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Abstract: Akyol and Şahin (2017) introduced the notion of conformal semiinvariant submersions from almost Hermitian
manifolds. The present paper deals with the study of conformal generic submersions from almost Hermitian manifolds
which extends semiinvariant Riemannian submersions, generic Riemannian submersions and conformal semiinvariant
submersions in a natural way. We mention some examples of such maps and obtain characterizations and investigate
some properties, including the integrability of distributions, the geometry of foliations and totally geodesic foliations.
Moreover, we obtain some conditions for such submersions to be totally geodesic and harmonic, respectively.
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1. Introduction
Let M̃ be an almost Hermitian manifold with almost complex structure J and M a Riemannian manifold
isometrically immersed in M̃. We note that submanifolds of a Kähler manifold are determined by the behavior
of tangent bundle of the submanifold under the action of the almost complex structure of the ambient manifold.
A submanifold M is called holomorphic(complex) if J(TqM) ⊂ TqM, for every q ∈M, where TqM denotes the
tangent space to M at the point q. M is called totally real if J(TqM) ⊂ T⊥

q M, for every q ∈M, where T⊥
q M

denotes the normal space to M at the point q. As a generalization of holomorphic and totally real submanifolds,
CR−submanifolds were introduced by Bejancu [10]. A CR−submanifold M of an almost Hermitian manifold
M̃ with an almost complex structure J admits two orthogonal complementary distributions D and D⊥ defined
on M such that D is invariant under J and D⊥ is totally real [10]. There is yet another generalization
of CR−submanifolds known as generic submanifolds [12]. These submanifolds are defined by relaxing the
condition on the complementary distribution of holomorphic distribution. Let M be a real submanifold of an
almost Hermitian manifold M̃, and let Dq = TqM ∩ JTqM be the maximal holomorphic subspace of TqM. If
D : q −→ Dq defines a smooth holomorphic distribution on M, then M is called a generic submanifold of M̃.

The complementary distribution D′ of D is called purely real distribution on M. A generic submanifold is a
CR−submanifold if the purely real distribution on M is totally real. A purely real distribution D′ on a generic
submanifold M is called proper if it is not totally real. A generic submanifold is called proper if its purely real
distribution is proper. Generic submanifolds have been studied widely by many authors and the theory of such
submanifolds is still an active research area, see [14–16, 24, 25, 39] for recent papers on this topic.
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The notion of Riemannian submersions between Riemannian manifolds was studied by O’Neill [27]
and Gray [21]. Later on, such submersions have been studied widely in differential geometry. Riemannian
submersions between Riemannian manifolds equipped with an additional structure of almost complex type were
firstly studied by Watson [42]. Watson defined an almost Hermitian submersion between almost Hermitian
manifolds and he showed that the base manifold and each fiber have the same kind of structure as the total
space, in most cases. We note that almost Hermitian submersions have been extended to the almost contact
manifolds [13], locally conformal Kähler manifolds [26], quaternionic Kähler manifolds [23], paraquaternionic
manifolds [11], [40] and statistical manifolds [41].

Recently, Şahin [35] introduced the notion of semiinvariant Riemannian submersions as a generalization
of antiinvariant Riemannian submersions [34] from almost Hermitian manifolds onto Riemannian manifolds.
Later such submersions and their extensions are studied [4, 5, 28–30, 37, 38].

As a generalization of semiinvariant submersions, Ali and Fatima [1] introduced the notion of generic
Riemannian submersions in the sense of Chen (see also [2]). For the notion of generic Riemannian submersions,
there are also two notions which are given by Yano and Kon [44], Ronsse [32] in literature. (See also [33]).

On the other hand, a related topic of growing interest deals with the study of the so-called horizontally
conformal submersions: these maps, which provide a natural generalization of Riemannian submersion, were
introduced independently Fuglede [18] and Ishihara [22]. As a generalization of holomorphic submersions, the
notion of conformal holomorphic submersions were defined by Gudmundsson and Wood [20]. In 2017, Akyol and
Şahin [7] defined a conformal semiinvariant submersion from an almost Hermitian manifolds onto a Riemannian
manifold (for conformal submersions see also [3, 6, 8]). In the present paper, we introduce the notion of conformal
generic submersions in the sense of Chen as a generalization of semiinvariant submersions, generic Riemannian
submersions and conformal semiinvariant submersions and investigate the geometry of the total space, the base
space and the fibres for the existence of such submersions.

The present article is organized as follows: In Section 2, we give some background about conformal
submersions and the second fundamental maps. In Section 3, we define and study conformal generic submersions
from almost Hermitian manifolds onto Riemannian manifolds, give examples and investigate the geometry of
leaves of the horizontal distribution and the vertical distribution. In this section, we also show that there are
certain product structures on the total space of a conformal generic submersion. In the last section of this
paper, we find necessary and sufficient conditions for a conformal generic submersion to be totally geodesic and
harmonic, respectively.

2. Preliminaries
The manifolds, maps, vector fields etc. considered in this paper are assumed to be smooth, i.e. differentiable of
class C∞ .

2.1. Conformal submersions
Let ψ : (M1, g1) −→ (M2, g2) be a smooth map between Riemannian manifolds, and let p ∈ M1 . Then ψ is
called horizontally weakly conformal or semiconformal at p [9] if either (i) dψp = 0 , or (ii) dψp is surjective
and there exists a number Λ(p) ̸= 0 such that

g2(dψpξ, dψpη) = Λ(p)g1(ξ, η) (ξ, η ∈ Hp),

202



AKYOL/Turk J Math

where Hp is horizontal space in total space. We call the point p as a critical point if it satisfies the type (i),
and we shall call the point p a regular point if it satisfied the type (ii). At a critical point, dψp has rank 0 ; at
a regular point, dψp has rank n and ψ is submersion. Further, the positive number Λ(p) is called the square
dilation (of ψ at p). The map ψ is called horizontally weakly conformal or semiconformal (on M1 ) if it is
horizontally weakly conformal at every point of M1 and if it has no critical point, then we call it a horizontally
conformal submersion.

A vector field ξ1 ∈ Γ(TM1) is called a basic vector field if ξ1 ∈ Γ((kerdψ)⊥) and ψ−related with a vector
field ξ̄1 ∈ Γ(TM2) which means that (dψpξ1p) = ξ̄1ψ(p) ∈ Γ(TM2) for any p ∈M1.

Define T and A, which are O’Neill’s tensors, as follows:

AE1
E2 = V∇

M

HE1
HE2 +H∇

M

HE1
VE2 (2.1)

TE1
E2 = H∇

M

VE1
VE2 + V∇

M

VE1
HE2 (2.2)

where V and H are the vertical and horizontal projections (see [19]). On the other hand, from (2.1) and (2.2),
we have

∇
M

V W = TVW + ∇̂VW (2.3)

∇
M

V ξ = H∇
M

V ξ + TV ξ (2.4)

∇
M

ξ V = AξV + V∇
M

ξ V (2.5)

∇
M

ξ η = H∇
M

ξ η +Aξη (2.6)

for ξ, η ∈ Γ((kerdψ)⊥) and V,W ∈ Γ(kerdψ), where ∇M is the Levi–Civita connection on M1 and ∇̂VW =

V∇M

V W . If ξ is basic, then H∇M

V ξ = AξV .
It is easily seen that for q ∈ M1, ξ ∈ Hq and V ∈ Vq the linear operators TV ,Aξ : TqM1 → TqM1 are

skew-symmetric, that is

−g1(TV E1, E2) = g1(E1, TV E2) and − g1(AξE1, E2) = g1(E1,AξE2)

for all E1, E2 ∈ TqM1 . We also see that the restriction of T to the vertical distribution T |kerdψ×kerdψ is
exactly the second fundamental form of the fibres of ψ . Since TV is skew-symmetric we get: ψ has totally
geodesic fibres if and only if T ≡ 0 .

Let (M1, g1) and (M1, g2) be Riemannian manifolds and suppose that ψ : M1 → M2 is a smooth map
between them. Then the differential dψ of ψ can be viewed a section of the bundle Hom(TM1, ψ

−1TM2) →M1,

where ψ−1TM2 is the pullback bundle which has fibres (ψ−1TM2)p = Tψ(p)M2, p ∈M1 . Hom(TM1, ψ
−1TM2)

has a connection ∇ induced from the Levi–Civita connection ∇M1 and the pullback connection. Then the
second fundamental form of ψ is given by

(∇dψ)(ξ, η) = ∇ψ
ξ dψ(η)− dψ(∇

M

ξ η) (2.7)
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for ξ, η ∈ Γ(TM1), where ∇ψ is the pullback connection. It is known that the second fundamental form is
symmetric.

Lemma 2.1 [43] Let (M, gM ) and (N, gN ) be Riemannian manifolds and suppose that ψ : M −→ N is a
smooth map between them. Then we have

∇ψ
ξ dψ(η)−∇ψ

η dψ(ξ)− dψ([ξ, η]) = 0 (2.8)

for ξ, η ∈ Γ(TM) .

Finally, we have the following from [9]:

Lemma 2.2 (Second fundamental form of an HC submersion) Suppose that ψ : M1 → M2 is a horizontally
conformal submersion. Then, for any horizontal vector fields ξ, η and vertical vector fields V,W, we have

(i) (∇dψ)(ξ, η) = ξ(lnλ)dψη + η(lnλ)dψξ − g(ξ, η)dψ(∇ lnλ);

(ii) (∇dψ)(V,W ) = −dψ(TVW );

(iii) (∇dψ)(ξ, V ) = −dψ(∇1
ξV ) = −dψ(AξV ).

3. Conformal generic submersions from almost Hermitian manifolds

In this section, we define conformal generic submersions from an almost Hermitian manifold onto a Riemannian
manifold, give lots of examples and investigate the geometry of leaves of distributions and show that there are
certain product structures on the total space of a conformal generic submersion.

Let (M1, g1, J) be an almost Hermitian manifold with almost complex structure J and a Riemannian
metric g such that [45]:

(i) J2 = −I, (ii) g(Z1, Z2) = g(JZ1, JZ2), (3.1)

for all vector fields Z1 , Z2 on M1, where I is the identity map. An almost Hermitian manifold M1 is called
Kähler manifold if the almost complex structure J satisfies

(∇Z1
J)Z2 = 0, ∀Z1, Z2 ∈ Γ(TM1), (3.2)

where ∇ denotes the Levi–Civita connection on M1 .
First of all, we recall the definition of generic Riemannian submersions as follows:

Definition 3.1 [1] Let N1 be a complex m-dimensional almost Hermitian manifold with Hermitian metric h1

and almost complex structure J1 and N2 be a Riemannian manifold with Riemannian metric h2. A Riemannian
submersion ψ : N1 −→ N2 is called generic Riemannian submersion if there is a distribution D̄1 ⊆ ker dψ such
that

kerdψ = D̄1 ⊕ D̄2 J(D̄1) = D̄1,

where D̄2 is orthogonal complementary to D̄1 in (kerdψ), and is purely real distribution on the fibres of the
submersion ψ.
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Now, we will give our definition as follows:
Let φ be a conformal submersion from an almost Hermitian manifold (M, g, J) to a Riemannian manifold

(B, h). Define
Dq = (kerdφ ∩ J(kerdφ)), q ∈M

the complex subspace of the vertical subspace Vq.

Definition 3.2 Let φ : (M, g, J) −→ (B, h) be a horizontally conformal submersion, where (M, g, J) is an
almost Hermitian manifold and (B, h) is a Riemannian manifold with Riemannian metric h. If the dimension
Dq is constant along M and it defines a differential distribution on M then we say that φ is conformal generic
submersion. A conformal generic submersion is purely real (respectively, complex) if Dq = {0} (respectively,

Dq = kerdφq ). For a conformal generic submersion, the orthogonal complementary distribution D′
, called

purely real distribution, satisfies
kerdφ = D ⊕D

′
, (3.3)

and
D ∩D

′
= {0}. (3.4)

Remark 3.3 It is known that the distribution kerdφ is integrable. Hence, above definition implies that the
integral manifold (fiber) φ−1(q) , q ∈ B , of kerdφ is a generic submanifold of M. For generic submanifolds,
see:[12].

First of all, we give lots of examples for conformal generic submersions from almost Hermitian manifolds
to Riemannian manifolds.

Example 3.4 Every semiinvariant Riemannian submersion [35] φ from an almost Hermitian manifold to a
Riemannian manifold is a conformal generic submersion with λ = 1 and D′ is a totally real distribution.

Example 3.5 Every conformal semiinvariant submersion [7] φ from an almost Hermitian manifold to a
Riemannian manifold is a conformal generic submersion such that D′ is a totally real distribution.

Example 3.6 Every generic Riemannian submersion [1] φ from an almost Hermitian manifold to a Rieman-
nian manifold is a conformal generic submersion with λ = 1.

Remark 3.7 We would like to point out that since conformal semiinvariant submersions include conformal
holomorphic submersions and conformal antiinvariant submersions, such conformal submersions are also ex-
amples of conformal generic submersions. We say that a conformal generic submersion is proper if λ ̸= 1 and
D′ is neither complex nor purely real.

In the following R2m denotes the Euclidean 2m -space with the standard metric. Define the compatible
almost complex structure J on R8 by

J∂1 =
1√
2
(−∂3 − ∂2), J∂2 =

1√
2
(−∂4 + ∂1), J∂3 =

1√
2
(∂1 + ∂4), J∂4 =

1√
2
(∂2 − ∂3),

J∂5 =
1√
2
(−∂7 − ∂6), J∂6 =

1√
2
(−∂8 + ∂5), J∂7 =

1√
2
(∂5 + ∂8), J∂8 =

1√
2
(∂6 − ∂7),
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where ∂k = ∂
∂uk

, k = 1, ..., 8 and (u1, ..., u8) natural coordinates of R8.

Example 3.8 Let φ : (R8, g) −→ (R2, h) be a submersion defined by

φ(u1, u2, ..., u8) = (t1, t2),

where
t1 = eu1 sinu3 and t2 = eu1 cosu3.

Then, the Jacobian matrix of φ is:

dφ =

[
eu1 sinu3 0 eu1 cosu3 0 0 0 0 0
eu1 cosu3 0 −eu1 sinu3 0 0 0 0 0

]
.

Since, the rank of this matrix is equaled to 2, the map φ is a submersion. A straight computation yields

kerdφ = span{T1 = ∂2, T2 = ∂4, T3 = ∂5, T4 = ∂6, T5 = ∂7, T6 = ∂8}

and

(kerdφ)⊥=span{H1=e
u1 sinu3∂1 + eu1 cosu3∂3,H2=e

u1 cosu3∂1 − eu1 sinu3∂3}.

Hence, we get

JT3= − 1√
2
(T4 + T5), JT4=

1√
2
(T3 − T6),

JT5=
1√
2
(T3 + T6), JT6=

1√
2
(T4 − T5)

and

JT1 =
1√
2
T2 −

e−u1 sinu3√
2

H1 −
e−u1 cosu3√

2
H2,

JT2 = − 1√
2
T1 +

e−u1 cosu3√
2

H1 −
e−u1 sinu3√

2
H2,

where J is the complex structure of R8. It follows that D = span{T3, T4, T5, T6} and D′
= span{T1, T2} . Also

by direct computations yields

dφ(H1) = (eu1)2∂v1 and dφ(H2) = (eu1)2∂v2.

Hence, it is easy to see that

gR2(dφ(Hi), dφ(Hi)) = (eu1)2gR8(Hi,Hi), i = 1, 2.

Thus φ is a conformal generic submersion with λ = eu1 .

Example 3.9 Let ψ : (R8, g1) −→ (R2, g2) be a submersion defined by

ψ(v1, v2, ..., v8) = π17(
−v1 + v3√

2
,
−v1 − v3√

2
).

Then ψ is a conformal generic submersion with λ = π17.
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Remark 3.10 Throughout this paper, we assume that all horizontal vector fields are basic vector fields.

Let φ be a conformal generic submersion from a Kähler manifold (M, g, J) onto a Riemannian manifold (B, h) .
Then for Z ∈ Γ(kerdφ) , we write

JZ = ψZ + ωZ (3.5)

where ψZ ∈ Γ(kerdφ) and ωZ ∈ Γ((kerdφ)⊥) . We denote the orthogonal complement of ωD′ in (kerdφ)⊥ by
µ. Then we have

(kerdφ)⊥ = ωD
′
⊕ µ (3.6)

and that µ is invariant under J. Also for ξ ∈ Γ((kerdφ)⊥) , we write

Jξ = Bξ + Cξ (3.7)

where Bξ ∈ Γ(D′
) and Cξ ∈ Γ(µ) . From (3.5), (3.6) and (3.7), we have the following result.

Proposition 3.11 Let φ be a conformal generic submersion from a Kähler manifold (M, g, J) onto a Rieman-
nian manifold (B, h) . Then we have

(i) ψD = D, (ii) ωD = 0, (iii) ψD
′
⊂ D

′
, (iv) B((kerdφ)⊥) = D

′
,

(a) ψ2 + Bω = −id, (b) C2 + ωB = −id, (c) ωψ + Cω = 0, (d) BC = 0.

Next, we easily have the following lemma:

Lemma 3.12 Let (M, g, J) be a Kähler manifold and (B, h) a Riemannian manifold. Let φ : (M, g, J) →
(B, h) be a conformal generic submersion. Then we have

(i)

CH∇
M

ξ η + ωAξη = AξBη +H∇
M

ξ Cη

BH∇
M

ξ η + ψAξη = V∇
M

ξ Bη +AξCη,

(ii)

CTZW + ω∇̂ZW = TUψW +AωWZ

BTZW + ψ∇̂ZW = ∇̂ZψW + TZωW,

(iii)

CAξZ + ωV∇
M

ξ Z = AξψZ +H∇
M

ξ ωZ

BAξZ + ψV∇
M

ξ Z = V∇
M

ξ ψZ +AξωZ,

for ξ, η ∈ Γ((kerdφ)⊥) and Z,W ∈ Γ(kerdφ) .
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3.1. The geometry of φ : (M, g, J) → (B, h)

Lemma 3.13 Let φ be a conformal generic submersion from a Kähler manifold (M, g, J) onto a Riemannian
manifold (B, h) . Then the distribution D is integrable if and only if the following is satisfied

λ−2{h((∇dφ)(U, JV )− (∇dφ)(V, JU),dφ(ωZ)} = g(φ(∇̂V JU − ∇̂UJV ), Z) (3.8)

for U, V ∈ Γ(D) and Z ∈ Γ(D′
).

Proof The distribution D is integrable if and only if

g([U, V ], Z) = 0, and g([U, V ], ξ) = 0

for any U, V ∈ Γ(D), Z ∈ Γ(D′
) and ξ ∈ Γ((kerdφ)⊥) . Since kerdφ is integrable g([U, V ], ξ) = 0 . Therefore,

D is integrable if and only if g([U, V ], Z) = 0. By Eqs. (3.1)(i), (3.2), (2.3), and (3.5) we have

g([U, V ], Z) = g(H∇
M

U JV, ωZ) + g(∇̂UJV, φZ)−g(H∇
M

V JU, ωZ)−g(∇̂V JU,φZ).

By using the property of φ , Eq. (3.5) and Lemma 2.2 yield

g([U, V ], Z) = λ−2h
(
− (∇dφ)(U, JV ) +∇φ

Udφ(JV ),dφ(ωZ)
)
− λ−2h

(
− (∇dφ)(V, JU)

+∇φ
V dφ(JU),dφ(ωZ)

)
+ g(φ(∇̂V JU − ∇̂UJV ), Z)

= λ−2{h((∇dφ)(V, JU)−(∇dφ)(U, JV ),dφ(ωZ))}+g(φ(∇̂V JU−∇̂UJV ), Z)

which gives Eq. (3.8).

In a similar way, we get: 2

Lemma 3.14 Let φ be a conformal generic submersion from a Kähler manifold (M, g, J) onto a Riemannian
manifold (B, h) . Then the distribution D′ is integrable if and only if

∇̂V ψU − ∇̂UψV + TV ωU − TUωV ∈ Γ(D
′
) (3.9)

for U, V ∈ Γ(D′
).

We now investigate the geometry of leaves of D and D′ .

Lemma 3.15 Let φ be a conformal generic submersion from a Kähler manifold (M, g, J) to a Riemannian
manifold (B, h) . Then D defines a totally geodesic foliation on M if and only if

(a) λ−2h((∇dφ)(X1, JY1),dφ(ωX2)) = g(∇̂X1
JY1, ψX2)

(b) λ−2h((∇dφ)(X1, JY1),dφ(Cξ)) = g(∇̂X1ψBξ + TX1ωBξ, Y1)

for X1, Y1 ∈ Γ(D), X2 ∈ Γ(D′
) and ξ ∈ Γ((kerdφ)⊥) .
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Proof The distribution D defines a totally geodesic foliation on M if and only if

g(∇
M

X1
Y1, X2) = 0 and g(∇

M

X1
Y1, ξ) = 0

for any X1, Y1 ∈ Γ(D), X2 ∈ Γ(D′
) and ξ ∈ Γ((kerdφ)⊥) . By virtue of Eqs. (3.1)(i) and (3.1)(ii), we get

g(∇
M

X1
Y1, X2) = g(∇̂X1

JY1, ψX2) + g(H∇
M

X1
JY1, ωX2).

Since φ is a conformal generic submersion, by Eq. (2.7) yields

g(∇
M

X1
Y1, X2) = g(∇̂X1

JY1, ψX2)− λ−2h((∇dφ)(X1, JY1),dφ(ωX2)). (3.10)

On the other hand, by Eqs. (3.1)(i), (3.1)(ii), (2.3), and (3.7) yields

g(∇
M

X1
Y1, ξ) = g(Y1,∇

M

X1
JBξ) + g(H∇

M

X1
JY1, Cξ).

By Eqs. (2.4), (2.7), and (3.5) we get

g(∇
M

X1
Y1, ξ) = g(Y1, ∇̂X1ψBξ) + g(Y1, TX1ωBξ) (3.11)

− λ−2h((∇dφ)(X1, JY1),dφ(Cξ)).

Hence proof follows from Eqs. (3.10) and (3.11). 2

In a similar way, we have the following result.

Lemma 3.16 Let φ be a conformal generic submersion from a Kähler manifold (M, g, J) to a Riemannian
manifold (B, h) . Then D′ defines a totally geodesic foliation on M if and only if

(a) λ−2h((∇dφ)(X2, JX1),dφ(ωY2)) = g(∇̂X2JX1, ψY2) ,

(b) λ−2h
(
(∇dφ)(X2, Y2),dφ(JCξ)

)
= g(TX2Bξ, ωY2)− g(∇̂X2ψY2,Bξ)

for X1, Y1 ∈ Γ(D), X2, Y2 ∈ Γ(D′
) and ξ ∈ Γ((kerdφ)⊥) .

From Lemma 3.15 and Lemma 3.16, we have the following result.

Lemma 3.17 Let φ : (M, g, J) −→ (B, h) be a conformal generic submersion from a Kähler manifold (M, g, J)

onto a Riemannian manifold (B, h) . Then the fibers of φ are locally product manifolds of the form MD ×MD′

if and only if

(i) λ−2h((∇dφ)(X1, JY1),dφ(ωX2)) = g(∇̂X1
JY1, ψX2)

(ii) λ−2h((∇dφ)(X1, JY1),dφ(Cξ)) = g(∇̂X1
ψBξ + TX1

ωBξ, Y1)

(iii) λ−2h((∇dφ)(X2, JX1),dφ(ωY2)) = g(∇̂X2JX1, ψY2) ,

(iv) λ−2h
(
(∇dφ)(X2, Y2),dφ(JCξ)

)
= g(TX2

Bξ, ωY2)− g(∇̂X2
ψY2,Bξ)
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for any X1, Y1 ∈ Γ(D), X2, Y2 ∈ Γ(D′
) and ξ ∈ Γ((kerdφ)⊥).

Since the distribution kerdφ is integrable, we only study the integrability of the distribution (kerdφ)⊥

and then we discuss the geometry of leaves of kerdφ and (kerdφ)⊥ .

Theorem 3.18 Let φ be a conformal generic submersion from a Kähler manifold (M, g, J) to a Riemannian
manifold (B, h) . Then the distribution (kerdφ)⊥ is integrale if and only if

V(∇
M

ξ Bη −∇
M

η Bξ) +AξCη −AηCξ ∈ Γ(D
′
)

and

λ−2h
(
(∇dφ)(ξ,Bη)− (∇dφ)(η,Bξ)−∇φ

ξ dφ(Cη) +∇φ
ηdφ(Cξ),dφ(ωW )

)
= g

(
η(lnλ)Cξ−ξ(lnλ)Cη−Cη(lnλ)ξ+Cξ(lnλ)η+2g(ξ, Cη)∇ lnλ, ωW

)
+ g(−φ(V∇

M

ξ Bη − V∇
M

η Bξ +AξCη −AηCξ),W )

for ξ, η ∈ Γ(kerdφ)⊥), V ∈ Γ(D) and W ∈ Γ(D′
) .

Proof By virtue of (3.1)(i) and (3.1)(ii), we get

g([ξ, η], JV ) = g(−J [ξ, η], V ) = −g(J∇
M

ξ Jη, JV ) + g(J∇
M

η Jξ, JV )

for ξ, η ∈ Γ((kerdφ)⊥) and V ∈ Γ(D). Then by using (3.7), (3.5), (2.5), and (2.6) yields

g([ξ, η], JV ) = −g(ψ(V(∇
M

ξ Bη −∇
M

η Bξ) +AξCη −AηCξ), JV )

So that

g([ξ, η], JV ) = 0 ⇐⇒ V(∇
M

ξ Bη −∇
M

η Bξ) +AξCη −AηCξ ∈ Γ(D
′
). (3.12)

Also using (2.5), (2.6), and (3.7) we get

g([ξ, η],W ) = g(V∇
M

ξ Bη − V∇
M

η Bξ +AξCη −AηCξ, ψW )+g(H∇
M

ξ Bη, ωW )

− g(H∇
M

η Bξ, ωW ) + g1(H∇
M

ξ Cη, ωW )− g(H∇
M

η Cξ, ωW ).

Taking into account (2.7) and Lemma 2.2, we get

g([ξ,η],W ) = g(V∇
M

ξ Bη − V∇
M

η Bξ +AξCη −AηCξ, ψW )

−λ−2h((∇dφ)(ξ,Bη),dφ(ωW ))+λ−2h((∇dφ(η,Bξ),dφ(ωW ))

+λ−2h{−ξ(lnλ)dφ(Cη)−Cη(lnλ)dφ(ξ)+g(ξ, Cη)dφ(∇ lnλ)+∇φ
ξ dφ(Cη),dφ(ωW )}

− λ−2h{−η(lnλ)dφ(Cξ)−Cξ(lnλ)dφ(η)+g(η, Cξ)dφ(∇ lnλ)+∇φ
ηdφ(Cξ),dφ(ωW )}
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by virtue of (2.5) and (2.7)

g([ξ, η],W ) = g(V∇
M

ξ Bη − V∇
M

η Bξ +AξCη −AηCξ, ψW )

− λ−2h
(
(∇dφ)(ξ,Bη)− (∇dφ)(η,Bξ),dφ(ωW )

)
− λ−2g(∇ lnλ, ξ)h(dφ(Cη),dφ(ωW ))− λ−2g(∇ lnλ, Cη)h(dφ(ξ),dφ(ωW ))

+ λ−2g(ξ, Cη)h(dφ(∇ lnλ),dφ(ωW )) + λ−2h(∇φ
ξ dφ(Cη),dφ(ωW ))

+ λ−2g(∇ lnλ, η)h(dφ(Cξ),dφ(ωW )) + λ−2g(∇ lnλ, Cξ)h(dφ(η),dφ(ωW ))

− λ−2g(η, Cξ)h(dφ(∇ lnλ),dφ(ωW ))− λ−2h(∇φ
ηdφ(Cξ),dφ(ωW )).

A straight computation yields

g([ξ,η],W )=g
(
η(lnλ)Cξ−ξ(lnλ)Cη−Cη(lnλ)ξ+Cξ(lnλ)η+2g(ξ, Cη)∇ lnλ, ωW

)
+ g(−φ(V∇

M

ξ Bη − V∇
M

η Bξ +AξCη −AηCξ),W )

− λ−2h
(
(∇dφ)(ξ,Bη)− (∇dφ)(η,Bξ)−∇φ

ξ dφ(Cη) +∇φ
ηdφ(Cξ),dφ(ωW )

)
so that

g([ξ, η],W ) =0 ⇐⇒ λ−2h
(
(∇dφ)(ξ,Bη)− (∇dφ)(η,Bξ) (3.13)

−∇φ
ξ dφ(Cη) +∇φ

ηdφ(Cξ),dφ(ωW )
)

= g
(
η(lnλ)Cξ−ξ(lnλ)Cη−Cη(lnλ)ξ+Cξ(lnλ)η+2g(ξ, Cη)∇ lnλ, ωW

)
+ g(−ψ(V∇

M

ξ Bη − V∇
M

η Bξ +AξCη −AηCξ),W ).

The proof follows from (3.12) and (3.13). 2

From Theorem 3.18, we deduce.

Theorem 3.19 Let φ be a conformal generic submersion from a Kähler manifold (M, g, J) to a Riemannian
manifold (B, h) with integrable distribution (kerdφ)⊥ . If φ is a horizontally homothetic map then we have

λ−2h
(
(∇dφ)(ξ,Bη)− (∇dφ)(η,Bξ)−∇φ

ξ dφ(Cη) +∇φ
ηdφ(Cξ),dφ(ωW )

)
(3.14)

= g(−ψ(V∇
M

ξ Bη − V∇
M

η Bξ +AξCη −AηCξ),W )

for ξ, η ∈ Γ((kerdφ)⊥) and W ∈ Γ(D′
) .

For the geometry of leaves of the horizontal distribution, we have the following theorem.

Theorem 3.20 Let φ be a conformal generic submersion from a Kähler manifold (M, g, J) to a Riemannian
manifold (B, h) . Then the horizontal distribution defines a totally geodesic foliation on M if and only if

λ−2h((∇dφ)(ξ, JV1),dφ(η)) = g(η,V∇
M

ξ JV1)
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and

λ−2h(∇φ
ξ dφ(ωV2),dφ(Cη)) = −g(ψ(AξCη + V∇

M

ξ Bη), V2)

+ g(AξBη − ξ(lnλ)Cη − Cη(lnλ)ξ + g(ξ, Cη)∇ lnλ, ωV2)

for ξ, η ∈ Γ((kerdφ)⊥), V1 ∈ Γ(D) and V2 ∈ Γ(D′
).

Proof Given ξ, η ∈ Γ((kerdφ)⊥) and JV1 ∈ Γ(D) , by virtue of (3.1)(ii), (2.5), (2.6), (3.5) and (3.7) we obtain

g(∇
M

ξ η, JV1) = −g(η,H∇
M

ξ JV1 + V∇
M

ξ JV1)

= λ−2h((∇dφ)(ξ, JV1),dφ(η))− g(η,V∇
M

ξ JV1)

so that

g(∇
M

ξ η, JV1) = 0 ⇐⇒ λ−2h((∇dφ)(ξ, JV1),dφ(η)) = g(η,V∇
M

ξ JV1). (3.15)

Given V2 ∈ Γ(D′
), by using (3.1)(ii), (2.5), (2.6), (3.5) and (3.7) we get

g(∇
M

ξ η, V2) = −g(ψ(AξCη + V∇
M

ξ Bη), V2)− g(Bη,∇
M

ξ ωV2) + g(∇
M

ξ Cη, ωV2)

= −g(ψ(AξCη + V∇
M

ξ Bη), V2)− g(Bη,AξωV2)

− λ−2g(∇ lnλ, ξ)h(dφ(ωV2),dφ(Cη))− λ−2g(∇ lnλ, Cη)h(dφ(ξ),dφ(ωV2))

+ g(ξ, Cη)λ−2h(dφ(∇ lnλ),dφ(ωV2)) + λ−2h(∇φ
ξ dφ(Cη),dφ(ωV2))

so that

g(∇
M

ξ η, V2) = g(AξBη − ξ(lnλ)Cη − Cη(lnλ)ξ + g(ξ, Cη)∇ lnλ, ωV2) (3.16)

− g(ψ(AξCη + V∇
M1

ξ Bη), V2)− λ−2h(∇φ
ξ φ(ωV2),dφ(Cη)).

The proof follows (3.15) and (3.16). 2

From Theorem 3.20, we immediately deduce.

Theorem 3.21 Let φ be a conformal generic submersion from a Kähler manifold (M, g, J) to a Riemannian
manifold (B, h) with a totally geodesic foliation (kerdφ)⊥. If φ is a horizontally homothetic map. then we have

λ−2h(∇φ
ξ dφ(ωV2),dφ(Cη)) = g(AξBη, ωV2)− g(ψ(AξCη + V∇

M

ξ Bη), V2) (3.17)

for any ξ, η ∈ Γ((kerdφ)⊥) and V2 ∈ Γ(D′
) .

Proof Since (kerφ∗)
⊥ defines a totally geodesic foliation on M1 , from (3.16) we have

g(∇
M

ξ η, V2) = g(AξBη − ξ(lnλ)Cη − Cη(lnλ)ξ + g(ξ, Cη)∇ lnλ, ωV2)

− g(ψ(AξCη + V∇
M1

ξ Bη), V2)− λ−2h(∇φ
ξ φ(ωV2),dφ(Cη))

for any ξ, η ∈ Γ((kerdφ)⊥) and V2 ∈ Γ(kerdφ). Now, one can easily see that if λ is a constant on (kerdφ)⊥ ,
we obtain (3.17.) 2

In the sequel we are going to investigate the geometry of leaves of the distribution kerdφ .
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Theorem 3.22 Let φ be a conformal generic submersion from a Kähler manifold (M, g, J) to a Riemannian
manifold (B, h) . Then the vertical distribution defines a totally geodesic foliation on M if and only if

λ−2h((∇dφ)(U, ωV ),dφ(Cξ)) = g(∇̂UψV,Bξ)− g(ωV, TUBξ) + g(TUφV, Cξ)

for any U, V ∈ Γ(kerdφ) and ξ ∈ Γ(kerdφ)⊥.

Proof It is clear that the vertical distribution defines a totally geodesic foliation if and only if g(∇M

U V, ξ) = 0

for any U, V ∈ Γ(kerdφ) and ξ ∈ Γ(kerdφ)⊥. By using (3.5), (3.7) and (2.3), we get

g(∇
M

U V, ξ) = g(∇̂UψV,Bξ) + g(TUφV, Cξ)− g(ωV, TUBξ) + g(∇
M

U ωV, Cξ)

for any U, V ∈ Γ(kerdφ) and ξ ∈ Γ(kerdφ)⊥. Since φ is a conformal submersion, by using (2.7), we have

g(∇
M

U V, ξ) = g(∇̂UψV,Bξ) + g(TUφV, Cξ)− g(ωV, TUBξ) + λ−2h(dφ(∇
M

U ωV ),dφCξ)

which tells that

g(∇
M

U V, ξ) = g(∇̂UψV,Bξ) + g(TUφV, Cξ)− g(ωV, TUBξ)− λ−2h((∇dφ)(U, ωV ),dφ(Cξ))

which proves the assertion. 2

From Theorems 3.20 and 3.22, we have the following result.

Theorem 3.23 Let φ : (M, g, J) −→ (B, h) be a conformal generic submersion from a Kähler manifold
(M, g, J) onto a Riemannian manifold (B, h) . Then the total space M is a generic product manifold of the
leaves of kerdφ and (kerdφ)⊥, i.e. M =Mkerdφ ×M (kerdφ)⊥ , if and only if

λ−2h((∇dφ)(ξ, JV1),dφ(η)) = g(η,V∇
M

ξ JV1),

λ−2h(∇φ
ξ dφ(ωV2),dφ(Cη)) = −g(ψ(AξCη + V∇

M

ξ Bη), V2)

+ g(AξBη − ξ(lnλ)Cη − Cη(lnλ)ξ + g(ξ, Cη)∇ lnλ, ωV2)

and

λ−2h((∇dφ)(U, ωV ),dφ(Cξ)) = g(∇̂UψV,Bξ)− g(ωV, TUBξ) + g(TUφV, Cξ)

for any ξ, η ∈ Γ((kerdφ)⊥), U, V ∈ Γ(kerdφ), V1 ∈ Γ(D) and V2 ∈ Γ(D′
), where Mkerdφ and M (kerdφ)⊥ are

leaves of the distributions kerdφ and (kerdφ)⊥ , respectively.

4. Totally geodesicity and harmonicity of conformal generic submersions

In this section, we investigate the necessary and sufficient conditions for such submersions to be totally
geodesicity and harmonicity, respectively. We first give the following definition.
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4.1. Totally geodesicity of φ : (M, g, J) −→ (B, h)

Definition 4.1 Let φ be a conformal generic submersion from a Kähler manifold (M, g, J) to a Riemannian
manifold (B, h) . Then φ is called a (ωD′

, µ)-totally geodesic map if

(∇dφ)(ωZ, ξ) = 0, for Z ∈ Γ(D
′
) and ξ ∈ Γ(µ).

The following result shows that the above definition has an important effect on the character of the
conformal generic submersion.

Theorem 4.2 Let φ be a conformal generic submersion from a Kähler manifold (M, g, J) to a Riemannian
manifold (B, h) . Then the following conditions are equivalent:

(i) φ is a horizontally homothetic map.

(ii) φ is a (ωD′
, µ)-totally geodesic map.

Proof Given Z ∈ Γ(D′
) and ξ ∈ Γ(µ) , by Lemma 2.2, we have

(∇dφ)(ωZ, ξ) = ωZ(lnλ)dφ(ξ) + ξ(lnλ)dφ(ωZ)− g(ωZ, ξ)dφ(∇ lnλ).

= ωZ(lnλ)dφ(ξ) + ξ(lnλ)dφ(ωZ).

From above equation, we easily get (i) =⇒ (ii). Conversely, if (∇dφ)(ωZ, ξ) = 0, we get

ωZ(lnλ)dφ(ξ) + ξ(lnλ)dφ(ωZ) = 0. (4.1)

From above equation, since {dφ(ξ),dφ(ωZ)} is linearly independent for nonzero ξ, Z we have ωZ(lnλ) = 0

and ξ(lnλ) = 0. It means that λ is a constant on Γ(D′
) and Γ(µ), which gives that (i) ⇐= (ii). This completes

the proof of the theorem. 2

We also have the following result.

Theorem 4.3 Let φ : (M, g, J) −→ (B, h) is a conformal generic submersion, where (M, g, J) is a Kähler
manifold and (B, h) is a Riemannian manifold. φ is a totally geodesic map if and only if the following four
conditions are satisfied:

(i) CTUJV + ω∇̂UJV = 0 for U, V ∈ Γ(D).

(ii) TUψZ +AωZU ∈ Γ(ωD′
) and ∇̂UψZ + TUωZ ∈ Γ(D) , for U ∈ Γ(D), Z ∈ Γ(kerdφ).

(iii) C(TWψZ +AωZW ) + ω(∇̂WψZ + TWωZ) = 0 , for W,Z ∈ Γ(D′
).

(iv) C(TV Bξ +H∇M

V Cξ) + ω(∇̂V Bξ + TV Cξ) = 0 for V ∈ Γ(kerdφ), ξ ∈ Γ((kerdφ)⊥)

(v) φ is a horizontally homotetic map.

214



AKYOL/Turk J Math

Proof In view of Eqs. (3.1)(ii) and (2.7) we have

(∇dφ)(U, V ) = dφ(J∇
M

U JV )

for any U, V ∈ Γ(D). Then from Eq. (2.3) we arrive at

(∇dφ)(U, V ) = dφ(J(TUJV + ∇̂UJV )).

Using Eqs. (3.5) and (3.7) in above equation we obtain

(∇dφ)(U, V ) = dφ(BTUJV + CTUJV + ψ∇̂UJV + ω∇̂UJV ).

So
(∇dφ)(U, V ) = 0 ⇐⇒ CTUJV + ω∇̂UJV = 0. (4.2)

Given U ∈ Γ(D), Z ∈ Γ(kerdφ) , by Eqs. (3.1)(ii) and (2.7) we have

(∇dφ)(U,Z) = dφ(J∇
M

U JZ).

By Eqs. (2.3), (2.4), and (3.5) yields

(∇dφ)(U,Z) = dφ(J(TUψZ + ∇̂UψZ + TUωZ +AωZU)).

where we have used H∇M

U ωZ = AωZU. By using Eqs. (3.5) and (3.7) in above equation we obtain

(∇dφ)(U,Z) = dφ(BTUψZ + CTUψZ + ψ∇̂UψZ + ω∇̂UψZ

+ ψTUωZ + ωTUωZ + BAωZU + CAωZU).

So
(∇dφ)(U,Z) = 0 ⇐⇒ C(TUψZ +AωZU) + ω(∇̂UψZ + TUωZ) = 0 (4.3)

which completes the proof of (ii).

Given W,Z ∈ Γ(D′
) , by Eqs. (3.1)(ii) and (2.7) we have

(∇dφ)(W,Z) = dφ(J∇
M

WJZ).

By Eqs. (2.3), (2.4), and (3.5) yields

(∇dφ)(W,Z) = dφ(J(TWψZ + ∇̂WψZ + TWωZ +AωZW )).

where we have used H∇M

WωZ = AωZW. Taking into account of Eqs. (3.5) and (3.7) in above equation we
obtain

(∇dφ)(W,Z) = dφ(BTWψZ + CTWψZ + ψ∇̂WψZ + ω∇̂WψZ

+ ψTWωZ + ωTWωZ + BAωZW + CAωZW ).

So
(∇dφ)(W,Z) = 0 ⇐⇒ C(TWψZ +AωZW ) + ω(∇̂WψZ + TWωZ) = 0 (4.4)
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Given V ∈ Γ(kerdφ), ξ ∈ Γ((kerdφ)⊥) , by Eqs. (3.1)(ii), (2.7), (2.3), (2.4), and (3.5) yields

(∇dφ)(V, ξ) = dφ(J∇
M

V Jξ).

= dφ(J(∇
M

V Bξ +∇
M

V Cξ)).

= dφ(J(TV Bξ + ∇̂V Bξ + TV Cξ +H∇
M

V Cξ)).

= dφ(C(TV Bξ +H∇
M

V Cξ) + ω(∇̂V Bξ + TV Cξ)).

So

(∇dφ)(V, ξ) = 0 ⇐⇒ C(TV Bξ +H∇
M

V Cξ) + ω(∇̂V Bξ + TV Cξ) = 0. (4.5)

Now, we will show that for any ξ, η ∈ Γ((kerdφ)⊥) , (∇dφ)(ξ, η) = 0 ⇐⇒ φ is a horizontally homothetic
map. Given ξ, η ∈ Γ(µ) , from Lemma 2.2, we have

(∇dφ)(ξ, η) = ξ(lnλ)dφ(η) + η(lnλ)dφ(ξ)− g(ξ, η)dφ(∇ lnλ).

Taking η = Jξ, ξ ∈ Γ(µ) in the above equation we get

(∇dφ)(ξ, Jξ) = ξ(lnλ)dφ(Jξ) + Jξ(lnλ)dφ(ξ)− g(ξ, Jξ)dφ(∇ lnλ)

= ξ(lnλ)dφ(Jξ) + Jξ(lnλ)dφξ.

If (∇dφ)(ξ, Jξ) = 0, we get
ξ(lnλ)dφ(Jξ) + Jξ(lnλ)dφξ = 0. (4.6)

Taking inner product in Eq. (4.6) with dφ(ξ) and taking into account φ is a conformal submersion, we have

g(∇ lnλ, ξ)h(dφJξ, dφξ) + g(∇ lnλ, Jξ)h(dφξ,dφξ) = 0.

which implies that λ is a constant on Γ(Jµ). On the other hand, taking inner product in Eq. (4.6) with dφ(Jξ)

we have
g(∇ lnλ, ξ)h(dφJξ, dφJξ) + g1(∇ lnλ, ξ)h(dφξ, dφJξ) = 0.

which tells that λ is a constant on Γ(µ). In a similar way, for U, V ∈ Γ(D′
) , by using Lemma 2.2 we have

(∇dφ)(ωU, ωV ) = ωU(lnλ)dφ(ωV ) + ωV (lnλ)dφ(ωU)− g(ωU, ωV )dφ(∇ lnλ).

From above equation, taking V = U we obtain

(∇dφ)(ωU, ωU) = 2ωU(lnλ)dφ(ωU)− g(ωU, ωU)dφ(∇ lnλ). (4.7)

Taking inner product in Eq. (4.7) with dφ(ωU) and taking into account φ is a conformal submersion, we derive

2g(∇ lnλ, ωU)h(dφ(ωU),dφ(ωU))− g(ωU, ωU)h(dφ(∇ lnλ),dφ(ωU)) = 0

which tells that λ is a constant on Γ(ωD′
) . Thus λ is a constant on Γ((kerdφ)⊥) . By Eqs. (4.2), (4.3), (4.4),

(4.5), (4.6), and (4.7), we derive that φ is a totally geodesic map if and only if the relations (i)–(v) hold. This
completes the proof of the theorem. 2
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4.2. Harmonicity of φ : (M, g, J) −→ (B, h)

Let φ : N1 −→ N2 be a C∞ map between two Riemannian manifolds. We can naturally define a function
e(φ) = N1 −→ [0,∞] given by

e(φ)(x) =
1

2
|(dφ)x|2, x ∈ N2

where |(dφ)x| denotes the Hilbert–Schmidt norm of (dφ)x . We call e(φ) the energy density of φ . Let Ω is
the compact closure Ū of a nonempty connected open subset U of N1 . The energy integral of φ over Ω is the
integral of its energy density:

E(φ; Ω) =

∫
Ω

e(φ)vgN =

∫
Ω

1

2
|(dφ)x|2vgN

where vgN is the volume form on (N, gN ) . Let C∞(N1, N2) denote the space of all differentiable map from N1

on N2 . A differentiable map φ : N1 −→ N2 is said to harmonic if it is a critical point of the energy functional
E(φ; Ω) : C∞(N1, N2) −→ R for any compact domain Ω ⊂ N1. By the result of Eells and Sampson [17], we
know that the map φ is harmonic if and only if the tension field

τ(φ) = trace(∇dφ) = 0.

Theorem 4.4 Let φ : (M, g, J) −→ (B, h) be a conformal generic submersion, where (M, g, J) is a Kähler
manifold and (B, h) is a Riemannian manifold. Then φ is harmonic if and only if

trace|(D)dφ
(
CTJ(.)(.) + ω∇̂J(.)(.)

)
− trace|(D′ ) dφ

(
CT(.)ψ(.) + ω∇̂(.)ψ(.) + ωT(.)ω(.) + CH∇

M

(.)ω(.)

+ trace|(kerdφ)⊥
(
∇φ

(.)dφ(C
2(.) + ωB(.))− dφ(CA(.)B(.) + CH∇

M

(.)C(.) + ωA(.)C(.) + ωV∇
M

(.)C(.))
)
= 0.

Proof For any U ∈ Γ(D), V ∈ Γ(D′
) and ξ ∈ Γ((kerdφ)⊥), by using Eqs. (3.1)(i), (2.7), (3.7), (3.5) and

Proposition 3.1 (f) we have

(∇dφ)(JU, JU) + (∇dφ)(V, V ) + (∇dφ)(ξ, ξ) = −dφ(J∇
M

JUU)

+dφ(J(∇
M

V ψV +∇
M

V ωV ))−∇φ
ξ dφ(C

2ξ + ωBξ) + dφ(J(∇
M

ξ Bξ +∇
M

ξ Cξ)).

With a straight computation by using Eqs. (3.7), (3.5), and (2.3)-(2.6), we obtain

(∇dφ)(JU, JU) + (∇dφ)(V, V ) + (∇dφ)(ξ, ξ) = −dφ(CTJUU + ω∇̂JUU)

+dφ(CTV ψV + ω∇̂V ψV + ωTV ωV + CH∇
M

V ωV )

−∇φ
ξ dφ(C

2ξ + ωBξ) + dφ(CAξBξ + CH∇
M

ξ Cξ + ωAξCξ + ωV∇
M

ξ Cξ).

Now, by taking trace on the above equation, we obtain the proof of the theorem. 2

Remark 4.5 One can easily see that the maps defined in Examples 3.8 and 3.9 are examples of harmonic maps.
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