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Abstract: The theory of δ -invariants, initiated by the author in the early 1990s, is a challenging topic in modern
differential geometry, having a lot of applications. In the spirit of δ -invariants, Decu et al. (2007) initiated the study of
δ -Casorati curvatures. Since then there are many interesting results on δ -Casorati curvatures obtained by many authors.
In this article we provide a comprehensive survey on recent developments in δ -Casorati curvatures done during the last
decade.
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1. Introduction
One of the most fundamental problems in submanifold theory is the immersibility of a Riemannian manifold in
a Euclidean space. In 1956, Nash proved the following well-known theorem.

Theorem 1.1 [92] Every n-dimensional Riemannian manifold can be isometrically embedded in a Euclidean
m-space with m = n

2 (n+ 1)(3n+ 11) .

Nash’s embedding theorem was aimed for in the hope that if a Riemannian manifold could be regarded as
isometrically embedded submanifold, this would then yield the opportunity to use help from extrinsic geometry.
But this hope was not materialized according to Gromov’s article [69] published in 1985.

There were several reasons why it is so difficult to apply Nash’s theorem. One reason is that it requires in
general very large codimension for a Riemannian manifold to admit an isometric embedding in Euclidean spaces.
On the other hand, submanifolds of higher codimension are very difficult to be understood. Another reason
is that at that time there do not exist general optimal relationships between the known intrinsic invariants
and the main extrinsic invariants for arbitrary submanifolds of Euclidean spaces except the three fundamental
equations (cf. [33]). This leads to another fundamental problem in submanifold theory (cf. [24]).

Problem 1.2 Find simple relationship between the main extrinsic invariants and the main intrinsic invariants
of a submanifold.

In order to provide some answers to this fundamental problem, the author introduced in the early 1990’s
new types of Riemannian invariants [23, 26, 27], known as δ -invariants or Chen invariants, which are very
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different in nature from the ”classical” Ricci and scalar curvatures. In contrast to Ricci and scalar curvatures,
the main feature of δ -invariants is to remove portion of sectional curvatures from the scalar curvature [see (3.1)
and (3.2)]. Via δ -invariants, the author was able to provide solutions to Problem 1.2 by establishing optimal
relationships between δ -invariants and the main extrinsic invariant; namely, the squared mean curvature H2 .
Applying these results, the author was also able to introduce and to study the notion of ideal immersions. The δ -
invariants and the related inequalities have many applications (see, e.g., [32]). Since then these results have been
extended to many geometrical inequalities of similar nature in other ambient spaces such as complex, Sasakian,
cosymplectic, Kenmotsu or quaternionic space forms as well as in locally product Riemannian manifolds and
statistical manifolds.

For surfaces in a Euclidean 3-space E3 , Casorati [19] introduced in 1890 what is today called the Casorati
curvature. This curvature was preferred by Casorati over Gauss curvature because Gauss curvature may vanish
for surfaces that look intuitively curved, while the Casorati curvature only vanishes at planar points. Note that
in computer vision Casorati curvature represents the bending energy of surfaces in E3 (cf. [73]). The Casorati
curvature have been extended to arbitrary submanifolds in Riemannian geometry (cf. e.g., [32, 54]). In general,
the Casorati curvature C of a submanifold in a Riemannian manifold is defined to be the normalized squared
norm of the second fundamental form. In particular, for hypersurfaces of a Riemannian manifold M̃n+1 , the
Casorati curvature is given by

C =
1

n
(κ21 + · · ·+ κ2n),

where κ1, . . . , κn denote the principal curvatures of the hypersurfaces. For the importance of the Casorati
curvature for submanifolds in the view of geometry as the science of human vision, we refer to [114].

In the spirit of δ -invariants, Decu et al. introduced the normalized Casorati curvatures δC(n − 1) and
δ̂C(n− 1) in 2007 (see [54]). In 2008, they extended normalized Casorati curvatures to generalized normalized
δ -Casorati curvatures δC(r;n−1) and δ̂C(r;n−1) in [55]. At the same time, they were able to establish optimal
inequalities involving the (intrinsic) scalar curvature and the (extrinsic) δ -Casorati curvatures. Consequently,
they were able to provide further solutions to Problem 1.2. Since then the study of δ -Casorati curvatures
becomes a very active research topic in modern differential geometry. Many interesting results on δ -Casorati
curvatures were obtained during the last decade.

The main purpose of this article is to present a comprehensive survey on recent developments in δ -
Casorati curvatures. It is the author’s intention that this survey article will provide a useful reference for
graduate students and researchers working on this interesting subject.

2. Preliminaries
For the basic knowledge on Riemannian manifolds and submanifolds, we refer to [36, 94, 101].

2.1. Sectional, scalar and normalized scalar curvature

Let Mn be an n -dimensional submanifold of a Riemannian m -manifold M̃m . We choose a local field of
orthonormal frame e1, . . . , en, ξn+1, . . . , ξm in M̃m such that, restricted to Mn , the vectors e1, . . . , en are
tangent to Mn and hence ξn+1, . . . , ξm are normal to Mn . Let K(ei ∧ ej) and K̃(ei ∧ ej) denote respectively

the sectional curvatures of Mn and M̃m of the plane section spanned by ei and ej .
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The scalar curvature τ of Mn at p is defined by

τ(p) =
∑

1≤i<j≤n

K(ei ∧ ej). (2.1)

Similarly, if L is ℓ -dimensional linear subspace of TpMn , then scalar curvature τ(L) of L is defined by

τ(L) =
∑

1≤i<j≤ℓ

K(ei ∧ ej), (2.2)

where e1, . . . , eℓ is an orthonormal basis of L . The normalized scalar curvature ρ of Mn is given by

ρ =
2

n(n− 1)
τ. (2.3)

2.2. Basic formulas and fundamental equations

Let Mn be an n -dimensional submanifold in a Riemannian m -manifold M̃m . We denote by ∇ and ∇̃ the
Levi-Civita connections of Mn and M̃m , respectively. The Gauss and Weingarten formulas are then given
respectively by

∇̃XY = ∇XY + h(X,Y ), (2.4)

∇̃Xξ = −AξX +DXξ (2.5)

for vector fields X,Y tangent to Mn and ξ normal to Mn , where h denotes the second fundamental form, D
the normal connection, and A the shape operator of the submanifold.

Let {hrij} , i, j = 1, . . . , n; r = n + 1, . . . ,m , be the coefficients of the second fundamental form h with
respect to e1, . . . , en, ξn+1, . . . , ξm . Then hrij = ⟨h(ei, ej), ξr⟩ = ⟨Arei, ej⟩ , where Ar = Aξr and ⟨ , ⟩ denotes

the inner product. The mean curvature vector −→
H is defined by

−→
H =

1

n
traceh =

1

n

n∑
i=1

h(ei, ei).

The squared mean curvature is given by H2 = ⟨
−→
H,

−→
H ⟩ . A submanifold Mn is said to be minimal (resp., totally

geodesic) if its mean curvature vector (resp., its second fundamental form) vanishes identically.

Let R and R̃ be the Riemann curvature tensors of Mn and M̃m , respectively. If M̃m is of constant
curvature c , then the three fundamental equations of Gauss, Codazzi and Ricci are given respectively by

⟨R(X,Y )Z,W ⟩ =
〈
Ah(Y,Z)X,W

〉
−
〈
Ah(X,Z)Y,W

〉
+ c (⟨X,W ⟩ ⟨Y, Z⟩ − ⟨X,Z⟩ ⟨Y,W ⟩), (2.6)

(∇Xh)(Y, Z) = (∇Y h)(X,Z), (2.7)〈
R⊥(X,Y )ξ, η

〉
= ⟨[Aξ, Aη]X,Y ⟩ (2.8)

for X,Y, Z,W tangent to Mn and ξ, η normal to Mn , where R⊥ denotes the normal curvature tensor associated
with D and ∇h is given by

(∇Xh)(Y, Z) = DXh(Y, Z)− h(∇XY, Z)− h(Y,∇XZ). (2.9)
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2.3. Casorati curvature and principal Casorati directions

For a submanifold Mn in a real space form Rm(c) of constant sectional curvature c , the Casorati curvature C
of Mm is defined by

C =
1

n

m∑
r=n+1

(
n∑

i,j=1

(hrij)
2

)
. (2.10)

The Casorati curvature of an ℓ -dimensional linear subspace L ⊂ TpM
n , spanned by {e1, . . . , eℓ} , is given by

C(L) = 1

ℓ

m∑
r=n+1

(
ℓ∑

i,j=1

(hrij)
2

)
. (2.11)

By contraction, it follows from Equation (2.6) of Gauss that

Ric(Y, Z) = (n− 1) c g(Y, Z) + ng(A−→
H
(Y ), Z)− g(AC(Y ), Z), (2.12)

where AC =
∑m

r=n+1A
2
r is the Casorati operator. In terms of Casorati operator, (2.12) can be expressed as

S(X) = c(n− 1)X + nAHX −AC(X), (2.13)

where S is the Ricci operator defined by ⟨S(X), Y ⟩ = Ric(X,Y ) .
The eigenvectors and eigenvalues of AC are called the principal Casorati directions and principal Casorati

curvatures, respectively, so that the principal Casorati curvatures C1, . . . , Cn satisfy C = C1 + · · ·+ Cn.

Remark 2.1 Let Mn be a hypersurface of a Euclidean (n+ 1)-space En+1 with n ≥ 3 and let κ1, . . . , κn be
the principal curvatures at a point p ∈Mn with principal directions e1, . . . , en . Assume Ln−1

i is the hyperplane
of TpMn spanned by e1, . . . , ei−1, ei+1, . . . , en . It was shown by Brubaker and Suceavă [15] that if Casorati

curvature satisfies (n − 1)
√

Cn−1(L
n−1
i ) ≤ nH(p) with H = 1

n (κ1 + . . . + κn) for every p ∈ Mn and for each

i ∈ {1, . . . , n} , then Mn is a convex hypersurface.

3. The Chen δ -invariants
Curvature invariants are known to be the No 1 Riemannian invariants and the most natural ones. Since
Casorati’s δ -curvatures were motivated after δ -invariants δ(n− 1) and δ̂(n− 1) on Riemannian n -manifolds,
we recall in this section basic definitions and fundamental results on Chen’s δ -curvature invariants.

3.1. Definition of δ -invariants
Let n be a positive integer ≥ 3 . For a positive integer k ≤ n

2 , let S(n, k) denote the set consisting of k -tuples
(n1, . . . , nk) of integers ≥ 2 such that n1 < n and n1 + · · ·+ nk ≤ n. Put S(n) = ∪k≥1S(n, k) .

For a given point p in a Riemannian n -manifold Mn and each (n1, . . . , nk) ∈ S(n) , the author introduced
in [23, 26, 27] the following δ -invariants:

δ(n1, . . . , nk)(p) = τ(p)− inf{τ(L1) + · · ·+ τ(Lk)}, (3.1)

δ̂(n1, . . . , nk)(p) = τ(p)− sup{τ(L1) + · · ·+ τ(Lk)}, (3.2)
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where L1, . . . , Lk run over all k mutually orthogonal subspaces of TpMn such that dimLj = nj , j = 1, . . . , k .
In particular, wee see from (3.1) and (3.2) that

(a) δ(∅) = τ (k = 0 , the trivial δ -invariant),

(b) δ(2) = τ − infK and δ̂(2) = τ − supK , where K is the sectional curvature,

(c) δ(n− 1)(p) = maxRic(p) and δ̂(n− 1)(p) = minRic(p) .

3.2. Universal inequalities involving δ -invariants

For each (n1, . . . , nk) ∈ S(n, k) , we put (cf. [23, 26, 27])

a(n1, . . . , nk) =
1

2
n(n− 1)− 1

2

k∑
j=1

nj(nj − 1), b(n1, . . . , nk) =
n2(n+ k − 1−

∑
j nj)

2(n+ k −
∑

j nj)
. (3.3)

For δ -invariants we have the following optimal universal inequalities.

Theorem 3.1 [30] Let f : Mn → M̃m be an isometric immersion of a Riemannian n-manifold into a
Riemannian m-manifold. Then, for each p ∈Mn and each k -tuple (n1, . . . , nk) ∈ S(n) , we have

δ(n1, . . . , nk)(p) ≤ b(n1, . . . , nk)H
2(p) + a(n1, . . . , nk)max K̃(p), (3.4)

where max K̃(p) denotes the maximum of the sectional curvature function of M̃m restricted to 2-plane sections
of the tangent space TpM

n of Mn at p .
The equality case of inequality (3.4) holds at p ∈M if and only if the following conditions hold:

(a) There is an orthonormal basis e1, . . . , en, ξn+1, . . . , ξm at p such that the shape operators of Mn in
M̃m at p take the following form:

Aer =


Ar

1 . . . 0
... . . . ... 0
0 . . . Ar

k

0 µrI

 , r = n+ 1, . . . ,m, (3.5)

where I is an identity matrix and Ar
j is a symmetric nj × nj submatrix such that

trace (Ar
1) = · · · = trace (Ar

k) = µr. (3.6)

(b) For mutual orthogonal subspaces L1, . . . , Lk ⊂ TpM
n satisfying δ(n1, . . . , nk) = τ −

∑k
j=1 τ(Lj) at

p , we have K̃(eαi
, eαj

) = max K̃(p) for αi ∈ Γi, αj ∈ Γj , 0 ≤ i ̸= j ≤ k , where

Γ0 = {1, . . . , n1}, . . . , Γk−1 = {n1 + · · ·+ nk−1 + 1, . . . , n1 + · · ·+ nk},

Γk = {n1 + · · ·+ nk + 1, . . . , n}.

An important case of Theorem 3.1 is the following.
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Theorem 3.2 [26, 27] For an isometric immersion f :Mn → Rm(c) from a Riemannian n-manifold Mn into
a real space form Rm(c) of constant curvature c and for an k -tuple (n1, . . . , nk) ∈ S(n) , we have

δ(n1, . . . , nk) ≤ b(n1, . . . , nk)H
2 + a(n1, . . . , nk)c, (3.7)

where H2 is the squared mean curvature of Mn in Rm(c) .
The equality case of inequality (3.7) holds at a point p ∈Mn if and only if there is an orthonormal basis

e1, . . . , en, ξn+1, . . . , ξm at p such that the shape operators at p take the forms (3.5) and (3.6).

Definition 3.3 A submanifold Mn of a real space form Rm(c) is called (n1, . . . , nk) -ideal if it satisfies the
equality sign of (3.7) identically.

Roughly speaking, an ideal submanifold in Rm(c) is a submanifold which receives the least amount of
tension from its ambient space at each point (cf. [26, 32, 33]). Ideal submanifolds associated with Chen’s
δ -invariants are also known in some literatures as Chen ideal submanifolds.

Remark 3.4 Inequalities analogous to (3.7) for submanifolds in various space forms (in particular, for the
special case with k = 1, n1 = 2) have been studied by many authors (cf. [32]).

The δ -invariants and their associated inequalities have many applications to several areas in mathematics
(cf. e.g., [26, 27, 32, 33]). For instance, it have been applied in [35] to show that if π : M → N is a covering
map between two compact irreducible homogeneous spaces and if the first eigenvalues of the Laplacian of M
and N satisfy λ1(M) ̸= λ1(N) , then N doesn’t admit an ideal embedding into any Euclidean space regardless
of codimension, although M may could.

3.3. Algebraic Chen δ -invariants and inequalities

A (0, 4)-tensor field T on a Riemannian manifold is said to be curvature-like if it has all the formal properties
of the Riemannian curvature tensor so that it satisfies the following properties:

T (X,Y, Z,W ) = −T (Y,X,Z,W ), (3.8)

T (X,Y, Z,W ) = T (Z,W,X, Y ), (3.9)

T (X,Y, Z,W ) + T (Y, Z,X,W ) + T (Z,X, Y,W ) = 0. (3.10)

In [41], Chen et al. introduced the notion of δ -invariant for curvature-like tensor fields and they
established optimal general inequalities in case the curvature-like tensor field satisfies algebraic Gauss equation
as follows. Let (Mn, g) be a Riemannian n -manifold and let T be a curvature-like (0, 4) -tensor field on Mn .
Then one may define the T -sectional curvature KT (π) associated with a 2-plane π ⊂ TpM

n , p ∈Mn as usual.
For an ℓ -dimensional linear subspace L ⊂ TpM

n with ℓ ≥ 2 and with an orthonormal basis {e1, . . . , eℓ} of L ,
the T -scalar curvature τT (L) of L is defined by τT (L) =

∑
i<j KT (ei ∧ ej), 1 ≤ i, j ≤ ℓ. In particular, we have

τT (p) = τT (TpM
n) .

For any (n1, . . . , nk) ∈ S(n) , we define the algebraic δT -invariant δT (n1, . . . , nk) as we did in (3.1) by

δT (n1, . . . , nk)(p) = τT (p)− inf{τT (L1) + · · ·+ τT (Lk)}, (3.11)
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where L1, . . . , Lk run over all k mutually orthogonal subspaces of TpM such that dimLj = nj , j = 1, . . . , k .
Let (Mn, g) be a Riemannian n -manifold and (B, g) a Riemannian vector bundle over Mn . Let σ be

a B -valued symmetric (1, 2) -tensor field. If T is a (0, 4) -tensor field on Mn such that

T (X,Y, Z,W ) = g(σ(Y, Z), σ(X,W ))− g(σ(X,Z), σ(Y,W )) (3.12)

for vector vector fields X,Y, Z,W tangent to Mn , then T is curvature-like. Equation (3.12) is called an
algebraic Gauss equation.

Typical examples of settings in which (3.12) occurs is for a submanifold of Euclidean space, B being the
normal bundle, σ the second fundamental form, T the curvature tensor. For such submanifolds in [23, 27, 30]
optimal inequalities involving the δ -invariant have been established. The proofs can be immediately generalized
to prove the following general inequality.

Theorem 3.5 [41] Let (Mn, g) be a Riemannian n-manifold and let T be a curvature-like (0, 4)-tensor field
on Mn . If (B, g) is a Riemannian vector bundle over Mn and σ is a B -valued symmetric (1, 2)-tensor field
which satisfy the algebraic Gauss equation, then for each k -tuple (n1, . . . , nk) ∈ S(n) we have

δ(n1, . . . , nk) ≤
n2
(
n+ k − 1−

∑k
j=1 nj

)
2
(
n+ k −

∑k
j=1 nj

) g(traceσ, traceσ), traceσ =

n∑
i=1

σ(ei, ei). (3.13)

The equality case of inequality (3.13) holds at a point p ∈ M if and only if there exists an orthonormal
basis {e1, . . . , en} at p such that with respect this basis every linear map σξ, ξ ∈ Bp of the tangent space TpMn ,
defined by g(σξX,Y ) = g(σ(X,Y ), ξ) for all X,Y ∈ TpM

n takes the following form:

σξ =


Aξ

1 0
. . .

Aξ
k

0 ηξI

 ,

where {Aξ
j}kj=1 are symmetric nj × nj submatrices satisfying trace(Aξ

1) = · · · = trace (Aξ
k) = λξ for some λξ .

Remark 3.6 Let Mn be a convex hypersurface in En+1 . For natural numbers n1, n2 with n = n1+n2 . Suceavă
and Vajiac [108] proved that the mean curvature H , the Casorati curvature C , and Chen’s δ̂(n1, n2)-invariant

satisfy the inequality H ≥ 4 δ̂(n1,n2)

n2
√
C , with the equality holding if and only if p is an umbilical point. For further

results in this respect, see [108].

4. δ -invariants for Lagrangian submanifolds in complex space forms
The next result follows immediately from the fact that the Gauss equation of a Lagrangian submanifold in a
complex space form has the same expression as the one for a submanifold in a real space form (see [42]).

Theorem 4.1 Let Mn be a Lagrangian submanifold in a complex space form M̃n(4c) with constant holomorphic
sectional curvature 4c . Then inequality (3.6) holds for each k -tuple (n1, . . . , nk) which satisfies 2 ≤ n1, . . . , nk <

n,
∑k

i=1 ni < n .
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The next theorem extends a result on δ(2) from [42].

Theorem 4.2 [28] A Lagrangian submanifold of a complex space form M̃n(4c) is minimal at a point p if it
satisfies the equality case of inequality (3.7) at p .

The reason behind the above theorem is that (3.7) is not an optimal equality in the Lagrangian setting.

4.1. Optimal inequalities for δ(n1, . . . , nk) with
∑k

i=1 ni < n

The following optimal inequalities for Lagrangian submanifold in the case
∑k

i=1 ni < n was proved by Chen et
al. in [38, 39].

Theorem 4.3 Let Mn be a Lagrangian submanifold of M̃n(4c) . Then, for any k -tuple (n1, . . . , nk) satisfying∑k
i=1 ni < n , we have

δ(n1, . . . , nk) ≤
n2

{(
n−

∑k
i=1ni + 3k − 1

)
− 6

∑k
i=1(2 + ni)

−1
}

2
{(

n−
∑k

i=1ni + 3k + 2
)
− 6

∑k
i=1(2 + ni)−1

} H2 +
1

2

{
n(n− 1)−

∑k

i=1
ni(ni − 1)

}
c.

(4.1)
The equality sign holds at a point p ∈Mn if and only if there is an orthonormal basis {e1, . . . , en} at p

such that the second fundamental form h satisfies

h(eαi
, eβi

) =
∑

γi

hγi

αiβi
Jeγi

+
3δαiβi

2 + ni
λJeN+1,

∑ni

αi=1
hγi
αiαi

= 0,

h(eαi
, eαj

) = 0, i ̸= j; h(eαi
, eN+1) =

3λ

2 + ni
Jeαi

, h(eαi
, eu) = 0,

h(eN+1, eN+1) = 3λJeN+1, h(eN+1, eu) = λJeu, N = n1 + · · ·+ nk,

h(eu, ev) = λδuvJeN+1, i, j = 1, . . . , k; u, v = N + 2, . . . , n.

(4.2)

Note that inequalities (3.7) and (4.1) coincide for minimal immersions.

4.2. Optimal inequalities for δ(n1, . . . , nk) with
∑k

i=1 ni = n

For the case
∑k

i=1 ni = n , we also have the following theorem from [39].

Theorem 4.4 Let Mn be a Lagrangian submanifold of a complex space form M̃n(4c) . Then for each

(n1, . . . , nk) ∈ S(n) with
∑k

i=1 ni = n we have

δ(n1, . . . , nk) ≤
n2
{
k − 1− 2

∑k
i=2(2 + ni)

−1
}

2
{
k − 2

∑k
i=2(2 + ni)−1

} H2 +
1

2

{
n(n− 1)−

k∑
i=1

ni(ni − 1)

}
c , (4.3)

where we assume that n1 = minni=1{ni} . If the equality sign of (4.3) holds at p ∈Mn , then the components of
the second fundamental form with respect to some suitable orthonormal basis {e1, . . . , en} for TpMn satisfy the
following conditions:
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(a) hAαiαj
= 0 for i ̸= j and A ̸= αi, αj ;

(b) if nj ̸= min{n1, . . . , nk}, h
βj
αiαi = 0 if i ̸= j and

∑
αj∈∆j

h
βj
αjαj = 0,

(c) if nj = min{n1, . . . , nk},
∑

αj∈∆j
h
βj
αjαj = (ni + 2)h

βj
αiαi for any i ̸= j, and any αi ∈ ∆i.

The next result from [39] shows that inequality (4.3) is sharp.

Theorem 4.5 For each (n1. . . . , nk) ∈ S(n) with
∑k

i=1 ni = n , there exists a Lagrangian submanifold in

M̃n(4c) which satisfies the equality of the improved inequality (4.3) identically.

Remark 4.6 Theorem 4.5 implies that inequality (4.3) cannot be improved further.

Remark 4.7 Lagrangian submanifolds of complex space forms which satisfy some special cases of inequalities
(4.1) and (4.3) have been classified in [14, 32, 38–40, 43, 45, 46].

5. The First two articles on δ -Casorati curvatures

5.1. δ -Casorati curvatures δC(n− 1) and δ̂C(n− 1)

In the spirit of δ -invariants, Decu et al. introduced in [54] the notion of normalized Casorati δ -curvatures
δC(n− 1) and δ̂C(n− 1) as follows:

[
δC(n− 1)

]
p
=

1

2
Cp +

(n+ 1)

2n(n− 1)
inf{C(L) | L a hyperplane of TpM}, (5.1)

[
δ̂C(n− 1)

]
p
= 2Cp −

(2n− 1)

2n
sup{C(L) | L a hyperplane of TpM}. (5.2)

Note that in contrast to author’s δ -invariants which are intrinsic, the δ -Casorati curvatures are extrinsic.
Decu et al. proved the following result for normalized Casorati δ -curvatures.

Theorem 5.1 [54] Let Mn be a Riemannian submanifold of a real space form Rm(c) . Then we have:

ρ ≤ δC(n− 1) + c,
(
resp., ρ ≤ δ̂C(n− 1) + c

)
, (5.3)

where ρ is the normalized scalar curvature defined by (2.3).
In addition, the equality sign of (5.3) holds identically if and only if there exists an orthonormal frame

e1, . . . , en, ξn+1, . . . , ξm such that with respect to this frame the shape operator satisfies

An+1 =

(
λIn−1 0

0 2λ

) (
resp., An+1 =

(
λIn−1 0

0 1
2λ

))
and An+2 = . . . = Am = 0, (5.4)

for some function λ , where In−1 denotes the (n− 1)× (n− 1)-identity submatrix.

Remark 5.2 An alternate proof of Theorem 5.1 for δ̂C(n− 1) was given by Zhang and Zhang [121].
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5.2. Generalized δ -Casorati curvatures δC(r, n− 1) and δ̂C(r, n− 1)

For any positive real number r ̸= n(n− 1) , put

a(r) =
(n− 1)(r + n)(n2 − n− r)

nr
. (5.5)

Let Mn be an n -dimensional submanifold of a real space form Rm(c) . The generalized δ -Casorati curvatures
δC(r;n− 1) and δ̂C(r;n− 1) were defined by Decu et al. in [55] as

δC(r;n− 1) |p= r C |p +a(r) · inf{C(L) | L a hyperplane of TpM} if 0 < r < n(n− 1), (5.6)

δ̂C(r;n− 1) |p= r C |p +a(r) · sup{C(L) | L a hyperplane of TpM} if r > n(n− 1). (5.7)

Decu et al. proved the following theorem for generalized δ -Casorati curvatures.

Theorem 5.3 [55] Let Mn be n-dimensional submanifold of a real space form Rm(c) . For a real number r

such that 0 < r < n(n− 1) we have

2τ ≤ δC(r;n− 1) + n(n− 1)c; (5.8)

and for a real number r > n(n− 1) we have

2τ ≤ δ̂C(r;n− 1) + n(n− 1)c. (5.9)

Equality holds in the inequalities (5.8) and (5.9) if and only if
hrij = 0 for i ̸= j ∈ {1, . . . , n}, and (5.10)

hr11 = . . . = hrn−1,n−1 =
r

n(n− 1)
hrnn for r ∈ {n+ 1, . . . ,m} (5.11)

holds, respectively.

Condition (5.10) means that the normal connection∇⊥ is flat. And, condition (5.11) means that there
exist m mutually orthogonal unit normal vector fields ξ1, . . . , ξm such that the shape operators with respect to
all directions ξα have an eigenvalue of multiplicity n−1 and that for each ξα the distinguished eigendirection is
the same (namely en ), that is, that the submanifold is invariantly quasi-umbilical. Thus, we have the following.

Corollary 5.4 [55] Let Mn be a Riemannian submanifold of a real space form Rm(c) . Equality holds in (5.8)

and (5.9) if and only if Mn is invariantly quasi-umbilical with trivial normal connection in M̃m(c) and with
respect to suitable tangent and normal orthonormal frames, the shape operators are given by

An+1 =

(
λIn−1 0

0 n(n−1)
r λ

)
, An+2 = . . . = Am = 0. (5.12)

Remark 5.5 The techniques used for proving Theorem 5.1 and Theorem 5.3 were based on the Oprea’s
optimization procedure given in [93] by showing that a quadratic polynomial in the components of the second
fundamental form is parabolic, different from the proofs of Chen type inequalities between δ -invariants and the
squared mean curvature of submanifolds.

Remark 5.6 These two papers [54, 55] by Decu et al. were the starting point of the investigations of the
δ -Casorati curvatures.
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5.3. Casorati ideal submanifolds
Analogous to Chen ideal submanifolds, a submanifold which realizes the equality case of an inequality involving
a δ -Casorati curvature is called a Casorati ideal submanifold.

Now, I would like to present the following new result which provides a simple link between Casorati and
Chen ideal submanifolds.

Proposition 5.7 Let Mn be a Casorati δC(r;n−1)-ideal submanifold of a real space form Rm(c) with n ≥ 3 .

Then Mn is a Chen δ(k)-ideal submanifold with n
2 < k ≤ n − 1 if and only if either r = n(n−1)

2k+1−n or Mn is
totally geodesic. In particular, a Casorati δC(r;n− 1)-ideal submanifold Mn in Rm(c) is Chen δ(n− 1)-ideal
if and only if either r = n or Mn is totally geodesic.

Proof Since δC(r;n− 1) is defined only for r satisfying 0 < r < n(n− 1) , we have n(n−1)
r > 1 . Now, let us

assume that Mn is a Casorati δC(r;n − 1) -ideal submanifold of a real space form Rm(c) with n ≥ 3 . Then,
according to Corollary 5.4, there exists suitable tangent and normal orthonormal frames such that with respect
these frames the shape operator of Mn satisfy

An+1 =

(
λIn−1 0

0 n(n−1)
r λ

)
, An+2 = . . . = Am = 0. (5.13)

If λ = 0 , then (5.13) implies that Mn is totally geodesic in Rm(c) .
Now, we assume λ ̸= 0 . If Mn is a Chen δ(k) -ideal submanifold with n − 1 ≥ k > n

2 . Then it follows

from Theorem 3.1 and (5.13) that the shape operator An+1 must satisfies kλ = n(n−1)
r λ+(n−k−1)λ . Because

λ is assumed to be nonzero, we must have r = n(n−1)
2k+1−n .

Conversely, if r = n(n−1)
2k+1−n holds, then it follows from (5.13) and Theorem 3.1 that Mn is δ(k) -ideal. 2

Remark 5.8 Proposition 5.7 holds true for Casorati δC(r;n−1)-ideal submanifolds in many other space forms.

The next result on Casorati ideal submanifolds follows from (5.4) and [36, Proposition 1.1, p. 88].

Corollary 5.9 [54] The Casorati ideal submanifolds of dimension ≥ 4 for (5.3) are conformally flat submani-
folds with flat normal connection.

An obstruction for a manifold to be conformally flat in terms of Chen’s δ -curvatures was given in [31].

A rotation hypersurface of a real space form M̃n+1(c) of constant curvature c is generated by moving

an (n− 1) -dimensional totally umbilical submanifold along a curve in M̃n+1(c) [61]. If Mn is a Casorati ideal

hypersurface in M̃n+1(c) , then it follows from [60, 61] that Mn is a rotation hypersurface whose profile curve
is the graph of a function f of one real variable which satisfies the differential equation

f(f ′′ + c̃ f) +
n(n− 1)

r
(ε− c̃ f2 − f ′2) = 0. (5.14)

where ε = 1 if c ≥ 0 ; and if c < 0 , then ε = 0 , 1 or −1 depends on the rotation hypersurface Mn is
parabolical, spherical or hyperbolical, respectively.

11
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Corollary 5.10 [55] The Casorati ideal hypersurfaces of real space forms are rotation hypersurfaces whose
profile curves are given by the solutions of (5.14).

6. Modified δ -Casorati curvature δC(n− 1)

Lee and Vîlcu [82] pointed out that it is better to replace the coefficient ” n+1
2n(n−1) ” in (5.1) by ” n+1

2n ”, since the

normalized δ -Casorati curvature δC(n−1) should able be recovered from the generalized normalized δ -Casorati
curvature δC(r;n− 1) with r = 1

2 . For this reason, the modified δ -Casorati curvature δ̃C(n− 1) was defined in
[82] as

δ̃C(n− 1) |p=
1

2
C |p +

n+ 1

2n
inf{C(L) | L a hyperplane of TpM

n}, (6.1)

It is direct to verify the following two relations:

δC

(
n(n− 1)

2
;n− 1

)
= n(n− 1)δ̃C(n− 1), δ̂C (2n(n− 1);n− 1) = n(n− 1)δ̂C(n− 1). (6.2)

6.1. Inequality involving the modified δ -Casorati curvature

Zhang and Zhang proved in [121] that Theorem 5.1 remains true if the Casorati δ -curvature δC(n − 1) were
replaced by the modified Casorati δ -curvature δ̃C(n − 1) . More precisely, Zhang and Zhang proved the next
result for the modified Casorati δ -curvature δ̃C(n− 1) .

Theorem 6.1 [121] Let Mn be a Riemannian submanifold of a real space form Rm(c) . Then

ρ ≤ δ̃C(n− 1) + c. (6.3)

The equality sign holds identically if and only if there is an orthonormal frame e1, . . . , en, ξn+1, . . . , ξm such

that with respect to this frame the shape operator satisfies An+1 =

(
λIn−1 0

0 2λ

)
and An+2 = . . . = Am = 0.

6.2. Algebraic δ -Casorati curvatures

Let (Mn, g) be a Riemannian n -manifold, (B, gB) a Riemannian vector bundle over Mn , σ a B -valued
symmetric (1, 2) -tensor field on Mn , and T a curvature-like tensor field which satisfies the algebraic Gauss
equation. Tripathi [111] extended δ -Casorati curvatures δC(n− 1) , δ̂C(n− 1) , δC(r;n− 1) and δ̂C(r;n− 1) to
algebraic δ -Casorati curvatures δCT,σ (n− 1) , δ̂CT,σ (n− 1) , δCT,σ (r;n− 1) and δ̂CT,σ (r;n− 1) as follows:

[δCT,σ (n− 1)]p =
1

2
CT,σ
p +

n+ 1

2n
inf
{
CT,σ(L) | L is a hyperplane of TpM

n
}
;

[δ̂CT,σ (n− 1)]p = 2 CT,σ
p − 2n− 1

2n
sup{CT,σ(L) | L is a hyperplane of TpM

n};

[δCT,σ (r;n− 1)]p = r CT,σ
p + a(r) inf

{
CT,σ(L) | L is a hyperplane of TpM

n
}

if 0 < r < n(n− 1);

[δ̂CT,σ (r;n− 1)]p = r CT,σ
p + a(r) sup

{
CT,σ(L) | L is a hyperplane of TpM

n
}

if n(n− 1) < r,

12
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where a(r) is given by (5.5), CT,σ(p) = CT,σ(TpM
n) and CT,σ(Lp) =

1
ℓ

∑m
α=n+1

∑ℓ
i,j=1

(
σα
ij

)2 , where Lp is an
ℓ -dimensional subspace of TpMn , with ℓ ≥ 2 , spanned by an orthonormal basis {e1, . . . , eℓ} of Lp .

In [111], Tripathi also established the corresponding inequalities for algebraic δ -Casorati curvatures.

6.3. Casorati ideal submanifolds
Now, we present some results on Casorati ideal submanifolds.

Proposition 6.2 [121] The Casorati ideal submanifolds for (5.3) and (6.3) are Einstein if and only if they are
totally geodesic submanifolds.

An isometric immersion of a Riemannian manifold Mn into a Euclidean m -space Em is called rigid if
the isometric immersion of Mn is unique up to isometries of Em .

Similar to [34, Theorem 4.2], Zhang and Zhang proved the following.

Theorem 6.3 [121] The Casorati ideal hypersurface M3 for (6.3) in E4 is rigid.

Casorati ideal hypersurfaces M3 for (6.3) in E4 were also classified in [121].

Theorem 6.4 The Casorati ideal hypersurface M3 for (6.3) in E4 is congruent to(
1

a
sd

(
at,

1√
2

)
sinu,

1

a
sd

(
at,

1√
2

)
cosu sin v,

1

a
sd

(
at,

1√
2

)
cosu cos v,

1

2

∫ t

0

sd2
(
at,

1√
2

)
dt

)
(6.4)

for some positive real number a , where sd is a Jacobi’s elliptic function.

Remark 6.5 It was proved by the author in [34] that the hypersurface defined by (6.4) is one of the 3 types of
δ(2) Chen ideal hypersurfaces in E4 .

7. Submanifolds in a Riemannian manifold of quasi-constant curvature
In this section we present results on δ -Casorati curvatures for submanifolds in spaces of quasi-constant curvature.

7.1. Riemannian manifolds of quasi-constant curvature

A Riemannian manifold (Mn, g) is said to be of quasi-constant curvature [47] if there exist a unit vector field
ξ , called the generator, and two smooth functions κ, µ on Mn such that

R(X,Y )Z = κ{g(Y, Z)X − g(X,Z)Y }+ µ{g(Y, Z)η(X)− g(X,Z)η(Y )}ξ + µη(Z){η(Y )X − η(X)Y },

where η is the 1-form dual to ξ . We denote such a Riemannian manifold of quasi-constant curvature simply
by Mn

κ,µ(ξ) as did in [66, p. 325].
For a Riemannian m -manifold Mm

κ,µ(ξ) of quasi-constant curvature, we have

R(X,Y )ξ = (κ+ µ){η(Y )X − η(X)Y }, R(X, ξ)Z = (κ+ µ){η(Z)X − g(X,Z)ξ},

while the Ricci curvature Ric satisfies
Ric(X,Y ) = {κ(n− 1) + µ}g(X,Y ) + µ(n− 2)η(X)η(Y ).

Thus, Mn
κ,µ(ξ) is an η -Einstein manifold. In case κ, µ are constants, Mn

κ,µ(ξ) is a quasi-Einstein manifold (cf.
[68]).
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7.2. δ -Casorati curvatures in spaces of quasi-constant curvature

In [95], Pan et al. extended Theorem 5.3 to submanifolds in a Riemannian manifold of quasi-constant curvature
as follows.

Theorem 7.1 Let Mn be n-dimensional submanifold of a Riemannian manifold Mm
κ,µ(ξ) of quasi-constant

curvature with generator ξ . Then for any real number r ∈ (0, n(n− 1)) , we have

2τ ≤ δC(r;n− 1) + n(n− 1)κ+ 2(n− 1)µ||ξT ||2; (7.1)

and, for any real number r > n(n− 1) , we have

2τ ≤ δ̂C(r;n− 1) + n(n− 1)κ+ 2(n− 1)µ||ξT ||2, (7.2)

where ||ξT ||2 denotes the squared norm of the tangential component ξT of the generator ξ . The equality sign
of (7.1) or (7.2) holds identically if and only if there exists an orthonormal frame e1, . . . , en, ξn+1, . . . , ξm such
that with respect to this frame the shape operator satisfies (5.12).

8. δ -Casorati curvatures of Lagrangian submanifolds in complex space forms

An almost Hermitian manifold (M̃, g̃, J) is an almost complex manifold (M,J) endowed with a Riemannian

metric g̃ which is compatible with the almost complex structure J . A submanifold M of (M̃, g̃, J) is called a
complex submanifold (resp., totally real submanifold) if it satisfies J(TpM) ⊆ TpM (resp., J(TpM) ⊆ T⊥

p M)

for any p ∈M. A totally real submanifold M in M̃ is called Lagrangian if dimRM = dimC M̃ (cf. [29]).

8.1. δ -Casorati curvatures for Lagrangian submanifolds
For Lagrangian submanifolds in complex space forms, Zhang et al. proved the following.

Theorem 8.1 [119] Let Mn be a Lagrangian submanifold of a complex space form M̃n(4c) with constant
holomorphic sectional curvature 4c and of complex dimension n . We have

δ̂C(n− 1) ≥ ρ− c+
2n(2n− 3)

(n− 1)(2n+ 3)
H2, (8.1)

where ρ is the normalized scalar curvature and H2 is the squared mean curvature of the submanifold. Moreover,
the equality of (8.1) holds if and only if Mn is a Lagrangian totally geodesic submanifold.

This theorem implies the following.

Corollary 8.2 [119] Let Mn be a Riemannian n-manifold. If there exists a point p ∈Mn such that

ρ(p) > [δ̂C(n− 1)]p,

then Mn does not admit any minimal Lagrangian isometric immersion into Cn .

For Lagrangian submanifolds in complex space forms, we also have the following results obtained by
Aquib et al.
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Theorem 8.3 [3] Let Mn be a Lagrangian submanifold of a complex space form M̃n(4c) . Then we have:

(i) For a real number r ∈ (0, (n− 1)) , the generalized normalized δ -Casorati curvature δC(r;n− 1) satisfies

ρ ≤ δC(r;n− 1)

n(n− 1)
+ c− 2r2

(n− 1)(n2 + n(r − 1) + r)
H2. (8.2)

(ii) For a real number r > n(n− 1) , the generalized normalized δ -Casorati curvature δ̂C(r;n− 1) satisfies

ρ ≤ δ̂C(r;n− 1)

n(n− 1)
+ c− 2n(n2 + n(r − 1)− 2r)

(n− 1)(n2 + n(r − 1) + r)
H2. (8.3)

Moreover, the equality sign of (8.3) holds identically if and only if Mn is a Lagrangian totally geodesic
submanifold.

Remark 8.4 By taking r = 2n(n− 1) in (8.3) and using (6.2), we see that Theorem 8.3 implies Theorem 8.1.

The following results are due to Vîlcu.

Theorem 8.5 [117] Let Mn be a Lagrangian submanifold of a complex space form M̃n(4c) . Then we have

δC(n− 1) ≥ ρ− c+
n

n+ 3
H2.

Corollary 8.6 [117] If there exists a point p in a Riemannian n-manifold Mn such that ρ(p) > [δC(n− 1)]p ,
then Mn does not admit any minimal Lagrangian isometric immersion into Cn .

8.2. H -umbilical submanifolds
The following notion of H -umbilical submanifolds was introduced by Chen in [25].

Definition 8.7 A nontotally geodesic Lagrangian submanifold Mn of a Kaehler manifold M̃n is called H -
umbilical if its second fundamental form satisfies

h(ei, ei) = µJen, h(ei, en) = µJei, i = 1, . . . , n− 1,

h(en, en) = φJen, h(ei, ej) = 0, 1 ≤ i ̸= j ≤ n− 1,
(8.4)

for some functions µ, φ with respect to an orthonormal frame {e1, . . . , en} , where J is the complex structure

of M̃n If the ratio of φ : µ is a constant r , then the H -umbilical submanifold is said to be of ratio r : 1 .

Lagrangian H -umbilical submanifolds are the simplest Lagrangian submanifolds next to the totally
geodesic ones. The next theorem was proved by Chen et al.

Theorem 8.8 [45] For any real number r , there exist H -umbilical Lagrangian submanifolds of ratio r : 1 in
CPn(4) and in CHn(−4) .
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8.3. Lagrangian Casorati ideal submanifolds

The following two results were proved by Aquib et al. [3].

Theorem 8.9 Let Mn be a Lagrangian Casorati ideal submanifold for (8.2). Then it is either a totally geodesic
Lagrangian submanifold or an H -umbilical Lagrangian submanifold satisfying (8.4) with φ = (n2 − n+ 2t)µ/t .

Corollary 8.10 Let Mn be a Casorati ideal Lagrangian submanifold for (8.2) in a complex space form M̃n(4c)

without totally geodesic points. Then Mn is an H -umbilical Lagrangian submanifold of ratio n2 − n+ 2t : t .

The following results are due to Vîlcu.

Theorem 8.11 [117] If Mn is a Casorati δC(n − 1)-ideal Lagrangian submanifold of a complex space form

M̃n(4c) , then it is either a totally geodesic Lagrangian submanifold or an H -umbilical Lagrangian submanifold
satisfying (8.4) with φ = 4µ .

Corollary 8.12 [117] Let Mn be a Casorati δC(n− 1)-ideal Lagrangian submanifold without totally geodesic

points in a complex space form M̃n(4c) . Then M is an H -umbilical Lagrangian submanifold of ratio 4 : 1 .

Corollary 8.13 [117] Let Mn be a Casorati δC(n− 1)-ideal Lagrangian submanifold without totally geodesic
points in the complex projective n-space CPn(4) . Then M is congruent to an open portion of π ◦ ψ , where
π : S2n+1(1) → CPn(4) is the Hopf fibration, ψ :M → S2n+1(1) ⊂ Cn+1 is given by

ψ(t, y1, . . . , yn) = (z1(t), z2(t)y), {y ∈ Rn : ⟨y,y⟩ = 1},

and z : I → S3(1) ⊂ C2 is a unit speed Legendre curve satisfying z′′ = 4iµz′ − z , where µ is a nonzero solution
of 2µµ′′ − µ′2 + 4µ2(3µ2 + 1) = 0 .

Corollary 8.14 [117] Let Mn be a Casorati δC(n− 1)-ideal Lagrangian submanifold without totally geodesic
points in the complex hyperbolic n-space CHn(−4) . Then M is congruent to an open portion of π ◦ ψ , where
π : H2n+1

1 (−1) → CHn(−4) is the Hopf fibration and ψ :M → H2n+1
1 (−1) ⊂ Cn+1

1 is either one of

ψ(t, y1, . . . , yn) = (z1(t), z2(t)y), {y ∈ Rn : ⟨y,y⟩ = 1},

ψ(t, y1, . . . , yn) = (z1(t)y, z2(t)), {y ∈ Rn
1 : ⟨y,y⟩ = −1},

where z : I → H3
1 (−1) ⊂ C2

1 is a unit speed Legendre curve satisfying z′′ = 4iµz′ + z , and µ is a nontrivial
solution of 2µµ′′ − µ′2 + 4µ2(3µ2 − 1) = 0 ; or ψ is

ψ(t, u1, . . . , un−1) =

√
µ(t)√
µ(0)

ei
∫ t
0
µ(t)dt

(
1

2
+

1

2

n−1∑
j=1

u2j − itµ(0) +
µ(0)

2µ(t)
,

(
iµ(0)− µ′(0)

2µ(0)

)(
1

2

n−1∑
j=1

u2j − itµ(0) +
µ(0)

2µ(t)
− 1

2

)
, u1, . . . , un−1

)
,

where z : I → H3
1 (−1) ⊂ C2

1 is a unit speed Legendre curve and µ is a nontrivial solution of µ′2 = 4µ2(1−µ2) .
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9. δ -Casorati curvatures of slant submanifolds

Let M be a submanifold of an almost Hermitian manifold (M̃, g̃, J) . For a nonzero vector X ∈ TpM , we put

JX = PX + FX, (9.1)

where PX and FX are the tangential and normal components of JX , respectively. The angle θ(X) between
PX and TpM is called the Wirtinger angle of X . The squared norm of the endomorphism P is defined by
||P ||2 =

∑n
i,j=1 g̃(Pei, ej)

2 , where {e1, . . . , en} is an orthonormal frame of the tangent bundle TMn .

9.1. Slant submanifolds in almost Hermitian manifolds
In 1990, Chen [22] introduced the notion of slant submanifolds as follows:

Definition 9.1 A submanifold M of an almost Hermitian manifold (M̃, g̃, J) is called slant if the Wirtinger
angle θ(X) is independent of the choice of X ∈ TpM and of p ∈M . The Wirtinger angle of a slant submanifold
is called the slant angle. A slant submanifold with slant angle θ is simply called θ -slant.

Obviously, complex and totally real submanifolds are exactly θ -slant submanifolds with θ = 0 and θ = π
2 ,

respectively. From J -action points of view, complex, totally real and slant submanifolds are the most natural
submanifolds of almost Hermitian manifolds.

9.2. δ -Casorati curvatures of slant submanifolds in complex space forms

Ghişoiu [67] considered δ -Casorati curvatures of slant submanifolds in complex space forms and obtained the
following.

Theorem 9.2 Let Mn (n ≥ 3) be a θ -slant submanifold of a complex space form M̃m(4c) . We have

ρ ≤ δC(n− 1) +

{
1 +

3

n− 1
cos2 θ

}
c

(
resp., ρ ≤ δ̂C(n− 1) +

{
1 +

3

n− 1
cos2 θ

}
c

)
, (9.2)

where ρ is the normalized scalar curvature.
In addition, if the equality of (9.2) holds identically, then there exists an orthonormal frame e1, . . . , en,

ξn+1, . . . , ξ2m such that with respect to this frame the shape operator satisfies

An+1 =

(
λIn−1 0

0 2λ

) (
resp., An+1 =

(
λIn−1 0

0 1
2λ

))
and An+2 = . . . = A2m = 0, (9.3)

for some function λ .

9.3. δ -Casorati curvatures of bi-slant submanifolds in generalized complex space forms

Bi-slant immersions was introduced by Carriazo [17] as follows:

Definition 9.3 A submanifold M of an almost Hermitian manifold (M̃, g̃, J) is called bi-slant if there is a pair
of orthogonal distributions D1 and D2 of M such that (a) TN = D1 ⊕D2 ; (b) JD1 ⊥ D2 and JD2 ⊥ D1 ;
and (c) the distributions D1 , D2 are slant with slant angle θ1 , θ2 , respectively.

The pair {θ1, θ2} of slant angles of a bi-slant submanifold is called bi-slant angles.
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For a bi-slant submanifold Mn , we put rankD1 = n1 and rankD2 = n2 . A bi-slant submanifold whose
bi-slant angles satisfy θ1 = π

2 and θ2 ∈ (0, π2 ) (resp., θ1 = 0 and θ2 ∈ (0, π2 )) is called hemislant (resp.,
semislant). Further, a bi-slant submanifold is called proper if its bi-slant angles satisfies θ1, θ2 ̸= 0, π2 .

Following Vanhecke [112], an almost Hermitian manifold (M̃, g̃, J) is called a RK-manifold if its curvature

tensor R̃ satisfies R̃(JX, JY, JZ, JW ) = R̃(X,Y, Z,W ) for any X,Y, Z,W tangent to M̃ . On a RK-manifold

M̃ , we put
λ(X,Y ) = R̃(X,Y, JX, JY )− R̃(X,Y,X, Y ).

An almost Hermitian manifold M̃ is said to be of pointwise constant type if at any point p ∈ M̃ and
any vector X ∈ TpM̃ , we have λ(X,Y ) = λ(X,Z) , where Y and Z are unit tangent vectors in TpM̃ which

are orthogonal to X and JX . The M̃ is said to be of constant type if for unit vectors fields X,Y with
g(X,Y ) = g(JX, Y ) = 0 , λ(X,Y ) is a constant function.

By definition, a generalized complex space form is a RK -manifold of constant holomorphic sectional
curvature and it is of constant type (see [112]). Every complex space form is a generalized complex space form,
but the converse is not true. The simplest example is the nearly Kaehler S6 which is a generalized complex
space form, but not a complex space form.

Let M̃m(c, α) denote a generalized complex space form of constant holomorphic sectional curvature c

and of constant type α . Then its curvature tensor R̃ satisfies

R̃(X,Y )Z =
c+ 3α

4
{g(Y, Z)X − g(X,Z)Y }+ c− α

4
{g(X, JZ)JY − g(Y, JZ)JX + 2g(X, JY )JZ}.

The next result on bi-slant submanifold was proved by Aquib et al. [7].

Theorem 9.4 Let Mn be a proper bi-slant submanifold of a generalized complex space form M̃m(c, α) . Then

(i) For any real number r with 0 < r < n(n−1) , the generalized normalized δ -Casorati curvature δC(r;n−1)

and the scalar curvature of Mn satisfy

τ ≤ δC(r;n− 1)

n(n− 1)
+
c+ 3α

4
+

3(c− α)

4n(n− 1)

(
n1 cos

2 θ1 + n2 cos
2 θ2
)
. (9.4)

(ii) For any real number r > n(n− 1) , the generalized normalized δ -Casorati curvature δ̂C(r;n− 1) satisfies

τ ≤ δ̂C(r;n− 1)

n(n− 1)
+
c+ 3α

4
+

3(c− α)

4n(n− 1)

(
n1 cos

2 θ1 + n2 cos
2 θ2
)
. (9.5)

Moreover, the equality holds in (9.4) and (9.5) if and only if there exists an orthonormal frame e1, . . . , en,
ξn+1, . . . , ξ2m such that with respect to this frame the shape operator satisfies

An+1 =

(
λIn−1 0

0 n(n−1)
r λ

)
, An+2 = . . . = A2m = 0. (9.6)

Theorem 9.4 implies the following result of Lone [86].
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Theorem 9.5 Let Mn be a θ -slant submanifold of a generalized complex space form M̃m(c, α) . Then

(i) For a real number r ∈ (0, n(n−1)) , the generalized normalized δ -Casorati curvature δC(r;n−1) satisfies

τ ≤ δC(r;n− 1)

n(n− 1)
+
c+ 3α

4
+

3(c− α)

4(n− 1)
. cos2 θ1, (9.7)

(ii) For a real number r > n(n− 1) , the generalized normalized δ -Casorati curvature δ̂C(r;n− 1) satisfies

τ ≤ δ̂C(r;n− 1)

n(n− 1)
+
c+ 3α

4
+

3(c− α)

4(n− 1)
cos2 θ1. (9.8)

Moreover, the equality holds in (9.7) and (9.8) if and only if there exists an orthonormal frame e1, . . . , en,
ξn+1, . . . , ξ2m such that with respect to this frame the shape operator satisfies (9.6) for some function λ .

10. δ -Casorati curvatures in golden Riemannian manifolds

A tensor field F of type (1, 1) on a Riemannian manifold (M̃, g̃) is called almost product if it satisfies F 2 = I .

A Riemannian manifold (M̃, g̃) endowed with an almost product structure F is called an almost product
Riemannian manifold if it satisfies g̃(FX, Y ) = g̃(X,FY ) .

10.1. Golden Riemannian manifolds

Let (M̃, g̃) be a Riemannian m -manifold and let φ be a (1, 1) -tensor field on M̃ . If φ satisfies

φ2 − φ− I = 0, (10.1)

then φ is called a golden structure. If the metric g̃ and φ are compatible, that is, g̃(φX, Y ) = g̃(X,φY )

for X,Y ∈ TM̃ , then (M̃, g̃, φ) is called a golden Riemannian manifold [51]. The real positive root ψ of the

equation x2 − x− 1 = 0 , that is ψ = 1+
√
5

2 , is called the golden proportion.

Let M be a submanifold of a golden Riemannian manifold (M̃, g̃, φ) . For any X ∈ TM we put

φX = PX +QX, (10.2)

where PX and QX are the tangent and normal components of φX . The submanifold M is called slant if,
for each 0 ̸= X ∈ TpM , the angle θ(X) between φX and TpM is constant, that is, θ(X) is independent of
the choice of p ∈ M and X ∈ TpM . If the slant angle θ of a slant submanifold M satisfies θ = 0 (resp.,
θ = π

2 ), then M is called φ -invariant (resp., φ -antiinvariant). A slant submanifold which is neither invariant
nor antiinvariant is called proper slant.

It was proved by Crasmareanu and Hretcanu [51] that an almost product structure F on M̃ induces a

Golden structure φ given by φ = 1
2 (I +

√
5F ) . Conversely, every golden structure φ on M̃ induces an almost

product structure F = 1√
5
(2φ− I) . Hence, a locally product Mp(cp)×Mq(cq) of two real space forms Mp(cp)

and Mq(cq) of constant curvature cp and cq is a golden Riemannian manifold, called a locally product golden
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space form. The Riemannian curvature tensor R̃ of a locally golden product space form Mp(cp) ×Mq(cq) is
derived by Poyraz and Yaşar [98] as follows:

R̃(X,Y )Z =

(
(ψ − 1)cp + ψcq

2
√
5

)
{g(Y, Z)X − g(X,Z)Y + g(φY,Z)φX − g(φX,Z)φY }

−
(
(1− ψ)cp + ψcq

4

)
{g(φY,Z)X − g(φX,Z)Y + g(Y, Z)φX − g(X,Z)φY }, ψ =

1 +
√
5

2
.

10.2. δ -Casorati curvatures of slant submanifolds in golden Riemannian manifolds

The following results on δ -Casorati curvatures of slant submanifolds of locally product golden space forms are
obtained by Choudhary and Park.

Theorem 10.1 [50] Let Mn be a θ -slant proper submanifold of a locally product golden space form M̄m =

(Mp(cp)×Mq(cq), g̃, φ) . Then we have

(i) For a real number r ∈ (0, n(n−1)) , the generalized normalized δ -Casorati curvature δC(r;n−1) satisfies

ρ ≤ δC(r;n− 1)

n(n− 1)
−
[
(1− ψ)cp − ψcq

2
√
5

] [
1 +

trace2φ

n(n− 1)
− cos2 θ

[
1

n− 1
+

1

n(n− 1)
traceP

]]
−
[
(1− ψ)cp − ψcq

4

]
2

n
traceψ,

(10.3)

where ψ = 1+
√
5

2 is the golden proportion.

(ii) For a real number r > n(n− 1) , the generalized normalized δ -Casorati curvature δ̂C(r;n− 1) satisfies

ρ ≤ δ̂C(r;n− 1)

n(n− 1)
−
[
(1− ψ)cp − ψcq

2
√
5

] [
1 +

trace2φ

n(n− 1)
− cos2 θ

[
1

n− 1
+

traceP

n(n− 1)

]]
−
[
(1− ψ)cp − ψcq

4

]
2

n
traceψ.

(10.4)

Moreover, the equality holds in (10.3) and (10.4) if and only if there exists an orthonormal frame
e1, . . . , en, ξn+1, . . . , ξm such that with respect to this frame the shape operator satisfies (9.6).

Remark 10.2 Choudhary and Park [50] derived similar results for invariant and antiinvariant submanifolds
of locally product golden space forms.

11. δ -Casorati curvatures in metallic Riemannian space forms

11.1. Metallic Riemannian space forms

A (1, 1) -tensor field φ on a Riemannian manifold (M̃, g) satisfying

φ2 = pφ+ qI (11.1)
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with p, q ∈ N∗ is called a metallic structure. A Riemannian manifold (M̃, g) endowed with a metallic structure
φ is called a metallic Riemannian manifold if the Riemannian metric g is φ -compatible, that is,

g(φX, Y ) = g(X,φY ). (11.2)

Since φ is a self-adjoint, after interchanging X by φX , we obtain from (11.2) that

g(φX,φY ) = g(φ2X,Y ) = pg(X,φY ) + qg(X,Y ).

Note that if p = q = 1 in (11.1), then a metallic structure becomes a golden structure.
It is known that each metallic structure φ gives rise two almost product structures (cf. [49])

F1 =
2

2σp,q − p
φ− p

2σp,q − p
I, F2 =

−2

2σp,q − p
φ+

p

2σp,q − p
I,

where σp,q = 1
2 (p+

√
p2 + 4q) is called the metallic proportion. Conversely, each almost product structure F

on M̃ induces two metallic structures

φ1 =
p

2
I +

2σp,q − p

2
F, φ2 =

p

2
I − 2σp,q − p

2
F.

A metallic Riemannian manifold (M̃, g, φ) is said to be a locally metallic Riemannian manifold if the
Levi–Civita connection ∇ of g is a φ -connection, that is, ∇φ = 0 .

Note that slant submanifolds of a metallic Riemannian manifold can be defined exactly in the same way
as slant submanifolds of a golden Riemannian manifold given in Section 10 (cf. [49]).

11.2. δ -Casorati curvatures of slant submanifolds in metallic Riemannian manifolds
The following results on δ -Casorati curvatures of slant submanifolds of locally product metallic Riemannian
manifolds are proved by Choudhary and Blaga.

Theorem 11.1 [49] Let Mn be an n-dimensional θ -slant proper submanifold of a metallic product space form

M̃m = (M1(c1)×M2(c2), g, φ) . Then we have

(i) For a real number r ∈ (0, n(n−1)) , the generalized normalized δ -Casorati curvature δC(r;n−1) satisfies

ρ ≤ δC(r;n− 1)

n(n− 1)
+

c1 + c2
2(p2 + 4q)

[
p2 + 2q +

2(trace2φ− (p traceP + nq) cos2 θ)

n(n− 1)
− 2p

n
traceφ

]
+

c1 − c2

2
√
p2 + 4q

(
2

n
traceφ− p

)
.

(11.3)

where P is defined by (10.2).

(ii) For a real number r > n(n− 1) , the generalized normalized δ -Casorati curvature δ̂C(r;n− 1) satisfies

ρ ≤ δ̂C(r;n− 1)

n(n− 1)
+

c1 + c2
2(p2 + 4q)

[
p2 + 2q +

2(trace2φ− (p traceP + nq) cos2 θ)

n(n− 1)
− 2p

n
traceφ

]
+

c1 − c2

2
√
p2 + 4q

(
2

n
traceφ− p

)
.

(11.4)
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Moreover, the equality holds in (11.3) and (11.4) if and only if there exists an orthonormal frame
e1, . . . , en, ξn+1, . . . , ξm such that with respect to this frame the shape operator satisfies (5.12).

Remark 11.2 Choudhary and Blaga also derived in [49] the corresponding results for invariant and antiinvari-
ant submanifolds of metallic product space forms and as well as for δC(n− 1) and δ̂C(n− 1) .

12. δ -Casorati curvatures in Bochner–Kaehler manifolds
Bochner introduced the Bochner curvature tensor on Kaehler manifolds in [13] as an analogue of the Weyl
conformal curvature tensor in Riemannian geometry.

12.1. Bochner tensor and Bochner–Kaehler manifolds

Let (M̃m, g, J) be a Kaehler manifold of real dimension m . As before, let R,Ric, S , and τ be the Riemann

curvature tensor, Ricci tensor, Ricci operator, and scalar curvature of M̃m , respectively. Then the Bochner
curvature tensor B is given by

B(X,Y )Z = R(X,Y )Z − 1

m+ 4
[g(Y, Z)SX − g(SX,Z)Y + g(JY, Z)SJX − g(SJX,Z)JY

+ g(SY,Z)X − g(X,Z)SY + g(SJY, Z)JX − g(JX,Z)SJY − 2g(JX, SY )JZ − 2g(JX, Y )SJZ]

+
2τ

(m+ 2)(m+ 4)
[g(Y, Z)X − g(X,Z)Y + g(JY, Z)JX − g(JX,Z)JY − 2g(JX, Y )JZ].

A Kaehler manifold M̃ is called Bochner–Kaehler if its Bochner tensor vanishes identically (cf. [21]). Bochner–
Kaehler manifolds can be regarded as the Kaehlerian version of conformally flat spaces in Riemannian geometry.
Some simple characterizations of Bochner–Kaehler manifolds can be found in [37, 48, 110].

12.2. Inequalities of δ -Casorati curvatures in Bochner–Kaehler manifolds

The following result was obtained by Liu et al.

Theorem 12.1 [83] Let Mn be a submanifold of a Bochner–Kaehler manifold (M̃m, g̃, J) . Then

(i) For any real number r with 0 < r < n(n−1) , the generalized normalized δ -Casorati curvature δC(r;n−1)

satisfies

(
1− 3n2 + n− 4− 3||P ||2

8(n+ 1)(n+ 2)

)
ρ ≤ δC(r;n− 1)

n(n− 1)
+

3

(n− 1)n(n+ 2)

∑
1≤i ̸=j≤n

R̃ic(ei, Jej)g̃(ei, Jej), (12.1)

where ρ is the normalized scalar curvature, R̃ic is the Ricci tensor of M̃m , and ||P ||2 is defined in §9.

(ii) For any real number r > n(n− 1) , the generalized normalized δ -Casorati curvature δ̂C(r;n− 1) satisfies

(
1− 3n2 + n− 4− 3||P ||2

8(n+ 1)(n+ 2)

)
ρ ≤ δ̂C(r;n− 1)

n(n− 1)
+

3

(n− 1)n(n+ 2)

∑
1≤i ̸=j≤n

R̃ic(ei, Jej)g̃(ei, Jej). (12.2)
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Moreover, the equality holds in (12.1) and (12.2) if and only if there exists an orthonormal frame e1, . . . , en,

ξn+1, . . . , ξ2m such that with respect to this frame the shape operator satisfies (9.6).

Consequently, we have the following.

Corollary 12.2 [83] Let Mn be a submanifold of a Bochner–Kaehler manifold (M̃m, g̃, J) . Then

(i) The δ -Casorati curvature δC(n− 1) satisfies(
1− 3n2 + n− 4− 3||P ||2

8(n+ 1)(n+ 2)

)
ρ ≤ δC(n− 1) +

3

(n− 1)n(n+ 2)

∑
1≤i̸=j≤n

R̃ic(ei, Jej)g̃(ei, Jej). (12.3)

(ii) The δ -Casorati curvature δ̂C(n− 1) satisfies(
1− 3n2 + n− 4− 3||P ||2

8(n+ 1)(n+ 2)

)
ρ ≤ δ̂C(n− 1) +

3

(n− 1)n(n+ 2)

∑
1≤i̸=j≤n

R̃ic(ei, Jej)g̃(ei, Jej). (12.4)

Moreover, the equality holds in (12.3) and (12.4) if and only if there exists an orthonormal frame e1, . . . , en,
ξn+1, . . . , ξm such that with respect to this frame the shape operator satisfies (9.3).

Remark 12.3 For δ -Casorati curvatures of submanifolds in Bochner–Kaehler manifolds, see also [4, 74, 83].

13. δ -Casorati curvatures in quaternionic space forms
A quaternionic Kaehler manifold is a Riemannian 4m -manifold whose Riemannian holonomy group is a subgroup
of Sp(m) · Sp(1) .

13.1. Quaternionic Kaehler manifolds and quaternionic space forms

An almost quaternionic Hermitian manifold (M, g,Σ) is a Riemannian manifold equipped with a rank 3-
subbundle Σ of End(TM) with local basis {J1, J2, J3} satisfying

g(JαX, JαY ) = g(X,Y ), J2
α = −I, JαJα+1 = −Jα+1Jα = Jα+2, X, Y ∈ TM,

for all α ∈ {1, 2, 3} , where I is the identity transformation on TM and the indices are taken from {1, 2, 3}
modulo 3. Such manifold is of dimension 4m , m ≥ 1 . Moreover, if the bundle Σ is parallel with respect to the
Levi-Civita connection of g , then (M,σ, g) is said to be a quaternionic Kaehler manifold.

For a quaternionic Kaehler manifold (M,σ, g) , let X be a nonzero vector in TM . The 4-plane Q(X)

spanned by {X, J1X, J2X, J3X} , is called a quaternionic 4-plane. Any 2-plane in Q(X) is called a quaternionic
plane. The sectional curvature of a quaternionic plane is called a quaternionic sectional curvature. A quater-
nionic Kaehler manifold is said to be a quaternionic space form if its quaternionic sectional curvatures are equal
to a constant. A quaternionic space form of constant quaternionic sectional curvature c is denoted by M(c) .
The curvature tensor R of M(c) satisfies

R(X,Y )Z =
c

4
{g(Z, Y )X − g(X,Z)Y +

3∑
α=1

[g(Z, JαY )JαX − g(Z, JαX)JαY + 2g(X, JαY )JαZ]}.
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A submanifold M of a quaternionic Kaehler manifold M is called slant [100], if for each nonzero vector
X ∈ TpM , the angle θ(X) between Jα(X) and TpM , α ∈ {1, 2, 3} , is a global constant, so that it is independent
of the choice of p ∈M and X ∈ TpM . A slant submanifold of a quaternionic Kaehler manifold is called proper
(or proper θ -slant) if θ ̸= 0, π2 .

Let M be a submanifold of a quaternionic Kaehler manifold M . For any X ∈ TpM , put

JαX = PαX + FαX, PαX ∈ TpM, FαX ∈ T⊥
p M.

The squared norm of Pα is ||Pα||2 =
∑n

i,j=1 g(Pαei, ej)
2 , where {e1, . . . , en} is an orthonormal basis of TpM .

13.2. δ -Casorati curvatures for slant submanifolds in quaternionic space forms

For proper θ -slant submanifolds of a quaternionic space form M
4m

(c) , we have the following.

Theorem 13.1 [75, 82] Let Mn be a proper θ -slant submanifold of a quaternionic space form M
4m

(c) . Then

(i) For a real number r ∈ (0, n(n−1)) , the generalized normalized δ -Casorati curvature δC(r;n−1) satisfies

ρ ≤ δC(r;n− 1)

n(n− 1)
+
c

4

(
1 +

9

n− 1
cos2 θ

)
. (13.1)

(ii) For any real number r > n(n− 1) , the generalized normalized δ -Casorati curvature δ̂C(r;n− 1) satisfies

ρ ≤ δ̂C(r;n− 1)

n(n− 1)
+
c

4

(
1 +

9

n− 1
cos2 θ

)
. (13.2)

The equality case of either inequality holds if and only if there exists an orthonormal frame e1, . . . , en,

ξn+1, . . . , ξ4m such that with respect to this frame the shape operator takes the form

An+1 =

(
λIn−1 0

0 n(n−1)
r λ

)
, An+2 = . . . = A4m = 0. (13.3)

Theorem 13.1 implies the following result from [107, 120] .

Corollary 13.2 Let Mn be a θ -slant proper submanifold of a quaternionic space form M
4m

(c) . Then the
normalized δ -Casorati curvature δc(n− 1) (resp., δ̂c(n− 1)) satisfies

ρ ≤ δc(n− 1) +
c

4

(
1 +

9

n− 1
cos2 θ

) (
resp., ρ ≤ δ̂c(n− 1) +

c

4

(
1 +

9

n− 1
cos2 θ

))
. (13.4)

The equality holds if and only if there exists an orthonormal frame e1, . . . , en, ξn+1, . . . , ξ4m such that
with respect to this frame the shape operator satisfies

An+1 =

(
λIn−1 0

0 2λ

) (
resp., An+1 =

(
λIn−1 0

0 1
2λ

))
and An+2 = . . . = A4m = 0. (13.5)

Remark 13.3 Corollary 13.2 improves Theorem 4.1 of [53].
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13.3. δ -Casorati curvatures for submanifolds in quaternionic space forms
For submanifolds in a quaternionic space form, Suh and Tripathi proved the following.

Theorem 13.4 [109] Let Mn be a submanifold of a quaternionic space form M
4m

(c) . Then

(i) For any real number r ∈ (0, n(n − 1)) , the generalized normalized δ -Casorati curvature δC(r;n − 1)

satisfies

ρ ≤ δC(r;n− 1)

n(n− 1)
+
c

4

(
1 +

3

n(n− 1)

3∑
α=1

||Pα||2
)
. (13.6)

(ii) For any real number r > n(n− 1) , the generalized normalized δ -Casorati curvature δ̂C(r;n− 1) satisfies

ρ ≤ δ̂C(r;n− 1)

n(n− 1)
+
c

4

(
1 +

3

n(n− 1)

3∑
α=1

||Pα||2
)
. (13.7)

The equality sign holds in the inequalities (13.6) and (13.7) if and only if there exists an orthonormal
frame e1, . . . , en, ξn+1, . . . , ξ4m such that with respect to this frame the shape operator takes the form (13.3).

Theorem 10.3 implies the following.

Corollary 13.5 [109] Let Mn be a submanifold of a quaternionic space form M
4m

(c) . Then

(i) The normalized δ -Casorati curvature δC(n− 1) satisfies

ρ ≤ δC(n− 1) +
c

4

(
1 +

3

n(n− 1)

3∑
α=1

||Pα||2
)
. (13.8)

(ii) The normalized δ -Casorati curvature δ̂C(n− 1) satisfies

ρ ≤ δ̂C(n− 1) +
c

4

(
1 +

3

n(n− 1)

3∑
α=1

||Pα||2
)
. (13.9)

The equality holds in (13.8) [resp., (13.9) ] if and only if there exists an orthonormal frame e1, . . . , en,

ξn+1, . . . , ξ4m such that with respect to this frame the shape operator satisfies (13.5).

14. δ -Casorati curvatures in Sasakian space forms
14.1. Almost contact metric manifolds, Kenmotsu space forms and Sasakian space forms

A Riemannian (2n + 1) -manifold (M
2n+1

, g) is called an almost contact metric manifold [12] if there exist a

(1, 1) -tensor field φ , a vector field ξ (called the structure vector field), and a 1-form η on M
2n+1 such that

η(ξ) = 1, φ2(X) = −X + η(X)ξ, φξ = 0, η ◦ φ = 0,

g(φX,φY ) = g(X,Y )− η(X)η(Y ), η(X) = g(X, ξ)
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for X,Y tangent to M
2n+1 . An almost contact metric manifold (M

2n+1
, φ, ξ, η, g) is called a Kenmotsu

manifold if it satisfies (∇Xφ)Y = g(φX, Y )ξ− η(Y )φX , where ∇ is the Levi–Civita connection of M̄2n+1 . An

almost contact metric manifold (M
2n+1

, φ, ξ, η, g) is called a Sasakian manifold if it satisfies

(∇Xφ)Y = g(X,Y )ξ − η(Y )X.

A Sasakian manifold is called Sasakian space form if it has constant φ -sectional curvature. The curvature

tensor of a Sasakian space form M
2n+1

(c) of constant φ -sectional curvature c is given by

R(X,Y )Z =
c+ 3

4

{
g(Y, Z)X − g(X,Z)Y

}
+
c− 1

4

{
g(X,φZ)φY − g(Y, φZ)φX + 2g(X,φY )φZ

}
+
c− 1

4

{
η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ − g(Y, Z)η(X)ξ

}
for vector fields X,Y, Z tangent to M

2n+1 . Sasakian space forms M2n+1
(c) can be modeled based on c > −3 ,

c = −3 or c < −3 . It is known that R2m+1 has constant φ -sectional curvature −3 , while S2m+1 is of constant
φ -sectional curvature 1. Denote the above Sasakian space forms by R2m+1(−3) and S2m+1(1) , respectively.

A Riemannian submanifold Mn of an almost contact metric manifold (M
2m+1

, φ, ξ, η, g) is called C -
totally real if the structure vector field ξ is normal to M . It follows that φ(TpMn) ⊂ T⊥

p M
n for C -totally

real submanifolds.
A C -totally real submanifold is called Legendrian if n = m . Hence, a Legendrian submanifold is a

C -totally real submanifold with the smallest possible codimension.

Remark 14.1 [65, Proposition 3.2] Any Kenmotsu manifold can be obtained locally as follows. Let (M0, g0, J)

be an almost Hermitian manifold. Put M =M0 ×R, ḡ = e2tg0 + dt2, ξ̄ = ∂
∂t and define φ by φX = JX for

X tangent to M and φξ̄ = 0 . Then we have
(1) The triple (ḡ, φ, ξ̄) is an almost contact metric structure on M .

(2) (M0, g0, J) is a Kaehler manifold if and only if (ḡ, φ, ξ̄) is a Kenmotsu structure on M .

14.2. δ -Casorati curvatures for Legendrian submanifolds in Sasakian space forms
For Legendrian submanifolds, Lee et al. proved the following.

Theorem 14.2 [80] Let Mn be a Legendrian submanifold of a Sasakian space form M̄2n+1(c) . Then:

(i) The δ -Casorati curvature δC(n− 1) satisfies

ρ ≤ δC(n− 1) +
c+ 3

4
− n

n+ 3
H2. (14.1)

Moreover, if the equality sign of (14.1) holds identically, then Mn is either a totally geodesic Legendrian
submanifold or an H -umbilical Legendrian submanifold satisfying (8.4) with µ = 4λ .

(ii) The δ -Casorati curvature δ̂C(n− 1) satisfies

ρ ≤ δ̂C(n− 1) +
c+ 3

4
− 2n(2n− 3)

(n− 1)(2n+ 3)
H2. (14.2)

26



CHEN/Turk J Math

Further, the equality sign of (14.2) holds identically, then Mn is a totally geodesic Legendrian submanifold.

Note that the unit n -sphere Sn(1) is a Legendrian totally geodesic submanifold of S2n+1(1) . It is easy
to verify that this submanifold attains equality in the inequalities (13.1) and (13.2) identically. For the equality
case of (13.1) Lee et al. also provided the following example.

Example 14.3 [80] Let I be an open interval in R . Consider the isometric immersion ψ :M12 → S25 of the
Riemannian 12-manifold M12 = I × S11 into S25 , equipped with standard Sasakian structure, given by

ψ(x, y1, . . . , y12) =
1

5

(
4e−

i
√

3
2 x, 3e

2i
√

3
3 xy1, . . . , 3e

2i
√

3
3 xy12

)
,

where y21 + . . . + y212 = 1 . Then (M12, ψ∗g0) is an H -Legendrian submanifold of S25 satisfying (8.4) with
λ = 1

2
√
3

and µ = 2√
3

. The M12 satisfies the equality case of inequality (13.1) identically.

14.3. δ -Casorati curvatures for slant submanifolds in Sasakian space forms

A submanifold Mn of an almost contact metric manifold
(
M

2m+1
, φ, ξ, η, g

)
is a slant submanifold if the angle

θ(X) between φX and TpM
n is constant for all 0 ̸= X ∈ TpM

n \ ξp and all p ∈Mn .
For slant submanifolds of a Sasakian space form, Lone [85] obtained the following.

Theorem 14.4 Let Mn be a θ -slant submanifold of a Sasakian space form M
2m+1

(c) . Then

(i) For a real number r ∈ (0, n(n−1)) , the generalized normalized δ -Casorati curvature δC(r;n−1) satisfies

ρ ≤ δC(r;n− 1)

n(n− 1)
+
c+ 3

4
+

3(c− 1)

4n
cos2 θ +

c− 1

n
||ξT ||2, (14.3)

where ||ξT ||2 is the squared norm of the tangent component ξT of the structure vector field ξ .

(ii) For a real number r > n(n− 1) , the generalized normalized δ -Casorati curvature δ̂C(r;n− 1) satisfies

ρ ≤ δ̂C(r;n− 1)

n(n− 1)
+
c+ 3

4
+

3(c− 1)

4n
cos2 θ +

c− 1

n
||ξT ||2. (14.4)

The equality case of either inequality holds if and only if there exists an orthonormal frame e1, . . . , en,

ξn+1, . . . , ξ2m+1 such that with respect to this frame the shape operator takes the form:

An+1 =

(
λIn−1 0

0 n(n−1)
r λ

)
, An+2 = . . . = A2m+1 = 0. (14.5)

15. Slant submanifolds in generalized Sasakian space forms
15.1. Generalized Sasakian space forms

The notion of a generalized Sasakian space form was introduced by Alegre et al. in [8]. An odd-dimensional

manifold M
2n+1 equipped with an almost contact metric structure (φ, ξ, η, g) is called generalized Sasakian
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space form if there exist three functions f1 , f2 , f3 on M
2n+1 such that

R(X,Y )Z = f1
{
g(Y, Z)X − g(X,Z)Y

}
+ f2

{
g(X,φZ)φY − g(Y, φZ)φX + 2g(X,φY )φZ

}
+ f3

{
η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ − g(Y, Z)η(X)ξ

}
.

We denote such a manifold by M
2n+1

(f1, f2, f3) . A generalized Sasakian space form M
2n+1

(f1, f2, f3) is a
Sasakian space form if f1 = c+3

4 and f2 = f3 = c−1
4 , where c is a constant. The generalized Sasakian space

forms also generalize the concept of Kenmotsu space forms and cosymplectic space forms as follows:
(i) A Kenmotsu space form is a generalized Sasakian space form with f1 = c−3

4 and f2 = f3 = c+1
4 .

(ii) A cosymplectic space form is a generalized Sasakian space form with f1 = f2 = f3 = c
4 .

15.2. Slant submanifolds in generalized Sasakian space forms

For θ -slant submanifolds of a generalized Sasakian space form M
2m+1

(f1, f2, f3) , we have the following result
of Lone obtained in [87].

Theorem 15.1 Let Mn be a θ -slant submanifold of a generalized Sasakian space form M
2m+1

(f1, f2, f3) .
Then

(i) For any real number r ∈ (0, n(n − 1)) , the generalized normalized δ -Casorati curvature δC(r;n − 1)

satisfies

ρ ≤ δC(r;n− 1)

n(n− 1)
+ f1 +

3f2
n

cos2 θ +
2f3
n

||ξT ||2, (15.1)

(ii) For any real number r > n(n− 1) , the generalized normalized δ -Casorati curvature δ̂C(r;n− 1) satisfies

ρ ≤ δ̂C(r;n− 1)

n(n− 1)
+ f1 +

3f2
n

cos2 θ +
2f3
n

||ξT ||2. (15.2)

The equality case of either inequality holds if and only if there exists an orthonormal frame e1, . . . , en,

ξn+1, . . . , ξ2m+1 such that with respect to this frame the shape operator takes the form (13.5).

Remark 15.2 Theorem 15.1 implies Theorem 4.3 of [105].

15.3. δ -Casorati curvature of bi-slant submanifolds in generalized Sasakian space forms

A submanifold M of an almost contact metric manifold M
2m+1 is called bi-slant [17] if there exists a pair of

orthogonal distributions Dθ1 and Dθ2 of M such that (i) TMn = Dθ1 ⊕Dθ2 ⊕ Span {ξ} , (ii) φDθ1 ⊥ Dθ2 and
φDθ2 ⊥ Dθ1 , and (iii) each Dθi is slant distribution with the slant angle θi for i = 1, 2 .

A bi-slant submanifold with bi-slant angles θ1, θ2 is called a semislant (resp., hemislant) if θ1 = 0 and
θ2 ̸= 0, π2 (resp., θ1 = π

2 and θ2 ̸= 0, π2 ). For a bi-slant submanifold, we put ni = 1
2 rankDi for i = 1, 2 .
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15.4. Bi-slant submanifolds in generalized Sasakian space forms

For bi-slant submanifolds of a generalized Sasakian space form, Siddiqui and Shahid [104, 105] proved the
following.

Theorem 15.3 Let Mn be a bi-slant submanifold of a generalized Sasakian space form M
2m+1

(f1, f2, f3) .
Then we have

(i) The normalized δ -Casorati curvature δC(n− 1) satisfies

ρ ≤ δC(n− 1) + f1 +
6f2

n(n− 1)

(
n1 cos

2 θ1 + n2 cos
2 θ2
)
− 2f3

n
||ξT ||2. (15.3)

(ii) The normalized δ -Casorati curvature δ̂C(n) satisfies

ρ ≤ δ̂C(n− 1) + f1 +
6f2

n(n− 1)

(
n1 cos

2 θ1 + n2 cos
2 θ2
)
− 2f3

n
||ξT ||2. (15.4)

The equality case of either inequality holds if and only if there exists an orthonormal frame e1, . . . , en,

ξn+1, . . . , ξ2m+1 such that with respect to this frame the shape operator takes the form

An+1 =

(
λIn−1 0

0 2λ

) (
resp., An+1 =

(
λIn−1 0

0 1
2λ

))
and An+2 = . . . = A2m+1 = 0. (15.5)

It was shown in [105] that if Mn is a hemislant (resp., semislant) submanifold in a generalized Sasakian

space form M
2m+1

(f1, f2, f3) , then Theorem 15.1 holds after replacing “ 6f2
n(n−1) (n1 cos

2 θ1 + n2 cos
2 θ2)” in

(15.3) and (15.4) by “ 6f2
n(n−1)n1 cos

2 θ1 ” (resp., by “ 6f2
n(n−1) (n1 + n2 cos

2 θ2)”).

15.5. Slant submanifolds in cosymplectic space forms
In particular, Theorem 15.1 implies the next result for slant submanifolds in cosymplectic space forms.

Theorem 15.4 Let Mn be a θ -slant submanifold of a cosymplectic space form M
2m+1 . Then

(i) For a real number r ∈ (0, n(n−1)) , the generalized normalized δ -Casorati curvature δC(r;n−1) satisfies

ρ ≤ δC(r;n− 1)

n(n− 1)
+
c

4
+

3c

4n
cos2 θ +

c

2n
||ξT ||2, (15.6)

(ii) For any real number r > n(n− 1) , the generalized normalized δ -Casorati curvature δ̂C(r;n− 1) satisfies

ρ ≤ δ̂C(r;n− 1)

n(n− 1)
+
c

4
+

3c

4n
cos2 θ +

c

2n
||ξT ||2. (15.7)

The equality case of either inequality holds if and only if there exists an orthonormal frame e1, . . . , en,

ξn+1, . . . , ξ2m+1 such that with respect to this frame the shape operator takes the form (13.5).
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16. Slant submanifolds in pointwise Kenmotsu space forms

Let
(
M

2m+1
, φ, ξ, η, g

)
be a Kenmotsu manifold of dimension ≥ 5 . Then M

2m+1 is said to be a pointwise

Kenmotsu space form, denoted by M
2m+1

(c) , if its φ -sectional curvature function c(X) of φ -holomorphic
plane Span{X,φX} ⊂ TpM depends only on the point p ∈ M , but not on the φ -holomorphic plane at p . In

particular, if c is global constant, then M
2m+1

(c) is called a Kenmotsu space form.

It is known that a Kenmotsu manifold M
2m+1 is a pointwise Kenmotsu space form if and only if there

exists a function c such that the Riemann curvature tensor R of M2m+1 satisfies (cf. [97])

R(X,Y )Z =
c− 3

4
{g(Y, Z)X − g(X,Z)Y }+ c+ 1

4
{η(X)η(Z)Y − η(Y )η(Z)X + η(Y )g(X,Z)ξ

− η(X)g(Y, Z)ξ − g(φX,Z)φY + g(φY,Z)φX + 2g(X,φY )φZ}.

16.1. δ -Casorati curvature of submanifolds in pointwise Kenmotsu space forms
For submanifolds in a pointwise Kenmotsu space form, we have the following result of Lone et al.

Theorem 16.1 [89] Let Mn be a submanifold of a (2m + 1)-dimensional (pointwise) Kenmotsu space form

M
2m+1

(c) . If the structure vector field ξ is tangent to Mn , then

(i) For a real number r ∈ (0, n(n−1)) , the generalized normalized δ -Casorati curvature δC(r;n−1) satisfies

δC(r;n− 1) ≥ n(n− 1)

(
ρ− c− 3

4

)
+

(n− 1)(c+ 1)

2
− 3(c+ 1)

4
||P ||2. (16.1)

(ii) For any real number r > n(n− 1) , the generalized normalized δ -Casorati curvature δ̂C(r;m) satisfies

δ̂C(r;n− 1) ≥ n(n− 1)

(
ρ− c− 3

4

)
+

(n− 1)(c+ 1)

2
− 3(c+ 1)

4
||P ||2. (16.2)

In addition, the equality cases of (16.1) and (16.2) hold identically at a point p ∈Mn if and only if p is
a totally geodesic point.

Theorem 16.1 implies the following corollary.

Corollary 16.2 [76, 89] Let Mn be a submanifold of a pointwise Kenmotsu space form M
2m+1

(c) . If the
structure vector field ξ is tangent to M , then

(i) The normalized δ -Casorati curvature δC(n− 1) satisfies

δC(n− 1) ≥ ρ+
c+ 1

2n
− c− 3

4
− 3(c+ 1)

4n(n− 1)
||P ||2. (16.3)

(ii) The normalized δ -Casorati curvature δ̂C(m) satisfies

δ̂C(n− 1) ≥ ρ+
c+ 1

2n
− c− 3

4
− 3(c+ 1)

4n(n− 1)
||P ||2. (16.4)
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Moreover, the equality cases of (16.3) and (16.4) hold identically at a point p ∈Mn if and only if p is a
totally geodesic point.

Remark 16.3 It is important to notice that although both the generalized normalized δ -Casorati curvatures
δC(r;n−1) and δ̂C(r;n−1) in Theorem 16.1 and Corollary 16.2 satisfy the same inequality, they are in general
different, except the case when the submanifold is totally geodesic (see Remark 2 of [76]).

For a θ -slant submanifold Mn of a pointwise Kenmotsu space form M
2m+1

(c) such that the structure
vector field ξ is tangent to Mn , we have

||P ||2 = n cos2 θ. (16.5)

It follows from Theorem 16.1 and (16.5) that the following result holds.

Corollary 16.4 [76, 89] Let Mn be a θ -slant submanifold of a pointwise Kenmotsu space form M
2m+1

(c) . If
the structure vector field ξ is tangent to M , then we have

(i) The normalized δ -Casorati curvature δC(n− 1) satisfies

ρ ≤ δC(n− 1) +
c− 3

4
+

3(c+ 1)

4n
cos2 θ − c+ 1

2n
. (16.6)

(ii) The normalized δ -Casorati curvature δ̂C(n− 1) satisfies

ρ ≤ δ̂C(n− 1) +
c− 3

4
+

3(c+ 1)

4n
cos2 θ − c+ 1

2n
. (16.7)

Moreover, the equality cases of (16.6) and (16.7) hold identically at a point p ∈Mn if and only if p is a
totally geodesic point.

16.2. Slant submanifolds in Kenmotsu space forms
For slant submanifolds in Kenmotsu space forms, we have the following result of Lone.

Theorem 16.5 [85] Let Mn be a θ -slant submanifold of a Kenmotsu space form M
2m+1

(c) . Then

(i) For a real number r ∈ (0, n(n−1)) , the generalized normalized δ -Casorati curvature δC(r;n−1) satisfies

ρ ≤ δC(r;n− 1)

n(n− 1)
+
c− 3

4
+

3(c+ 1)

4n
cos2 θ +

c+ 1

2n
||ξT ||2. (16.8)

(ii) For any real number r > n(n− 1) , the generalized normalized δ -Casorati curvature δ̂C(r;n− 1) satisfies

ρ ≤ δ̂C(r;n− 1)

n(n− 1)
+
c− 3

4
+

3(c+ 1)

4n
cos2 θ +

c+ 1

2n
||ξT ||2. (16.9)

The equality cases of (16.8) and (16.9) hold if and only if there exists an orthonormal frame e1, . . . , en,

ξn+1, . . . , ξ2m+1 such that with respect to this frame the shape operator takes the form (13.5).

Remark 16.6 Theorem 16.5 was extended to bi-slant submanifolds by Lone in [88].

31



CHEN/Turk J Math

17. Submanifolds in generalized (κ, µ)–space forms

17.1. Generalized (κ, µ)-space forms

A contact metric manifold
(
M

2m+1
, φ, ξ, η, g

)
is called a generalized (κ, µ)-space if its curvature tensor satisfies

R (X,Y ) ξ = κ {η (Y )X − η (X)Y }+ µ {η (Y )hX − η (X)hY }

for some functions κ, µ on M , where h = 1
2Lξφ and L denotes the Lie derivative. If κ, µ are constant, M2m+1

is called a (κ, µ)-space. In particular, if a (κ, µ) -space has constant φ -sectional curvature, then it is said to be
a (κ, µ)–space form.

In [18], Carriazo et al. defined a generalized (κ, µ)–space form as an almost contact metric manifold

(M
2m+1

, φ, ξ, η, g) whose curvature tensor R satisfies

R(X,Y )Z = f1R1(X,Y )Z + f2R2(X,Y )Z + f3R3(X,Y )Z + f4R4(X,Y )Z + f5R5(X,Y )Z + f6R6(X,Y )Z,

where f1, . . . , f6 are smooth functions and R1, . . . , R6 are tensor fields defined by

R1(X,Y )Z = g(Y, Z)X − g(X,Z)Y,

R2(X,Y )Z = g(X,φZ)φY − g(Y, φZ)φX + 2g(X,φY )φZ,

R3(X,Y )Z = η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ − g(Y, Z)η(X)ξ,

R4(X,Y )Z = g(Y, Z)hX − g(X,Z)hY + g(hY, Z)X − g(hX,Z)Y,

R5(X,Y )Z = g(hY, Z)hX − g(hX,Z)hY + g(φhX,Z)φhY − g(φhY,Z)φhX,

R6(X,Y )Z = η(X)η(Z)hY − η(Y )η(Z)hX + g(hX,Z)η(Y )ξ − g(hY, Z)η(X)ξ.

17.2. δ -Casorati curvatures in generalized (κ, µ)–space forms

For submanifolds of generalized (κ, µ)–space forms, Aquib and Shahid proved the following.

Theorem 17.1 [6] Let Mn be a submanifold of a generalized (κ, µ)–space form M
2m+1 . Then

(i) For a real number r ∈ (0, n(n−1)) , the generalized normalized δ -Casorati curvature δC(r;n−1) satisfies

ρ ≤ δC(r;n− 1)

n(n− 1)
+ f1 +

3

n(n− 1)
f2||P ||2 −

2

n
f3 +

2

n
f4tr (h

T )

+
1

n(n− 1)
f5
{
(tr (hT ))2 − ||hT ||2 − ||(φh)T ||2 − (tr (φh)T ))2

}
− 2

n(n− 1)
f6tr (h

T ).

(17.1)

(ii) For any real number r > n(n− 1) , the generalized normalized δ -Casorati curvature δ̂C(r;n− 1) satisfies

ρ ≤ δ̂C(r;n− 1)

n(n− 1)
+ f1 +

3

n(n− 1)
f2||P ||2 −

2

n
f3 +

2

n
f4tr (h

T )

+
1

n(n− 1)
f5
{
(tr (hT ))2 − ||hT ||2 − ||(φh)T ||2 − (tr (φh)T ))2

}
− 2

n(n− 1)
f6tr (h

T ).

(17.2)
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The equality cases of (17.1) and (17.2) hold if and only if there exists an orthonormal frame e1, . . . , en,

ξn+1, . . . , ξ2m+1 such that with respect to this frame the shape operator takes the form (13.5).

As special cases of Theorem 17.1, Aquib and Shahid derived the corresponding results in [6] for (i)
submanifolds of (κ, µ)–space forms, (ii) bi-slant submanifolds of generalized (κ, µ)–space forms, (iii) CR -
submanifolds of generalized (κ, µ)–space forms, and (iv) slant submanifolds of generalized (κ, µ)–space forms.

Remark 17.2 Hui et al. proved independently in [72] the special case of Theorem 17.1 for δC(n − 1) and
δ̂C(n− 1) . They also derived the corresponding result for slant submanifolds.

18. δ -Casorati curvatures in statistical space forms

The notion of statistical manifolds was introduced by Amari [1] in 1985, which provided a setting for the field
of information geometry and it also associates a dual connection (known as conjugate connection). The nice
applications of statistical manifolds in applied science and engineering have attracted the attention of many
geometers. The theory of statistical model as statistical manifold is a fast growing research subject in differential
geometry. Many articles have been published in the setting of statistical manifold in recent years.

18.1. Statistical manifolds and statistical space forms

Let (M̃, g̃) be a Riemannian manifold with Levi–Civita connection ∇̃0 . For a torsion free affine connection ∇̃

on (M̃, g̃) , let ∇̃∗ be the torsion free connection defined by

Zg̃ (X,Y ) = g̃
(
∇̃ZX,Y

)
+ g̃
(
X, ∇̃∗

ZY
)
, (18.1)

which is called the dual connection of ∇̃ with respect to g̃ . It is easily shown that (∇̃∗)∗ = ∇̃ . The Riemannian

manifold (M̃, g̃) equipped with a such pair of torsion free affine connections ∇̃ , ∇̃∗ is called a statistical

manifold. And the pair (∇̃, g̃) is called a statistical structure on M̃ . If (∇̃, g̃) is a statistical structure on M̃ ,

then (∇̃∗, g̃) is also a statistical structure. For the statistical manifold we have

∇̃+ ∇̃∗ = 2∇̃0, (18.2)

A statistical structure (∇̃, g̃) is said to be of constant curvature c if

R̃∇̃(X,Y )Z = c{g̃(Y, Z)X − g̃(X,Z)Y } (18.3)

holds, where R̃∇̃ denotes the curvature tensor associated with ∇̃ . A statistical structure (∇̃, g̃) of constant
curvature 0 is called a Hessian structure (cf. e.g., [44, 63]).

Since the curvature tensor R̃∇̃ and R̃∇̃∗ of the dual connections ∇̃ and ∇̃∗ on M̃ satisfy

g(R̃∇̃∗
(X,Y )Z,W ) = −g̃(Z, R̃∇̃(X,Y )W ).

it follows that if (∇̃, g̃) is a statistical structure of constant curvature c , then (∇̃∗, g̃) is also a statistical

structure of constant curvature c . In particular, if (∇̃, g̃) is Hessian, then (∇̃∗, g̃) is also Hessian (cf. [102]).
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18.2. Basics on statistical submanifolds in statistical manifolds

Let Mn be an n -dimensional submanifold of a statistical m -manifold (M̃m, g̃) , then (Mn, g) is also a statistical
manifold with the induced connection by ∇ and the induced metric g . The fundamental equations for statistical
submanifolds have been derived by Vos [118] in 1989 as follows.

For tangent vector fields X,Y of Mn the corresponding Gauss formulas are

∇̃XY = ∇XY + ζ(X,Y ), ∇̃∗
XY = ∇∗

XY + ζ∗(X,Y ), (18.4)

where ζ , ζ∗ are symmetric and bilinear, called the second fundamental forms (cf. [11]) or imbedding curvature
tensors (cf. [57]). Since ζ and ζ∗ are bilinear, there exist linear transformations Λξ and Λ∗

ξ on TMn , known
as the shaper operators, defined by

g(ΛξX,Y ) = g̃(ζ(X,Y ), ξ), g(A∗
ξX,Y ) = g̃(ζ∗(X,Y ), ξ), (18.5)

for any normal vector field ξ . Further, the corresponding Weingarten formulas are given by

∇̃Xξ = −ΛξX +∇⊥
Xξ, ∇̃∗

Xξ = −Λ∗
ξX +∇∗⊥

X ξ. (18.6)

Let R and R̃ denote the curvature tensor fields of ∇ and ∇̃ , respectively. Then the Gauss equation for
∇̃ is given by (cf. [118])

g̃(R̃(X,Y )Z,W ) = g(R(X,Y )Z,W ) + g̃(h(X,Z), h∗(Y,W ))− g̃(h∗(X,W ), h(Y, Z)). (18.7)

Similarly, the Gauss equation for ∇̃∗ is given by

g̃(R̃∗(X,Y )Z,W ) = g(R∗(X,Y )Z,W ) + g̃(h∗(X,Z), h(Y,W ))− g̃(h(X,W ), h∗(Y, Z)), (18.8)

where R∗ and R̃∗ denote the curvature tensor fields of ∇∗ and ∇̃∗ , respectively.
Let S denote the statistical curvature tensor field of a statistical manifold (M, g,∇) , where S is defined

by [64]

S(X,Y )Z =
1

2
{R(X,Y )Z +R∗(X,Y )Z}. (18.9)

If π = SpanR{u1, u2} is a plane section of TpM , then the sectional curvature of M is defined by [64]:

KS(π) =
g(S(u1, u2)u2, u1)

g(u1, u1)g(u2, u2)− g2(u1, u2)
. (18.10)

Let {e1, ..., en} and {ξn+1, ..., ξm} be orthonormal bases of the tangent space TpM
n and of the normal

bundle T⊥
p M

n , respectively. Then scalar curvature τ and normalized scalar curvature ρ of Mn are given by

τ(p) =
∑

1≤i<j≤n

KS(ei ∧ ej), ρ =
2τ

n(n− 1)
. (18.11)

And the mean curvature vectors H and H∗ of Mn with respect to ∇̃ and ∇̃∗ are given respectively by

H =
1

n

n∑
i=1

h(ei, ei) =
1

n

m∑
α=n+1

(
n∑

i=1

ζαii

)
ξα, H∗ =

1

n

n∑
i=1

ζ∗(ei, ei) =
1

n

m∑
α=n+1

(
n∑

i=1

ζ∗αii

)
ξα, (18.12)
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where 1 ≤ i, j ≤ n and n+ 1 ≤ α ≤ m , ζαij = g̃(ζ(ei, ej), ξα) and ζ∗αij = g̃(ζ∗(ei, ej), ξα) .
The Casorati curvatures C and C∗ of the submanifold Mn are defined as

C =
1

n

m∑
α=n+1

n∑
i,j=1

(ζαij)
2, C∗ =

1

n

m∑
α=n+1

n∑
i,j=1

(ζ∗αij )2.

The Casorati curvatures of an r -plane field L , spanned by {eq+1, . . . , eq+r} , q < n− ℓ , r ≥ 2 , are defined by

C(L) = 1

ℓ

m∑
α=n+1

(
k+ℓ∑

i,j=k+1

(ζαij)
2

)
, C∗(L) =

1

ℓ

m∑
α=n+1

(
k+ℓ∑

i,j=k+1

(ζ∗αij )2

)
. (18.13)

18.3. δ -Casorati curvatures for submanifolds in statistical space forms

The modified normalized δ -Casorati curvature δ̃C(n − 1) and the normalized δ -Casorati curvature δ̂C(n − 1)

of Mn are given as follows (see Section 5):

[
δ̃C(n− 1)

]
p
=

1

2
Cp +

(n+ 1)

2n(n− 1)
inf{C(L) | L a hyperplane of TpM

n}, (18.14)

[
δ̂C(n− 1)

]
p
= 2Cp −

(2n− 1)

2n
sup{C(L) | L a hyperplane of TpM

n}. (18.15)

The same definitions for
[
δ̃∗C(n−1)

]
p

and
[
δ̂∗C(n−1)

]
p

. Similarly, the same definitions of δC(r;n−1), δ̂C(r;n−1)

and δ∗C(r;n− 1), δ̂∗C(r;n− 1) given in Subsection 5.2 applied to statistical submanifolds as well. For simplicity,
put

δoC(r;n− 1) =
1

2
{δC(r;n− 1) + δ∗C(r;n− 1)}, Ho =

1

2
(H +H∗), Co =

1

2
(C + C∗). (18.16)

For statistical submanifolds of statistical space forms, Bansal et al. obtained the following two results.

Theorem 18.1 [11] Let Mn be a statistical submanifold of a statistical space form M̃m(c) of constant curvature
c . Then the generalized normalized δ -Casorati curvature δoC(r;n− 1) satisfies

ρ ≤ 2δoC(r;n− 1)

n(n− 1)
+

Co

n− 1
− 2n

n− 1
||Ho||2 + n

n− 1
g̃(H,H∗) + c. (18.17)

Theorem 18.2 [11] Let Mn be a statistical submanifold of a statistical space form M̃m(c) of constant curvature
c . Then the generalized normalized δ -Casorati curvature δoC(r;n− 1) satisfies

ρ ≤ −δ
o
C(r;n− 1)

n(n− 1)
+

2n

n− 1
||Ho||2 − 2Co

n− 1
+ c. (18.18)

Remark 18.3 Theorem 18.1 and Theorem 18.2 imply that the normalized scalar curvature ρ of Mn was
bounded above and below by (18.14) and (18.15), respectively.

In particular, for the normalized δ -Casorati curvature δoC(n− 1) , the following two results are obtained
by Lee et al. in [79], and Cai et al. in [16].

35



CHEN/Turk J Math

Theorem 18.4 [16, 79] Let Mn be a statistical submanifold of a statistical space form M̃m(c) of constant
curvature c . Then the normalized δ -Casorati curvature δoC(r;n− 1) satisfies

ρ ≤ 2δoC(n− 1) +
Co

n− 1
− 2n

n− 1
||Ho||2 + n

n− 1
g̃(H,H∗) + c. (18.19)

Theorem 18.5 [16, 79] Let Mn be a statistical submanifold of a statistical space form M̃m(c) of constant
curvature c . Then the normalized δ -Casorati curvature δoC(r;n− 1) satisfies

ρ ≤ −1

2
δoC(n− 1) +

2n

n− 1
||Ho||2 − 2Co

n− 1
+ c. (18.20)

18.4. δ -Casorati curvatures in statistical complex space forms

Let (M̃, J) be an almost complex manifold. A quadruplet (M̃, ∇̃, g̃, J) is called a holomorphic statistical
manifold if

(a) (∇̃, g̃) is a statistical structure on M̃ , and

(b) ω is a ∇̃ -parallel 2 -form on M̃ ,

where ω is defined by ω(X,Y ) = g̃(X, JY ) for X,Y tangent to TM̃ .
For a holomorphic statistical manifold, we have

g̃(S̃(Z,W )JY, JX) = g̃(S̃(JZ, JW )Y,X) = g̃(S̃(Z,W )Y,X). (18.21)

A holomorphic statistical manifold (M̃, ∇̃, g̃, J ) is said to be of constant holomorphic sectional curvature c if
the following formula holds (cf. [65]):

S̃(X,Y )Z =
c

4
{g̃(Y, Z)X − g̃(X,Z)Y + g̃(JY, Z)JX − g̃(JX,Z)JY + 2g̃(X, JY )JZ}, (18.22)

where S̃ is the statistical curvature tensor field of M̃ .
For statistical submanifolds of holomorphic statistical manifolds of constant holomorphic sectional cur-

vature, Decu et al. proved the following.

Theorem 18.6 [56]. Let M be an n-dimensional statistical submanifold of a 2m-dimensional holomorphic
statistical manifold (M̃, ∇̃, g̃, J ) of constant holomorphic sectional curvature c . Then we have

(i) For any real number r such that 0 < r < n(n− 1) ,

2τ ≤ δ0C(r;n− 1) + nC0 − 2n2∥H0∥2 + n2g̃(H,H∗) +
3c

4
∥P∥2 + c

4
n(n− 1). (18.23)

(ii) For any real number r > n(n− 1) ,

2τ ≤ δ̂0C(r;n− 1) + nC0 − 2n2∥H0∥2 + n2g̃(H,H∗) +
3c

4
∥P∥2 + c

4
n(n− 1). (18.24)

Moreover, the equality cases of (18.23) and (18.24) hold identically if and only if the second fundamental
forms ζ and ζ∗ with respect to the dual connections ∇̃ and ∇̃∗ satisfy ζ + ζ∗ = 0 .
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Remark 18.7 Decu et al. also provided in [56] an example which satisfies the equality cases of (18.23) and
(18.24) identically.

Theorem 18.6 implies the following.

Corollary 18.8 Let M be an n-dimensional statistical submanifold of a 2m-dimensional holomorphic statis-
tical manifold (M̃, ∇̃, g̃, J ) of constant holomorphic sectional curvature c . Then, we have

ρ ≤ δ0C(m− 1) +
1

m− 1
C0 − 2m

m− 1
∥H0∥2 + m

m− 1
g̃(H,H∗) +

3c

4m(m− 1)
∥P∥2 + c

4
, (18.25)

ρ ≤ δ̂0C(m− 1) +
1

m− 1
C0 − 2m

m− 1
∥H0∥2 + m

m− 1
g̃(H,H∗) +

3c

4m(m− 1)
∥P∥2 + c

4
. (18.26)

Moreover, the equality cases of (18.25) and (18.26) hold identically if and only if ζ and ζ∗ satisfy
ζ + ζ∗ = 0 , which implies that M is a totally geodesic submanifold with respect to the Levi-Civita connection.

18.5. δ -Casorati curvatures in Kenmotsu statistical space forms

For a statistical structure (∇̃, g̃) on M̃ , put K̃ = ∇̃ − ∇0 . Then K̃ satisfies (cf. [57])

K̃XY = K̃YX, g̃(KXY, Z) = g̃(Y,KXZ).

Let (M̃, g̃, φ̃, ξ̃, η̃) be a Kenmotsu manifold and (∇̃, g̃) a statistical structure on M̃ . Then the quadruple
(∇̃, g̃, φ̃, ξ̃) is called a Kenmotsu statistical structure on M̃ if

K̃(X,φY ) + φK̃(X,Y ) = 0 (18.27)

holds for vector fields X,Y tangent to M̃ . A manifold equipped with a Kenmotsu statistical structure is called
a Kenmotsu statistical manifold. A Kenmotsu statistical manifold (M̃, g̃, φ̃, ξ̃, η̃) is called a Kenmotsu statistical
space form if it has constant φ -sectional curvature.

Decu et al. [57] proved the following result.

Theorem 18.9 Let Mn be a statistical submanifold of a Kenmotsu statistical-space form (M̃2m+1(c), g̃, φ̃, ξ̃, η̃)

of constant φ-sectional curvature c . Then

(i) For 0 < r < n(n− 1) , the generalized normalized δ -Casorati curvature δoC(r;n− 1) satisfies

2τ ≤ δoC(r;n− 1) + nCo − 2n2||Ho||2 + n2g̃(H,H∗) +
3(c+ 1)

4
||P ||2 + n− 1

4
[(n− 2)c− 3(n− 1)− 5].

(18.28)

(ii) For r > n(n− 1) , the generalized normalized δ -Casorati curvature δ̂oC(r;n− 1) satisfies

2τ ≤ δ̂oC(r;n− 1) + nCo − 2n2||Ho||2 + n2g̃(H,H∗) +
3(c+ 1)

4
||P ||2 + n− 1

4
[(n− 2)c− 3(n− 1)− 5].

(18.29)

In addition, the equality cases of (18.28) and (18.29) hold identically if and only if the second fundamental
forms ζ and ζ∗ associated with the dual connections ∇̃ and ∇̃∗ satisfy ζ = −ζ∗ .
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19. Some links between Chen and Casorati ideal submanifolds and principal directions

The Casorati operator AC for a submanifold Mn in a Riemannian m -manifold M̃m is a extrinsic operator.
The eigenvectors of AC are (extrinsic) principal Casorati directions. On the other hand, the eigenvectors of
Ricci operator on a Riemannian manifold define (intrinsic) Ricci principal directions.

A submanifold of a Riemannian manifold is called pseudo-umbilical if the shape operator A−→
H

at mean

curvature vector −→
H is proportional to the identity transformation (cf. [36]).

The following link between Casorati and Ricci principal directions was discovered by Haesen et al. in
[70].

Theorem 19.1 For submanifolds Mn in real space forms M̃m(c) , under each of the following three conditions

the Casorati principal directions and Ricci principal directions do coincide: (1) M is minimal in M̃m(c) , (2)

M is pseudo-umbilical in M̃m(c) , and (3) M has flat normal connection in M̃m(c) .

For Chen ideal submanifolds, Decu et al. proved the following link between Casorati and Ricci principal
directions.

Theorem 19.2 [58] Let n and k be natural numbers satisfying 2k ≤ n and n ≥ 3 . For any δ(

k︷ ︸︸ ︷
2, . . . , 2)-Chen

ideal submanifold Mn in a Euclidean m-space Em , the principal Casorati directions and the principal Ricci
directions coincide. In particular, if n ≥ 3 , then for any δ(2)-Chen ideal submanifold Mn in Em , the principal
Casorati directions and the principal Ricci directions coincide.

Theorem 19.3 [52] For Casorati ideal submanifold Mn with n > 3 in a real space form Rm(c) , the principal
Casorati directions and the principal Ricci directions coincide.

For a submanifold Mn in a Riemannian m -manifold M̃m , there is an operator a : T⊥Mn → T⊥Mn

defined by a(ξ) = 1
n ||ξ||

∑m
α=n+1 trace (AξAα)ξα for ξ ∈ T⊥Mn , where ξn+1, . . . , ξm is an orthonormal frame

of the normal bundle. The vector a(ξ) is called the allied normal vector field of ξ (see [36, p. 122]). An
eigenvector of a is called a normal principal Casorati vector in [91]. The following two results were proved by
Moruz and Verstraelen in [91].

Theorem 19.4 Let Mn be a Lagrangian submanifold of a Kaehler manifold M̃m . Then a vector v ∈ TMn

is a principal Casorati vector with Casorati principal curvature cT > 0 if and only if Jv is a normal principal
Casorati vector with corresponding normal Casorati principal curvature c⊥ = cT > 0 .

Theorem 19.5 Let Mn be a Lagrangian submanifold of a Kaehler manifold M̃m with first normal space of
maximal dimension. Then Mn admits an adapted orthonormal frame field {F1, . . . , Fn, ξn+1 = JF1, . . . , ξ2n =

JFn} in M̃m of which the n normal vector fields are the principal Casorati normal vector fields of Mn in M̃n ,
and the corresponding tangential and normal principal curvatures are equal, that is, cTi = c⊥i , i = 1, . . . , n .

In [59], Decu et al. proved the following.
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Theorem 19.6 On every Wintgen ideal submanifold in a real space form the Casorati and the Ricci principal
directions do coincide.

20. Further results on δ -Casorati curvatures and an open problem
There are further development in the last decade on δ -Casorati curvatures for submanifolds in various ambient
manifolds.

(1) The notion quaternionic Kaehler-like statistical manifolds was introduced by Vîlcu and Vîlcu [116]. Aquib
and Shahid [5] obtained the lower bounds for generalized normalized δ -Casorati curvatures δoC(r;n − 1)

and δ̂oC(r;n− 1) of statistical submanifolds in quaternion Kaehler-like statistical space forms.

(2) Inequalities for generalized normalized δ -Casorati curvatures of statistical submanifolds in cosymplectic
statistical space forms were obtained by Malek and Akbari [90]. Also, Aquib [2] proved inequalities for
generalized normalized δ -Casorati curvatures for bi-slant submanifolds in T-space forms.

(3) Shahid and Siddiqui [99] obtained inequalities involving generalized normalized δ -Casorati curvatures on
totally real submanifolds in LCS-manifolds. In [85], Lone obtained inequalities for δ -Casorati curvature
of submanifolds in locally conformal Kaehler manifolds.

(4) Bansal and Shahid [10] obtained lower bounds of generalized normalized δ -Casorati curvatures for real
hypersurfaces in the complex quadric. They also obtained similar results for real hypersurfaces in complex
quadric endowed with semi-symmetric metric connection in [9]. Also, Park [96] proved two inequalities
for the δ -Casorati curvatures of real hypersurfaces in some Grassmannians.

(5) Inequalities for generalized δ -Casorati curvatures of submanifolds in real space forms were extended by
Lee et al. [78, 81] to submanifolds in real space form endowed with a semisymmetric metric connection.

(6) Inequalities for δ -Casorati curvatures of submanifolds in a Riemannian manifold of quasi-constant curva-
ture equipped with a semisymmetric metric connection were obtained in [122] by Zhang and Zhang and
also in [84] by Liu et al.

(7) Optimal inequalities for δ -Casorati curvatures of submanifolds in generalized complex space forms and
also in generalized Sasakian space forms endowed with semisymmetric metric connections were given by
Lee et al. [77] and Siddiqui [103]. Further, inequalities for δ -Casorati curvatures of submanifolds in
(κ, µ) -space-forms endowed with semisymmetric metric connections were obtained by Hui et al. in [72].

(8) Optimal inequalities for δ -Casorati curvatures of submanifolds in generalized space forms endowed with
semisymmetric nonmetric connections were obtain by He et al. [71].

(19) Siddiqui and Shahid [106] obtained optimal inequalities for generalized normalized δ -Casorati curvatures
of statistical hypersurfaces in statistical complex space forms.

An open problem. The δ -Casorati curvatures δC(n − 1), δ̂C(n − 1), δC(r;n − 1) and δ̂C(r;n − 1)

introduced in [54, 55] by Decu et al. were in the spirit of δ -invariants δ(n− 1) and δ̂(n− 1) for Riemannian
n-manifolds Mn . In author’s opinion it is quite interesting to define and study other Casorati curvatures such
as δC(k), δ̂C(k), δC(r; k) and δ̂C(r; k) with 2 ≤ k < n − 1 for submanifolds Mn isometrically immersed in
various space forms.
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21. Historical remarks
Casorati’s first article on his curvature was [20]. The term of ”Casorati curvature” was given by Verstraelen in
his article [115] for his study on visual sensation surfaces in human vision using the critical values of κ21 +κ22 to
determine the contours of the images. According to Verstraelen, he learned Casorati’s first article from Bernard
Rouxel (in a personal communication between the author and L. Verstraelen). The notion of Casorati curvature
was extended by Haesen et al. in [70] to the tangential Casorati curvatures; and by Verstraelen in [113] to the
normal Casorati curvatures. Also, δ -Casorati curvatures was defined for the first time in [54, 55] by Decu et al.

22. Conclusion
Author’s δ -invariants introduced in the early 1990s are intrinsic invariants defined on Riemannian manifolds
of dimension ≥ 3 which are quite different in natural from ”classical” Ricci and scalar curvatures. The main
feature of author’s δ -invariants is to remove certain portions of sectional curvatures from the scalar curvature.
Via δ -invariants the author was able to introduce the notion of ideal submanifolds in the sense that they receive
the least amount of tension from the surrounding space. During the last three decades, many interesting results
and applications in δ -invariants and ideal submanifolds have been achieved by many mathematicians.

On the other hand, in the spirit of δ -invariants, Decu et al. initiated the study of ”extrinsic” δ -Casorati
curvatures in 2007. Since then the study of δ -Casorati curvatures and related Casorati ideal submanifolds has
attracting more and more researchers and a lot of interesting results have been obtained. It is author’s intention
that this comprehensive survey on δ -Casorati curvatures will provide a useful reference for graduate students
and beginning researchers who want to study this subject, as well as for researchers who have already working
in the field.
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