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Abstract: In this paper, by using Parseval’s formula and Schauder’s fixed point theorem, we prove the existence and
uniqueness of rotating periodic integrable solution of the second-order system x′′ + f(t, x) = 0 with x(t + T ) = Qx(t)

and
∫ kT

(k−1)T
x(s)ds = 0 , k ∈ Z+ for any orthogonal matrix Q when the nonlinearity f satisfies nonresonance condition.
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1. Introduction
This paper deals with the rotating periodic integrable problem of the following second-order differential equation:

x′′ + f(t, x) = 0, (1.1)

for all t ∈ R, x ∈ Rn , where f(t, x) ∈ C1([0, 2π] × Rn, Rn) , and f(t + T, x) = Qf(t,Q−1x) with T > 0 and
Q ∈ O(n) , where O(n) denotes the group of orthogonal matrix. Our goal in this paper is to prove that the
second-order differential equation (1.1) has a unique rotating periodic integrable solution, i.e. x(t+T ) = Qx(t)

and
∫ kT

(k−1)T
x(s)ds = 0 , k ∈ Z+ for all t ∈ R . Under the adaptive conditions ( f(t + T, x) = Qf(t,Q−1x)),

the rotating periodic integrable problem is equivalent to the problem (1.1) with rotating periodic integrable
boundary value conditions (for short RPIBVP):

x(0) = Qx(T ),

∫ T

0

x(s)ds = 0. (1.2)

If the solutions of (1.1) only satisfies x(t + T ) = Qx(t) , for all t ∈ R , generally, we call this kind of solutions
the rotating periodic solutions of (1.1).

Periodic problems have always been the core issues in the theory of differential equations, since the
concept of periodic solution was first proposed by Poincar é in the late 19th century. Recently, rotating periodic
problem for second-order differential equations has arose more and more attention due to extensive attention
in physics (for example, see [1]). In [7, 8], using the Maslov index theory, Hu et al. establish some important
stability criteria for rotating periodic solutions of Hamiltonian systems. In 2016, using the coincidence degree
∗Correspondence: chengyi407@126.com
2010 AMS Mathematics Subject Classification:34B15; 34B16; 37J40

This work is licensed under a Creative Commons Attribution 4.0 International License.
233

https://orcid.org/0000-0002-7591-2640
https://orcid.org/0000-0003-0179-6365
https://orcid.org/0000-0003-0634-2370


CHENG et al/Turk J Math

theory Chang and Li [4] obtained the existence of rotating periodic solutions for the second-order dissipative
differential systems. Later, Chang and Li [5] further had established that the second-order dynamical systems
admits rotating periodic solutions under the Landesman–Lazer condition by exploiting the coincidence degree
theory. Liu et al. [10] studied the asymptotically linear second-order Hamiltonian system, and by Morse theory
and the technique of penalized functionals, the authors obtained the existence of rotating periodic solutions
for system satisfying the resonance condition at infinity. Then, in [11, 12], using Morse theory and critical
point theorems, they continued to study the existence of rotating periodic solutions for superlinear Hamiltonian
systems and multiplicity of rotating periodic solutions for Hamiltonian systems with resonant conditions. In
[13], they further studied the multiplicity of rotating periodic solutions for a second-order Hamiltonian systems
with combined nonlinearities by using the Fountain theorem. Li et al. [14] investigated the rotating periodic
problems of a class of second-order differential system, by applying on the homotopy continuation method, they
proved the existence of this type solutions when the nonlinearity term satisfies the Hartman-type condition.

However, we study the existence of rotating periodic integrable solutions for problem (1.1), as far as
we know, this kind of solution (rotating periodic integrable solution) is raised for the first time. When
rotating periodic belongs to different ranges, different forms of solutions are obtained, such as periodic solutions
if we take Q = En , where En stands for the identity matrix in Rn , antiperiodic solutions if we take
Q = −En , subharmonic solutions if we take Qk = En for some k ∈ Z+ , and quasi-periodic solutions if we take
Q = diag(R(θ1), · · ·, R(θk)) for n = 2k with k ∈ Z+ , or Q = diag(R(θ1), · · · , R(θk),±1) for n = 2k+1 , where

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
and θi ∈ (0, 2π), i = 1, 2, · · · , n. Therefore, our results extend to those of [2, 3, 6]

for the periodic integrable boundary value problems.
This paper is organized as follows. In Section 2, we present some lemmas, and prove the existence and

uniqueness of rotating periodic integrable solution for linear differential equations. In Section 3, we get a prior
estimate for nonlinear differential equations, then using Schauder’s fixed point theorem we complete the proof
of main results. Finally, an example is given in Section 4.

2. Linear equations

Consider the following rotation periodic integrable boundary value problem of second-order homogeneous
differential equation {

x′′ +A(t)x = 0,

x(0) = Qx(T ),
∫ T

0
x(s)ds = 0,

(2.1)

where A(t) = diag(A1(t), A2(t), · · · , An(t)) ∈ Rn×n is a continuous for any t ∈ [0, T ] , and satisfies

(H) there exist N ∈ Z+ and ε > 0 , such that

(
2π

T
)2(N2 + ε)E ≤ A(t) ≤ (

2π

T
)2((N + 1)2 − ε)E,

for all t ∈ [0, T ] , where E denotes the identity matrix.
We begin by introducing some notations and lemmas. A linear space K is defined as follows

K = {l(t) ∈ L2([0, T ];Rn), l′(t) is absolutely continuous on [0, T ]},
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with the norm
∥y∥ = max

t∈[0,T ]
|y(t)|+ max

t∈[0,T ]
|y′(t)|.

For any interval [α, β] ⊂ [0, T ] , a subspace Kα,β on K is given by

Kα,β = { l(t) ∈ L2([0, T ];Rn), l′(t) is absolutely continuous on [α, β] and

l(t) = 0, for any t ∈ [0, α] ∪ [β, T ]}.

A bilinear function on Kα,β is given in the following

Zα,β(l(t), r(t)) =

∫ T

0

[⟨l′(t), r′(t)⟩ − ⟨l(t), A(t)r(t)⟩]dt,

where l(t) , r(t) ∈ Kα,β and ⟨·, ·⟩ denotes the inner product in Rn . Let

Xα,β : = {p(t) ∈ Kα,β : p(t) =

∞∑
m=N+1

(am cosm
2π

T
t+ bm sinm

2π

T
t)},

Yα,β : = {q(t) ∈ Kα,β : q(t) = c0 +

N∑
k=1

(dk cos k
2π

T
t+ ek sin k

2π

T
t)}.

where N ∈ Z+ is stated in assumption (H) and

am = (am1
, am2

, · · · , amn
)⊤,

bm = (bm1
, bm2

, · · · , bmn
)⊤,

c0 = (c01 , c02 , · · · , c0n)⊤,

dk = (dk1 , dk2 , · · · , dkn)
⊤,

ek = (ek1
, ek2

, · · · , ekn
)⊤,

are constant vectors, elements of Rn . According to assumption (H), we derive that{
Zα,β(l(t), l(t)) ≥

∫ T

0
[|l′(t)|2 − ((N + 1)2 − ε)( 2πT )2|l(t)|2]dt,

Zα,β(l(t), l(t)) ≤
∫ T

0
[|l′(t)|2 − (N2 + ε)( 2πT )2|l(t)|2]dt,

for any l ∈ Kα,β where N is given in assumption (H). For all p ∈ Xα,β , q ∈ Yα,β , applying the Parseval’s
formula, we obtain that

Zα,β(p, p) ≥
∞∑

m=N+1

2π2

T [m2 − ((N + 1)2 − ε)](
n∑

k=1

a2mk
+

n∑
i=1

b2mi
) ≥ 0.

Zα,β(q, q) ≤
N∑

k=1

2π2

T [k2 − (N2 + ε)](
n∑

j=1

d2kj
+

n∑
r=1

e2kr
)− 4π2

T (N2 + ε)
n∑

h=1

c20h ≤ 0.
(2.2)

Therefore, Zα,β is positive definite on Xα,β , and negative on Yα,β . Now, we give some important lemmas.
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Lemma 2.1 (see [9], Lemma 1) Let X be a real vector space, and F is defined as a real symmetric bilinear
operator on X . If X = X1 ⊕X2 , where ⊕ means the direct sum. F is positive defined in X1 and negative
defined in X2 , then F is nondegenerate, i.e. if there are some h ∈ X , such that F (g, h) = 0 , for all g ∈ X ,
then h = 0 .

Lemma 2.2 Suppose that the assumption (H) holds, then the following rotating period boundary value problem
(for short RPPVP) {

x′′ +A(t)x = 0,
x(0) = Qx(T ),

(2.3)

has a unique trivial solution.

Proof It is easy to see that zero is a solution of RPPVB (2.3), let

r(t) = (r1(t), r2(t), . . . , rn(t))
⊤

be another solution of RPPVP (2.3), and

rα,β(t) :=

{
r(t), t ∈ [α, β]

0, t ∈ [0, α) ∪ (β, 2π].

For any l(t) ∈ Kα,β , we find that

∫ β

α

⟨l(t), r′′(t) +A(t)r(t)⟩dt = 0,

which implies

−Zα,β(l(t), rα,β(t)) = −
∫ T

0

[⟨l′(t), r′α,β(t)⟩ − ⟨l(t), A(t)rα,β(t)⟩]dt = 0,

by using the integration by part. In light of (2.2), we obtain that Zα,β is positive definite on Xα,β and negative
definite on Yα,β . From Lemma 2.1, we get that rα,β ≡ 0 , for any t ∈ [α, β] , which means that r(t) ≡ 0 for any
t ∈ [α, β] . The proof is completed. 2

Lemma 2.3 If the assumption (H) holds, then RPIBVP (2.1) has a unique trivial solution.

Proof From Lemma 2.2, we can see that RPIBVP (2.1) has at least one solution, e.g., x∗ = 0 , for reduction
to absurdity, we suppose that there is nonzero solution x∗ = (x∗

1, x
∗
2, · · · , x∗

n)
⊤ . Then the following proof is

decomposed into two cases.

Case 1 x∗(0) = Qx∗(T ) = 0 .

By Lemma 2.2 (α = 0 and β = T ), we observe that RPIBVP (2.1) has a unique trivial solution, which
leads to a contradiction x∗ ̸= 0 .
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Case 2 x∗(0) = Qx∗(T ) = η , where η = (η1, η2, . . . , ηn)
⊤ .

Denote Si = {t ∈ [0, T ];x∗
i (t) = 0} , and ai = inf

t∈Si

t and bi = sup
t∈Si

t , for i = 0, 1, · · · , n . For simplicity,

considering its a component x∗
i ̸≡ 0. Here the rest part of proof is broken down into three sections:

• When t ∈ [ai, bi] ⊂ [0, T ] , we claim x∗
i (t) ≡ 0 . From the definition of Si , we know that x∗

i (ai) =

x∗
i (bi) = 0 . The Lemma 2.2 (α = ai, β = bi) yields that the following rotation periodic boundary

value problem {
x′′
i +Ai(t)xi = 0,

xi(ai) = Qxi(bi) = 0,
(2.4)

has a unique solution. Hence x∗
i (t) ≡ 0 , for t ∈ [ai, bi] .

• When t ∈ [0, ai] , we claim x∗
i (t) ≡ 0 . Due to

∫ T

0
x∗
i (t)dt = 0 , then it follows from RPBVP (2.4)

that
∫ ai

0
x∗
i (t)dt = −

∫ T

bi
x∗
i (t)dt , without loss of generality, assume xi(0) = ηi > 0 , which means

that x∗
i (t) > 0 for any t ∈ [0, ai) . For t ∈ [0, ai) , consider the following boundary value problem{

x′′
i +Ai(t)xi = 0, t ∈ [0, ai)

xi(0) = ηi, xi(ai) = 0.
(2.5)

From x′′
i = −Ai(t)xi (Ai(t) > 0), we have that x′′

i (t) < 0 , for t ∈ [0, ai) . Since x′
i(t) is continuous

at ai , so we infer from x′
i+(ai) = 0 (right derivative) that x′

i(ai) = 0 , which gives x′
i(t) > 0 for any

t ∈ [0, ai) . Following xi(t) > 0 for any t ∈ [0, ai) , so xi increases monotonously in [0, ai) , which
yields xi(ai) > xi(0) = ηi > 0 , with a contradict to xi(ai) = 0 . If ηi < 0 , the proof is similar to the
aforementioned.

• When t ∈ (bi, T ] , the proof is similar to the case of t ∈ [0, ai) , we have x∗
i (t) ≡ 0 .

In conclusion, we have x∗
i ≡ 0 for any t ∈ [0, T ] and i = 1, 2, · · ·, n , i.e. RPIBVP (2.1) has a unique

trivial solution. 2

Lemma 2.4 Assume that P (t) is continuous in Rn , and A(t) satisfies the assumption (H) , then the following
RPIBVP {

x′′ +A(t)x = P (t),

x(0) = Qx(T ),
∫ T

0
x(s)ds = 0,

(2.6)

has a unique solution.

Proof Let X1(t), X2(t), . . . , X2n(t) be 2n linear independent solutions of the equation as follows:

x′′ +A(t)x = 0,

where Xi(t) = (Xi1(t), Xi2(t), . . . , Xin(t))
⊤ ∈ Rn, for i = 1, 2, . . . , 2n. Suppose that Y (t) = C1 ·X1(t) + C2 ·

X2(t) + . . .+C2n ·X2n(t) is the general solutions of RPIBVP (2.1), where C1, C2, . . . , C2n are constants in R .
Thanks to the rotating periodic integrable boundary value condition of (2.1), we get{

(X1(0)−QX1(T ), X2(0)−QX2(T ), . . . , X2n(0)−QX2n(T )) ·C = 0,

(
∫ T

0
X1(s)ds,

∫ T

0
X2(s)ds, . . . ,

∫ T

0
X2n(s)ds) ·C = 0,
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where C = (C1, C2, . . . , C2n)
⊤ ∈ R2n . An application of the Lemma 2.3 leads to the RPIBVP (2.1) has a

unique trivial solution, which implies the following determinant

∣∣∣∣ X1(0)−QX1(T ) X2(0)−QX2(T ) . . . X2n(0)−QX2n(T )∫ T

0
X1(s)ds

∫ T

0
X2(s)ds . . .

∫ T

0
X2n(s)ds

∣∣∣∣ ̸= 0 (2.7)

Suppose that X(t) = C1X1(t) + C2X2(t) + . . .+ C2nX2n(t) +X0(t) is the general solutions of RPIBVP (2.6),
where X0(t) is a special solution of RPIBVP (2.6). Invoking the rotating periodic integrable boundary value
conditions, X(t) satisfies the following second-order inhomogeneous linear equations

(X1(0)−QX1(T ), X2(0)−QX2(T ), . . . , X2n(0)−QX2n(T )) ·C
= QX0(T )−X0(0),

(
∫ T

0
X1(s)ds,

∫ T

0
X2(s)ds, . . . ,

∫ T

0
X2n(s)ds) ·C = −

∫ T

0
X0(s)ds.

(2.8)

The determinant (2.7) implies that the constants C1, C2, . . . , C2n in equations (2.8) are unique. Therefore the
RPIBVP (2.1) has a unique solution, which complete the proof. 2

3. Nonlinear equations

First we state our main result.

Theorem 3.1 Assume that f(t, x) = (f1(t, x1), f2(t, x2), · · · , fn(t, xn))
⊤ , and

(A) there exist N ∈ Z+ and ε > 0 , such that

(
2π

T
)2(N2 + ε) ≤∂fi(t, xi)

∂xi
≤ [(N + 1)2 − ε](

2π

T
)2,

for i = 1, 2, · · · , n , then the differential system (1.1) has a unique rotating periodic integrable solution.

Generally speaking, the assumption (A) is called the nonresonance condition, where the set {N2} is
called the set of resonance points. Under given the adaptive conditions, now we use the truncation technique
to transform problem (1.1) into the following rotating periodic integral boundary value problem{

x′′ +Bh(x)x = f(t, 0),

x(0) = Qx(T ),
∫ T

0
x(s)ds = 0,

(3.1)

where Bh(x) =diag(h1(t, x1), h2(t, x2), . . . , hn(t, xn)) , with

hi(t, xi) =

∫ 1

0

fxi
(t, θxi)dθ.

A subspace of K is defined by

K∗ = { l(t) ∈ L2([0, T ];Rn), l′(t) is absolutely continuous on [0, T ]

l(0) = Ql(T ) and
∫ T

0

l(s)ds = 0}.
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For any y ∈ K∗ , consider an auxiliary RPIBVP{
x′′ +Bh(y)x = f(t, 0),

x(0) = Qx(T ),
∫ T

0
x(s)ds = 0.

(3.2)

To complete the proof of Theorem 3.1, the following two lemmas are needed.

Lemma 3.2 If f satisfies assumption (A) , then for any y ∈ K∗ , the solutions of RPIBVP (3.2) devoted as
xy(t) satisfies ∥xy∥ ≤ M , where M is a positive constant.

Proof In light of (A), we have

(
2π

T
)2(N2 + ε)E ≤ Bh(y) ≤ (

2π

T
)2((N + 1)2 − ε)E. (3.3)

Lemma 2.4 implies that RPIBVP (3.2) has only one solution xy(t) for each y ∈ K∗ . For reduction to absurdity,
it is assumed that there exist a sequence {ym} , such that ∥xym

∥ → ∞ , as m → ∞ . Choose a subsequence of
{Bh(ym)}∞m=1 , without loss of generality, denoted by itself which is weakly convergent in L2([0, T ], Rn×n) . Let
the limit be denoted by Bh0(t) , it is easy to see Bh0(t) ∈ L2([0, T ], Rn×n) . Since

S := { A(t) ∈ L2([0, T ], Rn×n), A(t) is a diagonal matrix and

(
2π

T
)2(N2 + ε)E ≤ A(t) ≤ (

2π

T
)2((N + 1)2 − ε)E}

is a bounded convex set in L2([0, T ], Rn×n) , the Mazur theorem gives Bh0(t) ∈ S . Hence we get

(
2π

T
)2(N2 + ε)E ≤ Bh0

(t) ≤ (
2π

T
)2((N + 1)2 − ε)E.

Let xm :=
xym

∥xym∥ , then ∥xm∥ = 1 . On the basis of Arzela–Ascoli theorem, passing to the subsequence xmi
→ x0

and x′
mi

→ z(t) in C([0, T ], Rn) . Obviously, x0 satisfies the boundary of x0(0) = Qx0(T ) and
∫ T

0
x0(s)ds = 0 .

Then

xmi(t) = xmi(0) +

∫ t

0

x′
mi

(s)ds → x0(t) = x0(0) +

∫ t

0

z(s)ds, (3.4)

implies z(t) = x′
0(t) for any t ∈ [0, T ] and ∥x0∥ = 1 . From RPIBVP (3.2), it follows that{

x′′
mi

(t) +Bh(ym)xmi =
−f(t,0)
∥xymi

∥ ,

xmi(0) = Qxmi(T ),
∫ T

0
xmi(s)ds = 0.

(3.5)

As m → ∞ , RPIBVP (3.5) turns into the following RPIBVP,{
x′′
0 +Bh0(t)x0 = 0,

x0(0) = Qx0(T ),
∫ T

0
x0(s)ds = 0.

(3.6)

By taking into account Lemma 2.3, RPIBVP (3.6) has a unique trivial solution, which leads to a contradiction
with ∥x0∥ = 1 , which completes the proof. 2

Set BM := {x ∈ K∗, ∥x∥ ≤ M} . An operator Ω : K∗ → K∗ is defined by Ω(y) = xy(t) . Due to Lemma
3.2, we have Ω : BM → BM .
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Lemma 3.3 The operator Ω is completely continuous on K∗ .

Proof By Lemma 3.2, it suffices to show that the operator Ω is continuous in K∗ . Let {ym}m≥1 ⊂ K∗ such
that ym → y0 ∈ K∗ as m → ∞ , and lm := xym

− xy0
. From (3.2), one has that{

l′′m +Bh(ym)lm = (Bh(y0)−Bh(ym))xy0 ,

lm(0) = Qlm(T ),
∫ T

0
l(s)ds = 0,

(3.7)

where

xy0
= (xy01

, xy02
, . . . , xy0n

)⊤,

Bh(y0) = diag(h(t, y01), h(t, y02), . . . , h(t, y0n)),

Bh(ym) = diag(h(t, ym1
), h(t, ym2

), . . . , h(t, ymn
)).

Now we will show that lm → 0 in C([0, T ], Rn) . If not, there would be a constant c > 0 such that
lim

m→∞
sup ∥lm∥ ≥ c . Applying Lemma 3.2 and Arzela–Ascoli theorem, passing to a subsequence, we assume

that lm → l0 in C([0, T ], Rn) . Evidently, we can easily see that Bh(y0)−Bh(ym) → 0 as m → ∞ . Hence, the
boundary value problem (3.7) becomes{

l′′0 +Bh(y0)l0 = 0,

l0(0) = Ql0(T ),
∫ T

0
l0(s)ds = 0,

(3.8)

where

(
2π

T
)2(N2 + ε)E ≤ Bh(y0) ≤ (

2π

T
)2((N + 1)2 − ε)E.

Therefore, following Lemma 2.3, we obtain that l0(t) ≡ 0 , which follows the conclusion. 2

Now we present the proof of Theorem 3.1.
In view of Lemma 3.2, Lemma 3.3 and Schauder’s fixed point theorem, we conclude that Ω has a fixed

point on K∗ , which is the solution of RPIBVP (1.1). The following is to prove uniqueness. Let m(t) and n(t)

be any two different solutions of RPIBVP (1.1). Then let x(t) = m(t) − n(t) be the solution of the equation
x′′ +Bfx(t)x = 0 with the same boundary value condition of (2.3). In light of assumption (A) , we deduce

(
2π

T
)2(N2 + ε)E ≤ Bfx(t) ≤ (

2π

T
)2((N + 1)2 − ε)E,

where Bfx(t) =diag(θ1(t), θ2(t), . . . , θn(t)) and θi(t) =
∫ 1

0
fxi(t, ni(t) + sxi(t))ds . Hence by Lemma 2.4, we

infer that x(t) ≡ 0 . So the uniqueness is proved, which follows our desired result.

Remark 3.4 If the assumption (A) is replaced with the following,
(A1) there exist N ∈ Z+ and ε > 0 , such that

(
2π

T
)2(N2 + ε) ≤ fi(t, xi)

xi
≤ ((N + 1)2 − ε)(

2π

T
)2,

for all t ∈ [0, T ] , and i = 1, 2, . . . , n , then the differential system (1.1) has a unique rotating periodic integrable
solution. The proof is similar to that of Theorem 1.
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Remark 3.5 Consider the following differential equation:

(λ(t)x′)′ + f(t, x) = 0, (3.9)

where λ(t) = diag(λ1(t), λ2(t), . . . , λn(t)) ∈ Rn×n , λi(t) ∈ C(R,R+) , satisfies λ(t + T ) = Q−1λ(t)Q , for all
t ∈ R , f(t, x) = (f1(t, x1), f2(t, x2), · · · , fn(t, xn))

⊤ , with fi(t, xi) ∈ C([0, 2π]×R,R) , for any i = 1, 2, · · · , n ,
and f(t+ T, x) = Qf(t,Q−1x) with T > 0 and Q ∈ O(n) . If the following assumption hold,
(A2) there exist N ∈ Z+ and ε > 0 , such that

(
2π

T
)2(N2 + ε) ≤fi(t, xi)

λi(t)
≤ ((N + 1)2 − ε)(

2π

T
)2,

then by Remark 3.4 the differential system (3.9) has a unique rotating periodic integrable solution.

4. Example

Consider (Q,T )-rotating periodic integrable problem of the following second-order nonlinear differential system

x′′ + (N2 + λ− 1

1 + |x|2
)x+

(
sin t, cos t, sin

2πt

T
, cos

2πt

T

)⊤

= 0, (4.1)

where N ∈ Z+ , λ ∈ (N + 1, (N + 1)2 + 2) , and

Q =


cos(2π − T ) − sin(2π − T ) 0 0
sin(2π − T ) cos(2π − T ) 0 0

0 0 1 0
0 0 0 1

 .

The problem (4.1) is equivalent to the following RPBVP

{
x′′ + (N2 + λ− 1

1+|x|2 )x+
(
sin t, cos t, sin 2πt

T , cos 2πt
T

)⊤
= 0,

x(0) = Qx(T ),
∫ T

0
x(s)ds = 0.

(4.2)

Let f(t, x) = (N2 + λ− 1
1+|x|2 )x+ (sin t, cos t, sin 2πt

T , cos 2πt
T )⊤ . It is not difficult to check that the assumption

(A) in Theorem 3.1 is satisfied. Next, we will show

Qf(t,Q−1x) = f(t+ T, x).

241



CHENG et al/Turk J Math

Note Q ∈ O(n) , then Q⊤Q = E . Thus, we have

Qf(t,Q−1x)

= (N2 + λ− 1

1 + |Q−1x|2
)x+


cos(2π − T ) − sin(2π − T ) 0 0
sin(2π − T ) cos(2π − T ) 0 0

0 0 1 0
0 0 0 1

 ·


sin t
cos t
sin 2πt

T
cos 2πt

T



= (N2 + λ− 1

1 + ⟨Q−1x,Q−1x⟩
)x+


cos(2π − T ) sin t− sin(2π − T ) cos t
sin(2π − T ) sin t+ cos(2π − T ) cos t

sin 2πt
T

cos 2πt
T



= (N2 + λ− 1

1 + x⊤QQ⊤x
)x+


cos(t+ T − 2π)
sin(t+ T − 2π)

sin 2πt
T

cos 2πt
T



= (N2 + λ− 1

1 + x⊤x
)x+


cos(t+ T )
sin(t+ T )

sin 2π
T (t+ T )

cos 2π
T (t+ T )



= (N2 + λ− 1

1 + |x|2
)x+


cos(t+ T )
sin(t+ T )

sin 2π
T (t+ T )

cos 2π
T (t+ T )


= f(t+ T, x),

so the adaptive condition of problem (4.1) clearly holds. Therefore, from Theorem 3.1, the system (4.1) has a
unique rotating periodic integrable solution.

5. Conclusion
The present paper provides the existence and uniqueness of rotating periodic integrable solution based on
Parseval’s formula and Schauder’s fixed point theorem for a second-order system under the nonresonance
condition. However, the existence results for the second-order differential system with cross resonance condition
is still an open problem which would be our next future work.
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