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Abstract: In this note, we first show that solutions of certain equations classify the number fields lying in imaginary
quadratic number fields. Then, we study divisible groups with a predicate. We show that these structures are not simple
and have the independence property under some natural assumptions.
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1. Introduction
Let

F (x1, ..., xk) ∈ C
[
x1,

1

x1
, ..., xk,

1

xk

]
be a nonzero Laurent polynomial over complex numbers. Thus,

F (x1, ..., xk) =
∑
α∈I

aαx
α

for some nonempty finite subset I of Zk where aα ∈ C and

xα = xα1
1 · · ·xαk

k

for all α = (α1, ..., αk) ∈ I . To illustrate

F (x1, x2, x3) =
1

x1
+

2

x1x2
+ x3

is a nonzero Laurent polynomial over complex numbers. A solution g = (g1, ..., gk) ∈ (C×)
k of the equation

F (x1, ..., xk) = 0 is called a nondegenerate solution if for every nonempty proper subset J of I , we have∑
α∈J

aαgα ̸= 0

where gα = gα1
1 · · · gαk

k for all α = (α1, ..., αk) ∈ J . As F (x1, ..., xk) is of the form

P (x1, ..., xk)

(x1 · · · xk)m
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for some polynomial P (x1, ..., xk) ∈ C[x1, ..., xk] and nonnegative integer m , the solutions of F (x1, ..., xk) = 0

from (C×)
k are the same as the solutions of P (x1, ..., xk) = 0 from (C×)

k .

Given nonzero complex numbers a1, ..., ak , let

a1
x1

+ · · ·+ ak
xk

− 1 = 0 (1.1)

be a unit equation. In 1965, Mann [13] proved that the unit equation above has only finitely many nondegenerate
solutions in the group of complex roots of unity if a1, ..., ak are all rational numbers. Then, Mann’s result was
generalized in [5]. For the model-theoretic approaches, the reader might consult [1, 4, 8]. In [9], Göral and
Sertbaş proved that a number field K is either Q or an imaginary quadratic fied if and only if Equation (1.1)
has only finitely many nondegenerate solutions with coordinates in OK for all a1, ..., ak ∈ OK . Motivated by
the mentioned result of [9], we state our first theorem.

Theorem 1.1 Let K be a number field and let OK be its ring of integers. Then the following are equivalent:

(i) K lies in an imaginary quadratic field.

(ii) For every nonzero polynomial p(x1, x2, ..., xn) ∈ OK [x1, x2, ..., xn] with n ≥ 2 and for every polynomial
q(x, y) ∈ OK [x, y] such that all variables x1, x2, ..., xn occur in p and for all nonzero elements a ∈ OK ,
the corresponding projective curve of Cq,a : q(x, y) + a = 0 is smooth and of positive genus, we have that
the equation

p

(
1

x1
,
1

x2
, ...,

1

xn

)
+ q(x, y) = 0

has only finitely many nondegenerate solutions (x1, x2, ..., xn, x, y) with coordinates in OK .

Now, we give an example for the previous theorem. Let p(x1, x2) = x21+x
2
2 and q(x, y) = y2−x3 . Then,

Theorem 1.1 yields that the equation
1

x21
+

1

x22
+ y2 − x3 = 0

has only finitely many nondegenerate solutions in Z . In fact, using SageMath one can obtain that all solutions
are given by

(x1, x2, x, y) = (±1,±1, 3,±5).

However, Theorem 1.1 is not effective as it depends on the finiteness theorem of Siegel [16].

Remark 1.2 Note that if C is a smooth projective curve of degree d , then by the well-known genus-degree
formula from algebraic geometry, the genus of the curve C is

(d− 1)(d− 2)

2
.

Therefore, if the degree of the polynomial q(x, y) in Theorem 1.1 is at least 3, then the condition the corresponding
projective curve of Cq,a : q(x, y) + a = 0 is smooth and of positive genus for all nonzero elements a ∈ OK can
be replaced by the condition the corresponding projective curve of Cq,a : q(x, y)+a = 0 is smooth for all nonzero
elements a ∈ OK .
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Let f(x) = ad(x− α1) · · · (x− αd) ∈ C[x] be a nonzero polynomial. The Mahler measure of f is defined
by

m(f) = |ad|
∏

|αj |≥1

|αj |,

and the Mahler measure of zero is defined to be 1. In 1933, Lehmer conjectured that there exists an absolute
constant c > 1 such that for any polynomial f(x) in Z[x] if m(f) > 1 , then m(f) ≥ c . In other words,
Lehmer’s conjecture states that there exists an absolute constant c > 1 such that{

m(f) : f ∈ Z[x]
}
∩ (1, c) = ∅.

This conjecture is still open. Moreover, Lehmer [12] claimed that the polynomial

f(x) = x10 + x9 − x7 − x6 − x5 − x4 − x3 + x+ 1

has the smallest Mahler measure among all polynomials of Mahler measure greater than 1, and m(f) ≈ 1.17628 .
This claim remains to be open as well.

Let Q be the field of algebraic numbers and let α be in Q\{0} with irreducible polynomial f(x) ∈ Z[X]

of degree d . The logarithmic height of α is defined as

h(α) =
logm(f)

d
.

The logarithmic height function has the following properties (see [2, Chapter 1] and [10, Part B, B.7]):

• For a nonzero rational number a/b where a and b are coprime integers,

h(a/b) = max{log |a|, log |b|}.

• For all α in Q and n ∈ Z , we have h(αn) = |n|h(α) .

• For all α and β in Q , we have h(α+ β) ≤ h(α) + h(β) + log 2 .

• For all α and β in Q , we have h(αβ) ≤ h(α) + h(β) .

For the last twenty years, the model theory of pairs has been a recurrent topic and has received continuous
attention. In their paper, Casanovas and Ziegler [3] worked on stable theories with a predicate and obtained
criteria for a stable structure with a predicate to be stable. In 1990, in an unpublished note, Zilber proved that
the pair (C, µ) is ω -stable where µ is the group of complex roots of unity. In [4], among other things, van
den Dries and Günaydın generalized Zilber’s work to algebraically closed fields with a multiplicative subgroup
which has the Mann property.

Our setting: From now on, we fix our setting. Throughout this paper, the language Lg denotes the
language of pure groups, P signifies a unary predicate, and the group G represents a divisible group which is
not torsion. In particular, G is abelian and it contains a copy of Q as a subgroup. Throughout this note, let
γ be a function from G to R with the following properties:
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1. The function γ is not identically 0.

2. For any g ∈ G , we have γ(g) ≥ 0.

3. There exists a positive real number ℓ ≥ 1 such that for any g ∈ G and n ∈ Z , we have γ(gn) = |n|ℓγ(g).

4. For any g1 and g2 from G , we have γ(g1g2) ≤ 2ℓ−1(γ(g1) + γ(g2)).

Note that the logarithmic height function h on the multiplicative group of the field of algebraic numbers
satisfies the above properties with ℓ = 1.

Remark 1.3 Observe that if u ∈ G is a torsion element, then γ(u) = 0 . In particular, γ(1) = 0. In fact, for
any torsion element u and any element g from G , one has that γ(g) = γ(ug) . To see this, choose a positive
integer m such that um = 1 . Then γ(gm) = γ((ug)m) . Thus, we have that mℓγ(g) = mℓγ(ug) and this yields
that γ(g) = γ(ug) .

Definition 1.4 Let γ be a function from G to R with ℓ = 1 and X be a subset of G. We say that the set X
is γ -independent if for any distinct elements g1, ..., gn, gn+1 from X , we have the following two properties:

(i) γ(g1 · · · gn) = γ(g1) + · · ·+ γ(gn) ,

(ii) γ(g1 · · · gng−1
n+1) = max{γ(g1 · · · gn), γ(gn+1)}.

Let G be the multiplicative group of the field of algebraic numbers and γ = h . Let P denote the set
of all prime numbers. Then, the set X = {pr : p ∈ P, r ∈ Q>0} is γ -independent by Lemmas 2.3 and 2.4 from [7].

Our other results in this note are the following.

Theorem 1.5 Let γ be a function from G to R with ℓ = 1 and Γ = {g ∈ G : γ(g) ≤ 1} . Suppose that there
exists an infinite sequence (αn)n in G such that γ(αn) > 0 for all n and for any distinct i and j the element
αi is not in the divisible hull of αj , and the set X = {αm

n : m,n ∈ N} is γ -independent. Then the pair (G,Γ)

has the independence property in the language Lg(P ) = Lg ∪ {P} .

Theorem 1.6 Let Γ = {g ∈ G : γ(g) ≤ 1} . Then the theory of (G,Γ) is not simple in the language
Lg(P ) = Lg ∪ {P} .

In [7], Theorem A states that the theory of (Q, Sε) is not simple and has the independence property,
where Sε = {a ∈ Q : h(a) ≤ ε} and ε > 0. Observe that applying Theorems 1.5 and 1.6, one can deduce
Theorem A from [7] if we take G to be the multiplicative group Q , γ to be the logarithmic height function h

and X to be the γ -independent set {pr : p ∈ P, r ∈ Q>0} .

Theorem 1.6 has another corollary that we mention now. Let a, b ∈ Q with 4a3+27b2 ̸= 0 . Recall that an
elliptic curve over Q is the solution set of the equation y2 = x3+ax+b in Q with an additional point O , which
is called the point at infinity. An elliptic curve E(Q) is an abelian group such that O is the identity element.
Moreover, the group E(Q) is divisible. There is a canonical height function (the Néron–Tate height) on E(Q)
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which is denoted by ĥ . Besides, for any points x and y in E(Q) , we have that ĥ(x+y)+ĥ(x−y) = 2ĥ(x)+2ĥ(y) ,
and in particular ĥ(x+ y) ≤ 2(ĥ(x) + ĥ(y)). One can see that if we take G = E(Q) and γ = ĥ , then we have
all the properties (1) − (4) above with ℓ = 2 in our setting. Hence, Theorem 1.6 also yields that the pair
(E(Q), {x ∈ E(Q) : ĥ(x) ≤ 1}) is not simple.

Next, we define nonstandard extensions since it will be helpful in Remark 2.1 and in the proof of Theorem
1.6.

Definition 1.7 Let M be a nonempty structure in a countable language L . A nonstandard extension ∗M of
M is an ultrapower of M with respect to a nonprincipal ultrafilter on N.

Fix a nonstandard extension ∗M of M with respect to a nonprincipal ultrafilter D on N. The elements
of ∗M are of the form (an)n/D where (an)n is a sequence in M. Identifying each element a of M with (a)n/D

of ∗M , we regard the structure M as an elementary substructure of ∗M . If A is a subset of M , the set ∗A is
defined to be the set

{(an)n/D : {n : an ∈ A} ∈ D}.

Observe that ∗A contains A , and any function on A extends to a well-defined function on ∗A coordinatewise.
If L is the language of totally ordered rings, then ∗R is an ordered field and the order on ∗R is defined as
(an)n/D ≤ (bn)n/D if and only if {n : an ≤ bn} ∈ D. The sets ∗N , ∗Z , ∗Q , ∗R are called hypernatural
numbers, hyperintegers, hyperrational numbers and hyperreals respectively. The elements of ∗R \ R are called
nonstandard real numbers. The ring of finite numbers is denoted by

Rfin = {x ∈ ∗R : |x| < n for some n ∈ N},

and the elements in ∗R \Rfin are called infinite. Recall that a hyperreal number ε is said to be infinitesimal if
|ε| < 1/n for every positive integer n. It is known that for any x ∈ Rfin there is a unique real number y ∈ R ,
denoted as the standard part st(x) of x , such that x − y is an infinitesimal. For any x, y ∈ Rfin , we have
st(x+ y) = st(x) + st(y) and st(xy) = st(x)st(y). If I is the set of infinitesimal elements of ∗R , then we also
have that Rfin/I is isomorphic to R. The notion of a nonstandard extension can be extended to many-sorted
structures. For more on the topic, see [6].

2. Proof of Theorem 1.1
(ii) ⇒ (i): Assume that (i) does not hold, i.e. the number field K does not lie in an imaginary quadratic field.
Then, it follows from Dirichlet’s unit theorem [14, Chapter 4, Section 4] that the group O×

K of units in the ring
OK has rank r = r1 + r2 − 1 at least 1, where r1 is the number of real embeddings and r2 is the number of
pairs of complex embeddings (up to conjugation), where [K : Q] = r1 + 2r2. As a result, the group O×

K is not
finite and hence it contains a unit element u which is not a root of unity.

Let p(x1, x2) = x1 + x2 ∈ OK [x1, x2] and q(x, y) = y2 − x3 ∈ OK [x, y] . Note that both variables x1 and
x2 appear in the polynomial p and the curve y2 − x3 + a = 0 is smooth of genus exactly 1 for all a ∈ OK\{0} ,
and in fact it is an elliptic curve. Then, x1 = um − 1 , x2 = u−m − 1 , x = 2 , y = 3 yield a solution of the
equation

1

x1
+

1

x2
+ y2 − x3 = 0 (2.1)
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with coordinates in OK for every positive integer m . Since u is not a root of unity,

(um1 − 1, u−m1 − 1, 2, 3)

and
(um2 − 1, u−m2 − 1, 2, 3)

give distinct solutions of Equation (2.1) for distinct positive integers m1 and m2 . Moreover, a solution
(um − 1, u−m − 1, 2, 3) is degenerate only if

1

um − 1
+ 9 = 0

or
1

um − 1
− 8 = 0.

So, if there is an integer m0 such that um0 = 8/9 , then (um − 1, u−m − 1, 2, 3) is a nondegenerate solution for
each positive integer m except |m0| . If there is no such integer m0 , then the solution (um − 1, u−m − 1, 2, 3)

is nondegenerate for each positive integer m . In both cases, we obtain infinitely many nondegenerate solutions
of Equation (2.1) with coordinates in OK .

(i) ⇒ (ii): Assume that K lies in an imaginary quadratic field. So, K = Q or K = Q
(√

−d
)

for some

square-free positive integer d . If K = Q , then OK = Z . If K = Q
(√

−d
)

for a square-free integer d > 0 ,

then OK = Z
[√

−d
]

when d ̸≡ 3 (mod 4) and OK = Z
[
1+

√
−d

2

]
when d ≡ 3 (mod 4). Since the rings Z and

Z[θ] are discrete in C for all θ ∈ C\R , in all these three cases, the ring OK is discrete in C . Equivalently, the
set

Fb = {α ∈ OK : |α| ≤ b}

is finite for all positive real numbers b .
Now, let p(x1, x2, ..., xn) ∈ OK [x1, x2, ..., xn] be a nonzero polynomial with n ≥ 2 and let q(x, y) ∈

OK [x, y] be a polynomial such that all variables x1, x2, ..., xn occur in p and for all nonzero elements a ∈ OK ,
the corresponding projective curve of

Cq,a : q(x, y) + a = 0

is smooth and of positive genus. Our aim is to show that the equation

p

(
1

x1
,
1

x2
, ...,

1

xn

)
+ q(x, y) = 0 (2.2)

has only finitely many nondegenerate solutions (x1, x2, ..., xn, x, y) with coordinates in OK .
Assume that (a1, a2, ..., an, a, b) is a nondegenerate solution of Equation (2.2) with coordinates in OK . Then,

p

(
1

a1
,
1

a2
, ...,

1

an

)
= −q(a, b) ∈ OK\{0}.

Since OK is discrete, for all nonzero elements x1, x2, ..., xn in OK ,∣∣∣∣p( 1

x1
,
1

x2
, ...,

1

xn

)∣∣∣∣ < M
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for some positive real number M . So, we get

p

(
1

a1
,
1

a2
, ...,

1

an

)
∈ FM

and q(a, b) ∈ FM . Indeed, if FM = {0, c1, c2, ..., cm} , then

p

(
1

a1
,
1

a2
, ...,

1

an

)
= ci

and q(a, b) = −ci for some i = 1, 2, ...,m . Hence, (a1, a2, ..., an, a, b) is a nondegenerate solution of Equation
(2.2) with coordinates in OK if and only if (a1, a2, ..., an) is a nondegenerate solution of the equation

p

(
1

x1
,
1

x2
, ...,

1

xn

)
= ci (2.3)

with coordinates in OK and (a, b) is a nondegenerate solution of the equation

q(x, y) + ci = 0 (2.4)

with coordinates in OK for some i = 1, 2, ...,m. Since ci ∈ OK\{0} for all i = 1, 2, ...,m , the curve
q(x, y) + ci = 0 is smooth with positive genus for all i = 1, 2, ...,m . Hence, Equation (2.4) has only finitely
many solutions in OK for all i = 1, 2, ...,m by Siegel’s theorem on integral points, see [11, Chapter 8] and [16].
Therefore, to show that Equation (2.2) has only finitely many nondegenerate solutions with coordinates in OK ,
it is enough to show that Equation (2.3) has only finitely many nondegenerate solutions with coordinates in
OK for all i = 1, 2, ...,m . Assume for a contradiction that there exist infinitely many nondegenerate solutions
of Equation (2.3) with coordinates in OK for some i = 1, 2, ...,m . List these nondegenerate solutions as
(sk)k = (ak1, ak2, ..., akn)k where sk ̸= sl for k ̸= l . For each j = 1, 2, ..., n , consider the sequence (akj)k . If
the sequence (akj)k is bounded for all j = 1, 2, ..., n , then the set

{akj : k ∈ N, j = 1, 2, ..., n} ⊆ Fb

for some b ∈ R , hence finite, a contradiction with |{sk : k ∈ N}| = ∞ . Therefore, there exists j ∈ {1, 2, ..., n}
such that the sequence (akj)k is unbounded. Without loss of generality, we may assume that (ak1)k is
unbounded. By passing to a subsequence when necessary, we may assume that (ak1)k diverges to infinity
and for all j = 2, ..., n , the sequence (akj)k is either bounded or diverges to infinity. Write p(x1, x2, ..., xn) as
a sum of its distinct, nonzero monomials as

p(x1, x2, ..., xn) = p1(x1, x2, ..., xn) + p2(x1, x2, ..., xn) + · · ·+ pL(x1, x2, ..., xn)

such that x1 occurs in p1(x1, x2, ..., xn) . Note that for each k ∈ N , we have

p1

(
1

ak1
,

1

ak2
, ...,

1

akn

)
+ p2

(
1

ak1
,

1

ak2
, ...,

1

akn

)
+ · · ·+ pL

(
1

ak1
,

1

ak2
, ...,

1

akn

)
= ci. (2.5)

For each ℓ = 1, 2, ..., L , consider the sequence (δℓ,k)k where

δℓ,k = pℓ

(
1

ak1
,

1

ak2
, ...,

1

akn

)
.

226



ÇAM ÇELİK and GÖRAL/Turk J Math

Then δℓ,k ̸= 0 for all k and ℓ = 1, 2, ..., L as sk is a nondegenerate solution of Equation (2.3) for all k . Since
x1 occurs in p1(x1, x2, ..., xn) , we have p1(x1, x2, ..., xn) = Axα1

1 xα2
2 ...xαn

n for some A ∈ OK\{0} and for some
nonnegative integers α1, α2, ..., αn with α1 > 0 . Then since ((ak1)

α1)k diverges to infinity and ((akj)
αj )k is

either bounded or tends to infinity for all j = 2, ..., n , we have∣∣∣∣p1 ( 1

ak1
,

1

ak2
, ...,

1

akn

)∣∣∣∣ = ∣∣∣∣ A

(ak1)α1(ak2)α2 ...(akn)αn

∣∣∣∣ → 0 as k → ∞. (2.6)

Hence (δ1,k)k converges to 0 as k → ∞ . Similarly, given ℓ ∈ {2, ..., L} , if there exists some j ∈ {1, 2, ..., n}
such that (akj)k diverges to infinity and xj occurs in pℓ(x1, x2, ..., xn) , then (δℓ,k)k converges to 0 as k → ∞ .
Otherwise, the sequence (δℓ,k)k takes on only finitely many values. Hence, there exists a subsequence (kn)n

of positive integers such that either δℓ,kn → 0 as n → ∞ or (δℓ,kn)n is a nonzero constant sequence for all
ℓ ∈ {2, ..., L} . Since ci ̸= 0 , there exists at least one ℓ ∈ {2, ..., L} such that (δℓ,kn)n is a nonzero constant
sequence. Let (εn)n be the sum of all (δℓ,kn

)n ’s converging to 0 as n → ∞ and let (d)n be the constant
sequence which is the sum of all nonzero constant (δℓ,kn

)n ’s. Then (εn)n converges to 0 and since εn + d = ci

for all n , we get d = ci and εn = 0 for all n . But this is a contradiction since εn ̸= 0 for all n as each skn is
a nondegenerate solution of Equation (2.3).

Remark 2.1 Following Equation (2.5), one may continue and end the proof of Theorem 1.1 using nonstandard
analysis as follows: For each ℓ = 1, 2, ..., L , let

δℓ =

(
pℓ

(
1

ak1
,

1

ak2
, ...,

1

akn

))
k

/D ∈ ∗C

where D is a nonprincipal ultrafilter on N and ∗C is a nonstandard extension of C with respect to the
nonprincipal ultrafilter D on N . Just as in the the proof of Theorem 1.1 above, we have (2.6) which implies δ1
is an infinitesimal element of ∗C . Given ℓ ∈ {2, ..., L} , if δℓ is not an infinitesimal element of ∗C , then the set{

pℓ

(
1

ak1
,

1

ak2
, ...,

1

akn

)
: k ∈ N

}
is finite, hence δℓ is a standard complex number. Thus, letting ε be the sum of infinitesimal δj ’s and letting
s be the sum of δj ’s which are standard complex numbers, we get that ε is an infinitesimal, s is a standard
complex number and ε + s = ci in ∗C . But this is a contradiction since ε ̸= 0 as each sk is a nondegenerate
solution of Equation (2.3).

3. Proof of Theorem 1.5
Before proving Theorem 1.5, we need the following definition from classification theory.

Definition 3.1 Let T be a complete L-theory where L is a language. An L-formula φ(x, y) is said to have
the independence property if in every model M of T there is a family of tuples b1, ..., bn for each n , such that
for each of the 2n subsets I of {1, ..., n} there is a tuple aI in M for which

M |= φ(aI , bi) ⇐⇒ i ∈ I.

A theory T is said to be NIP if no formula has the independence property.
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The class of stable theories is a subset of the class of NIP theories, and in fact, a theory T is stable if
and only if T is simple and NIP. For the details, we refer the reader to the book [15].

Now, we start the proof of Theorem 1.5. Suppose that there exists an infinite sequence (αn)n in G such
that γ(αn) > 0 for all n and for any distinct i and j the element αi is not in the divisible hull of αj , and
the set X = {αm

n : m,n ∈ N} is γ -independent. Here, for an element g ∈ G and m a positive integer, g1/m

represents an element from the set {h ∈ G : hm = g} and we use the axiom of choice if necessary. By Remark
1.3, for any h1, h2 from {h ∈ G : hm = g} we know that γ(h1) = γ(h2).

Claim: The set Y = {αm
n : n ∈ N,m ∈ Q≥0} is γ -independent.

Proof of the Claim: First, note that for any distinct i and j , the elements αi and αj are not in the divisible
hulls of each other. In particular, we have that for any nonzero positive rational numbers qi and qj , the equality
αqi
i = α

qj
j cannot hold. To prove the claim, take the following distinct elements

αm1
1 , ..., αmn

n , α
mn+1

n+1

from Y. Write mi = ui/vi for i = 1, ..., n, n+ 1 where ui, vi ∈ Z. We may suppose that the integers ui, vi are
all positive. Then by Remark 1.3 we have:

γ(αm1
1 · · · αmn

n ) = γ((αt1
1 · · · αtn

n )1/v) =
1

v
γ(αt1

1 · · · αtn
n ).

As the set X is γ -independent, we have γ(αt1
1 · · · αtn

n ) = γ(αt1
1 ) + · · ·+ γ(αtn

n ). Therefore, we have

γ(αm1
1 · · · αmn

n ) =
1

v
γ(αt1

1 ) + · · ·+ 1

v
γ(αtn

n ) = γ(αm1
1 ) + · · ·+ γ(αmn

n ),

where the last equality follows from Remark 1.3. For the following several equalities, we also apply Remark 1.3
without mentioning it. Note also that γ(αm1

1 · · · αmn
n α

−mn+1

n+1 ) = γ((αc1
1 · · · αcn

n α
−cn+1

n+1 )1/vvn+1) , where v is as
before and ci = uivvn+1/vi. This yields that

γ(αm1
1 · · · αmn

n α
−mn+1

n+1 ) =
1

vvn+1
γ(αc1

1 · · · αcn
n α

−cn+1

n+1 ).

As X is γ -independent, we see that

1

vvn+1
γ(αc1

1 · · · αcn
n α

−cn+1

n+1 ) =
1

vvn+1
max{γ(αc1

1 · · · αcn
n ), γ(α

−cn+1

n+1 )},

and this is equal to max{γ(αm1
1 · · · αmn

n ), γ(α
−mn+1

n+1 )} . This proves the claim.

Now let φ(x, y) be the formula P (xy−1). We will prove that φ(x, y) has the independence property. Let
n ≥ 1 be given and let I be a nonempty subset of {1, ..., n} with |I| = r. As the set {γ(αm

i ) : m ∈ Q>0} is
dense in the positive real numbers for any i , we can find a positive rational number pi > 0 such that

1

r
< γ(αpi

i ) ≤ 1

r
+

1

(n+ 1)2
(3.1)
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and we define aI to be the product
∏
i∈I

αpi

i . Choose also p ∈ Q>0 such that

1 < γ(αp
n+1) ≤ 1 +

1

n+ 1
. (3.2)

We put a∅ = αp
n+1. For any subset I of {1, ..., n} , combining the properties of γ and the γ -independency of

our set Y with (3.1) and (3.2) above, we get that

1 < γ(aI) ≤ 1 +
n

(n+ 1)2
≤ 1 +

1

n+ 1
. (3.3)

Similarly, as we did before, choose a positive rational number jm such that

1

n+ 1
< γ(bm) <

1

n
, (3.4)

where bm = αjm
m . Next, we show that φ(aI , bi) holds if and only if i ∈ I . If I = ∅ then as

γ(a∅b
−1
i ) = max{γ(a∅), γ(bi))} = γ(a∅) > 1

for any i , we are done in this case. Let I be a nonempty subset of {1, ..., n} . If i is not in I , then by the claim
above and (3.3) we obtain that

γ(aIb
−1
i ) = max{γ(aI), γ(bi)} = γ(aI) > 1.

This contradicts the validity of φ(aI , bi) . Thus i must be in I. For the converse, assume that i is in
I = {i1, ..., ir}. We may also suppose that i = i1. Moreover, by (3.1) and (3.4), we see that pi1 ≥ ji1 . By
the properties of the function γ and the claim above, we arrive at

γ(aIb
−1
i ) = (pi1 − ji1)γ(αi1) + pi2γ(αi2) + · · ·+ pirγ(αir ). (3.5)

Combining (3.3), (3.4) and (3.5), we obtain that

γ(aIb
−1
i ) = (pi1 − ji1)γ(αi1) + pi2γ(αi2) + · · ·+ pirγ(αir ) = γ(aI)− γ(bi) ≤ 1 +

1

n+ 1
− 1

n+ 1
≤ 1.

Hence φ(x, y) has the independence property and so does the pair (G,Γ).

4. Proof of Theorem 1.6
First, we give an important definition from the classification theory. Details can be found in the book [17].

Definition 4.1 Let T be a theory and M be its sufficiently saturated model. A formula φ(x, y) has the tree
property if there is a tree of parameters

(as : ∅ ̸= s ∈ ω<ω)

from M such that

(i) For all s ∈ ω<ω , (φ(x, asi) : i < ω) is 2-inconsistent.
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(ii) For all σ ∈ ωω , (φ(x, as) : ∅ ̸= s ⊂ σ) is consistent.

The theory T is said to be simple if no formula has the tree property with parameters coming from a sufficiently
saturated model of T .

For instance, the theory of algebraically closed fields is simple (in fact it is ω -stable). Now, we give an example
of a theory which is not simple, and we will make use of it in the proof of Theorem 1.6.

Example 4.2 The theory of dense linear orders without end points, DLO for short, is not simple. To see
this, observe that the formula ψ(x; y, z) : y < x < z has the tree property. Let M = Q ∩ (0, 1) and M be
a sufficiently saturated model of DLO containing M . The model M is also not simple and we fix a tree of
parameters (qs : ∅ ̸= s ∈ ω<ω) from the small model M of DLO for the formula ψ witnessing not simplicity.

Now, we start to prove Theorem 1.6. We will prove that the pair (G,Γ) is not simple by exhibiting a
formula with four free variables that has the tree property. As γ is not identically zero, let α be a torsion-free
element in G with γ(α) > 0 . We know that for any n ∈ Z , we have γ(αn) = |n|ℓγ(α). Here again, for an
element g ∈ G and m a positive integer, g1/m represents an element from the set {h ∈ G : hm = g} , and by
Remark 1.3, for any h1, h2 from {h ∈ G : hm = g} one has γ(h1) = γ(h2). Similarly for r ∈ Q , the element
αr is just a choice. So by this choice, we have a function θ from Q to G sending r to αr . Observe that the
set {γ(αr) : r ∈ Q} is dense in the positive real numbers as we have γ(αr) = |r|ℓγ(α) for all r ∈ Q . Thus, we
may suppose that 0 < γ(α) < 1 and in particular α belongs to Γ. Let ∗G be a nonstandard extension of the
many-sorted structure

G = (G, ·,−1 , 1, γ,R≥0, θ, <,Q).

The function γ extends to ∗G in the usual way and it takes values in nonnegative hyperreal numbers. Now the
pair (∗G, ∗Γ) becomes an elementary extension of (G,Γ) in the language Lg(P ) , and ∗Γ = {g ∈ ∗G : γ(g) ≤ 1}.
Let st(a) be the standard part of a finite hyperreal number. As {γ(αr) : r ∈ Q} is dense in the positive real
numbers, we know that there is a hyperrational number N > 1 such that γ(αN ) < 1 but the standard part of
γ(αN ) is 1. We set

φ(x; y, z, t) : P
(
xz−1t

)
∧ P

(
x−1yt

)
.

We claim that this formula has the tree property. For any rational numbers r, s ∈ (0, 1) , first note that

γ
(
αNαr−s

)
≤ 1 ⇐⇒ r ≤ s. (4.1)

Let (r1, s1) and (r2, s2) be disjoint intervals of (0, 1) , where r1 < s1 < r2 < s2 ∈ Q . Next we show that the
satisfaction

(∗G, ∗Γ) |= ∃x(φ(x, αr1 , αs1 , αN ) ∧ φ(x, αr2 , αs2 , αN ))

cannot be true. Assume that the above satisfaction holds. Then we have

γ
(
xα−s1αN

)
≤ 1 and γ

(
x−1αr2αN

)
≤ 1.

So, we deduce that

γ(αr2−s1α2N ) = γ(xα−s1αNx−1αr2αN ) ≤ 2ℓ−1(γ
(
xα−s1αN

)
+ γ

(
x−1αr2αN

)
) ≤ 2ℓ.
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This is a contradiction, as
γ(αr2−s1α2N ) > 2ℓ

due to the facts that r2 − s1 > 0 and

st(γ(α2N )) = st(2ℓγ(αN )) = st(2ℓ)st(γ(αN )) = 2ℓ.

For a tuple a = (a1, ..., ak) ∈ Qk , we put αa = (αa1 , ..., αam). Now we choose the parameters (αqs , αN ) where
the parameters (qs : ∅ ̸= s ∈ ω<ω) are given as in Example 4.2, and the tuple αqs is defined as above. Therefore
the formula φ(x; y, z, t) has the tree property with the above parameters since it has the item (i) from Definition
4.1 as argued above and it also has the item (ii) from Definition 4.1 by (4.1). Hence our pair is not simple.
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