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Abstract: The present paper studies the optimal control theory of second-order polyhedral delay discrete and delay
differential inclusions with state constraints. We formulate the conditions of optimality for the problems with the second-
order polyhedral delay discrete (PDd) and the delay differential (PCd) in terms of the Euler–Lagrange inclusions and
the distinctive ”transversality” conditions. Moreover, some linear control problem with second-order delay differential
inclusions is given to illustrate the effectiveness and usefulness of the main theoretic results.
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1. Introduction
Optimal control problems with ordinary and partial differential inclusions, set valued mappings cover one of the
intensive developmental areas of optimal processes in the mathematical theory (see [1, 2, 4, 6, 10, 13, 30, 36,
37, 39] and their references). This paper deals with optimal control problems described by polyhedral discrete
and differential inclusions with delay constraints, and this class of problems is truly challenging and underin-
vestigated in control theory while being highly important for various applications; Moreau’s sweeping process
and Von Neumann–Gale dynamical systems, etc. Note that these problems also occur not only in mechanics,
aerospace engineering, management science, and economy but also automatic control, auto vibration, and bio-
physics [19, 34, 35].

Neutral systems have some similarities with the so-called hybrid and differential-algebraic equations which
are significant for applications in engineering control. In the paper [16] sufficient conditions for the control-
lability of neutral functional differential and integrodifferential inclusions with infinite delay are derived in a
Banach space. The paper [33] discusses optimal control problems for dynamical systems controlled by con-
strained neutral type functional differential inclusions. These control systems include time delays not only in
state variables but also in velocity variables, making them much more complex than delay differential inclusions.

The existence of state constraints on an optimal control trajectory is sufficiently demonstrated by produc-
ing discontinuities in the corresponding adjoint arc. The existence of mild solutions for a first-order impulsive
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neutral evolution differential inclusion with state-dependent delay is proved in the paper [15]. The study [11]
is devoted to the problem of robust stability for a class of time-delay systems and it is presumed that the
uncertainties in the systems are time-invariant and belong to a convex bounded polytopic domain. The concept
of set invariance for time-delay systems is introduced in the paper [17] with special attention to the linear
discrete-time case and the description of a delay invariant set concerning for to a bounded polyhedral subset of
the state space is given.

We aim to establish well verifiable necessary and sufficient conditions of optimality for polyhedral delay
discrete and delay differential inclusions with state constraints. These conditions are more precise than any pre-
viously published as they provide useful forms of adjoint inclusions of Euler–Lagrange-type and ”transversality”
conditions. As we have already suggested, we expect all these developments to support the future development
of optimal control theory with delay discrete and delay differential inclusions.

Due to higher-order derivatives, the problems associated with higher-order differential inclusions are more
complicated. The practical approach for eliminating this complexity in the optimal control theory involving
higher order derivatives is the systematic transformation of such problems into a set of first-order differential
inclusions or equations. It happens that, in practice, it is very difficult to return to the original higher-order
problem and express the optimized conditions usually obtained from the original problem data set. Although
the construction of adjoint inclusions and transversality conditions is more complicated, in the paper [27], the
conditions of optimality are formulated for the optimal control problem of higher-order differential inclusions
with functional constraints.

For second-order discrete and differential inclusions, the existence of solutions and other qualitative
properties has been intensively analyzed in the recent literature (see [3, 5, 7, 12, 14, 29] and their references).
The paper [8] deals with the existence of viable solutions to the Cauchy problem x′′ ∈ F (x, x′) , x(0) = x0 ,
x′(0) = y0 , where F is a set valued map defined on a locally compact set M ⊂ R2n , contained in the Fr échet
subdifferential of a φ -convex function of order two.

Moreover the paper [9] examines the existence and controllability of fractional order evolution class inclu-
sions with varying time delays. Then by applying the Glicksberg–Ky Fan fixed point theorem, the controllability
of this system with a nonlocal condition is established. For a nonlinear control problem with constant delay in
phase coordinates and with general function, the existence theorems of the optimal element are proved in the
work [38].

The key methods of our investigations, along with the generalized differential calculation, focus on the
extremal theory and its modifications. Using the method of discrete approximations and generalized differenti-
ation principles, we establish the conditions of optimality for problems in the Euler–Lagrange forms. The paper
[32] is dedicated to studying a general class of optimal control problems defined by delay differential inclusions
with endpoint constraints of equality and inequality and set valued initial conditions. The method of discrete
approximations and advanced methods of variational analysis and generalized differentiation in infinite dimen-
sions is used to derive necessary optimality conditions in the extended Euler–Lagrange form. The approach for
the delay differential systems under consideration is fully implemented.

Therefore, we can use the results for discrete approximation problems to obtain sufficient conditions of
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optimality for second-order polyhedral delay differential inclusions. Besides, many of the necessary and sufficient
conditions for optimization of differential inclusions inevitably require the creation of new types of equivalence
in the Mahmudov survey papers [20]–[26]. The paper [28] develops the theory of duality for the Mayer problem
given by second-order evolution differential inclusions with delay and state constraints. Although all the proofs
in that work relating to dual problems are carried out in the case of delay, the results are also considered without
delay. So we formulate the conditions of optimality in Corollary 5.2 for the problem (PCd) with nondelayed
second-order differential inclusions.

The present paper relates with delay to one of the complicated and important field – polyhedral opti-
mization of the second-order discrete and differential inclusions. The problems presented and the corresponding
conditions of optimality are new. The paper is organized into the order that follows.

For the convenience of the reader, the necessary definitions and additional results from Mahmudov’s book
[18] are summarized in Section 2 . Specifically, set valued mapping F and local adjoint mapping (LAM) are
given and polyhedral optimization problems are introduced for discrete and differential second-order inclusions.

In Section 3 , the problem (PDd) is reduced to a polyhedral minimization problem with geometric poly-
hedral constraints. Due to the use of convex and nonsmooth analysis structures, the necessary and sufficient
conditions of optimality are derived for this problem in terms of the Euler–Lagrange polyhedral inclusions. Note
that the reasons for adopting discrete modeling are as follows: First, statistics are collected at discrete times
(day, week, month, or year). Thus, discrete-time models can be described in a more straightforward, more
accurate and timely manner than continuous-time models. Secondly, the use of discrete-time models avoids
some mathematical complexities such as the choice of the function space and the regularity of the solution.
Third, the numerical simulation of continuous-time models is obtained through discretization.

In Section 4 , the second-order discrete approximation problem is associated with the (PCd) problem
by using the first and the second-order difference operators. By reducing this problem to the form of problem
(PDd) , we apply Theorem 3.2 to a discrete approximation problem and obtain the necessary and sufficient con-
ditions of optimality for a discrete approximation problem. It is clear that this method, which is unquestionable
of independent interest from a qualitative point of view, can also play an important role in numerical procedures.

In Section 5 , the results obtained in Section 4 are used to provide sufficient conditions of optimality
for the (PCd) problem. The derivation of these conditions is implemented by passing to the limit, where the
discrete steps tend to be zero. Thus, using the discretization method, we deduce the sufficient conditions of
optimality for the (PCd) problem in the Euler–Lagrange forms. Of course, using the suggested methods for
ordinary differential inclusions of Mordukhovich [31], it can be shown that sufficient conditions are also necessary
to achieve optimum results. However, proof of the necessary conditions is a separate subject of discussion and
is omitted from this article.

2. Necessary concepts and preliminary problem statements

The necessary concepts can be found in [18]. Let Rn be a n -dimensional Euclidean space, ⟨x, v⟩ be an inner
product of x, v ∈ Rn, (x, v) be a pair of x, v elements. Suppose that F : R3n ⇒ Rn is a set valued mapping from
R3n into the set of subsets of Rn . Then F : R3n ⇒ Rn is convex if its graph gphF = {(x, y, z, v) : v ∈ F (x, y, z)}
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is a convex subset of R4n . A set-valued mapping F is convex closed if its gphF is a convex closed set in R4n .
It is convex valued if F (x, y, z) is a convex set for each (x, y, z) ∈ domF = {(x, y, z) : F (x, y, z) ̸= ∅} .

A polyhedral convex set in Rn is a set that can be expressed as the intersection of some finite fam-
ily of closed half-spaces, that is, as the set of solutions to some finite system of inequalities of the form
⟨x, x∗

k⟩ ≤ βk, k = 1, . . . , l . The definition of a polyhedral set makes it immediately clear why such sets
play a leading role in linear programming. In particular, if the finite system of inequalities is homogeneous, the
set of solutions to this finite system of inequalities is called the polyhedral cone. A bounded polyhedral convex
set is a polytope (polyhedron) that is a convex hull of finitely many points. The polyhedral set is closed.

The convex cone KA(z0) , z0 = (x0, v01 , v
0
2 , v

0
3) is called the cone of tangent directions at the point z0 ∈ A

if from z = (x, v1, v2, v3) ∈ KA(z0) it follows that z is a tangent vector to the set A ⊂ R4n at the point z0 . In
other words, there exists such function µ : R → R4n such that z0 + λz + µ(λ) ∈ A for sufficiently small λ > 0

and λ−1µ(λ) → 0 as λ ↓ 0 .

It should be noted that the KA(z0) cone is not uniquely defined. In any case, we can see that the wider
the cone of tangent directions, we have a basic condition for a minimum. Clearly, for the convex set A at the
point (x0, v01 , v

0
2 , v

0
3) ∈ A setting µ(λ) ≡ 0 , we have for all (x, v1, v2, v3) ∈ A ,

KA(z0) =
{
(x, v1, v2, v3) : x = λ(x− x0), v1 = λ(v1 − v01), v2 = λ(v2 − v02), v3 = λ(v3 − v03) , λ > 0

}
.

In general, convex functions cannot be differentiated. However, these functions have many useful differential
properties and one of them is the universal existence of directional derivatives. Moreover, in the case of convex
functions, the notion of subgradient can be defined and the set of subgradients provides the “subdifferential”
concept.

The Mordukhovich’s subdifferential consists of the main class of generalized differentials and plays a vital
role in pure and applied analysis. Mordukhovich published two volumes of the book [31], which provide key
issues for these subdifferentials from theoretical and applied points of view in modern variational analysis.

In the case of set valued mappings, a similar role is played by an important concept the ”locally adjoint
mappings”. In general, for a set valued mapping F : R3n ⇒ Rn , a set-valued mapping F ∗(·, x, u1, u2, v) : Rn ⇒
R3n defined by the following:

F ∗(v∗; (x, u1, u2, v)
)
:=

{
(x∗, u∗

1, u
∗
2) : (x

∗, u∗
1, u

∗
2,−v∗) ∈ K∗

gphF (x, u1, u2, v)
}
,

is called the LAM to the set-valued mapping F at a point (x, u1, u2, v) ∈ gphF , where K∗
gphF (x, u1, u2, v) is

the dual to the cone of tangent directions KgphF (x, u1, u2, v) . Here K∗ := {z∗ : ⟨z, z∗⟩ ≥ 0, ∀ z ∈ K} denotes
the dual cone to the cone K, as usual.

In the paper, we deal with the following second-order polyhedral delay discrete model with state con-
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straints

minimize
T−1∑
t=1

f(xt, t), (2.1)

(PDd) xt+2 ∈ F (xt, xt+1, xt−h) , t = 0, 1, . . . , T − 2,

xt = αt , t = −h,−h+ 1, . . . ,−1, x0 = β0,

xt ∈ Pt , t = 1, 2, . . . , T, xT ∈ Ω, (2.2)

F (x, v1, v2) = {v3 : A0x+A1v1 +A2v2 −Bv3 ≤ d}.

Here xt ∈ Rn , f(·, t) : Rn → R ∪ {±∞} is a polyhedral function that is its epigraph epi f(·, t) is polyhedral
set in Rn+1 and F : R3n ⇒ Rn is a polyhedral set valued mapping, A0, A1, A2 and B , m × n dimensional
matrices, d is a m -dimensional column vector, T, h are fixed natural numbers, β0, αt , t = −h,−h+ 1, . . . ,−1

are fixed vectors. Additionally, Pt ⊆ Rn t = 1, . . . , T and Ω ⊆ Rn are convex sets.

A sequence {xt}Tt=−h = {xt : t = −h,−h + 1, . . . , T} is called a feasible trajectory for the stated prob-
lem. In fact, a model of economic dynamics (PDd) described by discrete inclusions with constant delay is
considered; the functioning of some economic system take place at the discrete times t = 0, 1, . . . , T and that at
time t one has a resource vector (x, u1, u2) ∈ R3n which can be transformed at time t+1 to one of the vectors
v ∈ F (x, u1, u2) . Here is assumed that all possible amounts of resources (xt, xt+1, xt−h), t = 0, . . . , T are con-
nected by xt+2 ∈ F (xt, xt+1, xt−h) , t = 0, 1, . . . , T−2 , xt ∈ Pt , t = 1, . . . , T, xT ∈ Ω , where xt = αt, x0 = β0 ,

are the vectors of initial resources. Usually,
T−1∑
t=1

f(xt, t) can be interpreted as the total expenditure.

Mostly, for this paper, we consider second-order polyhedral differential inclusion with delay

minimize J [x(·)] =
∫ T

0

f(x(t), t)dt+ φ0(x(T )),

(PCd) x′′(t) ∈ F (x(t), x′(t), x(t− h)), a.e. t ∈ [0, T ], (2.3)

x(t) = α(t) , t ∈ [−h, 0), x(0) = β,

x(t) ∈ P (t) , t ∈ [0, T ], x(T ) ∈ Ω. (2.4)

Here F : R3n ⇒ Rn and f(·, t), φ0 : Rn → R are time dependent polyhedral set valued mapping and real-valued
proper continuous functions, respectively, and Ω ⊆ Rn is a convex set, α(t) , t ∈ [−h, 0) is an absolutely con-
tinuous initial function, β is a fixed vector, P : [0, T ] ⇒ Rn is a convex set valued mapping.

It is required to find a feasible trajectory x(t) , t ∈ [−h, T ] minimizing the Bolza functional J [x(·)] over
a set of feasible trajectories. Here, a feasible trajectory x(t); t ∈ [−h, T ] satisfies state constraints everywhere
in [0, T ] , endpoint constraint x(T ) ∈ Ω , the second-order polyhedral differential inclusions with delay whose
second-order derivative in [0, T ] belongs to the standard Lebesgue space Ln

1 ([0, T ]) . In more detail, a feasible
solution x(·) of (PCd) is a mapping x(·) : [−h, T ] → Rn satisfying x′′(t) ∈ F (x(t), x′(t), x(t−h)), a.e. t ∈ [0, T ],

x(t) = α(t) , t ∈ [−h, 0) , x(t) ∈ P (t) , t ∈ [0, T ], x(0) = β, x(T ) ∈ Ω with x(·) ∈ AC([−h, T ]) ∩ Wn
1,2([0, T ])

where AC([−h, T ]) is a space of absolutely continuous functions from [−h, T ] into Rn and Wn
1,2([0, T ]) is a Ba-
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nach space of absolutely continuous functions from [0, T ] into Rn together with first order derivatives for which
x′′(·) ∈ Ln

1 ([0, T ]) . Notice that a Banach space Wn
1,2([0, T ]) can be equipped with the different equivalent norms.

It should be noted that the results on the existence of solutions of second-order differential inclusions in
their general setting can be found in [3, 8, 12].

3. Optimization for second-order delay discrete inclusions

In this section, by reducing the problem (PDd) to an equivalent type of convex minimization problem, we
derive the conditions of optimality for the problem (PDd) . Let us denote

A =


A0 A1 A2 −B 0 · · · · · · · · · 0
0 A0 A1 A2 −B 0 · · · · · · 0
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · · · · · · · 0 A0 A1 A2 −B

 , D̃ =


d
...
...
d


where A is the partitioned into submatrices A0, A1, A2,−B and m × n zero matrices 0 , D̃ is a m(T − 2)

dimensional column vector and A is a matrix with size m(T − 2)×n(T +1) . Then the problem (PDd) can be
reduced to a convex mathematical programming problem with constraints consisting of the linear inequalities.

minimize g(w) =

T−1∑
t=1

f(xt, t) , (3.1)

subject to w ∈ M ∩ Φ ∩
( T⋂

t=1

P t

)
∩ Ω,

where the vector w = (x−h, x−h+1, . . . , xT ) ∈ Rn(h+1+T ) and M = {w : Aw ≤ D̃} ,

Φ = {w : xt = αt, t = −h,−h+ 1, . . . , 0}, α0 = β0,

P t = {w : xt ∈ Pt}, t = 1, . . . , N,

Ω = {w : xT ∈ Ω}.

It is easy to check that M =
T−2⋂
t=0

Mt , where Mt = {w : A0xt+A1xt+1+A2xt−h−Bxt+2 ≤ d}, t = 0, . . . , T −2.

Let KM (w̃) be the cone of tangent directions, w̃ ∈ M , and K∗
M (w̃) be the dual cone to the cone of

tangent directions KM (w̃) = {w : w̃ + µw ∈ M , µ ≥ 0} , i.e. K∗
M (w̃) = {w∗

M : ⟨w,w∗
M ⟩ ≥ 0, ∀ w ∈ KM (w̃)} .

The cone of tangent directions KMt
(w̃) , t = 0, . . . , T −2 are polyhedral cones and so by Lemma 1.22 [18, p.23],

K∗
M (w̃) =

T−2∑
t=0

K∗
Mt

(w̃) .

Initially we prove the following lemma for the proofs of our main results.
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Lemma 3.1 For a polyhedral set Mt one has

K∗
Mt

(w̃) =
{
w∗(t) : x∗

t (t) = −A∗
0λt, x

∗
t+1(t) = −A∗

1λt, x
∗
t−h(t) = −A∗

2λt, x
∗
t+2(t) = B∗λt,

x∗
k = 0, k ̸= t, t+ 1, t− h, t+ 2, λt ≥ 0, λt ∈ Rm,〈

A0x̃t +A1x̃t+1 +A2x̃t−h −Bx̃t+2 − d, λt

〉
= 0, t = 0, . . . , T − 2

}
.

Proof By the definition of the cone of tangent directions, we obtain

KMt
(w̃) =

{
w : A0(x̃t + µxt) +A1(x̃t+1 + µxt+1) +A2(x̃t−h + µxt−h)−B(x̃t+2 + µxt+2) ≤ d

for a small µ > 0, t = 0, . . . , T − 2
}
, (3.2)

where x̃t+2 ∈ F (x̃t, x̃t+1, x̃t−h) is satisfied. It follows by the formula (3.2) that the inequality holds

Ai
0(x̃t + µxt) +Ai

1(x̃t+1 + µxt+1) +Ai
2(x̃t−h + µxt−h)−Bi(x̃t+2 + µxt+2) ≤ di , t = 0, . . . , T − 2

as
Ai

0xt +Ai
1xt+1 +Ai

2xt−h −Bixt+2 ≤ 0 (3.3)

i ∈ I(w̃) =
{
i : Ai

0x̃t +Ai
1x̃t+1 +Ai

2x̃t−h −Bix̃t+2 = di , i = 1, . . . ,m
}
.

Obviously if i is not the active indices, i.e. i ̸∈ I(w̃) , the inequality before (3.3) holds strongly for small
µ , regardless choosing (xt, xt+1, xt−h, xt+2) . Now since xk , k ̸= t , t + 1 , t − h, t + 2 are arbitrary,
applying Farkas theorem 1.13 (see for example [18, p.22]) it follows from the inequality (3.3) that w∗(t) =

(x∗
0(t), x

∗
1(t), . . . , x

∗
T (t)) ∈ K∗

Mt
(w̃) if and only if

x∗
t (t) = −

∑
i∈I(w̃)

Ai∗
0 λt

i , x∗
t+1(t) = −

∑
i∈I(w̃)

Ai∗
1 λt

i,

x∗
t−h(t) = −

∑
i∈I(w̃)

Ai∗
2 λt

i , x∗
t+2(t) =

∑
i∈I(w̃)

B∗
i λ

t
i, λt

i ≥ 0, (3.4)

where Ai∗
0 , Ai∗

1 , Ai∗
2 , B∗

i are transposed vectors of Ai
0, A

i
1, A

i
2, Bi respectively. Consequently, taking λt

i = 0 for
i ̸∈ I(w̃) and denoting λt a vector with the components λt

i , we have the required formula of lemma. Here it is
enough only remind that〈

A0x̃t +A1x̃t+1 +A2x̃t−h −Bx̃t+2 − d , λt

〉
= 0, λt ≥ 0 , λt ∈ Rm, t = 0, . . . , T − 2.

The proof of the lemma is completed. 2

Theorem 3.2 Let F and f(·, t) , t = 1, . . . , T −1 be a polyhedral set valued mapping and a polyhedral function,
respectively. Let {xt}Tt=−h be a feasible solution of problem (PDd) with second-order delay discrete inclusions
and f be continuous at xt , t = 1, . . . , T − 1 . Then in order for {x̃t}Tt=−h to be an optimal solution to problem
(PDd) with the initial values xt = αt , t = −h, . . . ,−1, x0 = β0 , state constraints xt ∈ Pt , t = 1, . . . , T and
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target set Ω , it is necessary and sufficient that there exist vectors λt , t = 0, . . . , T not all equal to zero such
that

A∗
0λt +A∗

1λt−1 +A∗
2λt+h −B∗λt−2 ∈ K∗

Pt
(x̃t)− ∂f(x̃t, t), t = 0, . . . , T − 2− h,

A∗
0λt +A∗

1λt−1 −B∗λt−2 ∈ K∗
Pt
(x̃t)− ∂f(x̃t, t), t = T − 1− h, . . . , T − 2,

∂f(x̃0, 0) = {0} , λ−1 ≡ λ−2 ≡ 0,〈
A0x̃t +A1x̃t+1 +A2x̃t−h −Bx̃t+2 − d, λt

〉
= 0 , λt ≥ 0,

and transversality conditions

−B∗λT−3 +A∗
1λT−2 ∈ K∗

PT−1
(x̃T−1)− ∂f(x̃T−1, T − 1),

−B∗λT−2 ∈ K∗
PT∩Ω(x̃T ).

Proof Obviously, if {x̃t}Tt=−h is an optimal trajectory of the problem (PDd) we say that w̃ = (x̃−h, x̃−h+1,

. . . , x̃T ) is a solution of the convex mathematical programming problem (3.1). We can prove necessary
and sufficient conditions for problem (3.1) with geometric constraints on the basis of the results regarding
convex mathematical programming. Therefore, due to the continuity of f(·, t) at points of some feasible
solution {x̃t}Tt=−h it follows from Theorem 3.4 [18] that there exist vectors w∗ ∈ ∂wf(w̃) and vectors w∗

M ∈

K∗
M (w̃), w̃∗(t) ∈ K∗

P t
(w̃), ŵ∗ ∈ K∗

Φ(w̃), w̆
∗ ∈ K∗

Ω
(w̃) such that w∗ = w∗

M +
T∑

t=1
w̃∗(t) + ŵ∗ + w̆∗ . This means

that

w∗ =

T−2∑
t=0

w∗(t) +

T∑
t=1

w̃∗(t) + ŵ∗ + w̆∗, w∗(t) ∈ K∗
Mt

(w̃). (3.5)

Thus w̃ is a solution of the problem (3.1) if and only if representation (3.5) holds. It follows from the definition

of the function g(w) =
T−1∑
t=1

f(xt, t) the vector w∗ has the form w∗ = (0, . . . , 0, x∗
1, . . . , x

∗
T−2, x

∗
T−1, 0) where

x∗
t ∈ ∂f(xt, t) , t = 1, . . . , T − 1 .

By using definition of the dual cones, we can compute K∗
P t
(w̃) , K∗

Φ(w̃) and K∗
Ω
(w̃) as follows:

K∗
P t
(w̃) = {w̃∗(t) : x̃∗

t (t) ∈ K∗
Pt
(x̃t), x̃

∗
k(t) = 0, k ̸= t}, t = 1, . . . , T,

K∗
Φ(w̃) = {ŵ∗ : x∗

t = 0, t ̸= −h, . . . , 0},

K∗
Ω
(w̃) = {w̆∗ : x∗

T ∈ K∗
Ω(xT ), x

∗
t = 0, t < T}.

In more details
w̃∗(t) =

(
x̃∗
−h(t), . . . , x̃

∗
T (t)

)
, x̃∗

k(t) = 0 , k ̸= t , t = 1, . . . , T,

or more convenience for the components of vector
[ T∑
t=1

w̃∗(t)
]
t
, we can write

[ T∑
t=1

w̃∗(t)
]
t
=

{
0, t = −h, . . . , 0,

x̃∗
t (t) ∈ K∗

Pt
(x̃t), t = 1, . . . , T.

(3.6)
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And it is not hard to see that

ŵ∗ =
(
x̂∗
−h, . . . , x̂

∗
0, 0 . . . , 0), w̆

∗ = (0, . . . , 0, x̆∗
T ), x̆

∗
T ∈ K∗

Ω(x̃T ). (3.7)

Let us denote t -th component of the vector
T−2∑
t=0

w∗(t) by
[ T−2∑

t=0
w∗(t)

]
t
, t = −h, . . . , 1 and from Lemma 3.1,

we have

[ T−2∑
t=0

w∗(t)
]
t
=


x∗
t (t+ h) , t = −h, . . . ,−1,

−A∗
0λ0 −A∗

2λh , t = 0,

−A∗
1λ0 −A∗

0λ1 −A∗
2λ1+h , t = 1.

(3.8)

On the other side, it is not difficult to infer that taking t = 2, 3, . . . , T , we have a different relationship to

describe the components of the vector
[ T−2∑

t=0
w∗(t)

]
t

as follows:

[ T−2∑
t=0

w∗(t)
]
t
=


B∗λt−2 −A∗

1λt−1 −A∗
2λt+h −A∗

0λt , t = 2, . . . , T − 2− h,

B∗λt−2 −A∗
1λt−1 −A∗

0λt , t = T − 1− h, . . . , T − 2,

B∗λT−3 −A∗
1λT−2 , t = T − 1,

B∗λT−2 , t = T.

(3.9)

Then taking into account (3.6)–(3.9) by component-wise representation, we write

x∗
t (t+ h) + x̂∗

t = 0, t = −h, . . . ,−1

−A∗
0λ0 −A∗

2λh + x̂∗
0 = 0, (3.10)

−A∗
1λ0 −A∗

0λ1 −A∗
2λ1+h + x̃∗

1(1) = x∗
1,

and by analogy, easily can be checked that

−A∗
0λt −A∗

1λt−1 −A∗
2λt+h +B∗λt−2 + x̃∗

t (t) = x∗
t , t = 2, . . . , T − 2− h,

−A∗
0λt −A∗

1λt−1 +B∗λt−2 + x̃∗
t (t) = x∗

t , t = T − 1− h, . . . , T − 2, (3.11)

−A∗
1λT−2 +B∗λT−3 + x̃∗

T−1(T − 1) = x∗
T−1 ,

B∗λT−2 + x̃∗
T (T ) + x̆∗

T = 0. (3.12)

Since x̃∗
t (t) ∈ K∗

Pt
(x̃t) and x∗

t ∈ ∂f(xt, t) , we can rewrite the relationship (3.11) as follows:

A∗
0λt +A∗

1λt−1 +A∗
2λt+h −B∗λt−2 ∈ K∗

Pt
(x̃t)− ∂f(x̃t, t), t = 2, . . . , T − 2− h,

A∗
0λt +A∗

1λt−1 −B∗λt−2 ∈ K∗
Pt
(x̃t)− ∂f(x̃t, t), t = T − 1− h, . . . , T − 2.

Moreover by setting x̃∗
0(0) = x̂∗

0 and λ−1 ≡ λ−2 ≡ 0 , the formula (3.11) can be extended to the case t = 0, 1 .
Thus by virtue of the previous inclusions, we have the delay discrete Euler–Lagrange type inclusions of theorem
for t = 0, . . . , T − 2 − h and t = T − 1 − h, . . . , T − 2 , respectively. By similar way for t = T − 1 and t = T

the formula (3.12) can be rewritten as follows:

A∗
1λT−2 −B∗λT−3 ∈ K∗

PT−1
(x̃T−1)− ∂f(x̃T−1, T − 1),

−B∗λT−2 ∈ K∗
PT

(x̃T ) +K∗
Ω(x̃T ) = K∗

PT∩Ω(x̃T ).

The proof of theorem is completed. 2
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4. Necessary and sufficient conditions of optimality for delay discrete approximation problem

Let us choose δ as a step on the t -axis and let x(t) ≡ xδ(t) be a grid function on [0, T ] . Let introduce the
following first and second-order difference operators

∆x(t) =
x(t+ δ)− x(t)

δ
,

∆2x(t) =
x(t+ 2δ)− 2x(t+ δ) + x(t)

δ2
.

It is clear that we can we associate with the continuous problem (PCd) the following delay discrete approxi-
mation problem

minimize
T−2δ∑
t=0

δf(x(t), t) + φ0

(
x(T − δ)

)
, (4.1)

∆2x(t) ∈ F (x(t),∆x(t), x(t− h)) , t = 0, δ, . . . , T − 2δ, (4.2)

x(t) = α(t) , t = −h,−h+ δ, . . . ,−δ, x(0) = β,

x(t) ∈ P (t) , t = δ, . . . , T , x(T ) ∈ Ω. (4.3)

To formulate the necessary and sufficient optimality conditions for problem (4.1)–(4.3), we reduce this problem
to the form of the (PDd) problem. Note that the delay discrete approximation inclusions (4.2) can be rewritten
as follows:(

δ2A0 − δA1 −B
)
x(t) +

(
δA1 + 2B

)
x(t+ δ) + δ2A2x(t− h)−Bx(t+ 2δ) ≤ δ2d , t = 0, δ, . . . , T − 2δ.

The following theorem plays a crucial role in further results based on the second-order delay differential
inclusions.

Theorem 4.1 Let F be a polyhedral set valued mapping, f(·, t) , t = 1, . . . , T − 1 be a proper polyhedral
function and continuous at the points of some feasible trajectory {x(t)}, t = 0, h, . . . , T . Then for optimality of
the trajectory {x̃(t)} in the problem (4.1)-(4.3) with second-order delay discrete approximation, it is necessary
and sufficient that there exist vectors λ(t) , t = 0, . . . , T not all equal to zero satisfying the second-order delay
approximate Euler–Lagrange type inclusions (i), (ii)

(i) −B∗∆2λ(t− 2δ) +A∗
0λ(t)−A∗

1∆λ(t− δ) +A∗
2λ(t+ h) ∈ K∗

P (t)(x̃(t))− ∂f(x̃(t), t) ,

t = 0, . . . , T − 2δ − h, ∂f(x̃(0), 0) = {0},

(ii) −B∗∆2λ(t− 2δ) +A∗
0λ(t)−A∗

1∆λ(t− δ) ∈ K∗
P (t)(x̃(t))− ∂f(x̃(t), t) ,

t = T − δ − h, . . . , T − 2δ, λ(t) ≥ 0,〈
A0x̃(t) +A1∆x̃(t) +A2x̃(t− h)−B∆2x̃(t)− d , λ(t)

〉
= 0,

and transversality conditions

B∗∆λ(T − 3δ) +A∗
1λ(T − 2δ) ∈ K∗

P (T−δ)(x̃(T − δ))− ∂φ0(x̃(T − δ)),

−B∗λ(T − 2δ) ∈ K∗
P (T )∩Ω(x̃(T )).
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Proof By using Theorem 3.2 that if {x̃(t)} := {x̃(t) : t = 0, δ, . . . , T} is an optimal trajectory in the (4.1)–(4.3)
then there exists λ(t) not all equal zero such that(

δ2A∗
0 − δA∗

1 −B∗
)
λ(t) +

(
δA∗

1 + 2B∗
)
λ(t− δ) + δ2A∗

2λ(t+ h)−B∗λ(t− 2δ)

∈ K∗
P (t)(x̃(t))− ∂f(x̃(t), t) , t = 2, . . . , T − 2δ − h, (4.4)(

δ2A∗
0 − δA∗

1 −B∗
)
λ(t) +

(
δA∗

1 + 2B∗
)
λ(t− δ)−B∗λ(t− 2δ)

∈ K∗
P (t)(x̃(t))− ∂f(x̃(t), t) , t = T − δ − h, . . . , T − 2δ, (4.5)

∂f(x̃(0), 0) = {0} , λ(t) ≥ 0,〈(
δ2A0 − δA1 −B

)
x̃(t) +

(
δA1 + 2B

)
x̃(t+ δ) + δ2A2x̃(t− h)−Bx̃(t+ 2δ)− δ2d, λ(t)

〉
= 0 . (4.6)

The inclusion (4.4) can be rewritten as follows:

−B∗λ(t− 2δ)−B∗λ(t) + 2B∗λ(t− δ) +
(
δ2A∗

0 − δA∗
1

)
λ(t) + δA∗

1λ(t− δ)

+δ2P ∗
2 λ(t+ h) ∈ K∗

P (t)(x̃(t))− ∂f(x̃(t), t) , t = 2, . . . , T − 2δ − h,

or more convenient form

−B∗
(
λ(t− 2δ)− 2λ(t− δ) + λ(t)

)
+ δ2A∗

0λ(t) +A∗
1δ
(
λ(t− δ)− λ(t)

)
+δ2A∗

2λ(t+ h) ∈ K∗
P (t)(x̃(t))− ∂f(x̃(t), t) , t = 2, . . . , T − 2δ − h.

Dividing both sides of that relation by δ2 (here δλ(t) are denoted again by λ(t)), we have Euler–Lagrange
polyhedral delay discrete inclusions (i) of theorem

−B∗∆2λ(t− 2δ) +A∗
0λ(t)−A∗

1∆λ(t− δ) +A∗
2λ(t+ h) ∈ K∗

P (t)(x̃(t))− ∂f(x̃(t), t), t = 2, . . . , T − 2δ − h.

In a similar way, we can find delay discrete inclusions (ii) of theorem

−B∗∆2λ(t− 2δ) +A∗
0λ(t)−A∗

1∆λ(t− δ) ∈ K∗
P (t)(x̃(t))− ∂f(x̃(t), t) , t = T − δ − h, . . . , T − 2δ.

By analogy, Equation (4.6) can be rewritten as follows:〈
A0x̃(t) +A1∆x̃(t) +A2x̃(t− h)−B∆2x̃(t)− d , λ(t)

〉
= 0.

By applying Theorem 3.2 the transversality condition of problem

−B∗λ(T − 3δ) +
(
δA∗

1 + 2B∗)λ(T − 2δ) ∈ K∗
P (T−δ)(x̃(T − δ))− ∂φ0(x̃(T − δ)),

−B∗λ(T − 2δ) ∈ K∗
P (T )∩Ω(x̃(T )).

Dividing both sides by δ , we obtain that

B∗∆λ(T − 3δ) +A∗
1λ(T − 2δ) ∈ K∗

P (T−δ)(x̃(T − δ))− ∂φ0(x̃(T − δ)).

We have the desired result. 2
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5. Sufficient conditions of optimality for second-order polyhedral delay differential inclusions

Formulation of sufficient optimality conditions for the (PCd) problem with differential inclusions for second-
order delay is basically based on results in Section 4 . By passing to the formal limit in conditions of Theorem
4.1 as δ → 0, these conditions are sufficient for the optimality of x̃(t), t ∈ [0, T ] in the problem (PCd) :

(a) −B∗ d
2λ(t)

dt2
+A∗

0λ(t)−A∗
1

dλ(t)

dt
+A∗

2λ(t+ h) ∈ K∗
P (t)(x̃(t))− ∂f(x̃(t), t),

a.e. t ∈ [0, T − h), B∗λ(0) = 0,

(b) −B∗ d
2λ(t)

dt2
+A∗

0λ(t)−A∗
1

dλ(t)

dt
∈ K∗

P (t)(x̃(t))− ∂f(x̃(t), t), a.e. t ∈ [T − h, T ],

(c)
〈
A0x̃(t) +A1

dx̃(t)

dt
+A2x̃(t− h)−B

d2x̃(t)

dt2
− d , λ(t)

〉
= 0 , a.e. t ∈ [0, T ],

and transversality conditions at point t = T

(d) A∗
1λ(T ) +B∗ dλ(T )

dt
∈ K∗

P (T )(x̃(T ))− ∂φ0

(
x̃(T )

)
, B∗λ(T ) = 0.

Theorem 5.1 Let f be continuous and polyhedral function with respect to x and F be a polyhedral set valued
mapping. Then for optimality of the arc x̃(t) to the problem (PCd) with second-order delay differential
inclusions, it is sufficient that there exist λ(t) , t ∈ [0, T ] not all equal to zero satisfying the second-order delay
differential Euler–Lagrange type inclusions (a), (b) , the equation (c) and transversality conditions (d) .

Proof By definition of subdifferential for all feasible solutions, we rewrite (a) and (b) in the form

f(x(t), t)− f(x̃(t), t) ≥
〈
B∗ d

2λ(t)

dt2
−A∗

0λ(t) +A∗
1

dλ(t)

dt
−A∗

2λ(t+ h)

+x̃∗(t) , x(t)− x̃(t)
〉
, a.e. t ∈ [0, T − h), (5.1)

and

f(x(t), t)− f(x̃(t), t) ≥
〈
B∗ d

2λ(t)

dt2
−A∗

0λ(t) +A∗
1

dλ(t)

dt
+ x̃∗(t) , x(t)− x̃(t)

〉
, a.e. t ∈ [T − h, T ], (5.2)

where x̃∗(t) ∈ K∗
P (t)(x̃(t)) . The right hand side of the inequality (5.1) can be rewritten as follows:

〈
B∗ d

2λ(t)

dt2
−A∗

0λ(t) +A∗
1

dλ(t)

dt
−A∗

2λ(t+ h) + x̃∗(t), x(t)− x̃(t)
〉

=
〈
B∗ d

2λ(t)

dt2
, x(t)− x̃(t)

〉
−

〈
λ(t), A0

(
x(t)− x̃(t)

)〉
+

〈dλ(t)
dt

, A1

(
x(t)− x̃(t)

)〉

−
〈
λ(t+ h), A2

(
x(t)− x̃(t)

)〉
+

〈
x̃∗(t), x(t)− x̃(t)

〉
. (5.3)
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For all feasible solutions x(·) and for λ(t) ≥ 0, t ∈ [0, T ] we have

〈
A0x(t) +A1

dx(t)

dt
+A2x(t− h), λ(t)

〉
≤

〈
B
d2x(t)

dt2
+ d, λ(t)

〉
.

On the other hand using the condition (c) of theorem, we can write

〈
A0x̃(t) +A1

dx̃(t)

dt
+A2x̃(t− h), λ(t)

〉
=

〈
B
d2x̃(t)

dt2
+ d, λ(t)

〉
.

Then by subtracting the last two relations, we conclude that

〈
A0

(
x(t)− x̃(t)

)
+A1

d
(
x(t)− x̃(t)

)
dt

+A2

(
x(t− h)− x̃(t− h)

)
, λ(t)

〉
≤

〈d2(x(t)− x̃(t)
)

dt2
, B∗λ(t)

〉
. (5.4)

Then from (5.3) and (5.4), we deduce that

〈
B∗ d

2λ(t)

dt2
−A∗

0λ(t) +A∗
1

dλ(t)

dt
−A∗

2λ(t+ h) + x̃∗(t), x(t)− x̃(t)
〉

≥
〈
B∗ d

2λ(t)

dt2
, x(t)− x̃(t)

〉
−
〈d2(x(t)− x̃(t)

)
dt2

, B∗λ(t)
〉
+

〈
A1

d
(
x(t)− x̃(t)

)
dt

, λ(t)
〉

+
〈
A2

(
x(t− h)− x̃(t− h)

)
, λ(t)

〉
+
〈dλ(t)

dt
,A1

(
x(t)− x̃(t)

)〉
−
〈
λ(t+ h), A2

(
x(t)− x̃(t)

)〉
+
〈
x̃∗(t) , x(t)− x̃(t)

〉
.

By suitably rewriting this inequality we have

〈
B∗ d

2λ(t)

dt2
−A∗

0λ(t) +A∗
1

dλ(t)

dt
−A∗

2λ(t+ h) + x̃∗(t), x(t)− x̃(t)
〉

≥
〈
B∗ d

2λ(t)

dt2
, x(t)− x̃(t)

〉
−
〈d2(x(t)− x̃(t)

)
dt2

, B∗λ(t)
〉
+

d

dt

[〈
A1

(
x(t)− x̃(t)

)
, λ(t)

〉]

+
〈
A2

(
x(t− h)− x̃(t− h)

)
, λ(t)

〉
−
〈
λ(t+ h), A2

(
x(t)− x̃(t)

)〉
+
〈
x̃∗(t) , x(t)− x̃(t)

〉
. (5.5)

Then since x̃∗(t) ∈ K∗
P (t)(x̃(t)) we have

〈
x̃∗(t), x(t)− x̃(t)

〉
≥ 0, ∀ x(t) ∈ KP (t)(x̃(t)) , therefore from (5.1) and

(5.5), we conclude that

f(x(t), t)− f(x̃(t), t) ≥
〈
B∗ d

2λ(t)

dt2
, x(t)− x̃(t)

〉
−

〈d2(x(t)− x̃(t)
)

dt2
, B∗λ(t)

〉
+

d

dt

[〈
A∗

1λ(t), x(t)− x̃(t)
〉]

+
〈
A∗

2λ(t), x(t− h)− x̃(t− h)
〉

−
〈
A∗

2λ(t+ h), x(t)− x̃(t)
〉
, a.e t ∈ [0, T − h). (5.6)
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Integrating the inequality (5.6) over the interval [0, T − h) and taking into account that x(0) = x̃(0) = β are
feasible, we obtain ∫ T−h

0

(
f(x(t), t)− f(x̃(t), t)

)
dt ≥

∫ T−h

0

[〈
B∗ d

2λ(t)

dt2
, x(t)− x̃(t)

〉

−
〈d2(x(t)− x̃(t)

)
dt2

, B∗λ(t)
〉]

dt+
〈
A∗

1λ(T − h), x(T − h)− x̃(T − h)
〉

+

∫ T−h

0

[〈
A∗

2λ(t), x(t− h)− x̃(t− h)
〉]

dt−
∫ T−h

0

[〈
A∗

2λ(t+ h), x(t)− x̃(t)
〉]

dt. (5.7)

By similar way beginning from (5.2), we conclude∫ T

T−h

(
f(x(t), t)− f(x̃(t), t)

)
dt ≥

∫ T

T−h

[〈
B∗ d

2λ(t)

dt2
, x(t)− x̃(t)

〉
−

〈d2(x(t)− x̃(t)
)

dt2
, B∗λ(t)

〉]
dt

+
〈
A∗

1λ(T ), x(T )− x̃(T )
〉
−

〈
A∗

1λ(T − h), x(T − h)− x̃(T − h)
〉
+

∫ T

T−h

[〈
A∗

2λ(t), x(t− h)− x̃(t− h)
〉]

dt.(5.8)

Summing the inequalities (5.7) and (5.8),∫ T

0

(
f(x(t), t)− f(x̃(t), t)

)
dt ≥

∫ T

0

[〈
B∗ d

2λ(t)

dt2
, x(t)− x̃(t)

〉
−

〈d2(x(t)− x̃(t)
)

dt2
, B∗λ(t)

〉]
dt

+

∫ T

0

[〈
A∗

2λ(t), x(t− h)− x̃(t− h)
〉]

dt−
∫ T−h

0

[〈
A∗

2λ(t+ h), x(t)− x̃(t)
〉]

dt+
〈
A∗

1λ(T ), x(T )− x̃(T )
〉
.(5.9)

By recalling x(t) = α(t) , t ∈ [−h, 0) , it is easy to compute the following integral∫ T

0

[〈
A∗

2λ(t), x(t− h)− x̃(t− h)
〉]

dt−
∫ T−h

0

[〈
A∗

2λ(t+ h), x(t)− x̃(t)
〉]

dt

=

∫ 0

−h

[〈
A∗

2λ(t+ h), x(t)− x̃(t)
〉]

dt = 0.

Then we have the inequality (5.9) as follows:∫ T

0

(
f(x(t), t)− f(x̃(t), t)

)
dt ≥

∫ T

0

[〈
B∗ d

2λ(t)

dt2
, x(t)− x̃(t)

〉

−
〈d2(x(t)− x̃(t)

)
dt2

, B∗λ(t)
〉]

dt+
〈
A∗

1λ(T ), x(T )− x̃(T )
〉
. (5.10)

Now we transform the expression in the square parentheses on the right hand side of (5.10):

〈
B∗ d

2λ(t)

dt2
, x(t)− x̃(t)

〉
−
〈d2(x(t)− x̃(t)

)
dt2

, B∗λ(t)
〉
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=
d

dt

〈
B∗ dλ(t)

dt
, x(t)− x̃(t)

〉
− d

dt

〈d(x(t)− x̃(t))

dt
,B∗λ(t)

〉
. (5.11)

Taking into account x(·), x̃(·) are feasible and the condition B∗λ(0) = 0 of theorem, we have

T∫
0

(
f(x(t), t)− f(x̃(t), t)

)
dt ≥

〈
B∗ dλ(T )

dt
+A∗

1λ(T ), x(T )− x̃(T )
〉
−

〈
B∗λ(T ) , x′(T )− x̃′(T )

〉
. (5.12)

On the other hand by transversality condition of theorem, we can write

φ0

(
x(T )

)
− φ0

(
x̃(T )

)
≥

〈
−B∗ dλ(T )

dt
−A∗

1λ(T ) , x(T )− x̃(T )
〉

(5.13)

where ∀ x(T ) ∈ KP (T )(x̃(T )) and B∗λ(T ) = 0 , then by adding (5.12) and (5.13), we deduce

∫ T

0

f(x(t), t)dt+ φ0(x(T )) ≥
∫ T

0

f(x̃(t), t)dt+ φ0(x̃(T ))

i.e. J(x(·))− J(x̃(·)) ≥ 0 for all feasible solutions x(t) and so x̃(t) is optimal. 2

Corollary 5.2 Suppose that for the problem (PCd) with nondelay second-order differential inclusions, a
polyhedral set valued mapping G depends on x , x′ and the condition Theorem 5.1 are satisfied. Accordingly,
nondelay second-order polyhedral differential problem with state constraints is as follows:

minimize J [x(·)] =
∫ T

0

f(x(t), t)dt+ φ0(x(T )),

(PC1) x′′(t) ∈ G(x(t), x′(t)), a.e. t ∈ [0, T ], (5.14)

x(t) ∈ P (t) , t ∈ [0, T ], x(0) = β, x(T ) ∈ Ω.

Then the second-order Euler–Lagrange type differential inclusions and transversality conditions of Theorem 5.1
consist of the following:

(i) A∗
0λ(t)−A∗

1

dλ(t)

dt
−B∗ d

2λ(t)

dt2
∈ K∗

P (t)(x̃(t))− ∂f(x̃(t), t), a.e. t ∈ [0, T ],

(ii)
〈
A0x̃(t) +A1

dx̃(t)

dt
−B

d2x̃(t)

dt2
− d , λ(t)

〉
= 0 , a.e. t ∈ [0, T ],

λ(t) ≥ 0, B∗λ(0) = 0,

(iii) A∗
1λ(T ) +B∗ dλ(T )

dt
∈ K∗

P (T )(x̃(T ))− ∂φ0

(
x̃(T )

)
, B∗λ(T ) = 0.

Proof Indeed in this case G(x, v1) = {v2 : A0x+A1v1−Bv2 ≤ d} , then the proof of the corollary immediately
follows from the conditions of Theorem 5.1. 2
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Suppose that we have a boundary value problem (PC1) with nonstate conditions:

minimize J [x(·)] =
∫ T

0

f(x(t), t)dt+ φ0(x(T )),

(PC2) x′′(t) ∈ G(x(t), x′(t)), a.e. t ∈ [0, T ],

x(0) = β0, x(T ) = βT . (5.15)

The problem is to find an arc x̃(t) of the problem (PC2) for the second-order differential inclusions satisfying
(5.14) almost everywhere (a.e.) on [0, T ] and the conditions (5.15) that minimizes the Bolza functional J(x(·)) .

Corollary 5.3 In order for trajectory x̃(t) , t ∈ [0, T ] , lying interior to domG to be an optimal solution of the
second-order polyhedral differential inclusions of problem (PC2) , it is sufficient that there exists an absolutely
continuous function λ(t) satisfying the following Euler–Lagrange type differential inclusions almost everywhere

(e) B∗ d
2λ(t)

dt2
∈ A∗

0λ(t)−A∗
1

dλ(t)

dt
+ ∂f(x̃(t), t), a.e. t ∈ [0, T ],

(f)
〈
A0x̃(t) +A1

dx̃(t)

dt
−B

d2x̃(t)

dt2
− d , λ(t)

〉
= 0 , a.e. t ∈ [0, T ],

λ(t) ≥ 0, B∗λ(0) = 0,

and transversality conditions at point t = T

(g) −A∗
1λ(T )−B∗ dλ(T )

dt
∈ ∂φ0

(
x̃(T )

)
, B∗λ(T ) = 0.

Proof We rewrite the inclusion (e) in the following form

f(x(t), t)− f(x̃(t), t) ≥
〈
B∗ d

2λ(t)

dt2
−A∗

0λ(t) +A∗
1

dλ(t)

dt
, x(t)− x̃(t)

〉
, a.e. t ∈ [0, T ].

In the proof of Theorem 5.1, we deduce the previous inequality in a more convenient way

f(x(t), t)− f(x̃(t), t) ≥
〈
B∗ d

2λ(t)

dt2
, x(t)− x̃(t)

〉
−

〈d2(x(t)− x̃(t)
)

dt2
, B∗λ(t)

〉
+

d

dt

[〈
A∗

1λ(t), x(t)− x̃(t)
〉]

, a.e t ∈ [0, T ]. (5.16)

Then integrating the inequality (5.16) over the interval [0, T ] and keeping in mind that x(·) , x̃(·) are feasible,
we get ∫ T

0

(
f(x(t), t)− f(x̃(t), t)

)
dt ≥

∫ T

0

[〈
B∗ d

2λ(t)

dt2
, x(t)− x̃(t)

〉

−
〈d2(x(t)− x̃(t)

)
dt2

, B∗λ(t)
〉]

dt+
〈
A∗

1λ(T ), x(T )− x̃(T )
〉
. (5.17)
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By definition of subdifferential for all feasible solutions, we write the transversality condition (g) in the form

φ0

(
x(T )

)
− φ0

(
x̃(T )

)
≥

〈
−B∗ dλ(T )

dt
−A∗

1λ(T ) , x(T )− x̃(T )
〉
. (5.18)

Furthermore considering the formula (5.11) in the square parentheses on the right hand side of (5.17) and
summing up the inequality (5.18), we obtain that

∫ T

0

f(x(t), t)dt+ φ0(x(T )) ≥
∫ T

0

f(x̃(t), t)dt+ φ0(x̃(T ))

i.e. J(x(·))− J(x̃(·)) ≥ 0 for all feasible solutions x(t) . It means that x̃(t) is the optimal arc.
2

Example 5.4 Let us consider an example on the problem of so-called linear optimal control problem for second-
order delay differential equations:

minimize J(x(·)) =
∫ T

0

f(x(t), t)dt+ φ0(x(T ))

x′′(t) = C0x(t) + C1x
′(t) + C2x(t− h) +Du(t), t ∈ [0, T ],

x(t) = α(t), t ∈ [−h, 0),

x(0) = β, x(T ) ∈ Ω

where f(·, t) and φ0 are continuously differentiable functions, Ci , i = 0, 1, 2 and D are n × n and n × r

matrices, respectively, u(t) ∈ U , U is a polyhedral subset of Rr . The problem is to find a controlling parameter
ũ(t) ∈ U such that the arc x̃(t) corresponding to it minimizes J(x(·)) . We transform this problem of the
following problem with second-order delay differential inclusions of the form:

minimize J(x(·)) =
∫ T

0

f(x(t), t)dt+ φ0(x(T ))

(PLd) x′′(t) ∈ F
(
x(t), x′(t), x(t− h)

)
a.e. t ∈ [0, T ],

x(t) = α(t), t ∈ [−h, 0), x(0) = β, x(T ) ∈ Ω,

F (x, v1, v2) = C0x+ C1v1 + C2v2 +Du, u ∈ U.

Corollary 5.5 The arc x̃(t) corresponding to the controlling parameter ũ(t) minimizes J(x(·)) in the problem
(PLd) if there exists an absolutely continuous function x∗(t) satisfying second-order adjoint delay differential
inclusion(equation), the transversality and Weierstrass–Pontryagin conditions:

d2x∗(t)

dt2
+ C∗

0x
∗(t)− C∗

1

dx∗(t)

dt
+ C∗

2x
∗(t+ h) = f ′(x̃(t), t) , a.e. t ∈ [0, T − h),

d2x∗(t)

dt2
+ C∗

0x
∗(t)− C∗

1

dx∗(t)

dt
= f ′(x̃(t), t) , a.e. t ∈ [T − h, T ],
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dx∗(T )

dt
− C∗

1x
∗(T ) ∈ K∗

Ω(x̃(T ))− φ′
0(x̃(T )), x

∗(0) = 0, x∗(T ) = 0,

〈
Dũ(t), x∗(t)

〉
= sup

u∈U

〈
Du, x∗(t)

〉
, t ∈ [0, T ].

Proof In this problem, we are proceeding on the basic of Theorem 5.1. Thus taking into account that
F (x, v1, v2) = C0x+C1v1+C2v2+Du, u ∈ U in the problem (PCd) and by elementary computations, we find
that

F ∗(v∗3 ; (x, v1, v2)) =
{(

C∗
0v

∗
3 , C∗

1v
∗
3 , C∗

2v
∗
3

)
, −D∗v∗3 ∈ K∗

U (u),

∅ , −D∗v∗3 ̸∈ K∗
U (u),

(5.19)

where v3 = C0x + C1v1 + C2v2 + Du , u ∈ U , C∗
i (i = 0, 1, 2) and D∗ are transposed matrices. Then taking

into account conditions of Theorem 5.1, we conclude

−d2x∗(t)

dt2
− C∗

0x
∗(t) + C∗

1

dx∗(t)

dt
− C∗

2x
∗(t+ h) = −f ′(x̃(t), t) , a.e. t ∈ [0, T − h),

−d2x∗(t)

dt2
− C∗

0x
∗(t) + C∗

1

dx∗(t)

dt
= −f ′(x̃(t), t) , a.e. t ∈ [T − h, T ],

dx∗(T )

dt
− C∗

1x
∗(T ) ∈ K∗

Ω(x̃(T ))− φ′
0(x̃(T )), x

∗(0) = 0, x∗(T ) = 0.

Besides −D∗v∗3 ∈ K∗
U (u) means that the Weierstrass–Pontryagin maximum condition〈

Dũ(t), x∗(t)
〉
= sup

u∈U

〈
Du, x∗(t)

〉
satisfied. We have the needed result.
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