Widths and entropy of sets of smooth functions on compact homogeneous manifolds

Alexander KUSHPEL ${ }^{1, *}{ }^{(1)}$, Kenan TAŞ ${ }^{1}{ }^{(\mathbb{D}}$, Jeremy $^{(1)}$ EVESLEY 2 ©
${ }^{1}$ Department of Mathematics, Faculty of Art and Sciences, Çankaya University, Ankara, Turkey
${ }^{2}$ Department of Mathematics, University of Leicester, Leicester, England

| Received: 22.11 .2019 | Accepted/Published Online: 11.11 .2020 | Final Version: 21.01 .2021 |
| :--- | :--- | :--- | :--- | :--- |

Abstract

We develop a general method to calculate entropy and n-widths of sets of smooth functions on an arbitrary compact homogeneous Riemannian manifold \mathbb{M}^{d}. Our method is essentially based on a detailed study of geometric characteristics of norms induced by subspaces of harmonics on \mathbb{M}^{d}. This approach has been developed in the cycle of works [1, 2, 10-19]. The method's possibilities are not confined to the statements proved but can be applied in studying more general problems. As an application, we establish sharp orders of entropy and n-widths of Sobolev's classes $W_{p}^{\gamma}\left(\mathbb{M}^{d}\right)$ and their generalisations in $L_{q}\left(\mathbb{M}^{d}\right)$ for any $1<p, q<\infty$. In the case $p, q=1, \infty$ sharp in the power scale estimates are presented.

Key words: n-widths, compact homogeneous manifold, Lévy mean, volume

1. Introduction

Let (Ω, v) be a measure space and $\left\{\xi_{k}\right\}_{k \in \mathbb{N}}$ be a sequence of orthonormal, functions on Ω. Let X be a Banach space with the norm $\|\cdot\|_{X}$ and $\left\{\xi_{k}\right\}_{k \in \mathbb{N}} \subset X$. Clearly, $\Xi_{n}(X):=\operatorname{lin}\left\{\xi_{1}, \cdots, \xi_{n}\right\} \subset X, \forall n \in \mathbb{N}$ is a sequence of closed subspaces of X with the norm induced by X. Consider the coordinate isomorphism J defined as

$$
\begin{array}{ccc}
\mathrm{J}: \mathbb{R}^{n} & \longrightarrow & \Xi_{n}(X) \\
\alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right) & \longmapsto & \sum_{k=1}^{n} \alpha_{k} \xi_{k} .
\end{array}
$$

Hence, the definition

$$
\|\alpha\|_{\mathrm{J}^{-1} \Xi_{n}(X)}=\|\mathrm{J} \alpha\|_{X}
$$

induces the norm on \mathbb{R}^{n} which appears to be useful in various applications. Of course, not much can be said regarding such kind of norms even in lower dimensions. To be able to apply methods of geometry of Banach spaces to various open problems in different spaces of functions on Ω we will need to calculate an expectation $\mathbf{E}\left[\rho_{n}(\alpha)\right]$ of the function $\rho_{n}(\alpha):=\|\alpha\|_{J^{-1} \Xi_{n}(X)}$ on the unit sphere $\mathbb{S}^{n-1} \subset \mathbb{R}^{n}$ with respect to Haar measure $d \mu_{n}$, i.e. to find the Lévy $\mathrm{M}\left(\|\cdot\|_{\mathrm{J}^{-1} \Xi_{n}(X)}\right)$ mean

$$
\mathrm{M}\left(\|\cdot\|_{\mathrm{J}^{-1} \Xi_{n}(X)}\right)=\mathbf{E}\left[\rho_{n}(\alpha)\right]=\int_{\mathbb{S}^{n-1}}\|\alpha\|_{\mathrm{J}^{-1} \Xi_{n}(X)} d \mu_{n}(\alpha)
$$

[^0]Observe that the sequence of Lévy means $\mathrm{M}\left(\|\cdot\|_{\mathrm{J}^{-1} \Xi_{n}(X)}\right)$ contain more information then the sequence of volumes $\operatorname{Vol}_{n}\left(B_{J^{-1} \Xi_{n}(X)}\right), n \in \mathbb{N}$, where $B_{\mathrm{J}^{-1} \Xi_{n}(X)}:=\left\{\alpha \mid \alpha \in \mathbb{R}^{n},\|\alpha\|_{\mathrm{J}^{-1} \Xi_{n}(X)} \leq 1\right\}$ is the unit ball induced by the norm $\|\cdot\|_{J^{-1} \Xi_{n}(X)}$ and therefore is more useful in various applications.

As a motivating example consider the case $\Omega=\mathbb{M}^{d}$, where \mathbb{M}^{d} is a compact homogeneous Riemannian manifold, v its normalized volume element, $\left\{\xi_{k}\right\}_{k \in \mathbb{N}}$ is a sequence of orthonormal harmonics on \mathbb{M}^{d} and $X=L_{p}=L_{p}\left(\mathbb{M}^{d}, v\right), p \geq 2$. In general, the sequence $\left\{\xi_{k}\right\}_{k \in \mathbb{N}}$ is not uniformly bounded on \mathbb{M}^{d}. Hence, the method of estimating of Lévy means developed in [10-13] cannot give sharp order result. Various modifications of this method presented in [15-17] give an extra $(\log n)^{1 / 2}$ factor even if $p<\infty$. Our general result is presented in Lemma 3 which gives sharp order estimates for the Lévy means which correspond to the norm induced on \mathbb{R}^{n} by the subspace $\oplus_{s=1}^{m} \mathrm{H}_{k_{s}} \cap L_{p}, \operatorname{dim} \oplus_{s=1}^{m} \mathrm{H}_{k_{s}}:=n$ with an arbitrary index set $\left(k_{1}, \cdots, k_{m}\right)$, where $\mathrm{H}_{k_{s}}$ are the eigenspaces of the Laplace-Beltrami operator for \mathbb{M}^{d} defined by (2.2). To show the boundness of the respective Lévy means as $n \rightarrow \infty$ we impose a technical condition (2.1) which holds in particular for any compact homogeneous Riemannian manifold because of the addition formula (2.4) and employ the equality

$$
\int_{\mathbb{R}^{n}} h(\alpha) d \gamma(\alpha)=\lim _{m \rightarrow \infty} \int_{0}^{1} h\left(\frac{\delta_{1}^{m}(\theta)}{(2 \pi)^{1 / 2}}, \cdots, \frac{\delta_{n}^{m}(\theta)}{(2 \pi)^{1 / 2}}\right) d \theta
$$

where $h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a continuous function, $h\left(\alpha_{1}, \cdots, \alpha_{n}\right) \exp \left(-\sum_{k=1}^{n}\left|\alpha_{k}\right|\right) \rightarrow 0$ uniformly when $\sum_{k=1}^{n}\left|\alpha_{k}\right| \rightarrow$ $\infty, d \gamma(\alpha)=\exp \left(-\pi \sum_{k=1}^{n} \alpha_{k}^{2}\right) d \alpha$ is the Gaussian measure on $\mathbb{R}^{n}, \delta_{k}^{m}(\theta)=m^{-1 / 2}\left(r_{(k-1) m}(\theta)+\cdots+r_{k m}\right)$, $1 \leq k \leq n$ and $r_{s}(\theta)=\operatorname{sign} \sin \left(2^{s} \pi \theta\right), s \in \mathbb{N} \cup\{0\}, \theta \in[0,1]$ is the sequence of Rademacher functions [21], [19]. To extend our estimates to the case $p=\infty$ we apply Lemma 3.1 which gives a useful inequality between norms of polynomials on \mathbb{M}^{d} with an arbitrary spectrum. It seems that the factor $(\log n)^{1 / 2}$ obtained in Lemma 3.2 is essential because of the lower bound for the Lévy means found in [9] in the case of trigonometric system. This fact explains a logarithmic slot in our estimates of entropy numbers presented in Theorem 3.12. Section 3 deals with estimates of entropy numbers and n-widths. Theorem 3.3 establishes general lower bounds for entropy numbers in terms of Lévy means and is of independent interest. We derive lower bounds for the entropy numbers of Sobolev's classes (3.8) using Theorem 3.3 and estimates of Lévy means given by Lemma 3.2. At this point we apply Lemma 2.2 to get the dependence between eigenvalues and dimensions of eigenspaces of the Laplace-Beltrami operator. The proof of Lemma 2.2 is based on Weyl's formula (see [23])

$$
\begin{equation*}
\lim _{a \rightarrow \infty} a^{-d / 2} n(a)=\left(2 \pi^{1 / 2}\right)^{-d} \Gamma\left(1+\frac{d}{2}\right) \mathrm{V}\left(\mathbb{M}^{d}\right) \tag{1.1}
\end{equation*}
$$

where $\mathrm{V}\left(\mathbb{M}^{d}\right)$ is the volume of \mathbb{M}^{d} and $n(a)$ is the number of eigenvalues (each counted with its multiplicity) smaller than a. To get upper bounds for entropy numbers contained in Theorem 3.12 we apply estimates of Lévy means established in Lemma 3.2 and make use of the Pajor-Tomczak-Jaegermann inequality [24] which states in our notations that for any $\lambda \in(0,1)$ there exists a subspace $X_{s} \subset \mathrm{~J}^{-1} \Xi_{n}(X), \operatorname{dim} X_{s}=s>\lambda n$ and a universal constant $C>0$ such that

$$
\begin{equation*}
\|\alpha\|_{2}^{*} \leq C \frac{\mathrm{M}\left(\|\cdot\|_{\mathrm{J}^{-1} \Xi_{n}(X)}^{o}\right)}{(1-\lambda)^{1 / 2}}\|\alpha\|_{\mathrm{J}^{-1} \Xi_{n}(X)}, \quad \forall \alpha \in X_{s} \tag{1.2}
\end{equation*}
$$

where $\|\cdot\|_{2}^{*}=\langle\cdot, \cdot\rangle^{1 / 2}$ is the Euclidean norm on \mathbb{R}^{n} induced by the scalar product $\langle\mathbf{x}, \mathbf{y}\rangle=\sum_{k=1}^{n} x_{k} y_{k}$ and $\|\cdot\|_{\mathrm{J}^{-1} \Xi_{n}(X)}^{o}$ is the dual norm with respect to $\|\cdot\|_{\mathrm{J}^{-1} \Xi_{n}(X)}$. Remark that (1.2) is essentially based on a technical
result due to Gluskin [8]. However, for our applications is sufficient to apply a less sharp result established by Bourgain and Milman [3] which is based on averaging arguments and isoperimetric inequality.

The paper ends with estimates of different n-widths and their applications in calculation of entropy which extend previous results $[1,2,17]$.

In this article there are several universal constants which enter into the estimates. These positive constants are mostly denoted by C, C_{1}, \cdots. We will only distinguish between the different constants where confusion is likely to arise, but we have not attempted to obtain good estimates for them. For ease of notation we will write $a_{n} \ll b_{n}$ for two sequences, if $a_{n} \leq C b_{n}, \forall n \in \mathbb{N}$ and $a_{n} \asymp b_{n}$, if $C_{1} b_{n} \leq a_{n} \leq C_{2} b_{n}, \forall n \in \mathbb{N}$ and some constants C, C_{1} and C_{2}.

Though the main purpose of this paper is to present new results, we have tried to make the text self contained by presenting well-known definitions and elementary properties of entropy numbers and n-widths.

Let X and Y be Banach spaces with the closed unit balls B_{X} and B_{Y} respectively. Let $v: X \rightarrow Y$ be a compact operator. Then the $n^{\text {th }}$ entropy number $e_{n}(v)=e_{n}(v: X \rightarrow Y)$ is the infimum over all positive ϵ such that there exist $y_{1}, \cdots, y_{2^{n-1}}$ in Y such that

$$
v\left(B_{X}\right) \subset \bigcup_{k=1}^{2^{n-1}}\left(y_{k}+\epsilon B_{Y}\right)
$$

Similarly, for a compact set $A \subset Y$ we define the entropy number $e_{n}(A, Y)$ as the infimum of all positive ϵ such that there exist $\left\{y_{k}\right\}_{k=1}^{2^{n-1}} \subset Y$ such that $A \subset \bigcup_{k=1}^{2^{n-1}}\left(y_{k}+\epsilon B_{Y}\right)$. Suppose that A is a convex, compact, centrally symmetric subset of a Banach space X with unit ball B_{X}. The Kolmogorov n-width of A in X is defined by

$$
d_{n}(A, X):=d_{n}\left(A, B_{X}\right):=\inf _{X_{n}} \sup _{f \in A} \inf _{g \in X_{n}}\|f-g\|_{X}
$$

where X_{n} runs over all subspaces of X of dimension n. The Gelfand n-width of A in X is defined by

$$
d^{n}(A, X):=d^{n}\left(A, B_{X}\right):=\inf _{L^{n}} \sup _{x \in L^{n} \cap A}\|x\|_{X}
$$

where L^{n} runs over all subspaces of X of codimension n. The Bernstein n-width of A in X is defined by

$$
b_{n}(A, X):=b_{n}\left(A, B_{X}\right):=\sup _{X_{n+1}} \sup \left\{\epsilon>0: \epsilon B_{X} \cap X_{n+1} \subset A\right\}
$$

where X_{n+1} is any $(n+1)$-dimensional subspace of X. For a compact operator $v: X \rightarrow Y$ we define Kolmogorov's numbers

$$
d_{n}(v)=d_{n}(v: X \rightarrow Y)=\inf _{L \subset Y, \operatorname{dim} L \leq n} \sup _{x \in B_{X}} \inf _{y \in L}\|v x-y\|_{Y}
$$

and Gelfand numbers

$$
d^{n}(v)=d^{n}(v: X \rightarrow Y)=\inf \{\|v|L \|| L \subset X, \operatorname{codim} L \leq n\}
$$

Proposition 1.1 This proposition records some simple properties of n-widths and entropy numbers which we will need.

1. If $X \subset Y$, then $d_{n}(A, Y) \leq d_{n}(A, X)$.
2. Let $n=i+j$ and $A=A_{1}+A_{2}$. Then $d_{n}(A, X) \leq d_{i}\left(A_{1}, X\right)+d_{j}\left(A_{2}, X\right)$.
3. Kolmogorov and Gelfand n-widths are dual. Let X and Y be Banach spaces, $v \in \mathcal{L}(X, Y)$. If X is reflexive and $v(X)$ is dense in Y, then $d_{n}(v)=d^{n}\left(v^{*}\right)$ (see e.g., [22], p.408).
4. Later we will wish to restrict estimation of entropy numbers over infinite-dimensional sets to finitedimensional sets. In order to do this let i be any linear isometry, $i: Y \rightarrow \tilde{Y}$ (here we will think of Y as finite dimensional and i as the imbedding into the infinite dimensional space). Then ([26, Proposition 5.1]) $2^{-1} e_{n}(v) \leq e_{n}(i \circ v) \leq e_{n}(v), \forall n \in \mathbb{N}$.

2. Harmonic analysis

Definition 2.1 Let (Ω, v) be a measure space for some compact set $\Omega \in \mathbb{R}^{s}$, s $\in \mathbb{N}$. Let $\Xi=\left\{\xi_{k}\right\}_{k \in \mathbb{N}}$ be a set of orthonormal functions $\xi_{k}=\xi_{k}(x)$ in $L_{2}(\Omega, \nu)$. Suppose that there exists a sequence $\kappa=\left\{k_{j}\right\}_{j \in \mathbb{N}}, k_{1}=1$, such that for any $j \in \mathbb{N}$ and some $C>0$

$$
\begin{equation*}
\sum_{k=k_{j}}^{k_{j+1}-1}\left|\xi_{k}(x)\right|^{2} \leq C d_{j}, \forall x \in \Omega \tag{2.1}
\end{equation*}
$$

a.e. on Ω, where $d_{j}:=k_{j+1}-k_{j}$. Then we say that $(\Omega, v, \Xi, \kappa) \in \mathcal{K}$.

Consider the set of p-integrable functions on $(\Omega, v), L_{p}=L_{p}(\Omega, v)$. It follows from (2.1) that the functions ξ_{k} are a.e. bounded for every $n \in \mathbb{N}$. Hence, for an arbitrary $\varphi \in L_{p}, 1 \leq p \leq \infty$ it is possible to construct the Fourier coefficients

$$
c_{k}(\varphi)=\int_{\Omega} \varphi \bar{\xi}_{k} d v, \quad k \in \mathbb{N}
$$

and consider the formal Fourier series

$$
\varphi \sim \sum_{l \in \mathbb{N}} \sum_{k=k_{l}}^{k_{l+1}-1} c_{k}(\varphi) \xi_{k}
$$

Let $U_{p}:=\left\{\varphi \mid\|\varphi\|_{p} \leq 1\right\}$ be the unit ball in L_{p}, and $\Lambda=\left\{\lambda_{l}\right\}_{l \in \mathbb{N}}$ be a fixed sequence of complex numbers. We shall say that the multiplier operator Λ is of type (κ, p, q) with the norm $\|\Lambda\|_{p, q}^{\kappa}:=\sup _{\varphi \in U_{p}}\|\Lambda \varphi\|_{q}$, if for any $\varphi \in L_{p}$ there is such $f \in L_{q}$ that

$$
f \sim \sum_{l \in \mathbb{N}} \lambda_{l} \sum_{k=k_{l}}^{k_{l+1}-1} c_{k}(\varphi) \xi_{k}
$$

Let us present here several important examples of measure spaces $(\Omega, v, \Xi, \kappa) \in \mathcal{K}$. Consider a compact, connected, d-dimensional C^{∞} Riemannian manifold \mathbb{M}^{d} with C^{∞} metric. Let g its metric tensor, v its normalized volume element and Δ its Laplace-Beltrami operator. In local coordinates $x_{l}, 1 \leq l \leq d$,

$$
\begin{equation*}
\Delta=-(\bar{g})^{-1 / 2} \sum_{k} \frac{\partial}{\partial x_{k}}\left(\sum_{j} g^{j k}(\bar{g})^{1 / 2} \frac{\partial}{\partial x_{j}}\right) \tag{2.2}
\end{equation*}
$$

where $g_{j k}:=g\left(\partial / x_{j}, \partial / x_{k}\right), \bar{g}:=\left|\operatorname{det}\left(g_{j k}\right)\right|$, and $\left(g^{j k}\right):=\left(g_{j k}\right)^{-1}$. It is well-known that Δ is an elliptic, self adjoint, invariant under isometry, second order operator. The eigenvalues $\theta_{k}, k \geq 0$, of Δ are discrete, nonnegative and form an increasing sequence $0 \leq \theta_{0} \leq \theta_{1} \leq \cdots \leq \theta_{n} \leq \cdots$ with $+\infty$ the only accumulation point. The corresponding eigenspaces $\mathrm{H}_{k}, k \geq 0$ are finite dimensional, $d_{k}:=\operatorname{dim}\left(\mathrm{H}_{k}\right)$, orthogonal and $L_{2}=L_{2}\left(\mathbb{M}^{d}, v\right)=\oplus_{k=0}^{\infty} \mathrm{H}_{k}$. Let us fix an orthonormal basis $\left\{\mathrm{Y}_{m}^{k}\right\}_{m=1}^{d_{k}}$ of H_{k}. Using multiplier operators we can introduce a wide range of sets of smooth functions on \mathbb{M}^{d}. Let φ be an arbitrary function, $\varphi \in L_{p}$, $1 \leq p \leq \infty$ with the formal Fourier series

$$
\varphi \sim c_{0}+\sum_{k \in \mathbb{N}} \sum_{m=1}^{d_{k}} c_{k, m}(\varphi) \mathrm{Y}_{m}^{k}, \quad c_{k, m}(\varphi)=\int_{\mathbb{M}^{d}} \varphi \overline{\mathrm{Y}}_{m}^{k} d v
$$

and $\lambda(\cdot):(0, \infty) \mapsto \mathbb{R}$ be a continuous function. If for any $\varphi \in L_{p}$ there is a function $f:=\Lambda \varphi \in L_{q}$ such that

$$
\varphi \sim c_{0}+\sum_{k \in \mathbb{N}} \lambda\left(\theta_{k}\right) \sum_{m=1}^{d_{k}} c_{k, m}(\varphi) \mathrm{Y}_{m}^{k}
$$

then we shall say that the multiplier operator Λ is of (p, q)-type.
Consider the sets ΛU_{p} generated by multiplier sequences $\left\{\lambda\left(\theta_{k}\right)\right\}$. In particular, let $\lambda(t)=t^{-\gamma / 2}$ then the γ-th fractional integral $\mathrm{I}_{\gamma} \varphi:=\varphi_{\gamma}, \gamma>0$, is defined as

$$
\begin{equation*}
\varphi_{\gamma} \sim c+\sum_{k \in \mathbb{N}} \theta_{k}^{-\gamma / 2} \sum_{m=1}^{d_{k}} c_{k, m}(\varphi) \mathrm{Y}_{m}^{k}, \quad c \in \mathbb{R} \tag{2.3}
\end{equation*}
$$

The function $D_{\gamma} \varphi:=\varphi^{(\gamma)} \in L_{p}, 1 \leq p \leq \infty$ is called the γ-th fractional derivative of φ if

$$
\varphi^{(\gamma)} \sim \sum_{k \in \mathbb{N}} \theta_{k}^{\gamma / 2} \sum_{m=1}^{d_{k}} c_{k, m}(\varphi) \mathrm{Y}_{m}^{k}
$$

The Sobolev classes W_{p}^{γ} are defined as sets of functions with formal Fourier expansions (2.3) where $\|\varphi\|_{p} \leq 1$ and $\int_{\mathbb{M}^{d}} \varphi d v=0$. In this article we assume $c_{0}, c=0$ to guarantee compactness of the set W_{p}^{γ} in L_{q}.

We recall that a Riemannian manifold \mathbb{M}^{d} is called homogeneous if its group of isometries \mathcal{G} acts transitively on it, i.e. for every $x, y \in \mathbb{M}^{d}$, there is a $\mathbf{g} \in \mathcal{G}$ such that $\mathbf{g} x=y$. For a compact homogeneous Riemannian manifold \mathbb{M}^{d} the following addition formula is known [7]

$$
\begin{equation*}
\sum_{k=1}^{d_{k}}\left|\mathrm{Y}_{m}^{k}(x)\right|^{2}=d_{k}, \quad \forall x \in \mathbb{M}^{d} \tag{2.4}
\end{equation*}
$$

where $\left\{\mathrm{Y}_{m}^{k}\right\}_{m=1}^{d_{k}}$ is an arbitrary orthonormal basis of $\mathrm{H}_{k}, k \geq 0$. Hence, any such manifold possesses the property \mathcal{K}, and these include real and complex Grassmannians, the n-torus, the Stiefel manifold, two point homogeneous spaces (the spheres, the real, complex and quaternionic projective spaces and the Cayley elliptic plane), and the complex sphere.

Lemma 2.2 Let \mathbb{M}^{d} be a compact, connected, homogeneous Riemannian manifold, $\left\{\theta_{k}\right\}_{k \in \mathbb{N} \cup\{0\}}$ be the sequence of eigenvalues and $\left\{\mathrm{H}_{k}\right\}_{k \in \mathbb{N} \cup\{0\}}$ be the corresponding sequence of eigenspaces of the Laplace-Beltrami operator Δ on \mathbb{M}^{d}. Put $\mathcal{T}_{N}=\oplus_{k=0}^{N} \mathrm{H}_{k}$ and $\tau_{N}=\operatorname{dim} \mathcal{T}_{N}$. Then

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{\theta_{N+1}}{\theta_{N}}=1 \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{\tau_{N+1}}{\tau_{N}}=1 \tag{2.6}
\end{equation*}
$$

Proof Applying Weyl's formula (1.1) for $a=\theta_{N}$ we get

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \theta_{N}^{-d / 2} n\left(\theta_{N}\right)=\left(2 \pi^{1 / 2}\right)^{-d} \Gamma\left(1+\frac{d}{2}\right) \mathrm{V}\left(\mathbb{M}^{d}\right) \tag{2.7}
\end{equation*}
$$

and it follows that

$$
\lim _{N \rightarrow \infty} \frac{\theta_{N+1}^{-d / 2} n\left(\theta_{N+1}\right)-\theta_{N}^{-d / 2} n\left(\theta_{N}\right)}{\theta_{N}^{-d / 2} n\left(\theta_{N}\right)} \rightarrow 0, \quad N \rightarrow \infty
$$

Now, $n\left(\theta_{N}\right)=\tau_{N}$, so that

$$
\begin{gather*}
\frac{\theta_{N+1}^{-d / 2} \tau_{N+1}-\theta_{N}^{-d / 2} \tau_{N}}{\theta_{N}^{-d / 2} \tau_{N}} \\
=\frac{\theta_{N+1}^{-d / 2}\left(\tau_{N}+\operatorname{dim} H_{N+1}\right)-\theta_{N}^{-d / 2} \tau_{N}}{\theta_{N}^{-d / 2} \tau_{N}} \\
=\frac{\theta_{N+1}^{-d / 2}-\theta_{N}^{-d / 2}}{\theta_{N}^{-d / 2}}+\frac{\theta_{N+1}^{-d / 2}}{\theta_{N}^{-d / 2}} \frac{\operatorname{dim} H_{N+1}}{\tau_{N}} \rightarrow 0, \quad N \rightarrow \infty . \tag{2.8}
\end{gather*}
$$

Since both quotients in the last equation are positive we have

$$
\frac{\theta_{N+1}^{-d / 2}-\theta_{N}^{-d / 2}}{\theta_{N}^{-d / 2}} \rightarrow 0, \quad N \rightarrow \infty
$$

which gives us (2.5). Equation (2.6) follows since

$$
\lim _{N \rightarrow \infty} \frac{\tau_{N+1}}{\tau_{N}}=\lim _{N \rightarrow \infty} \frac{\tau_{N}+\operatorname{dim} H_{N+1}}{\tau_{N}}=1
$$

using the second quotient in (2.8), and (2.5).

3. Estimates of entropy and n-widths

In this section we give several estimates of entropy and n-widths which are order sharp in many important cases. Fix a measure space (Ω, v), an orthonormal system Ξ and a sequence $\left\{k_{j}\right\}_{j \in \mathbb{N}}$ such that $(\Omega, v, \Xi, \kappa) \in \mathcal{K}$. Let

$$
\Xi^{j}:=\operatorname{span}\left\{\xi_{k}\right\}_{k=k_{j}}^{k_{j+1}-1}, \Omega_{m}:=\left\{j_{1}, \cdots, j_{m}\right\}, \quad \Xi\left(\Omega_{m}\right):=\operatorname{span}\left\{\Xi^{j_{s}}\right\}_{s=1}^{m}
$$

KUSHPEL et al./Turk J Math

Put $l_{0}:=0, l_{k}:=\sum_{s=1}^{k} d_{j_{s}}, k=1, \cdots, m$, and $n:=l_{m}=\operatorname{dim}\left(\Xi\left(\Omega_{m}\right)\right)$.
Unfortunately, we need to introduce a reenumeration of the functions ξ_{k}, since we are selecting separated blocks of them. Let us write

$$
\left(\Xi\left(\Omega_{m}\right)\right)=\operatorname{span}\left\{\eta_{i}: i=1, \cdots, n\right\}
$$

with the η_{i} organized so that $\Xi^{j_{s}}=\operatorname{span}\left\{\eta_{i}: l_{s-1}+1 \leq i \leq l_{s}\right\}$. Consider the coordinate isomorphism

$$
\mathrm{J}: \mathbb{R}^{n} \rightarrow \Xi\left(\Omega_{m}\right)
$$

that assigns to $\alpha=\left(\alpha_{1} \cdots, \alpha_{n}\right) \in \mathbb{R}^{n}$ the function $\mathrm{J} \alpha=\xi^{\alpha}=\sum_{l=1}^{n} \alpha_{l} \eta_{l} \in \Xi\left(\Omega_{m}\right)$. Let X and Y be given Banach space such that $\Xi\left(\Omega_{m}\right) \subset X \cap Y$ for any $\Omega_{m} \subset \mathbb{N}$. Put $X_{n}=\Xi\left(\Omega_{m}\right) \cap X$ and $Y_{n}=\Xi\left(\Omega_{m}\right) \cap Y$. Let $\lambda_{i} \in \mathbb{R}, i=1, \cdots, m$, and

$$
\Lambda_{n}=\operatorname{diag}\left\{\lambda_{1} \mathrm{I}_{d_{j_{1}}}, \cdots, \lambda_{m} \mathrm{I}_{d_{j_{m}}}\right\}
$$

where I_{s} is the identity matrix of dimension s. Now, if Λ_{n} is invertible then $\mathrm{J} \Lambda_{n} \mathrm{~J}^{-1}: \Xi\left(\Omega_{m}\right) \rightarrow \Xi\left(\Omega_{m}\right)$ is an invertible operator which essentially multiplies each block $\Xi^{j_{s}}$ by $\lambda_{s}, s=1, \cdots, m$. Since it should not cause any confusion we will refer to this operator also as Λ_{n}.

In what follows, a $*$ will be used to denote norms and balls in Euclidean space, and lack of a $*$ will indicate the same quantities in function spaces. Let us define the norms

$$
\|\alpha\|_{X_{n}}^{*}=\left\|\xi^{\alpha}\right\|_{X_{n}}=\left\|\xi^{\alpha}\right\|_{X}
$$

Put $B_{X_{n}}^{*}:=\left\{\alpha \in \mathbb{R}^{n},\|\alpha\|_{X_{n}}^{*} \leq 1\right\}$, and $B_{X_{n}}:=\mathrm{J} B_{X_{n}}^{*}$.
Lemma 3.1 For any Ω_{m} and any $\xi \in \Xi\left(\Omega_{m}\right) \subset L_{\infty}, m \in \mathbb{N}$ we have

$$
\|\xi\|_{\infty} \leq C n^{1 / 2}\|\xi\|_{2}
$$

where $n:=\operatorname{dim} \Xi\left(\Omega_{m}\right)$.
Proof Let

$$
K_{n}(x, y):=\sum_{i=1}^{n} \eta_{i}(x) \overline{\eta_{i}(y)}
$$

be the reproducing kernel for $\Xi\left(\Omega_{m}\right)$. Clearly,

$$
K_{n}(x, y)=\int_{\mathbb{M}^{d}} K_{n}(x, z) K_{n}(z, y) d v(z)
$$

and $K_{n}(x, y)=\overline{K_{n}(y, x)}$. Since $(\Omega, v, \Xi, \kappa) \in \mathcal{K}$, from (2.1), we have $\left\|K_{n}(x, \cdot)\right\|_{2} \leq C n^{1 / 2}, \forall x \in \mathbb{M}^{d}$. Then applying Hölder inequality we get

$$
\begin{aligned}
\|\xi\|_{\infty} & =\max _{x \in \mathbb{M}^{d}}\left|\int_{\mathbb{M}^{d}} K_{n}(x, z) \xi(z) d v(z)\right| \\
& \leq \max _{x \in \mathbb{M}^{d}}\left\|K_{n}(x, \cdot)\right\|_{2}\|\xi\|_{2}
\end{aligned}
$$

KUSHPEL et al./Turk J Math

$$
\leq C n^{1 / 2}\|\xi\|_{2}
$$

Let us fix a norm $\|\cdot\|^{*}$ on \mathbb{R}^{n} and let $E=\left(\mathbb{R}^{n},\|\cdot\|^{*}\right)$ be a Banach space with the unit ball B_{E}^{*}. The dual space $E^{* o}=\left(\mathbb{R}^{n},\|\cdot\|^{* o}\right)$ is endowed with the norm $\|\xi\|^{* o}=\sup _{\sigma \in B_{E}^{*}}|\langle\xi, \sigma\rangle|$ and has the unit ball $B_{E^{* o}}$. In these notations the Lévy mean $M_{B_{E^{*}}}$ is

$$
\mathrm{M}_{B_{E^{*}}}=\int_{\mathbb{S}^{n-1}}\|\xi\|^{*} d \mu
$$

where $d \mu$ denotes the normalised invariant measure on \mathbb{S}^{n-1}, the unit sphere in \mathbb{R}^{n}. We are interested in the case where $\|\cdot\|=\|\alpha\|_{\mathrm{I}_{n}, L_{p}}^{*}$. In the case $\Omega_{m}=\{1, \cdots, m\}$ the estimates of the associated Lévy means were obtained in [19]. For an arbitrary index set the respective result was established in [20]. This we state as

Lemma 3.2 Let $X_{n}=L_{p} \cap \Xi\left(\Omega_{m}\right)$ with the unit ball $B_{L_{p}}^{* n}$, and $n:=\operatorname{dim} \Xi\left(\Omega_{m}\right)$. Then

$$
\mathrm{M}_{B_{L_{p}}^{* n}} \leq C\left\{\begin{array}{cl}
p^{1 / 2}, & p<\infty \\
(\log n)^{1 / 2}, & p=\infty
\end{array}\right.
$$

We can now give lower bounds for entropy in terms of Lévy means. In the following the reader should be identifying the spaces X and Y with L_{p} and L_{q} respectively for some $1 \leq p, q \leq \infty$. However, we wished to state the result in greater generality, and then apply the previous result to extract particular results in these cases.

Theorem 3.3 Viewing $\Xi\left(\Omega_{m}\right)$ as a subspace $X_{n} \subset X$ and $Y_{n} \subset Y$, we have

$$
e_{k}\left(\Lambda U_{X}, Y\right) \geq 2^{-1-k / n} \frac{\left|\operatorname{det} \Lambda_{n}\right|^{1 / n}}{\mathrm{M}_{B_{X_{n}}^{*}} \mathrm{M}_{\left(B_{Y_{n}}^{*}\right)^{o}}^{*}}
$$

where $k, n \in \mathbb{N}$ are arbitrary.
Proof First, we use Proposition 1.1 (4) to obtain the estimate

$$
\begin{equation*}
e_{k}\left(\Lambda U_{X}, Y\right) \geq 2^{-1} e_{k}\left(\Lambda U_{X} \cap \Xi_{n}, Y \cap \Xi_{n}\right)=2^{-1} e_{k}\left(\Lambda_{n}\left(B_{X_{n}}^{*}\right), B_{Y_{n}}^{*}\right) \tag{3.1}
\end{equation*}
$$

using the appropriate norms in X_{n} and Y_{n}. Let $\vartheta_{1}, \cdots, \vartheta_{N(\epsilon)}$ be a minimal ϵ-net for $\Lambda_{n}\left(B_{X_{n}}^{*}\right)$ in $\left(B_{Y_{n}}^{*}, \mathbb{R}^{n}\right)$. Then,

$$
\Lambda_{n} B_{X_{n}}^{*} \subset \bigcup_{k=1}^{N(\epsilon)}\left(\epsilon B_{Y_{n}}^{*}+\vartheta_{k}\right)
$$

By comparing volumes we get

$$
\begin{gathered}
\operatorname{Vol}_{n}\left(\Lambda_{n} B_{X_{n}}^{*}\right)=\left|\operatorname{det} \Lambda_{n}\right| \operatorname{Vol}_{n}\left(B_{X_{n}}^{*}\right) \\
\leq \epsilon^{n} N(\epsilon) \operatorname{Vol}_{n}\left(B_{Y_{n}}^{*}\right)
\end{gathered}
$$

If we put $N(\epsilon)=2^{k-1}$, then from the last inequality and the definition of entropy numbers we obtain

$$
\begin{equation*}
\epsilon=e_{k}\left(\Lambda_{n} B_{X_{n}}^{*}, B_{Y_{n}}^{*}\right) \geq 2^{-k / n}\left|\operatorname{det} \Lambda_{n}\right|^{1 / n}\left(\frac{\operatorname{Vol}_{n}\left(B_{X_{n}}^{*}\right)}{\operatorname{Vol}_{n}\left(B_{Y_{n}}^{*}\right)}\right)^{1 / n} \tag{3.2}
\end{equation*}
$$

Let B_{2}^{*} be the unit Euclidian ball in $\mathbb{R}^{n}, V \subset \mathbb{R}^{n}$ be a convex symmetric body and V^{o} its dual. From Uryson's inequality ([26], p.6),

$$
\left(\frac{\mathrm{Vol}_{n} V}{\operatorname{Vol}_{n} B_{2}^{*}}\right)^{1 / n} \leq \mathrm{M}_{V^{o}}
$$

it follows that

$$
\left(\operatorname{Vol}_{n}\left(B_{Y_{n}}^{*}\right)\right)^{1 / n} \leq \mathrm{M}_{\left(B_{Y_{n}}^{*}\right)^{o}}\left(\operatorname{Vol}_{n}\left(B_{2}^{*}\right)\right)^{1 / n}
$$

so that

$$
\begin{equation*}
\left(\frac{\operatorname{Vol}_{n}\left(B_{X_{n}}^{*}\right)}{\operatorname{Vol}_{n}\left(B_{Y_{n}}^{*}\right)}\right)^{1 / n} \geq \frac{\left(\operatorname{Vol}_{n}\left(B_{X_{n}}^{*}\right)\right)^{1 / n}}{\mathrm{M}_{\left(B_{Y_{n}}^{*}\right)}\left(\operatorname{Vol}_{n}\left(B_{2}^{*}\right)\right)^{1 / n}} \tag{3.3}
\end{equation*}
$$

Also, a direct calculation shows that

$$
\begin{equation*}
\left(\frac{\operatorname{Vol}_{n}\left(B_{X_{n}}^{*}\right)}{\operatorname{Vol}_{n}\left(B_{2}^{*}\right)}\right)^{1 / n}=\left(\int_{\mathbb{S}^{n-1}}\|\alpha\|^{-n} d \mu(\alpha)\right)^{1 / n} \geq \mathrm{M}_{B_{X_{n}}^{*}}^{-1} \tag{3.4}
\end{equation*}
$$

Combining (3.1), (3.3) and (3.4) we have

$$
\left(\frac{\operatorname{Vol}_{n}\left(B_{X_{n}}^{*}\right)}{\operatorname{Vol}_{n}\left(B_{Y_{n}}^{*}\right)}\right)^{1 / n} \geq \frac{1}{\mathrm{M}_{B_{X_{n}}^{*}} \mathrm{M}_{\left(B_{Y_{n}}^{*}\right)^{\circ}}}
$$

and substitution into (3.2) completes the proof.

Remark 3.4 Assume that $\left|\lambda_{1}\right| \geq \cdots \geq\left|\lambda_{n}\right|$. Then $\left|\operatorname{det} \Lambda_{n}\right|^{1 / n} \geq\left|\lambda_{n}\right|$, and for $k=n$ we have

$$
\begin{equation*}
e_{n}\left(\Lambda U_{X}, Y\right) \geq \frac{\left|\lambda_{n}\right|}{4 M_{B_{X_{n}}^{*}} M_{\left(B_{Y_{n}}^{*}\right)}} \tag{3.5}
\end{equation*}
$$

Remark 3.5 Let $(\Omega, v, \Xi, \kappa) \in \mathcal{K}, X=L_{p}$ and $Y=L_{q}, 1 \leq q \leq 2 \leq p \leq \infty$. Then using Hölder's inequality we get

$$
\begin{equation*}
\mathrm{M}_{\left(B_{L_{q}}^{* n}\right)^{o}}=\int_{\mathbb{S}^{n-1}}\|\xi\|_{L_{q}}^{* o} d \mu \leq \int_{\mathbb{S}^{n-1}}\|\xi\|_{L_{q^{\prime}}}^{*} d \mu=\mathrm{M}_{B_{L_{q^{\prime}}}^{* n}} \tag{3.6}
\end{equation*}
$$

where $1 / q+1 / q^{\prime}=1$. Comparing Lemma 3.2 with (3.5) and (3.6) we find

$$
e_{n}\left(\Lambda U_{L_{p}}, L_{q}\right) \gg\left|\lambda_{n}\right|\left\{\begin{array}{cl}
\left(p q^{\prime}\right)^{-1 / 2}, & p<\infty, q>1 \tag{3.7}\\
(p \log n)^{-1 / 2}, & p<\infty, q=1 \\
\left(q^{\prime} \log n\right)^{-1 / 2}, & p=\infty, q>1 \\
(\log n)^{-1}, & p=\infty, q=1
\end{array}\right.
$$

To proceed with calculation of entropy numbers we need to assume a technical condition on the multiplyer Λ.

Definition 3.6 We say that $\Lambda \in \mathcal{A}$ if $\lambda(\cdot):(0, \infty) \longmapsto(0, \infty)$ is a decreasing continuous function such that $\lambda(c t) \gg \lambda(t), t \rightarrow \infty$ for any $c \geq 1$.

Remark 3.7 Remind that $\tau_{N}=\operatorname{dim} \mathcal{T}_{N}$. Put $n=\tau_{N}$ and $\tilde{n}=\tau_{N+1}$ in (3.7). By (2.7) we have $\tau_{N}=$ $C \theta_{N}^{d / 2}\left(1+\epsilon_{N}\right)$, where $\epsilon_{N} \rightarrow 0$ as $N \rightarrow \infty$. Let

$$
\varrho_{N}:=\left\{\begin{array}{cl}
(p /(q-1))^{-1 / 2}, & p<\infty, q>1 \\
(p \log N)^{-1 / 2}, & p<\infty, q=1 \\
(\log N /(q-1))^{-1 / 2}, & p=\infty, q>1 \\
(\log N)^{-1}, & p=\infty, q=1
\end{array}\right.
$$

and $\Lambda \in \mathcal{A}$. From (3.7) it follows that

$$
\begin{gathered}
e_{\tilde{n}}\left(\Lambda U_{p}, L_{q}\right) \gg \lambda\left(\theta_{N+1}\right) \varrho_{N}=\lambda\left(\frac{\theta_{N+1}}{\theta_{N}} \theta_{N}\right) \varrho_{N} \\
\gg \lambda\left(c \theta_{N}\right) \varrho_{N} \gg \lambda\left(\theta_{N}\right) \varrho_{N}
\end{gathered}
$$

where the last step follows from Lemma 2.2. Since the sequence of entropy numbers is not increasing, then

$$
e_{m} \geq C \lambda\left(\theta_{N}\right) \varrho_{N} \gg \lambda\left(\frac{\theta_{N}}{n^{2 / d}} n^{2 / d}\right) \gg \lambda\left(n^{2 / d}\right) \varrho_{N}, \quad \forall m \in[n, \tilde{n}]
$$

where we have used (2.7) in the third inequality. From the last inequality we get

$$
\begin{equation*}
e_{n}\left(\Lambda U_{p}, L_{q}\right) \gg \lambda\left(n^{2 / d}\right) \varrho_{n} \tag{3.8}
\end{equation*}
$$

In particular, if $\lambda(t)=t^{-\gamma / 2}, \gamma>0$, then $\Lambda \in \mathcal{A}$ and $\Lambda U_{p}=W_{p}^{\gamma}$. In this case,

$$
e_{n}\left(W_{p}^{\gamma}, L_{q}\right) \gg n^{-\gamma / d} \varrho_{n}
$$

Remark 3.8 From [19, Theorem 4], [20] it follows that

$$
d^{\left[C \theta_{N}^{d / 2}\right]}\left(\Lambda U_{p}, L_{q}\right) \gg \lambda\left(\theta_{N}^{2 / d}\right), \quad 1<p, q<\infty
$$

Let $\varphi \in L_{p}, 2 \leq p \leq \infty$ and $1 \leq q \leq 2$. Then $\|\Lambda \varphi\|_{q} \leq\|\Lambda \varphi\|_{2} \leq C\|\varphi\|_{2} \leq C\|\varphi\|_{p}$, i.e., $\Lambda \in \mathcal{L}\left(L_{p}, L_{q}\right)$. It is easy to check that ΛL_{p} is dense in L_{q} since $L_{2}=\bar{\oplus}_{k=0}^{\infty} \mathrm{H}_{k}{ }^{L_{2}}$ and L_{2} is dense in L_{q}. Also, L_{p} is reflexive if $2 \leq p<\infty$. Hence, for any $N \in \mathbb{N}$ and $1<p, q<\infty$, from the duality of Kolmogorov and Gel'fand n-widths given by Proposition 1.1,

$$
d_{\left[C \theta_{N+1}^{d / 2}\right]}\left(\Lambda U_{p}, L_{q}\right) \gg \lambda\left(\frac{\theta_{N+1}}{\theta_{N}} \theta_{N}\right)
$$

By Lemma 2.2 $\lim _{N \rightarrow \infty} \theta_{N+1} / \theta_{N}=1$. Thus, $\theta_{N+1} / \theta_{N} \leq 2$ for some $N_{0} \in \mathbb{N}$ and any $N \geq N_{0}$. Assume that $\Lambda \in \mathcal{A}$ then the last estimate can be rewritten as

$$
d_{\left[C \theta_{N+1}^{d / 2}\right]}\left(\Lambda U_{p}, L_{q}\right) \gg \lambda\left(\theta_{N}\right)
$$

Since the sequence of Kolmogorov's n-widths d_{n} is nonincreasing, then

$$
d_{\left[C n^{d / 2}\right]}\left(\Lambda U_{p}, L_{q}\right) \gg \lambda(n)
$$

for any $n, \theta_{N} \leq n \leq \theta_{N+1}$. Therefore, for any $n \in \mathbb{N}$,

$$
d_{n}\left(\Lambda U_{p}, L_{q}\right) \gg \lambda\left(n^{2 / d}\right), \quad 1<p, q<\infty
$$

In the case of Sobolev's classes we get

$$
d_{n}\left(W_{p}^{\gamma}, L_{q}\right) \gg n^{-\gamma / d}, 1<p, q<\infty, \gamma>0 .
$$

Remark 3.9 Lower bounds for Bernstein's n-widths may also be obtained. Let $\Lambda \in \mathcal{A}, \Lambda=\left\{\lambda^{-1}\left(\theta_{k}\right)\right\}$ and $\Lambda^{-1}:=\left\{\lambda^{-1}\left(\theta_{k}\right)\right\}$. Then, $\forall z=\sum_{k=0}^{M} \sum_{m=1}^{d_{k}} c_{k, m} Y_{k, m} \in \mathcal{T}_{M}$ we have

$$
\begin{gathered}
\left\|\Lambda^{-1} z\right\|_{2}^{2} \\
=\left\|\Lambda^{-1}\left(\sum_{k=1}^{M} \sum_{m=1}^{d_{k}} c_{k, m}(z) Y_{m}^{k}\right)\right\|_{2}^{2}=\left\|\sum_{k=1}^{M} \lambda^{-1}\left(\theta_{k}\right) \sum_{m=1}^{d_{k}} c_{k, m}(z) Y_{m}^{k}\right\|_{2}^{2} \\
=\sum_{k=1}^{M} \lambda^{-2}\left(\theta_{k}\right) \sum_{m=1}^{d_{k}}\left|c_{k, m}(z)\right|^{2} \leq\left(\max _{1 \leq k \leq M} \lambda^{-2}\left(\theta_{k}\right)\right) \sum_{k=1}^{M} \sum_{m=1}^{d_{k}}\left|c_{k, m}(z)\right|^{2} \\
=\lambda^{-2}\left(\theta_{M}\right)\|z\|_{2}^{2}
\end{gathered}
$$

so that $\left\|\Lambda^{-1} z\right\|_{2} \leq \lambda^{-1}\left(\theta_{M}\right)\|z\|_{2}$. Therefore, $\lambda\left(\theta_{M}\right) U_{2} \cap \mathcal{T}_{M} \subset \Lambda U_{2}$ and

$$
b_{n}\left(\Lambda U_{2}, L_{q}\right) \geq b_{n}\left(\lambda\left(\theta_{M}\right) U_{2} \cap \mathcal{T}_{M}, L_{q}\right)=\lambda\left(\theta_{M}\right) b_{n}\left(U_{2} \cap \mathcal{T}_{M}, L_{q}\right)
$$

Set $m=\operatorname{dim} \mathcal{T}_{M}$. By [24, Theorem 1] there exists a subspace $X_{s} \subset\left\{\mathbb{R}^{m},\|\cdot\|_{q^{\prime}}^{*}\right\}, 1 \leq q \leq 2,1 / q+1 / q^{\prime}=1$, $\operatorname{dim} X_{s}=s>\lambda l, 0<\lambda<1$, such that

$$
\begin{equation*}
\|\alpha\|_{2}^{*} \leq C M_{B_{q^{\prime}}^{* m}}(1-\lambda)^{-1 / 2}\left(\|\alpha\|_{q^{\prime}}^{*}\right)^{o}, \quad \forall \alpha \in X_{s} \tag{3.9}
\end{equation*}
$$

Let $\lambda=1 / 2$. Then $\|\alpha\|_{2}^{*} \leq C_{1} \mathrm{M}_{B_{L_{\prime^{\prime}}}^{* m}}\left(\|\alpha\|_{q^{\prime}}^{*}\right)^{o}$ and by Hölder's inequality $\left(\|\alpha\|_{q^{\prime}}^{*}\right)^{o} \leq\|\alpha\|_{q}^{*}$. Hence,

$$
\|\alpha\|_{2}^{*} \leq C_{1} \mathrm{M}_{B_{q_{q^{\prime}}}^{* m}}\|\alpha\|_{q}^{*}, \quad 1 \leq q \leq 2
$$

Since, by Lemma 3.2, $\mathrm{M}_{B_{L_{q^{\prime}}}^{* m}} \leq C_{2}, 2<q^{\prime}<\infty$, we have

$$
\|\alpha\|_{2}^{*} \leq C_{3}\|\alpha\|_{q}^{*} \quad \forall \alpha \in X_{s} .
$$

Therefore $X_{s} \cap B_{q}^{*} \subset C_{4} X_{s} \cap B_{2}^{*}$ and since the spaces \mathbb{R}^{m} and $\mathrm{J}^{m}=\mathcal{T}_{M}$ are isometrically isomorphic we get $\|z\|_{2} \leq C_{3}\|z\|_{q}, \forall z \in \mathrm{~J} X_{s} \subset \mathcal{T}_{M}, s \geq[m / 2]$. Hence, denoting an arbitrary s-dimensional subspace of \mathcal{T}_{M} by Y_{s},

$$
b_{s-1}\left(U_{2} \cap \mathcal{T}_{M}, L_{q}\right)=\sup _{Y_{s} \subset L_{q}} \sup _{\varepsilon>0}\left\{\varepsilon U_{q} \cap Y_{s} \subset U_{2}\right\}
$$

$$
\begin{gathered}
\text { KUSHPEL et al./Turk J Math } \\
\geq \sup _{\varepsilon>0}\left\{\varepsilon U_{q} \cap \mathrm{~J} X_{s} \subset U_{2} \cap \mathcal{T}_{M}\right\} \\
\geq \sup _{\varepsilon>0}\left\{\varepsilon C_{3}^{-1} U_{2} \cap \mathrm{~J} X_{s} \subset U_{2} \cap \mathcal{T}_{M}\right\} \geq C_{3}^{-1} .
\end{gathered}
$$

Consequently,

$$
b_{s-1}\left(\Lambda U_{2}, L_{q}\right) \gg \lambda\left(\theta_{M}\right), s \geq[m / 2] .
$$

Finally, applying the same line of arguments as in Remark 3 we get

$$
b_{n}\left(\Lambda U_{2}, L_{q}\right) \gg \lambda\left(n^{2 / d}\right), q>1
$$

We now turn to estimates for the upper bounds of entropy and n-widths. To avoid long technical notations we shall present here just results in the case of Sobolev's classes, i.e. if $\lambda(t)=t^{-\gamma / 2}$.

Theorem 3.10 Let $2 \leq p, q \leq \infty$ and $\gamma>d / 2$. Then

$$
d_{n}\left(\Lambda U_{p}, L_{q}\right) \ll n^{-\gamma / d} \begin{cases}q^{1 / 2}, & 2 \leq q<\infty \\ (\log n)^{1 / 2}, & q=\infty\end{cases}
$$

Proof It is sufficient to consider the case $p=2$, since the case $p \geq 2$ follows by imbedding. For a given $N \in \mathbb{N}$ let θ_{N} be the corresponding eigenvalue of the Laplace-Beltrami operator for \mathbb{M}^{d}. Put $N_{-1}:=1, N_{0}:=N$ and for any $k \geq 0$ let N_{k+1} be such that $\theta_{N_{k+1}-1} \leq 2^{2 / \gamma} \theta_{N_{k}} \leq \theta_{N_{k+1}}$. This is always possible to do since the sequence of eigenvalues forms an increasing sequence with $+\infty$ as the only accumulation point. By Lemma 2.2, $\lim _{k \rightarrow \infty} \theta_{N_{k+1}} / \theta_{N_{k+1}-1}=1$. Then, a simple argument shows that,

$$
\lim _{k \rightarrow \infty} \theta_{N_{k+1}} / \theta_{N_{k}}=2^{2 / \gamma} .
$$

From here we conclude that there is a $\delta(k)$, with $\delta \rightarrow 0$ as $k \rightarrow \infty$, and constants $C_{1}, C_{2}>0$ such that

$$
\begin{equation*}
C_{1}(1+\delta)^{-k} 2^{2 k / \gamma} \theta_{N} \leq \theta_{N_{k}} \leq C_{2}(1+\delta)^{k} 2^{2 k / \gamma} \theta_{N} \tag{3.10}
\end{equation*}
$$

Let $\mathcal{T}_{N_{k}, N_{k+1}}:=\oplus_{l=N_{k}}^{N_{k+1}} \Xi_{l}$, and $\operatorname{dim} \mathcal{T}_{N_{k}, N_{k+1}}=l_{k}$. Using (2.7) we get

$$
\begin{equation*}
l_{k}<\operatorname{dim} \mathcal{T}_{N_{k+1}} \leq C \theta_{N_{k+1}}^{d / 2} \tag{3.11}
\end{equation*}
$$

It is easy to check that

$$
\begin{equation*}
\mathrm{I}_{\gamma}\left(U_{2} \cap \mathcal{T}_{N_{k}, N_{k+1}}\right) \subset \theta_{N_{k}}^{-\gamma / 2}\left(U_{2} \cap \mathcal{T}_{N_{k}, N_{k+1}}\right) \tag{3.12}
\end{equation*}
$$

Thus, by Lemma 3.1 and (3.11),

$$
\begin{gather*}
U_{2} \cap \mathcal{T}_{N_{k}, N_{k+1}} \subset C l_{k}^{1 / 2}\left(U_{\infty} \cap \mathcal{T}_{N_{k}, N_{k+1}}\right) \\
\subset C \theta_{N_{k+1}}^{d / 4}\left(U_{\infty} \cap \mathcal{T}_{N_{k}, N_{k+1}}\right) \tag{3.13}
\end{gather*}
$$

KUSHPEL et al./Turk J Math

Clearly, $\|\mathrm{P}\|_{L_{2} \rightarrow L_{2} \cap \mathcal{T}_{N_{k}, N_{k+1}}}=1$, where P is the orthogonal projection. Hence, by (3.12),

$$
\begin{align*}
W_{2}^{\gamma} & =\mathrm{I}_{\gamma} U_{2} \subset \bigoplus_{k=-1}^{\infty} \mathrm{I}_{\gamma}\left(U_{2} \cap \mathcal{T}_{N_{k}, N_{k+1}}\right) \\
& \subset \bigoplus_{k=-1}^{\infty} \theta_{N_{k}}^{-\gamma / 2}\left(U_{2} \cap \mathcal{T}_{N_{k}, N_{k+1}}\right) . \tag{3.14}
\end{align*}
$$

Let $\epsilon>0$ be a fixed parameter which will be specified later,

$$
M:=\left[\epsilon^{-1} \log \left(\tau_{N}\right)\right], m_{0}:=\tau_{N}, m_{k}:=\left[2^{-\epsilon k} \tau_{N}\right]+1
$$

if $1 \leq k \leq M$ and $m_{k}:=0$ if $k>M$. Let

$$
\mu:=\sum_{k=0}^{M} m_{k} \leq \tau_{N}+\sum_{k=1}^{M} 2^{-\epsilon k} \tau_{N}+M \leq C \tau_{N} \leq C \theta_{N}^{d / 2}
$$

Using Proposition 1.1 (a) and (b), (3.13) and (3.14) we find

$$
\begin{gather*}
d_{\mu}\left(W_{2}^{\gamma}, L_{q}\right) \leq C \sum_{k=0}^{M} \theta_{N_{k}}^{-\gamma / 2} d_{m_{k}}\left(U_{2} \cap \mathcal{T}_{N_{k}, N_{k+1}}, L_{q} \cap \mathcal{T}_{N_{k}, N_{k+1}}\right) \\
+C \sum_{k=M+1}^{\infty} \theta_{N_{k}}^{-\gamma / 2} \theta_{N_{k+1}}^{d / 4} d_{0}\left(U_{\infty} \cap \mathcal{T}_{N_{k}, N_{k+1}}, L_{\infty} \cap \mathcal{T}_{N_{k}, N_{k+1}}\right) \\
:=\sigma_{1}+\sigma_{2} \tag{3.15}
\end{gather*}
$$

where using the fact that $d_{0}\left(U_{\infty} \cap \mathcal{T}_{N_{k}, N_{k+1}}, L_{\infty} \cap \mathcal{T}_{N_{k}, N_{k+1}}\right)=1$,

$$
\sigma_{2} \leq C \sum_{k=M+1}^{\infty} \theta_{N_{k}}^{-\gamma / 2} \theta_{N_{k+1}}^{d / 4}
$$

Using (3.10),

$$
\sigma_{2} \leq C \theta_{N}^{-\gamma / 2+d / 4} \sum_{k \geq C \epsilon^{-1} \log \theta_{N}} 2^{-k(2 / \gamma)(\gamma / 2-d / 4)}(1+\delta)^{k}
$$

Since $\delta>0$, and for sufficiently large N we can choose δ as small as we please, then the last series converges if $\gamma / d>1 / 2-1 / q$. In this case

$$
\begin{gathered}
\sigma_{2} \leq C \theta_{N}^{-\gamma / 2+d / 4} 2^{C\left(\log \theta_{N}\right)(-\gamma / 2+d / 4) / \epsilon \gamma}(1+\delta)^{C\left(\log \theta_{N}\right) / \epsilon} \\
\leq C \theta_{N}^{-\gamma / 2+d / 4} \theta_{N}^{C(-\gamma / 2+d / 4) / \epsilon \gamma} \theta_{N}^{C \eta / \epsilon},
\end{gathered}
$$

where $\eta:=\log (1+\delta)$. Hence, if

$$
\begin{equation*}
0<\epsilon<C(\gamma-d / 2) \tag{3.16}
\end{equation*}
$$

then

$$
\begin{equation*}
\sigma_{2} \leq C \theta_{N}^{-\gamma / 2} \tag{3.17}
\end{equation*}
$$

To complete the proof we need to get upper bounds for σ_{1}. From (3.9), there exists a subspace $L_{s}^{l} \subset\left\{\mathbb{R}^{l},\|\cdot\|_{q}^{*}\right\}$, $\operatorname{dim} L_{s}^{l}=s>\lambda l, 0<\lambda<1$, such that

$$
\|\alpha\|_{2}^{*} \leq C \mathrm{M}_{B_{L_{q}}^{* l}}(1-\lambda)^{-1 / 2}\left(\|\alpha\|_{q}^{*}\right)^{o}
$$

for any $\alpha \in L_{s}^{l}$. Put $m:=l-s$, then

$$
\|z\|_{2} \leq C(l / m)^{1 / 2} \mathrm{M}_{B_{L_{q}}^{* l}}\|z\|_{q}^{o}
$$

for any $z \in J L_{s}^{l}$. By duality of Kolmogorov's and Gel'fand's n-widths, recalling the definition of m_{k}, and letting $X_{m_{k}}^{l_{k}} \subset \mathcal{T}_{N_{k}, N_{k+1}}$ be an arbitrary subspace of codimension m_{k}, we get

$$
\begin{gathered}
d_{m_{k}}\left(B_{2} \cap \mathcal{T}_{N_{k}, N_{k+1}}, L_{q} \cap \mathcal{T}_{N_{k}, N_{k+1}}\right) \\
=d^{m_{k}}\left(\left(B_{q} \cap \mathcal{T}_{N_{k}, N_{k+1}}\right)^{o}, L_{2} \cap \mathcal{T}_{N_{k}, N_{k+1}}\right) \\
=\inf _{X_{m_{k}}^{l_{k}} \subset \mathcal{T}_{N_{k}, N_{k+1}}} \sup _{z \in X_{m_{k}}^{l_{k}} \cap\left(B_{q} \cap \mathcal{T}_{N_{k}, N_{k+1}}\right)^{o}}\|z\|_{2} \\
\leq \sup _{z \in J L_{s_{k}}^{l_{k} \cap\left(B_{q} \cap \mathcal{T}_{N_{k}, N_{k+1}}\right)^{o}}}\|z\|_{2},
\end{gathered}
$$

where $s_{k}=l_{k}-m_{k}$, since $J L_{s_{k}}^{l_{k}}$ is a specific subspace of codimension m_{k}. Thus, using Lemma 2.2 and (3.11),

$$
\begin{gathered}
d_{m_{k}}\left(B_{2} \cap \mathcal{T}_{N_{k}, N_{k+1}}, L_{q} \cap \mathcal{T}_{N_{k}, N_{k+1}}\right) \\
\leq C\left(\frac{l_{k}}{m_{k}}\right)^{1 / 2} \mathrm{M}_{B_{L_{q}}^{* l_{k}}} \sup _{z \in J L_{s_{k}}^{l_{k} \cap\left(B_{q} \cap \mathcal{T}_{\left.N_{k}, N_{k+1}\right)^{\circ}}\right.}}\|z\|_{\left(B_{q} \cap \mathcal{T}_{N_{k}, N_{k+1}}\right)^{o}} \\
\leq C\left(\frac{\tau_{N_{k+1}}}{m_{k}}\right)^{1 / 2} \mathrm{M}_{B_{L_{q}}^{* l_{k}}} \\
\leq C\left(\frac{\theta_{N_{k+1}}^{d / 2}}{m_{k}}\right)^{1 / 2} \mathrm{M}_{B_{L_{q}}^{* l_{k}}} \\
\leq C\left(\frac{\left((1+\delta)^{k} 2^{2 k / \gamma} \theta_{N}\right)^{d / 2}}{2^{-\epsilon k} \tau_{N}+1}\right)^{1 / 2} \mathrm{M}_{B_{L_{q}}^{* l_{k}}}
\end{gathered}
$$

from (3.10). Simplifying this last expression, it follows from Lemma 3.2 that

$$
\begin{aligned}
& d_{m_{k}}\left(B_{2} \cap \mathcal{T}_{N_{k}, N_{k+1}}, L_{q} \cap \mathcal{T}_{N_{k}, N_{k+1}}\right) \\
& \quad \leq \quad C 2^{k(d / \gamma+\epsilon) / 2}(1+\delta)^{k d / 4} \begin{cases}q^{1 / 2}, & 2 \leq q<\infty \\
\left(\log l_{k}\right)^{1 / 2}, & q=\infty\end{cases}
\end{aligned}
$$

Let

$$
\eta_{N}:= \begin{cases}q^{1 / 2}, & 2 \leq q<\infty \\ \left(\log \theta_{N}\right)^{1 / 2}, & q=\infty\end{cases}
$$

Then, using estimate (3.15) and (3.10) again, we get

$$
\begin{aligned}
& \sigma_{1} \leq C \sum_{k=0}^{M} \theta_{N_{k}}^{-\gamma / 2} d_{m_{k}}\left(B_{2} \cap \mathcal{T}_{N_{k}, N_{k+1}}, L_{q} \cap \mathcal{T}_{N_{k}, N_{k+1}}\right) \\
& \leq C \eta_{N} \sum_{k=0}^{M} \theta_{N_{k}}^{-\gamma / 2} 2^{k(d / \gamma+\epsilon) / 2}(1+\delta)^{k d / 4} \\
& \leq C \eta_{N} \sum_{k=0}^{\infty}\left(\theta_{N} 2^{2 k / \gamma}(1+\delta)^{k}\right)^{-\gamma / 2} 2^{k(d / \gamma+\epsilon) / 2}(1+\delta)^{k d / 4} \\
& \leq C \eta_{N} \theta_{N}^{-\gamma / 2} \sum_{k=0}^{\infty} 2^{-k(1-d /(2 \gamma)-\epsilon / 2)}(1+\delta)^{-k(\gamma / 2-d / 4)}
\end{aligned}
$$

The last sum is bounded for some $\delta>0$ if $\gamma>d / 2$, and $0<\epsilon<2-d / \gamma$. Thus we must choose ϵ less than the aforementioned and the bound given in (3.16). In this case,

$$
\begin{equation*}
\sigma_{1} \leq C \theta_{N}^{-\gamma / 2} \eta_{N} \tag{3.18}
\end{equation*}
$$

Finally, comparing (3.17) and (3.18) we get

$$
d_{C \theta_{N}}\left(W_{p}^{\gamma}, L_{q}\right) \leq C \theta_{N}^{-\gamma / d} \eta_{N}
$$

or

$$
d_{n}\left(W_{p}^{\gamma}, L_{q}\right) \leq C n^{-\gamma / d} \begin{cases}q^{1 / 2}, & 2 \leq q<\infty \\ (\log n)^{1 / 2}, & q=\infty\end{cases}
$$

Remark 3.11 Comparing the above theorem with Remark 3.8, and applying an embedding arguments we get

$$
d_{n}\left(W_{p}^{\gamma}, L_{q}\right) \asymp n^{-\gamma / d}, \quad \gamma>d / 2,2 \leq p<\infty, 1<q<\infty
$$

We are prepared now to prove the main result of this article.

Theorem 3.12 Let $\gamma>d$. Then for any $n \in \mathbb{N}$ and $1 \leq p, q \leq \infty$,

$$
e_{n}\left(W_{p}^{\gamma}, L_{q}\right) \geq C_{1} n^{-\gamma / d}\left\{\begin{array}{cl}
(p /(q-1))^{-1 / 2}, & p<\infty, q>1 \\
(p \log n)^{-1 / 2}, & p<\infty, q=1 \\
(\log n /(q-1))^{-1 / 2}, & p=\infty, q>1 \\
(\log n)^{-1}, & p=\infty, q=1
\end{array}\right.
$$

and

$$
e_{n}\left(W_{p}^{\gamma}, L_{q}\right) \leq C_{2} n^{-\gamma / d} \begin{cases}(q /(p-1))^{1 / 2}, & 2 \leq q<\infty, 1<p \leq 2, \\ (q \log n)^{1 / 2}, & 2 \leq q<\infty, p=1, \\ (\log n /(p-1))^{1 / 2}, & q=\infty, 1<p \leq 2, \\ \log n, & q=\infty, p=1,\end{cases}
$$

where $C_{1}, C_{2}>0$. In particular, if $1<p, q<\infty$, then

$$
e_{n}\left(W_{p}^{\gamma}, L_{q}\right) \asymp n^{-\gamma / d} .
$$

Proof From Theorem 3.10, and the duality of Kolmogorov and Gel'fand n-widths, we have

$$
d^{n}\left(W_{q^{\prime}}^{\gamma}, L_{2}\right)=d_{n}\left(W_{2}^{\gamma}, L_{q}\right) \ll n^{-\gamma / d} \begin{cases}q^{1 / 2}, & 2 \leq q<\infty, \\ (\log n)^{1 / 2}, & q=\infty,\end{cases}
$$

where $1 / q+1 / q^{\prime}=1$. Let $\left\{s_{n}\right\}$ denotes either of the sequences $\left\{d_{n}\right\}$ or $\left\{d^{n}\right\}$. Assume that $f(l), f: \mathbb{N} \rightarrow \mathbb{R}$ is a positive and increasing (for large $l \in \mathbb{N}$) function such that $f\left(2^{j}\right) \leq C f\left(2^{j-1}\right)$ for some fixed C and any $j \in \mathbb{N}$. Then, there is a constant $C>0$ such that for all $n \in \mathbb{N}$ we have

$$
\sup _{1 \leq l \leq n} f(l) e_{l}(A, X) \leq C \sup _{1 \leq l \leq n} f(l) s_{l}(A, X), \quad n \in \mathbb{N}
$$

(see e.g., [4-6]). In particular, let $A=W_{2}^{\gamma}, X=L_{q}$,

$$
f^{*}(l):=l^{\gamma / d} \begin{cases}q^{-1 / 2}, & 2 \leq q<\infty, \\ (\log l)^{-1 / 2}, & q=\infty,\end{cases}
$$

then $f^{*}\left(2^{j}\right) \leq C f^{*}\left(2^{j-1}\right)$ for some $C>0$ and

$$
f^{*}(n) e_{n}\left(W_{2}^{\gamma}, L_{q}\right) \leq \sup _{1 \leq l \leq n} f^{*}(l) d_{l}\left(W_{2}^{\gamma}, L_{q}\right) \leq C .
$$

or

$$
e_{n}\left(W_{2}^{\gamma}, L_{q}\right) \leq C n^{-\gamma / d} \begin{cases}q^{1 / 2}, & 2 \leq q<\infty, \tag{3.19}\\ (\log n)^{1 / 2}, & q=\infty,\end{cases}
$$

where $\gamma>d / 2$ by the Theorem 3.10. Similarly, if $\gamma>d / 2$, then

$$
e_{n}\left(W_{p}^{\gamma}, L_{2}\right) \leq C n^{-\gamma / d} \begin{cases}(p-1)^{-1 / 2}, & 1<p \leq 2, \tag{3.20}\\ (\log n)^{1 / 2}, & p=1 .\end{cases}
$$

Applying the multiplicative property of entropy numbers (see e.g., [25]), (3.19) and (3.20) we get,

$$
\begin{gather*}
e_{n}\left(W_{p}^{\gamma}, L_{q}\right)=e_{n}\left(I_{\gamma}: L_{p} \rightarrow L_{q}\right) \\
=e_{n}\left(I_{\gamma / 2}: L_{p} \rightarrow L_{2}\right) \cdot e_{n}\left(I_{\gamma / 2}: L_{2} \rightarrow L_{q}\right) \\
\leq C n^{-\gamma / d} \begin{cases}(q /(p-1))^{1 / 2}, & 2 \leq q<\infty, 1<p \leq 2, \\
(q \log n)^{1 / 2}, & 2 \leq q<\infty, p=1, \\
(\log n /(p-1))^{1 / 2}, & q=\infty, 1<p \leq 2, \\
\log n, & q=\infty, p=1,\end{cases} \tag{3.21}
\end{gather*}
$$

where $\gamma / 2>d / 2$ or $\gamma>d$. Finally, comparing (3.8) and (3.21) we get the proof.

References

[1] Bordin B, Kushpel A, Levesley J, Tozoni S. n-widths of multiplier operators on two-point homogeneous spaces. In: Chui C, Schumaker LL (editors). Approximation Theory IX, Vol. 1, Theoretical Aspects. Nashville, TN, USA: Vanderbilt University Press, 1998, pp. 23-30.
[2] Bordin B, Kushpel A, Levesley J, Tozoni S. Estimates of n-widths of Sobolev's classes on compact globally symmetric spaces of rank 1. Journal of Functional Analysis 2003; 202: 37-377. doi: 10.1016/S0022-1236(02)00167-2
[3] Bourgain J, Milman VD. New volume ratio properties for convex symmetric bodies in \mathbb{R}^{n}. Inventiones Mathematicae 1987; 88: 319-340.
[4] Carl B. Entropy numbers, s-numbers and eigenvalue problems. Journal of Functional Analysis 1981; 41: 290-306.
[5] Edmunds DE, Triebel H. Entropy numbers and approximation numbers in function spaces. Proceedings of the London Mathematical Society 1989; 58: 137-152.
[6] Edmunds DE, Triebel H. Function Spaces, Entropy Numbers, Differential Operators. Cambridge, UK: Cambridge University Press, 1996.
[7] Giné E. The addition formula for the eigenfunctions of the Laplacian. Advances in Mathematics 1975; 18: 102-107.
[8] Gluskin ED. Norms of random matrices and diameters of finite dimensional sets. Matematicheskii Sbornik 1983; 120: 180-189.
[9] Kashin B, Tzafriri L. Lower estimates for the supremum of some random processes. East Journal of Approximation 1995; 1: 373-377.
[10] Kushpel AK. On an estimate of Lévy means and medians of some distributions on a sphere. In: Fourier Series and their Applications, Institute of Mathematics. Kiev, Ukraine: National Academy of Sciences of Ukraine, 1992, pp. 49-53 (in Russian).
[11] Kushpel AK. Estimates of Bernstein's widths and their analogs. Ukrainian Mathematical Journal 1993; 45 (1): 59-65 (in Russian).
[12] Kushpel A, Levesley J, Taş K. ϵ-Entropy of Sobolev's Classes on \mathbb{S}^{d}. Research Report, 1997/4. Leicester, UK: University of Leicester, 1997, pp. 1-13.
[13] Kushpel AK, Levesley J, Wilderotter K. On the asymptotically optimal rate of approximation of multiplier operators from L_{p} into L_{q}. Constructive Approximation 1998; 14: 169-185.
[14] Kushpel AK. Estimates of entropy numbers of multiplier operators with slowly decaying coefficients. In: Annals of the 48o Seminário Brasileiro de Análise; Petropolis, RJ, Brazil; 1998. pp. 711-722.
[15] Kushpel AK. Lévy means associated with two-point homogeneous spaces and applications. In: Annals of the 49o Seminário Brasileiro de Análise; Campinas, SP, Brazil; 1999. pp. 807-823.
[16] Kushpel AK. Estimates of n-widths and ϵ-entropy of Sobolev's sets on compact globally symmetric spaces of rank 1. In: Annals of the 50° Seminário Brasileiro de Análise; São Paulo, SP, Brazil; 1999. pp. 53-66.
[17] Kushpel AK. n-widths of Sobolev's classes on compact globally symmetric spaces of rank 1. In: Kopotun K, Lyche T, Neamtu M (editors). Trends in Approximation Theory. Nashville, TN, USA: Vanderbilt University Press, 2001, pp. 201-210.
[18] Kushpel AK, Tozoni S. Sharp orders of n-widths of Sobolev's classes on compact globally symmetric spaces of rank 1. In: Annals of the 54 o Seminário Brasileiro de Análise; São Jose do Rio Preto, SP, Brazil; 2001. pp. 293-303.
[19] Kushpel AK, Tozoni SA. On the problem of optimal reconstruction. Journal of Fourier Analysis and Applications 2007; 13 (4): 459-475. doi: 10.1007/s00041-006-6902-3
[20] Kushpel A, Taş K. The radii of sections of origin-symmetric convex bodies and their applications. Journal of Complexity 2020; 101504. doi: 10.1016/j.jco.2020.101504

KUSHPEL et al./Turk J Math

[21] Kwapień S. Isomorphic characterizations of inner product spaces by orthogonal series with vector valued coefficients. Studia Mathematica 1972; 44: 583-595.
[22] Lorentz GG, Golitschek M, Makovoz Y. Constructive Approximation: Advanced Problems. Berlin, Germany: Springer-Verlag, 1996.
[23] Minakshisundaram S, Pleijel A. Some properties of the eigenfunctions of the Laplace operator on Riemannian manifolds. Canadian Journal of Mathematics 1949; 1: 242-256.
[24] Pajor A, Tomczak-Jaegermann N. Subspaces of small codimension of finite-dimensional Banach spaces. Proceedings of the American Mathematical Society 1986; 97: 637-642.
[25] Pietsch A. Operator Ideals. Amsterdam, Netherlands: North-Holland Publishing Company, 1980.
[26] Pisier G. The volume of convex bodies and Banach space geometry. Cambridge, UK: Cambridge University Press, 1989.

[^0]: *Correspondence: kushpel@cankaya.edu.tr
 2010 AMS Mathematics Subject Classification: 41A46, 42B15

