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Abstract: This work is devoted to the study of existence of a bounded solution of the differential equation, defined on a
family of time scales Tλ , provided the graininess function µλ converges to zero as λ → 0 . We obtained the conditions,
under which the existence of a bounded solution of differential equation implies the existence of a bounded solution of
the corresponding equation, defined on time scales, and vice versa.
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1. Introduction
Differential (dynamic) equations on time scales were introduced by Hilger in [8] as an attempt to create a unified
theory for both discrete and continuous dynamical systems. The theory of equations on time scales was further
developed in [1, 2]. The behavior of the solutions of the dynamic equations, defined on a family of time scales
Tλ when graininess function µλ goes to 0 as λ → 0 , is of particular interest to us. In this case intervals of the
time scale [t0, t1]λ = [t0, t1] ∩ Tλ approach [t0, t1] ( e.g., in the Hausdorff metric). The natural question arises
is whether the solutions of the equations on time scales and the corresponding differential equations share the
same properties. While on the bounded time intervals it is not difficult to establish the convergence of solutions
of dynamic time scale equations to the corresponding solutions of differential equations, for infinite intervals
this problem is highly nontrivial.

In our work we consider the family of dynamical equations for sufficiently small µλ , which possesses a
global bounded solution. Here the natural question arises whether the corresponding differential equation has
a bounded solution as well, provided Tλ → R1, λ → 0. Conversely, suppose we have a ordinary differential
equation which has a bounded solution for t ∈ R . Is it true that the corresponding equation on time scale Tλ

will have a bounded solution as well, provide λ is sufficiently small.
It is worth mentioning that the question of existence of two-sided solutions for dynamic equations on time

scales is not trivial by itself. In contrast with the classic theorem on the existence of solutions of the system
of ordinary differential equations, where local double-sided existence with respect to the initial point holds, the
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situation for the equations on time scales is significantly more complicated. In particular, in order to extend the
solution to the left, one needs to impose a very strong regression condition [5]. In our case, we got the existence
of the two-sided global bounded solution without using this regression condition.

The proof of the main result requires a continuous dependence of the solutions on the initial data uniformly
over all time scales. This question is nontrivial due to the topological complexity of the time scale. Our approach
is different from the one considered in [9], where the analysis was done on the fixed scale.

The relation between the properties of solutions of the system of ordinary differential equation and the
solutions of equations on Eulerian time scales was studied earlier. In particular, the paper [3] showed that the
solutions of differential and the corresponding difference equations have the same oscillatory properties. The
relation between the stability and the attractors of differential and difference equations was studied in [13]. The
optimal control problems for the systems of ordinary differential equations and the corresponding dynamical
equations on time scales were considered in [4, 6, 12]. The stability of perturbed dynamic system on time scales
was addressed in [15] using the appropriate analogs of Lyapunov functions .

This work is devoted to the study of existence of a bounded solution of the the differential equation,
defined on a family of time scales Tλ , provided the graininess function µλ converges to zero as λ → 0 . Our
work extends the results on the relation between the existence of bounded solutions of differential equations and
the corresponding difference equations, obtained in [14], to the case of generic time scales. The main difficulty
in our work is to compare the solutions of differential equations and equations on time scale for any Tλ . This
makes our analysis significantly different from [14], where only special case of time scale, namely T = Z , was
considered.

This paper is organized as follows. In section 2.1 we provide some definitions and statements necessary
for our research. In section 2.2 we state and prove the main results about the existence of a bounded solution
of differential equation, defined on time scales. Examples of application of main results are provided in section
3.

2. Preliminaries and main results
2.1. Basic notions of time scale theory
For the convenience of the reader, we present the necessary concepts and notation, consistent with the ones
introduced in the monograph [1].

• A time scale T is an arbitrary, nonempty, closed subset of the real axis.

• For every A ⊂ R , denote AT := A ∩ T .

• A forward jump operator σ : T → T is

σ(t) := inf{s ∈ T : s > t}.

• Similarly, a backward jump operator ρ : T → T is

ρ(t) = sup{s ∈ T : s < t}.

Here we assume inf ∅ := supT and sup ∅ := inf T).

• The graininess function µ : T → [0,∞) is defined as µ(t) := σ(t)− t .
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• A point t ∈ T is called left-dense (LD), (left-scattered (LS), right-dense (RD) or right-scattered (RS)) if
ρ(t) = t (ρ(t) < t , σ(t) = t or σ(t) > t) hold. If T has a left-scattered maximum M , then we define
Tk = T \ {M} ; otherwise, we set Tk = T .

• A function f : T → Rd is said to be ∆-differentiable at t ∈ Tk if the limit

f∆(t) = lim
s→t

f(σ(t))− f(s)

σ(t)− s

exists in Rd .

Let us recall the following classic results (see [1]):

a) if t ∈ Tk is right-dense point of T , then f is ∆ -differentiable at t if and only if the limit

f∆(t) = lim
s→t

f(t)− f(s)

t− s

exists in Rd .

b) if t ∈ Tk is a right-scattered point of T and if f is continuous at t , then f is ∆ differentiable at t and

f∆(t) =
f(σ(t))− f(t)

µ(t)
.

2.2. Main results
Let D ⊂ Rd be a domain. Consider the system of differential equations:

dx

dt
= X (t, x) , t ∈ R, x ∈ D. (2.1)

Let Tλ be a set of time scales and the system (2.1) defined on Tλ now reads as

x∆
λ (t) = X(t, xλ). (2.2)

Here t ∈ Tλ , xλ : Tλ → Rd , and x∆
λ (t) is delta-derivative of x(t) on Tλ . We assume that inf Tλ = −∞ ,

supTλ = ∞ , λ ∈ Λ ⊂ R , and λ = 0 is a limit point of Λ . We also assume that the function X(t, x) is
continuously differentiable and bounded together with its partial derivatives, i.e. ∃C > 0 such that

|X(t, x)|+
∣∣∣∣∂X(t, x)

∂t

∣∣∣∣+ ∥∥∥∥∂X(t, x)

∂x

∥∥∥∥ ≤ C (2.3)

for t ∈ R, x ∈ D , where ∂X
∂x is the corresponding Jacobi matrix.

Denote µλ := supt∈Tλ
µλ(t) , where µλ : Tλ → [0,∞) is the graininess function. it is straightforward to

see that if µλ(t) → 0 as λ → 0 , then Tλ coincides (e.g., in Hausdorff metric) with a continuous time scale
T0 = R (see e.g., [7]). We start with the following lemma:
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Lemma 2.1 Let t0 ∈ Tλ , t0 +T ∈ Tλ , x(t) and xλ(t) are the solutions of (2.1) and (2.2) on [t0, t0 +T ] , and
on [t0, t0 + T ]Tλ

respectively. Then if x(t0) = xλ(t0) = x0 ∈ D the following inequality holds

|x(t)− xλ(t)| ≤ f(λ)K(T ),

where K is constant, f(λ) = supt∈[t0,t0+T ]Tλ
µλ(t) for t ∈ [t0, t0 + T ]Tλ

.

Proof Without loss of generality, consider t0 = 0 , T = 1 and xλ(0) = x(0) . We have

x(t) = x0 +

∫ t

0

X(s, x(s))ds,

and

xλ(t) = x0 +

∫
[0,t]Tλ

X(s, xλ(s))∆s. (2.4)

Let us construct the function x̃λ(t) , defined for t ∈ [0, 1] . Assume that on the time scale this function coincides
with xλ(t) , i.e.

x̃λ(t) = xλ(t), t ∈ Tλ

On the remaining intervals this function is defined to be constant:

x̃λ(t) =

{
xλ(t), t ∈ [0, 1]Tλ

xλ(r), t ∈ [r, σ(r)),
(2.5)

Here r ∈ RS , and σ(r) is the forward jump operator. We have

|x(t)− xλ(t)| ≤ |x(t)− x̃λ(t)|+ |x̃λ(t)− xλ(t)|. (2.6)

The second term in (2.6) is automatically zero for t ∈ Tλ . Let us estimate first term in (2.6). By the analog of
Gronwall’s inequality on time scales [1] and Theorem 2 [11], for any r > 0 there exists constant C(r) > 0 that

|xλ(t)| ≤ C(r), t ∈ [0, 1]Tλ

|x(t)| ≤ C(r), t ∈ [0, 1], |x0| ≤ r.
(2.7)

Moreover first inequality holds uniformly in t ∈ Tλ . Therefore there exists constant C1(r) > 0 such that

|X(t, xλ(t))| ≤ C1(r),

|X(t, x(t))| ≤ C1(r),

∥Xx (t, xλ(t))∥ ≤ C1(r),∀t ∈ [0, 1]Tλ
,∀λ,

∥Xx (t, x(t))∥ ≤ C1(r),∀t ∈ [0, 1].

(2.8)

We now rewrite (2.4) as

xλ(t) = x0 +

∫
[0,t]Tλ\RS

X(s, xλ(s))ds+
∑
r∈RS

X(r, xλ(r))µ(r). (2.9)
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By (2.8) the sum (2.9) is bounded from above by convergent series C1

∑
r∈RS µλ(r) . Then

∑
r∈RS

X(rk, xλ(rk))µ(rk) =

N∑
k=1

X(rk, xλ(rk))µλ(rk) +
∑

k≥N+1

X(rk, xλ(rk))µλ(rk).

For every λ choose N(λ, T ) ≥ 1 such that ∑
k≥N+1

µλ(rk) ≤
µλ

2
. (2.10)

Now let us remove the right-scattered points from the time scale in (2.10). Let A = ∪r(r, σ(r)) , where the
union is taken over all right scattered r . Without loss of generality, we assume that the time scale Tλ has the
following structure:

0 r1 σ(r1) r2 σ(r2) rh1 r3 σ(r3) r4 rh2 σ(rh2)

Figure . ???

Here the solid lines stand for the line segments which consist of the limit points, and the dashed lines
illustrate the line segments [ri, σ(ri)) , with the right-scattered points ri included. Finally, the boldface solid
lines denote the set A. The proof for others time scale structures is analogues.

In order to proceed, we will carefully consider all possible scenarios.

1) On [0, r1] we have x̃λ(t) = xλ(t) = x(t).

2) On [r1, σ(r1)] , we have x̃λ(t) = xλ(r1) = x(r1) but x(t) = x(r1) +
∫ t

r1
X(s, x(s))ds. Therefore for

t ∈ [r1, σ(r1)] x(t) is a smooth function. By Taylor’s theorem with the remainder in Lagrange form, we get

x(t) = x(r1) +X(r1, x(r1))(t− r1) +X ′
x(s1, x(s1)) ·X(s1, x(s1))

(t− r1)
2

2
, (2.11)

where s1 is in [r1, σ(r1)] , and X ′
x is Jacobi matrix. By (2.8), we have

maxt∈[0,1]|X ′
x(t, x(t))X(t, x(t))| ≤ C2

1 . (2.12)

Therefore, if t ∈ (r1, σ(r1)), we get

|x(t)− x̃λ(t)| ≤
∫ σ(r1)

r1

|X(t, x(t))|dt ≤ C1µ(r1). (2.13)

At the point σ(r1) we have

x̃λ(σ(r1)) = xλ(r1) +X(r1, xλ(r1))µ(r1) = x(r1) +X(r1, x(r1))µ(r1).

Thus, by (2.11) and (2.12) we get

|x(σ(r1))− x̃λ(σ(r1))| ≤ C2
1

µ2
λ(r1)

2
. (2.14)
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3) For t ∈ [σ(r1), r2], we have

x̃λ(t) = xλ(t) = xλ(σ(r1)) +

∫ t

σ(r1)

X(s, xλ(s))ds,

x(t) = x(σ(r1)) +

∫ t

σ(r1)

X(s, x(s))ds,

hence

|x(t)− x̃λ(t)| ≤ |xλ(σ(r1))− x(σ(r1))|+ C

∫ t

σ(r1)

|x̃λ(s)− x(s)|ds.

By (2.14) and Gronwall’s inequality we have

|x̃λ − x(t)| ≤ µ2
λ(r1)

2
C2

1e
C(r2−σ(r1)). (2.15)

4) On [r2, σ(r2)] we have

x̃λ(t) = x̃λ(r2), x(t) = x(r2) +

∫ t

r2

X(s, x(s))ds.

Thus

|x(t)− x̃λ| ≤
µ2
λ(r1)

2
C2

1e
C(r2−σ(r1))+µλ(r2)C1 . (2.16)

At t = σ(r2) we get

x(σ(r2)) = x(r2) +X(r2, x(r2))µλ(r2) +
1

2
X ′

x(s2, x(s2)) ·X(s2, x(s2))
(t− r2)

2

2

for some s2 ∈ [r2, σ(r2)] , and x̃λ(σ(r2)) = x̃λ(r2) +X(r2, x̃λ(r2))µλ(r2). Therefore

|x(σ(r2)− x̃λ(σ(r2))| ≤ |x(r2)− x̃λ(r2)|+ µλ(r2)C|x(r2)− x̃λ(r2)|+
µ2
λ(r2)

2
C2

1 =

= (1 + Cµλ(r2))|x(r2)− x̃λ(r2)|+
µ2
λ(r2)

2
C2

1 ≤ (1 + Cµλ(r2))
µ2
λ(r1)

2
C2

1e
C(r2−σ(r1))

2

+
µ2
λ(r2)

2
C2

1 .

5) Next consider the line segment [σ(r2), rh1 ] . We have

|x̃(rh1
)− x̃(σ(r2))| ≤ C1(rh1

− r2) = C1µ1,

|x(rh1)− x(σ(r2))| ≤ C1µ1.

Consequently

|x̃λ(rh1
)− x(rh1

)| ≤ 2C1µ1 + (1 + Cµλ(r2))
µ2
λ(r1)

2
C2

1e
C(r2−σ(r1)) +

µ2
λ(r2)

2
C2

1 . (2.17)
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6) The interval [rh1 , r3) consists entirely of limit points, hence we have

|x̃λ(t)− x(t)| ≤ eC(r3−rh1
)[2C1µ1+

+(1 + Cµλ(r2))
µ2
λ(r1)

2
C2

1e
C(r2−σ(r1)) +

µ2
λ(r2)

2
C2

1 ]. (2.18)

7) The estimate on the interval [r3, σ(r3)) is similar to the one on [r2, σ(r2)) :

|x̃λ(t)− x(t)| ≤ (2C1µ1 +
µ2
λ(r1)

2
C2

1e
C(r2−σ(r1))(1 + Cµλ(r2)) + +

µ2
λ(r2)

2
C2

1 )e
K(r3−rh1

) + µλ(r3)C1,

hence

|x̃λ(σ(r3))− x(σ(r3))| ≤ |x̃λ(r3)− x(r3)|(1 + Cµλ(r3)) +
µ2
λ(r3)

2
C2

1 .

In view of (2.18), we get

|x̃λ(σ(r3))− x(σ(r3))| ≤ (2C1µ1 +
µ2
λ(r1)

2
C2

1e
C(r2−σ(r1))(1 + Cµλ(r2))+

+
µ2
λ(r2)

2
C2

1 )e
C(r3−rh1

)(1 + Cµλ(r3)) +
µ2
λ(r3)

2
C2

1 .

8) In a similar way, on the segment [σ(r3), r4] we have

|x̃λ(t)− x(t)| ≤ [(2C1µ1 +
µ2
λ(r1)

2
C2

1e
C(r2−σ(r1))(1 + Cµλ(r2))+

+
µ2
λ(r2)

2
C2

1 )e
C(r3−rh1

)(1 + Cµλ(r3)) +
µ2
λ(r3)

2
C2

1 ]e
C(r4−σ(r3)) : = δ∗.

9) The interval (r4, rh2
) , whose length is at most µ2 , is removed from the time scale. Therefore,

|x̃λ(rh2
)− x(rh2

)| ≤ δ∗ + 2C1µ2.

10) On the interval [rh2
, σ(rh2

)) we have

|x̃λ(t)− x(t)| ≤ δ∗ + 2C1µ2 + µλ(rh2)C1. (2.19)

Hence

|x̃λ(σ(rh2
))− x(σ(rh2

))| ≤ |x̃λ(rh2
)− x(rh2

)|(1 + Cµλ(rh2
)) +

µ2
λ(rh2

)

2
C2

1 ≤

≤ [δ∗ + 2C1µ2](1 + Cµλ(rh2)) +
µ2
λ(rh2)

2
C2

1 : = δ∗∗

11) Then on the segment [σ(rh2
), r5] we have:

|x̃λ(t)− x(t)| ≤ δ∗∗e
C(r5−σ(rh2

)) ≤
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≤ (1 + Cµλ(rh2))(1 + Cµλ(r3))2C1µ1e
C((r4−σ(r3))+(r3−rh1

))+

+
1

2
(1 + Cµλ(rh2))e

C((r4−σ(r3))µ2
λ(r1)C

2
1e

C((r2−σ(r1))+(r3−rh1
))(1 + Cµλ(r2))(1 + Cµλ(r3))+

+
1

2
(1 + Cµλ(rh2

))eC((r4−σ(r3))µ2
λ(r2)C

2
1e

C(r3−σ(rh1
))(1 + Cµλ(r3))+

+
1

2
(1 + Cµλ(rh2))e

C((r4−σ(r3))µ2
λ(r3)C

2
1 + 2C1µ2(1 + Cµλ(rh2)) +

1

2
µ2
λ(rh2)C

2
1 )e

C(r5−σ(rh2
)). (2.20)

Denote
Π = (1 + Cµλ(r1))(1 + Cµλ(r2))(1 + Cµλ(r3))(1 + Cµλ(rh2

)) . . . (1 + Cµλ(rN )).

where the product is taken over all right-scattered points on Figure. This way

lnΠ ≤ C(µλ(r1) + µλ(r2) + µλ(r3) . . . ) ≤ C.

Note that the sum of all powers of exponents appearing in (2.20) does not exceed C, since these exponents are
essentially the lengths of disjoint subintervals of [0, 1]. Consequently, for t /∈ [rk, σ(rk)) we obtain

|x̃λ(t)− x(t)| ≤ ΠeC2C1

∑
i

µi +
1

2
ΠC2

1e
C
∑
i

µ2(ri) ≤

≤ ΠeCC1µλ +
1

4
µλΠC2

1e
C
∑
i

µ(ri) ≤ µλ(Πe
CC1 +

1

4
ΠC2

1e
C) : = L1 → 0, λ → 0. (2.21)

Similarly to (2.19) and (2.21) , if t ∈ [rk, σ(rk)) , we have

|x̃λ(t)− x(t)| ≤ µλΠeC(C1 +
C2

1

4
) + 2C1

∑
i

µi + µλC1 ≤ µλ(ΠeC(C1 +
C2

1

4
) + 3C1) : = L2 → 0, λ → 0. (2.22)

Therefore |x(t) − x̃λ(t)| ≤ f(λ)K(T ), where K(T ) = max[L1,L2], and the proof of Lemma 2.1 follows from
(2.6):

|x(t)− xλ(t)| ≤ f(λ)K(T ), f(λ) → 0, λ → 0.

2

Under the condition (2.3), the following lemma holds.

Lemma 2.2 The solution of system (2.2) x∆
λ (t) continuously depends on the initial data until the moment it

leaves the region D.

Proof Let xλ and yλ be the solutions of (2.2) with xλ(t0) = x0 , yλ(t0) = y0 , respectively. In other words

xλ = x0 +

∫
[t0,t]Tλ

X(s, xλ(s))∆s and yλ = y0 +

∫
[t0,t]Tλ

X(s, yλ(s))∆s.

By the analog of Gronwall’s inequality [1, p.257] for s ∈ [t0, t]Tλ
, we have

|xλ(t)− yλ(t)| ≤ |x0 − y0|eC(t, t0),
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where eK(t, t0) is an exponential function on time scale [1]. By Lemma 3.1 [12] the exponential function eC(t, t0)

is bounded on [t0, t]Tλ
uniformly for all time scales, i.e:

|xλ(s)− yλ(s)| ≤ C1|x0 − y0|

for any s ∈ [t0, t]Tλ
, x, y ∈ Rd , and the constant C1 > 0 is independent of t, x and y . This completes the

proof of Lemma 2.2. 2

Theorem 2.3 Suppose the system (2.1) has a bounded on R , asymptotically stable uniformly in t0 ∈ R solution
x(t) , which belongs to the ρ - neighborhood of the domain D , for some ρ > 0 . Then there exists λ0 > 0 such
that for all λ < λ0 the system (2.2) has a bounded on Tλ solution xλ(t).

Proof Since x(t) is asymptotically stable, for any ε > 0 and t0 ∈ R there exist δ > 0 and T > 0 such that
for any other solution y(t) of (2.1) satisfying

|x(t0)− y(t0)| ≤ δ

we have
|x(t)− y(t)| < ε if t ≥ t0,

|x(t)− y(t)| ≤ δ

2
if t ≥ t0 + T,

where δ and T are independent of t0 . Let xλ(t) be a solution of (2.2) such that xλ(t0) = y(t0) at the initial
point t0(λ) ∈ Tλ . By lemma 2.1

|y(t)− xλ(t)| ≤ f(λ)K(T ), (2.23)

for some K > 0 and f(λ) = supt∈Tλ
µλ(t) , t0(λ) ∈ Tλ , t0 + T ∈ Tλ. The stability implies that y(t) as well as

its neighborhood belongs to the domain D for t > t0 . Then, it follows from (2.23) that for sufficiently small λ ,
xλ(t) is in D for t ∈ [t0, t0 + T ]Tλ

. Consider the interval [t0, t0 + T ] . In case t0 + T /∈ Tλ , take the first point
from the time scale t1 ∈ Tλ : t0 + T ≤ t1 ≤ t0 + T + 1. The condition µλ(t) → 0 , λ → 0 makes such choice
possible. Next we choose λ such that f(λ)K(t1) ≤ δ

2 . Altogether we have

|y(t)− xλ(t)| ≤
δ

2
, t ∈ [t0, t1]Tλ

.

Therefore, for any solution y(t) of (2.1) with xλ(t0) = y(t0) we have

|x(t)− xλ(t)| ≤ |x(t)− y(t)|+ |y(t)− xλ(t)| < 2ε,

|x(t1)− xλ(t1)| ≤ δ

for t ∈ [t0, t1]Tλ
. Now consider the interval [t1, t1 + T ] , t1 + T ∈ Tλ . In case t1 + T /∈ Tλ , as earlier, we choose

the first point from the time scale t2 ∈ Tλ : t1 + T ≤ t2 ≤ t1 + T + 1. Let ỹ(t) be a solution of (2.1) with
xλ(t1) = ỹ(t1) . Then

|x(t1)− ỹ(t1)| ≤ δ,

|x(t)− ỹ(t)| ≤ ε, t ∈ [t1, t2],
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and we have
|x(t)− xλ(t)| < 2ε

|x(t2)− xλ(t2)| < δ.

Continuing this process, we construct the solution xλ(t) of (2.2), which is in 2ε -neighborhood of the bounded
solution (2.1) x(t) for t ≥ t0 . Thus xλ(t) is itself bounded. In other words, for any t0 ∈ Tλ , and for sufficiently
small λ ∈ Λ we constructed a solution xλ(t) of (2.2), which is bounded for t ≥ t0 .

Let us now construct solution xλ(t) of (2.2), which is a bounded on the entire axis. To this end, note
that all solutions of (2.2) that start in the δ -neighborhood of the solution x(t) at t0 = t0(λ) ∈ Tλ stay in its
2ε -neighborhood. Furthermore, due to asymptotic stability, for t ≥ t0 + t1(λ), with t1 ∈ [T, T + 1] , xλ(t) is
in δ -neighborhood of x(t) again. Therefore, there exists λ0 ∈ Λ such that if λ ≤ λ0 for every time scale Tλ

exists a sequence tn(λ) ∈ Tλ with the following properties:
1)tn → −∞ ;
2) tn−1 − tn ∈ [T, T + 1] ;
3) if |xλ(tn)− x(tn)| < δ , then xλ(t) for t ≥ tn does not leave the 2ε -neighborhood of x(t) and at the

moment tn−1 gets back into the δ -neighborhood of the bounded solution x(t) .
Let Sn be the set of values of the solutions (2.2) at the point t1 , which are within δ -neighborhood of

x(tn) at tn . Clearly, Sn is nonempty and Sn ⊂ Sn−1 . The mapping that generates Sn is continuous by Lemma
2.2, therefore Sn is closed. Denote z0 :=

⋂
n Sn , and consider the solution xλ(t) of (2.2) with xλ(t1) = z0 .

Since z0 ∈ Sn for all n , by construction of Sn , this solution may be extended to the left oftn for all n , and
belongs to 2ε -neighborhood of the bounded solution (2.1) x(t) . Thus the solution of (2.2) can be extended to
the left without any further conditions. Hence it is bounded on both semiaxis, which completes the proof. 2

The next theorem provides the conditions for the existence of a bounded solution of (2.1) assuming (2.2)
has such a solution.

Theorem 2.4 Assume there exists λ0 > 0 such that for all λ < λ0 the system (2.2) has a uniformly in t0 ∈ Tλ

asymptotically stable solution xλ(t) , bounded on the entire time scale. Also assume that the ρ-neighborhood of
this solution is in D , for some ρ > 0 . Then the system (2.1) has a bounded on axis solution.

Proof Using the asymptotic stability, for any ε > 0 there exist δ > 0 and T > 0 , which do not depend on t0

and λ , such that
|xλ(t0)− yλ(t0)| ≤ δ (2.24)

|xλ(t)− yλ(t)| < ε, with t ≥ t0 (2.25)

|xλ(t)− yλ(t)| ≤
δ

2
, with t ∈ [t0 + T,∞)Tλ

. (2.26)

Since the system (2.2) has a bounded solution xλ(t) for each λ < λ0 , then there exists C1(λ) > 0such that

|xλ(t)| ≤ C1(λ),∀t ∈ Tλ.

Let x(t) be the solution of (2.1) with x(t0) = yλ(t0) , where yλ(t) is the solution of (2.2) satisfying (2.24)-(2.26).
By Lemma 2.1

|x(t)− yλ(t)| ≤ f(λ)K(T ), t ∈ [t0, t0 + T ]Tλ
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where f(λ) = supt∈Tλ
µλ(t) , and the constant K depends only on T .

Consider the interval [t0, t0 + T ] . If t0 + T /∈ Tλ , we take t1 ∈ Tλ such that t0 + T ≤ t1 ≤ t0 + T + 1.

As before, since µλ(t) → 0 , λ → 0 , such choice is possible. Next, choose λsuch that

f(λ)K(T + 1) ≤ δ

2
.

We have

|x(t)− yλ(t)| ≤
δ

2
, t ∈ [t0, t1]Tλ

.

It follows from the integral representation of the solution x(t) of (2.1) that

|x(t)| ≤ |x(t0)|+
∫ t1

t0

|X(s, x(s))|ds, t ∈ [t0, t1].

Hence
|x(t)| ≤ C1(λ) + δ + C(T + 1). (2.27)

Thus, any solution x(t) of (2.1), which starts in the δ -neighborhood of xλ(t0) , is also at δ -neighborhood of
xλ(t1) at t1 , and satisfies the inequality (2.27), provided x(t) is defined on [t0, t1]. Let us show that x(t) is
indeed defined on this interval provided µλ(t) → 0 as λ → 0 . Choose ε > 0 such that the ε -neighborhood of
the bounded solution xλ(t) of (2.2) is ρ

2 distance away from the boundary of D (note that the conditions of
this theorem make such choice possible.) Therefore, the solutions of (2.1), which start in such ρ

2 -neighborhood,
may be extended both to the left and to the right on an interval of length at least ρ

2C . Let t∗ ∈ [t0, t1]Tλ
be

such that the conditions of Lemma 2.1 hold, and fix t∗(λ) ≤ ρ
2C . This way, the solution x(t) starts in the

δ -neighborhood of xλ(t0) and is extended onto interval [0, ρ
2C ], so that

|x(t∗)− yλ(t∗)| ≤
δ

2
,

where yλ(t∗) is the solution of the system (2.2) mentioned above. Hence, the ρ
2 -neighborhood of x(t∗) is in

D , and the solution x(t) is extended into the interval [0, ρ
2C ] and is also ρ

2 distance away from the boundary
of D . Continuing this process, we get that x(t) is defined on the interval [t0, t1].

We now take a look at the interval [t1, t1 + T ] if t1 + T ∈ Tλ . In case t1 + T /∈ Tλ , take the first point
from the time scale t2 ∈ Tλ : t1 + T ≤ t2 ≤ t1 + T + 1. Arguing as before, for any t0(λ) ∈ R we construct the
solution x(t) of (2.1) which stays in the δ -neighborhood of the bounded solution xλ(t) of (2.2), and hence this
solution is bounded for t ≥ t0 . Let is describe the construction of a bounded solution x(t) on the whole axis.
To this end, all solutions of (2.1), which begin in δ -neighborhood of the xλ(t0) , provided the inequality (2.27)
holds for t = t1 , are in its δ -neighborhood. In particular, a bounded solutions x(t) , which at t = −t1 starts in
the δ -neighborhood of the xλ(−t1) , also remains in the δ -neighborhood of xλ(t0) . Let Sp be a set of values
of the solutions of (2.1) at t = t0 , which start in the δ -neighborhood of xλ(−tp) . This set is nonempty for any
natural p , and the inclusion Sp ⊂ Sp−1 holds. By construction, sets Sp consist of images of solutions (2.1),
which begin at points t = −tp(λ). Since the solutions continuously depend on the initial data, the mapping that
generates Sp is continuous, and Sp is closed. Since these sets are also bounded as they are contained in the
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δ -neighborhood of xλ(t0) , they are compact. Consequently, their intersection is nonempty. Choose z ∈ ∩p≥1Sp ,
and consider the solution of differential equation x(t) with x(t0) = z . By construction, this solution can be
extended to the left, and at t = −tp(λ) is in the δ -neighborhood of xλ(−tp) for allp ∈ N . Thus, x(t) can be
is extended to the left without any additional assumptions, and it also satisfies the inequality (2.27), hence is
bounded. Finally, this solution may be extended to the right so that is it also bounded for t ≥ 0. This completes
the proof of the Theorem.

2

3. Example
The following example illustrates the application of Theorem 2.4.

Example 3.1 . Consider in R2 the following system of type (2.2) when Tλ = λZ is Eulerian time scale:x∆
λ (t) = αxλ(t) + f1(t, xλ(t), yλ(t)),

y∆λ (t) = βyλ(t) + f2(t, xλ(t), yλ(t)),
(3.1)

where λ ≥ 0 , α ∈ [−1; 0) and β ∈ [−1; 0) . We assume that the functions f1 and f2 are defined on R3 , these
functions are in C1(R3) and the functions as well all of their partial derivatives are uniformly bounded by some
constant C > 0 . Let xλ(kλ) = xλ

k . Then the system, which corresponds to (3.1), has the formxλ
k+1 = xλ

k + αλxλ
k + λf1(kλ, x

λ
k , y

λ
k ),

yλk+1 = yλk + βλyhk + λf2(kλ, x
λ
k , y

λ
k ),

(3.2)

where µλ(t) = λ → 0. Then the system xλ
k+1 = (1 + αλ)xλ

k ,

yλk+1 = (1 + βλ)yλk

(3.3)

is a linear system, which corresponds to (3.2). Its fundamental matrix has the form

X(n, k) = X(n− k) =

(
(1 + αλ)n−k 0

0 (1 + βλ)n−k

)
,

n ≥ k , and the general solution is (
xλ
n

yλn

)
= X(n− t0)

(
xλ
t0

yλt0

)
. (3.4)

Denote z =

(
x
y

)
, and f =

(
f1
f2

)
. Clearly, the fundamental matrix may be estimated as

∥X(n− t)∥ ≤
√
2(1 + γλ)n−t, (3.5)

where γ = max{α;β} . It is not difficult to see that then the system (3.2) has a bounded solution ηλ(t) , which
satisfies the equation

ηλk =

k−1∑
n=−∞

X(k − 1− n)f(λn, ηλn). (3.6)
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For example, this fact can be proved using the method of successive approximations. From (3.6) we have that

|ηλk | ≤ λ

k−1∑
n=−∞

∥X(k − 1− n)∥C = −C
√
2

γ
= C0. (3.7)

Note that C0 does not depend on µλ . Let us verify the asymptotical stability of the bounded solution ηλ(t) . A
direct calculation shows that any solution zλ(t) of (3.2) satisfies

zλk = X(k − k0)z
λ
k0

+ λ

k−1∑
n=k0

X(k − 1− n)f(nλ, zλn). (3.8)

Hence,for the difference of two solutions, we have

|zλk − ηλk | ≤
√
2(1 + γλ)k−k0 |zλk0

− ηλk0
|+ Cλ

k−1∑
n=k0

√
2(1 + γλ)k−1−n|zλn − ηλn|

or

(1 + γλ)−k|zλk − ηλk | ≤
√
2(1 + γλ)−k0 |zλk0

− ηλk0
|+ Cλ

√
2

1 + γλ

k−1∑
n=k0

(1 + γλ)−n|zλn − ηλn|.

Using the analog of the Gronwall’s inequality, we obtain

|zλk − ηλk | ≤
√
2(1 + γλ)k−k0

(
1 +

Cλ
√
2

(1 + γλ)

)k−k0

|zλk0
− ηλk0

|

or
|zλk − ηλk | ≤

√
2(1 + γλ+ Cλ

√
2)k−k0 |zλk0

− ηλk0
|. (3.9)

Now let γ + C
√
2 < 0 and let choose λ from the condition 0 < 1 + γλ+ Cλ

√
2.

Observe that ηλk is exponentially stable. Therefore, the system of differential equations, corresponding to (3.1):
dx

dt
= αx+ f1(t, x, y),

dy

dt
= βy + f2(t, x, y)

has a bounded solution, defined on R .
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