x(¢).

Let S,, be the set of values of the solutions (2.2) at the point ¢;, which are within §-neighborhood of
x(t,) at t,. Clearly, S,, is nonempty and S,, C S,,—1. The mapping that generates S,, is continuous by Lemma
2.2, therefore S, is closed. Denote zy := (), Sn, and consider the solution xx(t) of (2.2) with zx(t1) = 2.
Since zg € S, for all n, by construction of S,,, this solution may be extended to the left oft,, for all n, and
belongs to 2e-neighborhood of the bounded solution (2.1) z(¢). Thus the solution of (2.2) can be extended to
the left without any further conditions. Hence it is bounded on both semiaxis, which completes the proof. O

The next theorem provides the conditions for the existence of a bounded solution of (2.1) assuming (2.2)

has such a solution.

Theorem 2.4 Assume there exists Ao > 0 such that for all X < Ao the system (2.2) has a uniformly in to € Ty
asymptotically stable solution x(t), bounded on the entire time scale. Also assume that the p-neighborhood of

this solution is in D, for some p > 0. Then the system (2.1) has a bounded on axis solution.

Proof Using the asymptotic stability, for any € > 0 there exist § > 0 and 7" > 0, which do not depend on ¢
and A, such that

|za(to) — ya(to)| < 6 (2.24)
[2A(t) —ya(t)] <&, with &>t (2.25)
0

|[eA(t) —yn(t)] < =, with ¢t € [to+T,00)T,. (2.26)

—~ N

Since the system (2.2) has a bounded solution x(t) for each A\ < Ag, then there exists C;(A) > Osuch that

lzA(t)| < C1(N),Vt € T.

Let x(t) be the solution of (2.1) with z(ty) = yx(to), where yx(t) is the solution of (2.2) satisfying (2.24)-(2.26).
By Lemma 2.1
2(t) —ua(®)] < FNK(T), t € [to,to + Tr,
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where f(A) = sup,e, pa(t), and the constant K depends only on 7T'.
Consider the interval [tg,tg +T]. If to + T ¢ T, we take t; € Ty such that toc+ T <t; <tg+ T+ 1.
As before, since py(t) = 0, A — 0, such choice is possible. Next, choose Asuch that

FVE(T+1) <

NS

We have

o>

lz(t) —ya(t)] < 5, t € [to, ti]r,-

It follows from the integral representation of the solution z(t) of (2.1) that

2(t)] < Jz(to)] + / X (s,2(s)lds,  t € [to, ).

to

Hence

lz(t)] < CL(A) + 8+ C(T + 1). (2.27)
Thus, any solution z(t) of (2.1), which starts in the §-neighborhood of y(to), is also at ¢ -neighborhood of
xx(t1) at t;, and satisfies the inequality (2.27), provided x(¢) is defined on [tg,t1]. Let us show that x(t) is
indeed defined on this interval provided px(t) — 0 as A — 0. Choose € > 0 such that the e-neighborhood of
the bounded solution zx(t) of (2.2) is £ distance away from the boundary of D (note that the conditions of
this theorem make such choice possible.) Therefore, the solutions of (2.1), which start in such £-neighborhood,
may be extended both to the left and to the right on an interval of length at least %. Let t. € [to,t1]T, be
such that the conditions of Lemma 2.1 hold, and fix #.(\) < 5% . This way, the solution z(t) starts in the
d-neighborhood of xx(to) and is extended onto interval [0, #], so that

N

|(te) = ya(to)] <

)

where yx(t.) is the solution of the system (2.2) mentioned above. Hence, the £-neighborhood of x(t.) is in
D, and the solution x(t) is extended into the interval [0, 5] and is also £ distance away from the boundary
of D. Continuing this process, we get that x(t) is defined on the interval [tg,¢1].

We now take a look at the interval [t1,¢; + T if ¢t; + T € Ty. In case t; + T ¢ Ty, take the first point
from the time scale t3 € Tx: t1 +T < t9 <t1 +7T + 1. Arguing as before, for any to(A\) € R we construct the
solution z(t) of (2.1) which stays in the §-neighborhood of the bounded solution xy(¢) of (2.2), and hence this
solution is bounded for ¢ > ty. Let is describe the construction of a bounded solution z(t) on the whole axis.
To this end, all solutions of (2.1), which begin in §-neighborhood of the x(ty), provided the inequality (2.27)
holds for ¢ = ¢, are in its J-neighborhood. In particular, a bounded solutions x(t), which at ¢ = —¢; starts in
the d-neighborhood of the xx(—t1), also remains in the J-neighborhood of xx(to). Let S, be a set of values
of the solutions of (2.1) at ¢ = ¢y, which start in the J-neighborhood of x(—t,). This set is nonempty for any
natural p, and the inclusion S, C S,_; holds. By construction, sets .S, consist of images of solutions (2.1),
which begin at points ¢t = —t,(\). Since the solutions continuously depend on the initial data, the mapping that

generates S, is continuous, and S, is closed. Since these sets are also bounded as they are contained in the
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d-neighborhood of xy(ty), they are compact. Consequently, their intersection is nonempty. Choose z € N,>1.5,
and consider the solution of differential equation z(t) with z(tg) = z. By construction, this solution can be
extended to the left, and at ¢t = —t,(\) is in the d-neighborhood of zx(—t,) for allp € N. Thus, x(t) can be
is extended to the left without any additional assumptions, and it also satisfies the inequality (2.27), hence is
bounded. Finally, this solution may be extended to the right so that is it also bounded for ¢ > 0. This completes
the proof of the Theorem.

O
3. Example
The following example illustrates the application of Theorem 2.4.
Example 3.1 . Consider in R? the following system of type (2.2) when Ty = M\Z is Eulerian time scale:
2R (1) = awx(t) + f1(t 2x(8), y(1)), 5)

yS (t) = Bya(t) + fa(t, 2a(t), ya (1)),

where A >0, o € [-1;0) and B € [-1;0). We assume that the functions fi and fo are defined on R3, these
functions are in C1(R?) and the functions as well all of their partial derivatives are uniformly bounded by some
constant C' > 0. Let x)(k)\) = z3. Then the system, which corresponds to (3.1), has the form
xﬁﬂ =z + adxp + AR\, 2, vn),
Yer1 = Ui + BAYE + A f2(BX 2, 00),
where px(t) = X — 0. Then the system
xé_ﬂ = (14 aN)ay,
(3.3)
Yap1 = (L+ BNy

is a linear system, which corresponds to (3.2). Its fundamental matriz has the form

(1+aX)k 0 ) 7

R e G C A

(ig) = X(n—to) (Zﬁ) . (3.4)

Denote z = (;) ,and f= (?) . Clearly, the fundamental matriz may be estimated as
2

n >k, and the general solution is

X (n—t)]] < V2(1+yA)"", (3.5)

where v = max{«; f}. It is not difficult to see that then the system (3.2) has a bounded solution nx(t), which

satisfies the equation
k—1
M= Y X(k—1-n)f(n,m)). (3.6)

n=—oo

2110



KARPENKO et al./Turk J Math

For example, this fact can be proved using the method of successive approzimations. From (3.6) we have that

k-1
CV2
ml<x Y IIX(/f—l—n)HC:—T:Co. (3.7)

n=—oo

Note that Cy does not depend on py . Let us verify the asymptotical stability of the bounded solution mx(t). A

direct calculation shows that any solution z)\(t) of (3.2) satisfies

k—1
zp = X (k — ko)zp, + A Z X(k—1=n)f(n z)). (3.8)
n=k0
Hence, for the difference of two solutions, we have
k—1
2n = Rl < V20RO = [+ CA D VR ANz —
n:ko
or
C

(LN "z =l S V2L + )z —mp |+

)\\/? k—1
L4+40) 72 — 0.
1+7An§f YNz — |

Using the analog of the Gronwall’s inequality, we obtain

oA3 k—Fko
l2e = mp] < V2(1+ )k <1+(1+7A)> B

or
l2p — mal < V2(1+ A+ CAV2)F R — | (3.9)

Now let v+ CV2 < 0 and let choose ) from the condition 0 <14 yA + CA\2.

Observe that 77,? is exponentially stable. Therefore, the system of differential equations, corresponding to (5.1):
T

— = ax t,x,y),

a + fit,z,y)

dy
E - 6y+f2(taxay)

has a bounded solution, defined on R.
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