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Abstract: We develop a general method to calculate entropy and n -widths of sets of smooth functions on an arbitrary
compact homogeneous Riemannian manifold Md . Our method is essentially based on a detailed study of geometric
characteristics of norms induced by subspaces of harmonics on Md . This approach has been developed in the cycle
of works [1, 2, 10–19]. The method’s possibilities are not confined to the statements proved but can be applied in
studying more general problems. As an application, we establish sharp orders of entropy and n -widths of Sobolev’s
classes W γ

p

(
Md

)
and their generalisations in Lq

(
Md

)
for any 1 < p, q < ∞ . In the case p, q = 1,∞ sharp in the power

scale estimates are presented.
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1. Introduction
Let (Ω, υ) be a measure space and {ξk}k∈N be a sequence of orthonormal, functions on Ω . Let X be a Banach
space with the norm ‖ · ‖X and {ξk}k∈N ⊂ X . Clearly, Ξn(X) := lin{ξ1, · · · , ξn} ⊂ X , ∀n ∈ N is a sequence
of closed subspaces of X with the norm induced by X . Consider the coordinate isomorphism J defined as

J : Rn −→ Ξn(X)
α = (α1, · · · , αn) 7−→

∑n
k=1 αkξk.

Hence, the definition
‖α‖J−1Ξn(X) = ‖Jα‖X

induces the norm on Rn which appears to be useful in various applications. Of course, not much can be said
regarding such kind of norms even in lower dimensions. To be able to apply methods of geometry of Banach
spaces to various open problems in different spaces of functions on Ω we will need to calculate an expectation
E [ρn(α)] of the function ρn(α) := ‖α‖J−1Ξn(X) on the unit sphere Sn−1 ⊂ Rn with respect to Haar measure
dµn , i.e. to find the Lévy M(‖ · ‖J−1Ξn(X)) mean

M(‖ · ‖J−1Ξn(X)) = E [ρn(α)] =

∫
Sn−1

‖α‖J−1Ξn(X) dµn(α).
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Observe that the sequence of Lévy means M(‖ · ‖J−1Ξn(X)) contain more information then the sequence of
volumes Voln

(
BJ−1Ξn(X)

)
, n ∈ N , where BJ−1Ξn(X) := {α|α ∈ Rn, ‖α‖J−1Ξn(X) ≤ 1} is the unit ball induced

by the norm ‖ · ‖J−1Ξn(X) and therefore is more useful in various applications.

As a motivating example consider the case Ω = Md , where Md is a compact homogeneous Riemannian
manifold, υ its normalized volume element, {ξk}k∈N is a sequence of orthonormal harmonics on Md and
X = Lp = Lp(Md, υ) , p ≥ 2 . In general, the sequence {ξk}k∈N is not uniformly bounded on Md . Hence, the
method of estimating of Lévy means developed in [10–13] cannot give sharp order result. Various modifications
of this method presented in [15–17] give an extra (log n)1/2 factor even if p < ∞ . Our general result is presented
in Lemma 3 which gives sharp order estimates for the Lévy means which correspond to the norm induced on
Rn by the subspace ⊕m

s=1Hks
∩ Lp , dim ⊕m

s=1 Hks
:= n with an arbitrary index set (k1, · · · , km) , where Hks

are the eigenspaces of the Laplace–Beltrami operator for Md defined by (2.2). To show the boundness of the
respective Lévy means as n → ∞ we impose a technical condition (2.1) which holds in particular for any
compact homogeneous Riemannian manifold because of the addition formula (2.4) and employ the equality∫

Rn

h(α) dγ(α) = lim
m→∞

∫ 1

0

h

(
δm1 (θ)

(2π)1/2
, · · · , δmn (θ)

(2π)1/2

)
dθ,

where h : Rn → R is a continuous function, h(α1, · · · , αn) exp (−
∑n

k=1 |αk|) → 0 uniformly when
∑n

k=1 |αk| →

∞ , dγ(α) = exp
(
−π
∑n

k=1 α
2
k

)
dα is the Gaussian measure on Rn , δmk (θ) = m−1/2(r(k−1)m(θ) + · · · + rkm) ,

1 ≤ k ≤ n and rs(θ) = sign sin(2sπθ) , s ∈ N∪{0} , θ ∈ [0, 1] is the sequence of Rademacher functions [21], [19].
To extend our estimates to the case p = ∞ we apply Lemma 3.1 which gives a useful inequality between norms
of polynomials on Md with an arbitrary spectrum. It seems that the factor (log n)1/2 obtained in Lemma 3.2
is essential because of the lower bound for the Lévy means found in [9] in the case of trigonometric system.
This fact explains a logarithmic slot in our estimates of entropy numbers presented in Theorem 3.12. Section
3 deals with estimates of entropy numbers and n -widths. Theorem 3.3 establishes general lower bounds for
entropy numbers in terms of Lévy means and is of independent interest. We derive lower bounds for the entropy
numbers of Sobolev’s classes (3.8) using Theorem 3.3 and estimates of Lévy means given by Lemma 3.2. At
this point we apply Lemma 2.2 to get the dependence between eigenvalues and dimensions of eigenspaces of the
Laplace–Beltrami operator. The proof of Lemma 2.2 is based on Weyl’s formula (see [23])

lim
a→∞

a−d/2n(a) = (2π1/2)−dΓ

(
1 +

d

2

)
V(Md), (1.1)

where V(Md) is the volume of Md and n(a) is the number of eigenvalues (each counted with its multiplicity)
smaller than a . To get upper bounds for entropy numbers contained in Theorem 3.12 we apply estimates of
Lévy means established in Lemma 3.2 and make use of the Pajor–Tomczak-Jaegermann inequality [24] which
states in our notations that for any λ ∈ (0, 1) there exists a subspace Xs ⊂ J−1Ξn(X) , dimXs = s > λn and
a universal constant C > 0 such that

‖α‖∗2 ≤ C
M(‖ · ‖oJ−1Ξn(X))

(1− λ)1/2
‖α‖J−1Ξn(X), ∀α ∈ Xs, (1.2)

where ‖·‖∗2 = 〈·, ·〉1/2 is the Euclidean norm on Rn induced by the scalar product 〈x,y〉 =
∑n

k=1 xkyk and
‖·‖oJ−1Ξn(X) is the dual norm with respect to ‖·‖J−1Ξn(X) . Remark that (1.2) is essentially based on a technical
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result due to Gluskin [8]. However, for our applications is sufficient to apply a less sharp result established by
Bourgain and Milman [3] which is based on averaging arguments and isoperimetric inequality.

The paper ends with estimates of different n -widths and their applications in calculation of entropy which
extend previous results [1, 2, 17].

In this article there are several universal constants which enter into the estimates. These positive constants
are mostly denoted by C,C1, · · · . We will only distinguish between the different constants where confusion is
likely to arise, but we have not attempted to obtain good estimates for them. For ease of notation we will write
an � bn for two sequences, if an ≤ Cbn , ∀n ∈ N and an � bn , if C1bn ≤ an ≤ C2bn , ∀n ∈ N and some
constants C , C1 and C2 .

Though the main purpose of this paper is to present new results, we have tried to make the text self
contained by presenting well-known definitions and elementary properties of entropy numbers and n -widths.

Let X and Y be Banach spaces with the closed unit balls BX and BY respectively. Let v : X → Y be
a compact operator. Then the nth entropy number en(v) = en(v : X → Y ) is the infimum over all positive ϵ

such that there exist y1, · · · , y2n−1 in Y such that

v(BX) ⊂
2n−1⋃
k=1

(yk + ϵBY ).

Similarly, for a compact set A ⊂ Y we define the entropy number en(A, Y ) as the infimum of all positive ϵ

such that there exist {yk}2
n−1

k=1 ⊂ Y such that A ⊂
⋃2n−1

k=1 (yk + ϵBY ). Suppose that A is a convex, compact,
centrally symmetric subset of a Banach space X with unit ball BX . The Kolmogorov n -width of A in X is
defined by

dn(A,X) := dn(A,BX) := inf
Xn

sup
f∈A

inf
g∈Xn

‖f − g‖X ,

where Xn runs over all subspaces of X of dimension n . The Gelfand n -width of A in X is defined by

dn(A,X) := dn(A,BX) := inf
Ln

sup
x∈Ln∩A

‖x‖X ,

where Ln runs over all subspaces of X of codimension n . The Bernstein n -width of A in X is defined by

bn(A,X) := bn(A,BX) := sup
Xn+1

sup{ϵ > 0 : ϵBX ∩Xn+1 ⊂ A},

where Xn+1 is any (n + 1) -dimensional subspace of X . For a compact operator v : X → Y we define
Kolmogorov’s numbers

dn(v) = dn(v : X → Y ) = inf
L⊂Y, dimL≤n

sup
x∈BX

inf
y∈L

‖vx− y‖Y

and Gelfand numbers

dn(v) = dn(v : X → Y ) = inf{‖v|L‖ |L ⊂ X, codimL ≤ n}.

Proposition 1.1 This proposition records some simple properties of n-widths and entropy numbers which we
will need.
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1. If X ⊂ Y , then dn(A, Y ) ≤ dn(A,X) .

2. Let n = i+ j and A = A1 +A2 . Then dn(A,X) ≤ di(A1, X) + dj(A2, X) .

3. Kolmogorov and Gelfand n-widths are dual. Let X and Y be Banach spaces, v ∈ L(X,Y ) . If X is
reflexive and v(X) is dense in Y , then dn(v) = dn(v∗) (see e.g., [22], p.408).

4. Later we will wish to restrict estimation of entropy numbers over infinite-dimensional sets to finite-
dimensional sets. In order to do this let i be any linear isometry, i : Y → Ỹ (here we will think of Y

as finite dimensional and i as the imbedding into the infinite dimensional space). Then ([26, Proposition
5.1]) 2−1en(v) ≤ en(i ◦ v) ≤ en(v), ∀n ∈ N.

2. Harmonic analysis

Definition 2.1 Let (Ω, υ) be a measure space for some compact set Ω ∈ Rs , s ∈ N . Let Ξ = {ξk}k∈N be a set
of orthonormal functions ξk = ξk (x) in L2(Ω, ν) . Suppose that there exists a sequence κ = {kj}j∈N , k1 = 1 ,
such that for any j ∈ N and some C > 0

kj+1−1∑
k=kj

|ξk(x)|2 ≤ Cdj, ∀x ∈ Ω (2.1)

a.e. on Ω , where dj := kj+1 − kj . Then we say that (Ω, υ,Ξ, κ) ∈ K .

Consider the set of p -integrable functions on (Ω, υ) , Lp = Lp(Ω, υ) . It follows from (2.1) that the
functions ξk are a.e. bounded for every n ∈ N . Hence, for an arbitrary φ ∈ Lp , 1 ≤ p ≤ ∞ it is possible to
construct the Fourier coefficients

ck(φ) =

∫
Ω

φξkdυ, k ∈ N,

and consider the formal Fourier series

φ ∼
∑
l∈N

kl+1−1∑
k=kl

ck(φ)ξk.

Let Up := {φ| ‖φ‖p ≤ 1} be the unit ball in Lp , and Λ = {λl}l∈N be a fixed sequence of complex numbers. We
shall say that the multiplier operator Λ is of type (κ, p, q) with the norm ‖Λ‖κp,q := supφ∈Up

‖Λφ‖q , , if for any
φ ∈ Lp there is such f ∈ Lq that

f ∼
∑
l∈N

λl

kl+1−1∑
k=kl

ck(φ)ξk.

Let us present here several important examples of measure spaces
(Ω, υ,Ξ, κ) ∈ K . Consider a compact, connected, d -dimensional C∞ Riemannian manifold Md with C∞

metric. Let g its metric tensor, υ its normalized volume element and ∆ its Laplace–Beltrami operator. In
local coordinates xl , 1 ≤ l ≤ d ,

∆ = −(g)−1/2
∑
k

∂

∂xk

∑
j

gjk(g)1/2
∂

∂xj

 , (2.2)
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where gjk := g(∂/xj , ∂/xk) , g := |det(gjk)| , and (gjk) := (gjk)
−1 . It is well-known that ∆ is an elliptic,

self adjoint, invariant under isometry, second order operator. The eigenvalues θk , k ≥ 0 , of ∆ are discrete,
nonnegative and form an increasing sequence 0 ≤ θ0 ≤ θ1 ≤ · · · ≤ θn ≤ · · · with +∞ the only accumulation
point. The corresponding eigenspaces Hk , k ≥ 0 are finite dimensional, dk := dim (Hk) , orthogonal and
L2 = L2(Md, υ) = ⊕∞

k=0Hk . Let us fix an orthonormal basis {Yk
m}dk

m=1 of Hk . Using multiplier operators
we can introduce a wide range of sets of smooth functions on Md . Let φ be an arbitrary function, φ ∈ Lp ,
1 ≤ p ≤ ∞ with the formal Fourier series

φ ∼ c0 +
∑
k∈N

dk∑
m=1

ck,m(φ)Yk
m, ck,m(φ) =

∫
Md

φY
k

mdυ

and λ (·) : (0,∞) 7→ R be a continuous function. If for any φ ∈ Lp there is a function f := Λφ ∈ Lq such that

φ ∼ c0 +
∑
k∈N

λ (θk)

dk∑
m=1

ck,m(φ)Yk
m

then we shall say that the multiplier operator Λ is of (p, q) -type.

Consider the sets ΛUp generated by multiplier sequences {λ (θk)} . In particular, let λ (t) = t−γ/2 then
the γ -th fractional integral Iγφ := φγ , γ > 0 , is defined as

φγ ∼ c+
∑
k∈N

θ
−γ/2
k

dk∑
m=1

ck,m(φ)Yk
m, c ∈ R. (2.3)

The function Dγφ := φ(γ) ∈ Lp , 1 ≤ p ≤ ∞ is called the γ -th fractional derivative of φ if

φ(γ) ∼
∑
k∈N

θ
γ/2
k

dk∑
m=1

ck,m(φ)Yk
m.

The Sobolev classes W γ
p are defined as sets of functions with formal Fourier expansions (2.3) where ‖φ‖p ≤ 1

and
∫
Md φdυ = 0 . In this article we assume c0, c = 0 to guarantee compactness of the set W γ

p in Lq .

We recall that a Riemannian manifold Md is called homogeneous if its group of isometries G acts
transitively on it, i.e. for every x, y ∈ Md , there is a g ∈ G such that gx = y . For a compact homogeneous
Riemannian manifold Md the following addition formula is known [7]

dk∑
k=1

|Yk
m(x)|2 = dk, ∀x ∈ Md, (2.4)

where {Yk
m}dk

m=1 is an arbitrary orthonormal basis of Hk , k ≥ 0 . Hence, any such manifold possesses the
property K , and these include real and complex Grassmannians, the n -torus, the Stiefel manifold, two point
homogeneous spaces (the spheres, the real, complex and quaternionic projective spaces and the Cayley elliptic
plane), and the complex sphere.
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Lemma 2.2 Let Md be a compact, connected, homogeneous Riemannian manifold, {θk}k∈N∪{0} be the sequence
of eigenvalues and {Hk}k∈N∪{0} be the corresponding sequence of eigenspaces of the Laplace–Beltrami operator
∆ on Md . Put TN = ⊕N

k=0Hk and τN = dim TN . Then

lim
N→∞

θN+1

θN
= 1 (2.5)

and
lim

N→∞

τN+1

τN
= 1. (2.6)

Proof Applying Weyl’s formula (1.1) for a = θN we get

lim
N→∞

θ
−d/2
N n(θN ) = (2π1/2)−dΓ

(
1 +

d

2

)
V(Md), (2.7)

and it follows that

lim
N→∞

θ
−d/2
N+1 n(θN+1)− θ

−d/2
N n(θN )

θ
−d/2
N n(θN )

→ 0, N → ∞.

Now, n(θN ) = τN , so that

θ
−d/2
N+1 τN+1 − θ

−d/2
N τN

θ
−d/2
N τN

=
θ
−d/2
N+1 (τN + dimHN+1)− θ

−d/2
N τN

θ
−d/2
N τN

=
θ
−d/2
N+1 − θ

−d/2
N

θ
−d/2
N

+
θ
−d/2
N+1

θ
−d/2
N

dimHN+1

τN
→ 0, N → ∞. (2.8)

Since both quotients in the last equation are positive we have

θ
−d/2
N+1 − θ

−d/2
N

θ
−d/2
N

→ 0, N → ∞,

which gives us (2.5). Equation (2.6) follows since

lim
N→∞

τN+1

τN
= lim

N→∞

τN + dimHN+1

τN
= 1,

using the second quotient in (2.8), and (2.5). 2

3. Estimates of entropy and n-widths
In this section we give several estimates of entropy and n -widths which are order sharp in many important
cases. Fix a measure space (Ω, υ) , an orthonormal system Ξ and a sequence {kj}j∈N such that (Ω, υ,Ξ, κ) ∈ K .
Let

Ξj := span {ξk}
kj+1−1
k=kj

, Ωm := {j1, · · · , jm}, Ξ(Ωm) := span {Ξjs}ms=1.
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Put l0 := 0 , lk :=
∑k

s=1 djs , k = 1, · · · ,m , and n := lm = dim (Ξ(Ωm)) .
Unfortunately, we need to introduce a reenumeration of the functions ξk , since we are selecting separated

blocks of them. Let us write
(Ξ(Ωm)) = span {ηi : i = 1, · · · , n},

with the ηi organized so that Ξjs = span {ηi : ls−1 + 1 ≤ i ≤ ls} . Consider the coordinate isomorphism

J : Rn → Ξ(Ωm)

that assigns to α = (α1 · · · , αn) ∈ Rn the function Jα = ξα =
∑n

l=1 αlηl ∈ Ξ(Ωm) . Let X and Y be given
Banach space such that Ξ(Ωm) ⊂ X ∩ Y for any Ωm ⊂ N . Put Xn = Ξ(Ωm) ∩X and Yn = Ξ(Ωm) ∩ Y . Let
λi ∈ R , i = 1, · · · ,m , and

Λn = diag{λ1Idj1
, · · · , λmIdjm

},

where Is is the identity matrix of dimension s . Now, if Λn is invertible then JΛnJ
−1 : Ξ(Ωm) → Ξ(Ωm) is an

invertible operator which essentially multiplies each block Ξjs by λs , s = 1, · · · ,m . Since it should not cause
any confusion we will refer to this operator also as Λn .

In what follows, a ∗ will be used to denote norms and balls in Euclidean space, and lack of a ∗ will
indicate the same quantities in function spaces. Let us define the norms

‖α‖∗Xn
= ‖ξα‖Xn

= ‖ξα‖X .

Put B∗
Xn

:= {α ∈ Rn, ‖α‖∗Xn
≤ 1}, and BXn

:= JB∗
Xn

.

Lemma 3.1 For any Ωm and any ξ ∈ Ξ(Ωm) ⊂ L∞ , m ∈ N we have

‖ξ‖∞ ≤ Cn1/2‖ξ‖2,

where n := dimΞ(Ωm) .

Proof Let

Kn(x, y) :=

n∑
i=1

ηi(x)ηi(y).

be the reproducing kernel for Ξ(Ωm) . Clearly,

Kn(x, y) =

∫
Md

Kn(x, z)Kn(z, y)dυ(z),

and Kn(x, y) = Kn(y, x) . Since (Ω, υ,Ξ, κ) ∈ K , from (2.1), we have ‖Kn(x, ·)‖2 ≤ Cn1/2 , ∀x ∈ Md . Then
applying Hölder inequality we get

‖ξ‖∞ = max
x∈Md

∣∣∣∣∫
Md

Kn(x, z)ξ(z)dυ(z)

∣∣∣∣
≤ max

x∈Md
‖Kn(x, ·)‖2‖ξ‖2
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≤ Cn1/2‖ξ‖2.
2

Let us fix a norm ‖ · ‖∗ on Rn and let E = (Rn, ‖ · ‖∗) be a Banach space with the unit ball B∗
E . The

dual space E∗o = (Rn, ‖ · ‖∗o) is endowed with the norm ‖ξ‖∗o = supσ∈B∗
E
|〈ξ, σ〉| and has the unit ball BE∗o .

In these notations the Lévy mean MBE∗ is

MBE∗ =

∫
Sn−1

‖ξ‖∗dµ,

where dµ denotes the normalised invariant measure on Sn−1 , the unit sphere in Rn . We are interested in the
case where ‖ · ‖ = ‖α‖∗In,Lp

. In the case Ωm = {1, · · · ,m} the estimates of the associated Lévy means were

obtained in [19]. For an arbitrary index set the respective result was established in [20]. This we state as

Lemma 3.2 Let Xn = Lp ∩ Ξ(Ωm) with the unit ball B∗n
Lp

, and n := dimΞ(Ωm) . Then

MB∗n
Lp

≤ C

{
p1/2, p < ∞,

(log n)1/2, p = ∞.

We can now give lower bounds for entropy in terms of Lévy means. In the following the reader should
be identifying the spaces X and Y with Lp and Lq respectively for some 1 ≤ p, q ≤ ∞ . However, we wished
to state the result in greater generality, and then apply the previous result to extract particular results in these
cases.

Theorem 3.3 Viewing Ξ(Ωm) as a subspace Xn ⊂ X and Yn ⊂ Y , we have

ek(ΛUX , Y ) ≥ 2−1−k/n |detΛn|1/n

MB∗
Xn

M(B∗
Yn

)o
,

where k, n ∈ N are arbitrary.

Proof First, we use Proposition 1.1 (4) to obtain the estimate

ek(ΛUX , Y ) ≥ 2−1ek(ΛUX ∩ Ξn, Y ∩ Ξn) = 2−1ek(Λn(B
∗
Xn

), B∗
Yn

), (3.1)

using the appropriate norms in Xn and Yn . Let ϑ1, · · · , ϑN(ϵ) be a minimal ϵ -net for Λn(B
∗
Xn

) in
(
B∗

Yn
, Rn

)
.

Then,

ΛnB
∗
Xn

⊂
N(ϵ)⋃
k=1

(
ϵB∗

Yn
+ ϑk

)
.

By comparing volumes we get
Voln

(
ΛnB

∗
Xn

)
= |detΛn|Voln

(
B∗

Xn

)
≤ ϵnN(ϵ)Voln

(
B∗

Yn

)
.

If we put N(ϵ) = 2k−1 , then from the last inequality and the definition of entropy numbers we obtain

ϵ = ek
(
ΛnB

∗
Xn

, B∗
Yn

)
≥ 2−k/n|detΛn|1/n

(
Voln

(
B∗

Xn

)
Voln

(
B∗

Yn

) )1/n

. (3.2)
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Let B∗
2 be the unit Euclidian ball in Rn , V ⊂ Rn be a convex symmetric body and V o its dual. From Uryson’s

inequality ([26], p.6), (
VolnV

VolnB∗
2

)1/n

≤ MV o

it follows that (
Voln

(
B∗

Yn

))1/n ≤ M(B∗
Yn

)o (Voln (B
∗
2))

1/n
,

so that (
Voln

(
B∗

Xn

)
Voln

(
B∗

Yn

) )1/n

≥
(
Voln

(
B∗

Xn

))1/n
M(B∗

Yn
)o (Voln (B

∗
2))

1/n
. (3.3)

Also, a direct calculation shows that

(
Voln

(
B∗

Xn

)
Voln (B∗

2)

)1/n

=

(∫
Sn−1

‖α‖−ndµ(α)

)1/n

≥ M−1
B∗

Xn

. (3.4)

Combining (3.1), (3.3) and (3.4) we have

(
Voln

(
B∗

Xn

)
Voln

(
B∗

Yn

) )1/n

≥ 1

MB∗
Xn

M(B∗
Yn

)o
.

and substitution into (3.2) completes the proof. 2

Remark 3.4 Assume that |λ1| ≥ · · · ≥ |λn| . Then |detΛn|1/n ≥ |λn| , and for k = n we have

en(ΛUX , Y ) ≥ |λn|
4MB∗

Xn
M(B∗

Yn
)o
. (3.5)

Remark 3.5 Let (Ω, υ,Ξ, κ) ∈ K , X = Lp and Y = Lq , 1 ≤ q ≤ 2 ≤ p ≤ ∞ . Then using Hölder’s inequality
we get

M(B∗n
Lq

)o =

∫
Sn−1

‖ξ‖∗oLq
dµ ≤

∫
Sn−1

‖ξ‖∗L
q
′ dµ = MB∗n

L
q
′
, (3.6)

where 1/q + 1/q
′
= 1 . Comparing Lemma 3.2 with (3.5) and (3.6) we find

en(ΛULp
, Lq) � |λn|


(pq

′
)−1/2, p < ∞, q > 1,

(p log n)−1/2, p < ∞, q = 1,

(q
′
log n)−1/2, p = ∞, q > 1,
(log n)−1, p = ∞, q = 1.

(3.7)

To proceed with calculation of entropy numbers we need to assume a technical condition on the multiplyer
Λ .

Definition 3.6 We say that Λ ∈ A if λ (·) : (0,∞) 7−→ (0,∞) is a decreasing continuous function such that
λ (ct) � λ (t) , t → ∞ for any c ≥ 1 .
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Remark 3.7 Remind that τN = dim TN . Put n = τN and ñ = τN+1 in (3.7). By (2.7) we have τN =

Cθ
d/2
N (1 + ϵN ) , where ϵN → 0 as N → ∞ . Let

ϱN :=


(p/(q − 1))−1/2, p < ∞, q > 1,
(p logN)−1/2, p < ∞, q = 1,

(logN/(q − 1))−1/2, p = ∞, q > 1,
(logN)−1, p = ∞, q = 1.

and Λ ∈ A . From (3.7) it follows that

eñ(ΛUp, Lq) � λ (θN+1) ϱN = λ

(
θN+1

θN
θN

)
ϱN

� λ (cθN ) ϱN � λ (θN ) ϱN ,

where the last step follows from Lemma 2.2. Since the sequence of entropy numbers is not increasing, then

em ≥ Cλ (θN ) ϱN � λ

(
θN
n2/d

n2/d

)
� λ

(
n2/d

)
ϱN , ∀m ∈ [n, ñ],

where we have used (2.7) in the third inequality. From the last inequality we get

en(ΛUp, Lq) � λ
(
n2/d

)
ϱn. (3.8)

In particular, if λ (t) = t−γ/2, γ > 0 , then Λ ∈ A and ΛUp = W γ
p . In this case,

en(W
γ
p , Lq) � n−γ/dϱn.

Remark 3.8 From [19, Theorem 4], [20] it follows that

d[Cθ
d/2
N ](ΛUp, Lq) � λ

(
θ
2/d
N

)
, 1 < p, q < ∞.

Let φ ∈ Lp , 2 ≤ p ≤ ∞ and 1 ≤ q ≤ 2 . Then ‖Λφ‖q ≤ ‖Λφ‖2 ≤ C‖φ‖2 ≤ C‖φ‖p , i.e., Λ ∈ L(Lp, Lq) . It is

easy to check that ΛLp is dense in Lq since L2 = ⊕∞
k=0Hk

L2 and L2 is dense in Lq . Also, Lp is reflexive if
2 ≤ p < ∞ . Hence, for any N ∈ N and 1 < p, q < ∞ , from the duality of Kolmogorov and Gel’fand n-widths
given by Proposition 1.1,

d
[Cθ

d/2
N+1]

(ΛUp, Lq) � λ

(
θN+1

θN
θN

)
.

By Lemma 2.2 limN→∞ θN+1/θN = 1 . Thus, θN+1/θN ≤ 2 for some N0 ∈ N and any N ≥ N0 . Assume that
Λ ∈ A then the last estimate can be rewritten as

d
[Cθ

d/2
N+1]

(ΛUp, Lq) � λ (θN ) .

Since the sequence of Kolmogorov’s n-widths dn is nonincreasing, then

d[Cnd/2](ΛUp, Lq) � λ (n)
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for any n , θN ≤ n ≤ θN+1 . Therefore, for any n ∈ N ,

dn(ΛUp, Lq) � λ
(
n2/d

)
, 1 < p, q < ∞.

In the case of Sobolev’s classes we get

dn(W
γ
p , Lq) � n−γ/d, 1 < p, q < ∞, γ > 0.

Remark 3.9 Lower bounds for Bernstein’s n-widths may also be obtained. Let Λ ∈ A , Λ = {λ−1 (θk)} and

Λ−1 := {λ−1 (θk)}. Then, ∀z =
∑M

k=0

∑dk

m=1 ck,mYk,m ∈ TM we have

∥∥Λ−1z
∥∥2
2

=

∥∥∥∥∥Λ−1

(
M∑
k=1

dk∑
m=1

ck,m(z)Y k
m

)∥∥∥∥∥
2

2

=

∥∥∥∥∥
M∑
k=1

λ−1 (θk)

dk∑
m=1

ck,m(z)Y k
m

∥∥∥∥∥
2

2

=

M∑
k=1

λ−2 (θk)

dk∑
m=1

|ck,m(z)|2 ≤ ( max
1≤k≤M

λ−2 (θk))

M∑
k=1

dk∑
m=1

|ck,m(z)|2

= λ−2 (θM ) ‖z‖22 ,

so that
∥∥Λ−1z

∥∥
2
≤ λ−1 (θM ) ‖z‖2 . Therefore, λ (θM )U2 ∩ TM ⊂ ΛU2 and

bn(ΛU2, Lq) ≥ bn(λ (θM )U2 ∩ TM , Lq) = λ (θM ) bn(U2 ∩ TM , Lq).

Set m = dim TM . By [24, Theorem 1] there exists a subspace Xs ⊂ {Rm, ‖ · ‖∗q′} , 1 ≤ q ≤ 2 , 1/q + 1/q
′
= 1 ,

dimXs = s > λl , 0 < λ < 1 , such that

‖α‖∗2 ≤ CMB∗m
L
q
′
(1− λ)−1/2(‖α‖∗q′)o, ∀α ∈ Xs. (3.9)

Let λ = 1/2 . Then ‖α‖∗2 ≤ C1MB∗m
L
q
′
(‖α‖∗q′)o and by Hölder’s inequality (‖α‖∗q′)o ≤ ‖α‖∗q . Hence,

‖α‖∗2 ≤ C1MB∗m
L
q
′
‖α‖∗q , 1 ≤ q ≤ 2.

Since, by Lemma 3.2, MB∗m
L
q
′
≤ C2 , 2 < q

′
< ∞ , we have

‖α‖∗2 ≤ C3 ‖α‖∗q ∀α ∈ Xs.

Therefore Xs ∩B∗
q ⊂ C4Xs ∩B∗

2 and since the spaces Rm and JRm = TM are isometrically isomorphic we get
‖z‖2 ≤ C3 ‖z‖q , ∀z ∈ JXs ⊂ TM , s ≥ [m/2]. Hence, denoting an arbitrary s-dimensional subspace of TM by
Ys ,

bs−1(U2 ∩ TM , Lq) = sup
Ys⊂Lq

sup
ε>0

{εUq ∩ Ys ⊂ U2}
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≥ sup
ε>0

{εUq ∩ JXs ⊂ U2 ∩ TM}

≥ sup
ε>0

{εC−1
3 U2 ∩ JXs ⊂ U2 ∩ TM} ≥ C−1

3 .

Consequently,
bs−1(ΛU2, Lq) � λ (θM ) , s ≥ [m/2].

Finally, applying the same line of arguments as in Remark 3 we get

bn(ΛU2, Lq) � λ
(
n2/d

)
, q > 1.

We now turn to estimates for the upper bounds of entropy and n -widths. To avoid long technical
notations we shall present here just results in the case of Sobolev’s classes, i.e. if λ (t) = t−γ/2 .

Theorem 3.10 Let 2 ≤ p, q ≤ ∞ and γ > d/2 . Then

dn(ΛUp, Lq) � n−γ/d

{
q1/2, 2 ≤ q < ∞,
(log n)1/2, q = ∞.

Proof It is sufficient to consider the case p = 2 , since the case p ≥ 2 follows by imbedding. For a given N ∈ N
let θN be the corresponding eigenvalue of the Laplace–Beltrami operator for Md . Put N−1 := 1 , N0 := N

and for any k ≥ 0 let Nk+1 be such that θNk+1−1 ≤ 22/γθNk
≤ θNk+1

. This is always possible to do since the
sequence of eigenvalues forms an increasing sequence with +∞ as the only accumulation point. By Lemma 2.2,
limk→∞ θNk+1

/θNk+1−1 = 1 . Then, a simple argument shows that,

lim
k→∞

θNk+1
/θNk

= 22/γ .

From here we conclude that there is a δ(k) , with δ → 0 as k → ∞ , and constants C1, C2 > 0 such that

C1(1 + δ)−k22k/γθN ≤ θNk
≤ C2(1 + δ)k22k/γθN . (3.10)

Let TNk,Nk+1
:= ⊕Nk+1

l=Nk
Ξl , and dim TNk,Nk+1

= lk . Using (2.7) we get

lk < dim TNk+1
≤ Cθ

d/2
Nk+1

. (3.11)

It is easy to check that

Iγ(U2 ∩ TNk,Nk+1
) ⊂ θ

−γ/2
Nk

(U2 ∩ TNk,Nk+1
). (3.12)

Thus, by Lemma 3.1 and (3.11),

U2 ∩ TNk,Nk+1
⊂ Cl

1/2
k (U∞ ∩ TNk,Nk+1

)

⊂ Cθ
d/4
Nk+1

(U∞ ∩ TNk,Nk+1
). (3.13)
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Clearly, ‖P‖L2→L2∩TNk,Nk+1
= 1 , where P is the orthogonal projection. Hence, by (3.12),

W γ
2 = IγU2 ⊂

∞⊕
k=−1

Iγ(U2 ∩ TNk,Nk+1
)

⊂
∞⊕

k=−1

θ
−γ/2
Nk

(U2 ∩ TNk,Nk+1
). (3.14)

Let ϵ > 0 be a fixed parameter which will be specified later,

M := [ϵ−1 log(τN )], m0 := τN , mk := [2−ϵkτN ] + 1

if 1 ≤ k ≤ M and mk := 0 if k > M . Let

µ :=

M∑
k=0

mk ≤ τN +

M∑
k=1

2−ϵkτN +M ≤ CτN ≤ Cθ
d/2
N .

Using Proposition 1.1 (a) and (b), (3.13) and (3.14) we find

dµ(W
γ
2 , Lq) ≤ C

M∑
k=0

θ
−γ/2
Nk

dmk
(U2 ∩ TNk,Nk+1

, Lq ∩ TNk,Nk+1
)

+C

∞∑
k=M+1

θ
−γ/2
Nk

θ
d/4
Nk+1

d0(U∞ ∩ TNk,Nk+1
, L∞ ∩ TNk,Nk+1

)

:= σ1 + σ2, (3.15)

where using the fact that d0
(
U∞ ∩ TNk,Nk+1

, L∞ ∩ TNk,Nk+1

)
= 1 ,

σ2 ≤ C

∞∑
k=M+1

θ
−γ/2
Nk

θ
d/4
Nk+1

.

Using (3.10),

σ2 ≤ Cθ
−γ/2+d/4
N

∑
k≥Cϵ−1 log θN

2−k(2/γ)(γ/2−d/4)(1 + δ)k.

Since δ > 0 , and for sufficiently large N we can choose δ as small as we please, then the last series converges
if γ/d > 1/2− 1/q . In this case

σ2 ≤ Cθ
−γ/2+d/4
N 2C(log θN )(−γ/2+d/4)/ϵγ(1 + δ)C(log θN )/ϵ

≤ Cθ
−γ/2+d/4
N θ

C(−γ/2+d/4)/ϵγ
N θ

Cη/ϵ
N ,

where η := log(1 + δ) . Hence, if
0 < ϵ < C(γ − d/2), (3.16)

179



KUSHPEL et al./Turk J Math

then
σ2 ≤ Cθ

−γ/2
N . (3.17)

To complete the proof we need to get upper bounds for σ1 . From (3.9), there exists a subspace Ll
s ⊂ {Rl, ‖·‖∗q} ,

dimLl
s = s > λl , 0 < λ < 1 , such that

‖α‖∗2 ≤ CMB∗l
Lq
(1− λ)−1/2(‖α‖∗q)o

for any α ∈ Ll
s . Put m := l − s , then

‖z‖2 ≤ C(l/m)1/2MB∗l
Lq
‖z‖oq

for any z ∈ JLl
s . By duality of Kolmogorov’s and Gel’fand’s n -widths, recalling the definition of mk , and

letting X lk
mk

⊂ TNk,Nk+1
be an arbitrary subspace of codimension mk , we get

dmk
(B2 ∩ TNk,Nk+1

, Lq ∩ TNk,Nk+1
)

= dmk((Bq ∩ TNk,Nk+1
)o, L2 ∩ TNk,Nk+1

)

= inf
X

lk
mk

⊂TNk,Nk+1

sup
z∈X

lk
mk

∩(Bq∩TNk,Nk+1
)o

‖z‖2

≤ sup
z∈JL

lk
sk

∩(Bq∩TNk,Nk+1
)o

‖z‖2,

where sk = lk −mk , since JLlk
sk

is a specific subspace of codimension mk . Thus, using Lemma 2.2 and (3.11),

dmk
(B2 ∩ TNk,Nk+1

, Lq ∩ TNk,Nk+1
)

≤ C

(
lk
mk

)1/2

M
B

∗lk
Lq

sup
z∈JL

lk
sk

∩(Bq∩TNk,Nk+1
)o

‖z‖(Bq∩TNk,Nk+1
)o

≤ C

(
τNk+1

mk

)1/2

M
B

∗lk
Lq

≤ C

θ
d/2
Nk+1

mk

1/2

M
B

∗lk
Lq

≤ C

(
((1 + δ)k22k/γθN )d/2

2−ϵkτN + 1

)1/2

M
B

∗lk
Lq

,

from (3.10). Simplifying this last expression, it follows from Lemma 3.2 that

dmk
(B2 ∩ TNk,Nk+1

, Lq ∩ TNk,Nk+1
)

≤ C2k(d/γ+ϵ)/2(1 + δ)kd/4
{

q1/2, 2 ≤ q < ∞,
(log lk)

1/2, q = ∞.
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Let

ηN :=

{
q1/2, 2 ≤ q < ∞,
(log θN )1/2, q = ∞.

Then, using estimate (3.15) and (3.10) again, we get

σ1 ≤ C

M∑
k=0

θ
−γ/2
Nk

dmk
(B2 ∩ TNk,Nk+1

, Lq ∩ TNk,Nk+1
)

≤ CηN

M∑
k=0

θ
−γ/2
Nk

2k(d/γ+ϵ)/2(1 + δ)kd/4

≤ CηN

∞∑
k=0

(θN22k/γ(1 + δ)k)−γ/22k(d/γ+ϵ)/2(1 + δ)kd/4

≤ CηNθ
−γ/2
N

∞∑
k=0

2−k(1−d/(2γ)−ϵ/2)(1 + δ)−k(γ/2−d/4).

The last sum is bounded for some δ > 0 if γ > d/2 , and 0 < ϵ < 2 − d/γ . Thus we must choose ϵ less than
the aforementioned and the bound given in (3.16). In this case,

σ1 ≤ Cθ
−γ/2
N ηN . (3.18)

Finally, comparing (3.17) and (3.18) we get

dCθN (W γ
p , Lq) ≤ Cθ

−γ/d
N ηN ,

or

dn(W
γ
p , Lq) ≤ Cn−γ/d

{
q1/2, 2 ≤ q < ∞,
(log n)1/2, q = ∞.

2

Remark 3.11 Comparing the above theorem with Remark 3.8, and applying an embedding arguments we get

dn(W
γ
p , Lq) � n−γ/d, γ > d/2, 2 ≤ p < ∞, 1 < q < ∞.

We are prepared now to prove the main result of this article.

Theorem 3.12 Let γ > d . Then for any n ∈ N and 1 ≤ p, q ≤ ∞ ,

en(W
γ
p , Lq) ≥ C1n

−γ/d


(p/(q − 1))−1/2, p < ∞, q > 1,
(p log n)−1/2, p < ∞, q = 1,

(log n/(q − 1))−1/2, p = ∞, q > 1,
(log n)−1, p = ∞, q = 1,
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and

en(W
γ
p , Lq) ≤ C2n

−γ/d


(q/(p− 1))1/2, 2 ≤ q < ∞, 1 < p ≤ 2,
(q log n)1/2, 2 ≤ q < ∞, p = 1,
(log n/(p− 1))1/2, q = ∞, 1 < p ≤ 2,
log n, q = ∞, p = 1,

where C1, C2 > 0 . In particular, if 1 < p, q < ∞ , then

en(W
γ
p , Lq) � n−γ/d.

Proof From Theorem 3.10, and the duality of Kolmogorov and Gel’fand n -widths, we have

dn(W γ

q′
, L2) = dn(W

γ
2 , Lq) � n−γ/d

{
q1/2, 2 ≤ q < ∞,
(log n)1/2, q = ∞,

where 1/q + 1/q
′
= 1 . Let {sn} denotes either of the sequences {dn} or {dn} . Assume that f(l) , f : N → R

is a positive and increasing (for large l ∈ N) function such that f(2j) ≤ Cf(2j−1) for some fixed C and any
j ∈ N . Then, there is a constant C > 0 such that for all n ∈ N we have

sup
1≤l≤n

f(l)el(A,X) ≤ C sup
1≤l≤n

f(l)sl(A,X), n ∈ N

(see e.g., [4–6]). In particular, let A = W γ
2 , X = Lq ,

f∗(l) := lγ/d
{

q−1/2, 2 ≤ q < ∞,
(log l)−1/2, q = ∞,

then f∗(2j) ≤ Cf∗(2j−1) for some C > 0 and

f∗(n)en(W
γ
2 , Lq) ≤ sup

1≤l≤n
f∗(l)dl(W

γ
2 , Lq) ≤ C.

or

en(W
γ
2 , Lq) ≤ Cn−γ/d

{
q1/2, 2 ≤ q < ∞,
(log n)1/2, q = ∞,

(3.19)

where γ > d/2 by the Theorem 3.10. Similarly, if γ > d/2 , then

en(W
γ
p , L2) ≤ Cn−γ/d

{
(p− 1)−1/2, 1 < p ≤ 2,
(log n)1/2, p = 1.

(3.20)

Applying the multiplicative property of entropy numbers (see e.g., [25]), (3.19) and (3.20) we get,

en(W
γ
p , Lq) = en(Iγ : Lp → Lq)

= en(Iγ/2 : Lp → L2) · en(Iγ/2 : L2 → Lq)

≤ Cn−γ/d


(q/(p− 1))1/2, 2 ≤ q < ∞, 1 < p ≤ 2,
(q log n)1/2, 2 ≤ q < ∞, p = 1,
(log n/(p− 1))1/2, q = ∞, 1 < p ≤ 2,
log n, q = ∞, p = 1,

(3.21)

where γ/2 > d/2 or γ > d . Finally, comparing (3.8) and (3.21) we get the proof. 2
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