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Abstract: In this paper, a new Gauss–Newton-like method that is based on a rational approximation model with linear
numerator is proposed for solving nonlinear equations. The new method revises the JT

k Jk matrix by a rank-one matrix
at each iteration. Furthermore, we design a new iterative algorithm for nonlinear equations and prove that it is locally
q-quadratically convergent. The numerical results show that the new proposed method has better performance than the
classical Gauss–Newton method.
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1. Introduction
We consider a system of nonlinear equations

F (x) = 0, (1.1)

where F : D ⊂ Rn → Rm is F-differentiable on an open convex domain neighborhood D , F = (F1, . . . , Fm)T ,
and x∗ ∈ D exists for which F (x∗) = 0 . In this paper, we assume all ∥ · ∥ refers to the 2-norm in all cases.

Many relationships in nature are inherently nonlinear in that effects are not in direct proportion to their
cause. Typically, the behavior of a nonlinear system is described in mathematics by a nonlinear system of
equations. Accordingly, solving nonlinear equations occurs frequently in scientific work. Solving systems of
nonlinear equations has now become one of the most important problems in numerical analysis. Many robust
and efficient methods for solving nonlinear equations are brought forward. A method for the solution of certain
nonlinear equations problem in least squares was discussed in [9]. A maximum neighborhood method was
developed for least squares estimation in [10]. The quadratic rate of convergence of the Levenberg–Marquardt
method for solving a system of nonlinear equations was discussed in [17] and [6]. Based on the line search for
the approximate LM step and extending the LM parameter to more general cases, an accelerated version of the
modified Levenberg–Marquardt method (AMLM) for nonlinear equations was proposed in [7]. In [2], a modified
two-step Levenberg–Marquardt method for nonlinear equations was proposed by introducing an adaptive LM
parameter for AMLM algorithm. In[8], a modified quasi-Newton method was proposed for solving the nonlinear
equation based on the new quasi-Newton equation. In[13], a new iterative scheme for solving nonlinear equations
was proposed based on a rational approximation model. In [14], a Gauss–Newton-like method for nonlinear least
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squares with equality constraints-local convergence and applications was discussed. The authors in [1] focused
on locating a solution of a nonlinear least squares problem by using an inexact Gauss–Newton method. The
authors in [3] presented a derivative-free version of the Gauss–Newton(DFO-GN) method for solving nonlinear
least squares problems. There are many other methods we have not listed here (see [4]).

The Newton method for nonlinear equations is an important and basic method, which converges quadrat-
ically. The linear expansion of nonlinear system (1.1) at an iteration point xk is

F (xk) + J(xk)(x− xk) = 0, (1.2)

where J(xk) is the Jacobian matrix of F (x) at xk .
If m = n and J(xk) is nonsingular, we can obtain the following classical Newton iteration:

xk+1 = xk − J(xk)
−1F (xk), k = 1, 2, · · · . (1.3)

If m ≠ n or J(xk) is singular, then Newton iteration (1.3) will fail. By applying the least square idea,
the Gauss–Newton method can effectively solve the above problems. The Gauss–Newton method can be viewed
as a modification of the Newton method with line search.

Considering the following problem
min
x∈Rn

Φ(x) (1.4)

where Φ(x) = 1
2∥F (x)∥2 = 1

2F (x)TF (x) and the first derivative of Φ(x) is

▽Φ(x) = J(x)TF (x).

Similarly, the second derivative (or Hessian matrix of Φ(x) ) is

▽2Φ(x) = J(x)TJ(x) + S(x)

where

S(x) =
m∑
i=1

Fi(x)∇2Fi(x)

denotes the second-order information in ▽2Φ(x) . Thus, the quadratic model of Φ(x) around xk is

mk(x) = Φ(xk) + ▽Φ(x)(x− xk) +
1

2
(x− xk)

T▽2Φ(xk)(x− xk)

=
1

2
F (xk)

TF (xk) + J(xk)
TF (xk)(x− xk)

+
1

2
(x− xk)

T((J(xk)
TJ(xk) + S(xk))(x− xk), (1.5)

the specialization of the Taylor series quadratic model (1.5) for minimization to objective functions of form
(1.4). Thus, the problem (1.4) can be approximated to the following form:

min
x∈Rn

mk(x). (1.6)
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According to (1.5), the Newton method applied to (1.6) is

xk+1 = xk − (J(xk)
TJ(xk) + S(xk))

−1J(xk)
TF (xk). (1.7)

Certainly (1.7) would be a fast local method for the problem (1.4), since it is locally q-quadratically
convergent under standard assumptions. The problem with the full Newton approach is that S(x) is usually
either unavailable or inconvenient to obtain, and it is too expensive to approximate by finite difference. To
simplify the calculation and get an efficient algorithm, we ignore S(x) in the quadratic model of the objective
function and use the approximation

▽2Φ(xk) ≈ J(xk)
TJ(xk),

then we obtain the classical Gauss-Newton iteration

xk+1 = xk − (J(xk)
TJ(xk))

−1J(xk)
TF (xk). (1.8)

The classical Gauss–Newton iteration is locally q-quadratically convergent for a zero-residual problem
(problem (1.4) for which F (x∗) = 0 is called a zero-residual problem, where x∗ ∈ D is a solution of problem
(1.1)), and the sequence generated by the classical Gauss–Newton method (1.8) converges to x∗ (see [4] Theorem
10.2.1 and Corollary 10.2.2). However, the iteration (1.8) is not well-defined if J(xk) does not have full column
rank, and the iteration (1.8) is not locally convergent on problems that are very nonlinear.

In this paper, for above reasons, we proposed a new Gauss–Newton-like method for solving nonlinear
equations (1.1) to improve the computational efficiency of the classical Gauss–Newton method. Inspired by the
work of Wang in [16], Sui in [12], and an improved method by Sayheya in [13], we propose a new Gauss–Newton-
like iterative model and design the corresponding algorithm. Compared with the classical Gauss–Newton method
with numerical examples, the results show that new Gauss–Newton-like method is more effective.

This paper is organized as follows. In the next section, we give a new Gauss–Newton-like method to solve
nonlinear equations (1.1). In Section 3, we will analyze the convergence of the new Gauss–Newton-like method.
In Section 4, numerical examples will be further considered to show that the new method may be more effective
and practicable than the classical Gauss–Newton method. Some conclusions are given in the last section.

2. Description of the new Gauss–Newton method

In this section, we will suggest a new Gauss–Newton-like method for solving a system of nonlinear equations
(1.1). Above all, we consider a class of rational approximate function (see [16]) of Fi(x)(i = 1, · · · ,m) as
follows:

Qi(x, ak) = Fi(xk) +
F ′
i (xk)

T(x− xk)

1 + aTk (x− xk)
, i = 1, · · · ,m

where ak ∈ Rn is the undetermined vector and xk ∈ Rn is the current point. With some calculations, we can
deduce that the function Qi(x, ak) is a first-order approximation of Fi(x) , i.e.

Qi(xk, ak) = Fi(xk), i = 1, · · · ,m,

Q′
i(xk, ak) = F ′

i (xk), i = 1, · · · ,m.
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The above rational function has many excellent properties. For example, it can reflect more curvature
information than the classical linear approximation model. This property may be able to reduce the number of
iterations when using an iteration method that was constructed by rational approximate functions to solve the
system of nonlinear equations (1.1).

Taking into account the interpolation condition

Q′
i(xk−1, ak) = F ′

i (xk−1),

then we obtain

ak = ± 1

c0

(√
c0
c1

(F ′
i (xk)− F ′

i (xk−1))

)
,

where c0 = Fi(xk−1)
T(xk−1 − xk), c1 = Fi(xk)

T(xk−1 − xk) , and xk−1 ∈ Rn is the preceding point of current
point xk .

Thus, we can get the following rational function (see [12]):

Qi(x, ak) = Fi(xk) +
F ′
i (xk)

T(x− xk)

1± 1
c0

(√
c0
c1
(F ′

i (xk)− F ′
i (xk−1))T

)
(x− xk)

, i = 1, · · · ,m.

Each approximate function Qi(x, ak) of nonlinear function Fi(x)(i = 1, · · · , m) at the current iteration

point xk contains a different vector ak = ± 1
c0

(√
c0
c1
(F ′

i (xk)− F ′
i (xk−1))

)
(i = 1, · · · , m), which makes it more

complex when we use an iteration method constructed by rational approximate Qi(x, ak) = 0 (i = 1, · · · , m)

to solve the system of nonlinear equations (1.1).
In order to avoid the above disadvantage, Saheya (in [13]) chose the same ak for all nonlinear functions

Qi(x, ak)(i = 1, · · · , m) at xk , let Q(x) = (Q1(x, ak), · · · , Qm(x, ak))
T and

Q(x) = F (xk) +
J(xk)(x− xk)

1 + aTk (x− xk)
(2.1)

to approximate the nonlinear functions F (x) and take into account

F (x) ≈ Q(x) = 0.

If m = n in (1.1) and the matrix J(xk) + F (xk)a
T
k is invertible, in [13], Saheya obtained the following

iterative formula:
xk+1 = xk −

(
J(xk) + F (xk)a

T
k

)−1
F (xk) (2.2)

to estimate the root of nonlinear equations F (x) = 0 .
However, the iterative formula (2.2) may fail to solve the system of nonlinear equations (1.1) with m ̸= n .

Here, we extend the rational approximation model to the Gauss–Newton method. Let F (x) = Q(x) , according
to (2.1), we have

Φ(x) =
1

2
∥F (x)∥2 =

1

2
F (x)TF (x)

=
1

2
F (xk)

TF (xk) +
J(xk)

TF (xk)(x− xk)

1 + aTk (x− xk)
+

(x− xk)
TJ(xk)

TJ(xk)(x− xk)

2(1 + aTk (x− xk))2
(2.3)
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and the first derivative of Φ(x) is

▽Φ(x) = 1

1 + aTk (x− xk)

(
I +

ak(x− xk)
T

1 + aTk (x− xk)

)(
J(xk)

TF (xk)−
J(xk)

TJ(xk)(x− xk)

1 + aTk (x− xk)

)
. (2.4)

Let ▽Φ(x) = 0 , then we have

J(xk)
TF (xk) =

J(xk)
TJ(xk)(x− xk)

1 + aTk (x− xk)
,

(
J(xk)

TJ(xk) + J(xk)
TF (xk)a

T
k

)
(x− xk) = −J(xk)

T
F (xk)

and further obtain the following new Gauss–Newton iterative formula

xk+1 = xk −
(
J(xk)

TJ(xk) + J(xk)
TF (xk)a

T
k

)−1
J(xk)

TF (xk). (2.5)

It is easy to see that the iteration (2.5) is reduced to the classical Gauss–Newton iteration if ak = 0 .
In the following, we will determine the vector ak in (2.5). Here, we use additional interpolation condition

Q(xk−1) = F (xk−1) (2.6)

to update ak−1 into ak .
From (2.6), we obtain

(1 + aTk (xk−1 − xk))(F (xk−1 − F (xk))) = J(xk)(xk−1 − xk). (2.7)

Furthermore, there exists vector z ∈ Rm and z ̸= 0 satisfy

1 + aTk (xk−1 − xk) =
zTk J(xk)(xk−1 − xk)

zTk (F (xk−1)− F (xk))
. (2.8)

Let sk−1 = xk − xk−1, F (xk) = Fk, J(xk) = Jk, yk−1 = Fk − Fk−1 , then

aTk sk−1 = 1− zTk Jksk−1

zTk yk−1

=
zTk yk−1 − zTk Jksk−1

zTk yk−1
. (2.9)

Therefore, let

ak =
zTk (yk−1 − Jksk−1)pk

sTk−1pk · zTk yk−1
, (2.10)

where pk ∈ Rn, sTk−1pk ̸= 0 . It is easy to see that ak satisfies (2.7).
We can choose different zk ∈ Rm and pk ∈ Rn in (2.10). For simplicity, here we choose zk = yk−1, pk =

sk−1 , then we obtain

JT
k Fka

T
k =

yTk−1(yk−1 − Jksk−1)

sTk−1sk−1
×

JT
k Fks

T
k−1

yTk−1yk−1
. (2.11)
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Now, based on the above results, we design the following new Gauss–Newton-like algorithm.

Algorithm 2.1 New Gauss–Newton-like method (NGNL)
Step 0. Start with an initial point x0 ∈ Rn and set the iteration number as k = 0 .
Step 1. Let a0 = 0 , ε = ε0, B0 = 0 and compute the value of the function F (xk) at point xk .
Step 2. If ∥F (xk)∥ ≤ ε , then stop.
Step 3. Compute the gradient of the function Jk at point xk , and set

(
JT
k Jk +Bk

)
sk = −JkFk,

xk+1 = xk + sk.

Step 4.Update the matrix Bk

Bk =
yTk−1(yk−1 − Jksk−1)

sTk−1sk−1
×

JT
k Fks

T
k−1

yTk−1yk−1
.

Step 5. Set the new iteration number as k = k + 1 and go to step 2.

There are two differences between the new Gauss–Newton-like method (NGNL) and the classical Gauss–
Newton method (CGN). Firstly, NGNL uses rational approximate function to obtain new iterative formula.
Secondly, NGNL utilizes the function values of the previous iteration point to revise JT

k Jk in every iteration.

3. Convergence analysis

In this section, we prove the convergence of Algorithm 2.1. Due to the need of proof, we first make the following
assumptions.

Aassumption 3.1
(1) Assume that J(x) is Lipschitz continuous in D ⊂ Rn with ||J(x)|| ≤ α for all x ∈ D , and there

exists a constant L > 0 , such that for all x, y ∈ D

∥J(x)TJ(x)− J(y)TJ(y)∥ ≤ L∥x− y∥.

(2) The function F is continuously differentiable in the open convex set D ⊂ Rn , and there exists a
constant γ > 0 , such that for all x, y ∈ D

∥J(x)− J(y)∥ ≤ γ∥x− y∥.

(3) Let x∗ be the local minimal point of the least squares problem (1.4) (or x∗ is the root of problem
(1.1)), J(x∗)

TJ(x∗) is nonsingular, and there exists a constant µ > 0 , such that

∥(J(x∗)
TJ(x∗))

−1∥ ≤ µ.

In order to facilitate the following proof of convergence theorem, here we introduce the following lemmas.
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Lemma 3.1 [3] Let F : Rn → Rm satisfy the condition (2) of assumption 3.1, then for all x+ s ∈ D ,

∥F (x+ s)− F (x)− J(x)s∥ ≤ γ

2
∥s∥2. (3.1)

Lemma 3.2 [3] Under the condition of Lemma 3.1, then there exist ε > 0 and 0 < m < M , such that

m∥v − u∥ ≤ ∥F (v)− F (u)∥ ≤ M∥v − u∥, (3.2)

for all v, u ∈ D for which max{∥v − x∗∥, ∥u− x∗∥} ≤ ε .

Lemma 3.3 [3] Let ∥ • ∥ be any norm on Rn×n that obeys the consistency condition and ∥I∥ = 1 and let
∥E∥ < 1 , then (I − E)−1 exists and

∥(I − E)−1∥ ≤ 1

1− ∥E∥
.

If A is nonsingular and ∥A−1(B −A)∥ < 1 , then B is nonsingular and

∥B−1∥ ≤ ∥A−1∥
1− ∥A−1(B −A)∥

.

With the help of above lemmas, we proposed the convergence theorem for the new Gauss–Newton-like
method. Here, we denote the ε -neighborhood of x∗ by

N(x∗, ε) = {x | ∥x− x∗∥ ≤ ε,∀x ∈ Rn}.

Theorem 3.4 Let F : Rn → Rm be twice continuously differentiable in an open convex set D ⊂ Rn , under
the previous assumptions, assume that J(x) is Lipschitz continuous in D ⊂ Rn with ||J(x)|| ≤ α for all x ∈ D

and there exist x∗ ∈ Rn , r > 0 , such that N(x∗, r) ⊂ D and F (x∗) = 0 . Then there exist ε > 0 such that for
all x0 ∈ N(x∗, ε) the sequence {xk}∞k=2 generated by Algorithm 2.1 is well-defined, converges to x∗ , and obeys

∥xk+1 − x∗∥ ≤ µαγ

(
1 +

M

m

)
∥xk − x∗∥2, k = 1, 2, . . . . (3.3)

and
∥xk+1 − x∗∥ < qk+1∥x0 − x∗∥, k = 1, 2, . . . . (3.4)

where 0 < q < 1

Proof when a0 = 0 , the iterative formula (2.5) is reduced to the classical Gauss–Newton method. It can be
seen from the proof of the classical Gauss–Newton method that

∥x1 − x∗∥ ≤ q∥x0 − x∗∥, (3.5)

where 0 < q < 1 .
Let

ε = min

{
r,

m

µq(2mL+ αγM)
,

m

µαγ(m+M)

}
,

270



WANG and WANG/Turk J Math

then

∥(JT
∗ J∗)

−1((JT
1 J1 + JT

1 F1a
T
1 )− JT

∗ J∗)∥

≤ ∥(JT
∗ J∗)

−1∥(∥JT
1 J1 − JT

∗ J∗∥+ ∥JT
1 F1a

T
1 ∥)

≤ µ(L∥x1 − x∗∥+ ∥JT
1 F1a

T
1 ∥).

Considering the second part of the above expression ∥JT
1 F1a

T
1 ∥ , from (3.1) and (3.2) we can obtain

∥JT
1 F1a

T
1 ∥ ≤ ∥J1∥ × ∥F1∥ × ∥a1∥

≤ α∥F1∥ ×
∥∥∥∥yT0 (y0 − J1s0)s

T
0

sT0 s0y
T
0 y0

∥∥∥∥
= α∥F1 − F∗∥ ×

∥∥∥∥ yT0
yT0 y0

× (F1 − F0 − J1s0)s
T
0

sT0 s0

∥∥∥∥
≤ αM∥x1 − x∗∥ ×

1

∥y0∥
×

∥∥∥∥ (F1 − F0 − J1s0)s
T
0

sT0 s0

∥∥∥∥
≤ αM∥x1 − x∗∥ ×

1

∥F1 − F0∥
× γ

2
∥s0∥

≤ αM∥x1 − x∗∥ ×
γ

2m

≤ αγM

2m
∥x1 − x∗∥.

Therefore,

∥(JT
∗ J∗)

−1
(
(JT

1 J1 + JT
1 F1a

T
1 )− JT

∗ J∗
)
∥ ≤ µ

(
L+

αγM

2m

)
∥x1 − x∗∥

≤ µq

(
L+

αγM

2m

)
∥x0 − x∗∥

≤ µq

(
L+

αγM

2m

)
ε

≤ 1

2
.

According to the perturbation Lemma 3.3, we know that JT
1 J1 + JT

1 F1a
T
1 is reversible, and

∥(JT
1 J1 + JT

1 F1a
T
1 )

−1∥ =
∥(JT

∗ J∗)
−1∥

1− ∥(JT
∗ J∗)−1

(
(JT

1 J1 + JT
1 F1aT1 )− JT

∗ J∗
)
∥

≤ 2∥(JT
∗ J∗)

−1∥ ≤ 2µ,

which shows that x2 is well defined. From (2.5) we obtain

x2 − x∗ = x1 − x∗ − (JT
1 J1 + JT

1 F1a
T
1 )

−1JT
1 F1

= x1 − x∗ − (JT
1 J1 + JT

1 F1a
T
1 )

−1(JT
1 F1 − JT

1 F∗)

= (JT
1 J1 + JT

1 F1a
T
1 )

−1
(
JT
1 F∗ − JT

1 F1 − (JT
1 J1 + JT

1 F1a
T
1 )(x∗ − x1)

)
.
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Thus,

∥x2 − x∗∥ ≤ ∥(JT
1 J1 + JT

1 F1a
T
1 )

−1∥ × ∥JT
1 F∗ − JT

1 F1 − (JT
1 J1 + JT

1 F1a
T
1 )(x∗ − x1)∥

≤ 2µ(∥JT
1 F∗ − JT

1 F1 − JT
1 J1(x∗ − x1)∥+ ∥JT

1 F1a
T
1 (x∗ − x1)∥)

≤ 2µ(∥JT
1 ∥ × ∥F∗ − F1 − J1(x∗ − x1)∥+ ∥JT

1 F1a
T
1 (x∗ − x1)∥)

≤ 2µ

(
αγ

2
∥x1 − x∗∥2 +

αγM

2m
∥x1 − x∗∥2

)
≤ µαγ

(
1 +

M

m

)
∥x1 − x∗∥2.

Together (3.5) with the above result, we can obtain

∥x2 − x∗∥ ≤ µαγ

(
1 +

M

m

)
∥x1 − x∗∥2

≤ µαγ

(
1 +

M

m

)
q2∥x0 − x∗∥2

≤ µαγ(m+M)

m
q2∥x0 − x∗∥ε

< q2∥x0 − x∗∥.

Thus, we have x2 ∈ N(x∗, r) , and complete the proof when k = 1 .

Now we assume that

∥xk+1 − x∗∥ ≤ µαγ

(
1 +

M

m

)
∥xk − x∗∥2

and

∥xk+1 − x∗∥ < qk+1∥x0 − x∗∥

are true statements. From this assumption, we want to deduce the truth of step k + 2 .
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Using the introduction hypothesis, we find that

∥xk+2 − x∗∥ = ∥xk+1 − x∗ − (JT
k+1Jk+1 + JT

k+1Fk+1a
T
k+1)

−1JT
k+1Fk+1∥

= ∥xk+1 − x∗ − (JT
k+1Jk+1 + JT

k+1Fk+1a
T
k+1)

−1(JT
k+1Fk+1 − JT

k+1F∗)∥

≤ ∥(JT
k+1Jk+1 + JT

k+1Fk+1a
T
k+1)

−1∥ × ∥JT
k+1F∗

− JT
k+1Fk+1 − (JT

k+1Jk+1 + JT
k+1Fk+1a

T
k+1)(x∗ − xk+1)∥

≤ 2µ(∥JT
k+1F∗ − JT

k+1Fk+1 − JT
k+1Jk+1(x∗ − xk+1)∥

+ ∥JT
k+1Fk+1a

T
k+1(x∗ − xk+1)∥)

≤ 2µ(∥JT
k+1∥∥F∗ − Fk+1 − Jk+1(x∗ − xk+1)∥

+ ∥JT
k+1Fk+1a

T
k+1(x∗ − xk+1)∥)

≤ 2µ

(
αγ

2
∥xk+1 − x∗∥2 +

αγM

2m

)
∥xk+1 − x∗∥2)

≤ µαγ

(
1 +

M

m

)
∥xk+1 − x∗∥2

and

∥xk+2 − x∗∥ ≤ µαγ

(
1 +

M

m

)
∥xk+1 − x∗∥2

≤ µαγ

(
1 +

M

m

)
q2(k+1)∥x0 − x∗∥ε

< q2k+2∥x0 − x∗∥

< qk+2∥x0 − x∗∥.

With mathematical induction, we obtain

∥xk+2 − x∗∥ ≤ µαγ

(
1 +

M

m

)
∥xk+1 − x∗∥2, k = 1, 2, . . .

∥xk+2 − x∗∥ < qk+2∥x0 − x∗∥, k = 1, 2, . . . .

So the proof is completed. 2

Corollary 3.5 Let the assumptions of Theorem 3.4 be satisfied. If F (x∗) = 0 , then there exists ε such that
for all x0 ∈ N(x∗, ε) , the sequence {xk} generated by the new Gauss–Newton-like method is well-defined and
converges q-quadratically to x∗ .

Proof From (3.4), we obtain the sequence {xk} which converges to x∗ , and from (3.3) the rate of convergence
is q-quadratic. 2
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4. Numerical experiment

In this section, in order to verify the practical effect of the new Gauss–Newton-like method proposed in
this paper, we apply Algorithm 2.1(NGNL), the classical Gauss–Newton method (CGN), and the Newton-
like method (INM)([13]) into a series of numerical examples and compare the performance of these methods.
All numerical examples are calculated on the on a personal computer (Intel i3, 2.1GHz/2GB) with MATLAB
R2014a. In the following tables,

Po: denotes the initial point;
In: denotes the number of iterations;
Ti: denotes the CPU running time (seconds);
Fn: denotes the current function value.

Example 4.1 In this example, we examine the effectiveness of the new Gauss–Newton-like method for
solving nonlinear equations with single root. Numerical examples are chosen from [15] and shown in Table 1.

Table 1. Test equations of example 4.1.

Test equation Initial point range
f1(x) = exp(x)sin(x) + ln(1 + x2) = 0 x0 ∈ [−0.1, 1]

f2(x) = exp(x)sin(x) + cos(x)ln(1 + x) = 0 x0 ∈ [−1, 1]

f3(x) = exp(sin(x))− x/5− 1 = 0 x0 ∈ [−0.5, 1]

f4(x) = (x+ 1)exp(sin(x))− x2exp(cos(x))− 1 = 0 x0 ∈ [−1.5, 1]

f5(x) = sin(x) + cos(x) + tan(x)− 1 = 0 x0 ∈ [−1, 0.5]

f6(x) = exp(−x)− cos(x) = 0 x0 ∈ [−1, 0.5]

f7(x) = ln(1 + x2) + exp(x2 − 3x)sin(x) = 0 x0 ∈ [−0.2, 1]

f8(x) = x3 + ln(1 + x) = 0 x0 ∈ [−0.5, 1]

f9(x) = sin(x)− x/3 = 0 x0 ∈ [−0.5, 1]

f10(x) = (x− 10)6 − 106 = 0 x0 ∈ [−1, 1]

We apply Algorithm 2.1 NGNL, INM, and CGN into above examples and choose three different initial
points which are randomly generated in the range of initial point. Calculation will be finished when ∥F (xk)∥ ≤
10−6 or the number of iterations exceeds 100. The numerical results are shown in Table 2.

Example 4.2 To show that Algorithm 2.1 is an effective algorithm for solving a system of nonlinear
equations, we select 17 test functions from the test problems set given by Mor é et al. in [11], which are shown
in Table 3. ( Note: In test functions F1 -F11 , m = n and in test functions F12 -F17 , m > n , where n represents
the number of variables and m represents the number of functions Fi(x), i = 1, 2, ...,m .)

In this example, the standard initial point given in [11] is chosen as the initial point for each question. The
algorithm is terminated when ∥F (xk)∥ < 10−6 or the number of iterations exceeds 100(n+ 1) . The numerical
results are shown in Table 4, where Dim represents the initial dimension and \ indicates that the number of
iterations exceeds 100(n+ 1) .

To compare the performances of the new Gauss–Newton-like method (NGNL), the classical Gauss–
Newton method (CGN), the and Newton-like method (INM), we choose the performance profile proposed
by Dolan and Mor é in [5] as a means (see Figures 1 and 2).
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Table 2. Numerical experiment results of INM, NGNL, and CGN.

Fuction INM NGNL CGN
Po In Ti Fn In Ti Fn In Ti Fn

f1(x) 0.7962 4 0.1848 3.35E-07 4 0.0007 3.35E-07 5 0.0017 6.97E-08
0.2063 3 0.0015 1.94E-07 3 0.0030 1.94E-07 4 0.0016 1.75E-09
0.5016 4 0.0007 1.02E-09 4 0.0007 1.02E-09 5 0.0008 1.47E-10

f2(x) 0.8119 3 0.0018 2.45E-11 3 0.0015 2.45E-11 4 0.0017 5.54E-11
0.9150 3 0.0017 4.73E-10 3 0.0017 4.73E-10 4 0.0019 2.95E-10
0.9298 3 0.0007 6.53E-10 3 0.0006 6.53E-10 4 0.0008 3.66E-10

f3(x) -0.3095 3 0.0009 2.83E-08 3 0.0012 2.83E-08 4 0.0011 8.04E-11
-0.2636 3 0.0013 3.00E-09 3 0.0006 3.00E-09 4 0.0013 4.26E-12
0.9559 3 0.0006 1.66E-11 3 0.0015 1.66E-11 3 0.0006 1.66E-11

f4(x) 0.7834 3 0.0019 5.60E-08 3 0.0015 5.60E-08 4 0.0021 1.80E-10
0.0809 4 0.0008 2.07E-14 4 0.0007 2.07E-14 4 0.0008 1.20E-12
-1.2561 4 0.0007 7.02E-08 4 0.0017 7.02E-08 5 0.0008 5.65E-13

f5(x) 0.9143 4 0.0304 1.78E-15 4 0.0012 1.78E-15 4 0.0014 7.68E-10
-0.0292 2 0.0006 5.27E-11 2 0.0013 5.27E-11 2 0.0007 2.31E-08
0.6006 3 0.0007 4.59E-13 3 0.0006 4.59E-13 3 0.0006 6.36E-09

f6(x) -0.7872 4 0.0012 9.34E-11 4 0.0025 9.34E-11 5 0.0012 3.62E-11
-0.3674 3 0.0005 1.41E-07 3 0.0015 1.41E-07 4 0.0007 1.46E-09
0.3736 4 0.0007 3.44E-09 4 0.0015 3.44E-09 5 0.0008 2.02E-09

f7(x) 0.7506 4 0.0022 2.48E-10 4 0.0014 2.48E-10 5 0.0019 3.63E-12
0.9514 4 0.0008 4.35E-09 4 0.0018 4.35E-09 5 0.0009 5.82E-11
0.5869 4 0.0006 2.35E-13 4 0.0016 2.35E-13 4 0.0008 3.40E-08

f8(x) -0.4464 4 0.0015 6.22E-15 4 0.0013 6.33E-15 4 0.0013 2.41E-08
0.7737 4 0.0008 7.01E-08 4 0.0007 7.01E-08 4 0.0007 1.21E-07
0.9010 4 0.0008 8.16E-08 4 0.0017 8.16E-08 5 0.0009 2.71E-12

f9(x) 0.5181 3 0.0011 1.29E-08 3 0.0011 1.29E-08 3 0.0012 9.06E-12
0.6366 3 0.0006 7.90E-07 3 0.0010 7.90E-07 3 0.0007 6.95E-09
0.6146 3 0.0007 3.83E-07 3 0.0006 3.83E-07 3 0.0005 2.14E-09

f10(x) -0.2155 3 0.0011 0 3 0.0010 0 4 0.0012 0
0.3110 3 0.0006 1.82E-08 3 0.0006 1.82E-08 4 0.0007 1.05E-09
-0.6576 4 0.0008 0 4 0.0017 0 4 0.0007 1.95E-07

We suppose that ns represents the number of methods and np is the number of test problems in test set
p . For each problem p and method s , fp,s is the iterations when the method s is used to solve the problem
p . Let the performance ratio

rp,s :=
fp,s

min{fp,s : s ∈ S}
,

where S is the methods set which includes NGNL, CGS, and INM. We assume that a parameter rM ≥ rp,s is
chosen for all p , s , and rp,s = rM if and only if solver s cannot solve problem p . Aiming to get the composite
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Table 3. Test problems of Example 4.2.

Function Name Dim
F1 Rosenbrock function n = 2, m = n

F2 Powell badly scaled function n = 2, m = n

F3 Freudenstein and Roth function n = 2, m = n

F4 Powell singular function n = 4, m = n

F5 Trigonometric function n variable, m = n

F6 Trigonometric Exponential function n variable, m = n

F7 Broyden tridiagonal function n variable, m = n

F8 Extended Powell singular function n variable, m = n

F9 Discrete boundary value function n variable, m = n

F10 Discrete integral equation function n variable, m = n

F11 Broydenbanded function n variable, m = n

F12 Brown badly scaled function n = 2, m = 3

F13 Beale function n = 2, m = 3

F14 Box three− dimensional function n = 3, m ≥ n

F15 Wood function n = 4, m = 6

F16 Biggs EXP6 function n = 6, m ≥ n

F17 V ariably dimensioned function n variable, m = n+ 2

assessment for each solver, we define the performance profile of the number of iteration for solver s as follows:

ρs(γ) :=
1

np
size{p ∈ P : rp,s ≤ γ},

where γ ≥ rM .
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Figure 1. Performance profiles of INM, NGNL, and CGN for iteration numbers.

With the same idea, we let tp,s be the CPU time required to solve problem p by solver s and assume
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Table 4. Numerical experiment results of INM, NGNL, and CGN.

Pr INM NGNL CGN
Dim In Ti Fn In Ti Fn In Ti Fn

F1 2 3 0.5065 0.00E+00 3 0.8615 7.38E-13 2 0.3909 1.08E-12
F2 2 6 1.4631 8.59E-07 6 2.0759 8.59E-07 11 2.7622 7.84E-07
F3 2 21 6.6486 8.86E-09 21 8.9845 8.86E-09 42 12.8778 1.74E-11
F4 4 10 0.0065 5.10E-07 10 0.0517 5.05E-07 12 0.0057 7.56E-07
F5 5 5 0.0037 1.31E-07 5 0.0185 1.87E-07 6 0.0161 6.60E-11
F6 5 17 0.0148 3.68E-07 12 0.0102 6.41E-07 12 0.0207 9.19E-07

50 14 0.0458 5.37E-07 13 0.0954 3.04E-07 14 0.0705 2.80E-07
500 12 3.0313 6.58E-07 12 8.6255 7.27E-07 14 4.7145 2.84E-07
1000 12 25.7258 8.07E-07 12 81.5752 8.73E-07 14 43.1951 2.89E-07

F7 5 4 0.0159 2.21E-13 4 0.0075 2.18E-13 4 0.0071 1.16E-09
50 4 0.0490 1.06E-11 4 0.0632 1.05E-11 4 0.0393 1.06E-09
200 4 0.9022 6.87E-11 4 2.8000 6.86E-11 4 1.4341 1.06E-09
1000 4 7.9124 8.87E-11 4 24.8408 8.86E-11 4 12.8777 1.06E-09

F8 4 10 0.0124 5.10E-07 10 0.0072 5.05E-07 12 0.0114 7.56E-07
40 11 0.1260 2.77E-07 11 0.0187 2.74E-07 13 0.0706 5.98E-07
400 11 4.2215 8.76E-07 11 3.4422 8.66E-07 14 8.4967 4.73E-07
1200 12 184.2385 2.60E-07 12 111.5607 2.57E-07 14 346.1998 8.19E-07

F9 5 2 3.2737 7.73E-10 2 10.5538 7.73E-10 2 6.6547 7.73E-10
50 2 3.4177 7.79E-10 2 10.8294 7.79E-10 2 6.73912 7.78E-10
500 2 3.3989 5.71E-10 2 10.7255 5.71E-10 2 6.9348 5.71E-10
1000 1 1.0430 2.78E-07 1 3.1195 2.78E-07 1 3.1146 2.78E-07

F10 5 3 0.0191 5.29E-08 3 0.0113 5.26E-08 3 0.0103 5.32E-08
50 3 0.0384 8.17E-11 3 0.0481 8.18E-11 3 0.0659 9.70E-10
500 3 0.9051 8.19E-07 2 1.6557 8.19E-07 3 1.7809 1.00E-10
1000 2 5.5000 4.87E-07 2 12.9404 4.88E-07 3 12.8934 5.03E-11

F11 10 5 0.0109 2.42E-13 5 0.0113 2.38E-13 5 0.0096 1.55E-08
50 5 0.0304 7.37E-12 5 0.0625 7.29E-12 5 0.0501 1.55E-08
500 5 0.2895 2.16E-11 5 0.5162 2.16E-11 5 0.3594 1.55E-08
1000 5 1.5605 2.58E-11 5 2.7303 2.58E-11 5 2.0991 1.55E-08

F12 2,3 \ \ \ 6 1.9253 2.28E-07 6 1.2149 3.33E-16
F13 2,3 \ \ \ 5 1.8958 7.44E-07 5 1.1648 3.05E-07
F14 3,10 \ \ \ 5 6.1755 2.59E-12 5 3.8780 3.37E-10
F15 4,6 \ \ \ 63 38.9144 1.08E-07 70 24.7892 2.99E-09
F16 6,10 \ \ \ 6 0.0084 1.31E-07 6 0.0099 6.69E-13
F17 10 \ \ \ 8 0.0514 3.47E-09 9 0.0075 3.99E-08

50 \ \ \ 12 0.0367 2.23E-11 \ \ \
500 \ \ \ 20 1.3503 0.00E+00 \ \ \
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that a parameter τM ≥ rp,s is chosen for all p , s , and rp,s = τM if and only if solver s cannot solve problem
p . The performance ratio

rp,s :=
tp,s

min{tp,s : s ∈ S}

and the performance profile of CPU time

ρs(τ) :=
1

np
size{p ∈ P : rp,s ≤ τ},

where τ ≥ τM .

Figure 2. Performance profiles of INM, NGNL, and CGN for CPU time.

5. Results and discussion
Based on the above numerical results in Tables 1–4 and Figures 1 and 2, in this section, we give some conclusions
about the performance of the NGNL, CGN, and INM.

1. In terms of the numerical results in Tables 1–4 and Figures 1 and 2, it is obvious that the new proposed
method can be used as an alternative to existing methods or in some cases where existing methods are
not successful.

2. It can be seen from Table 2 that the iteration number of NGNL is lower than yhose of CGN and INM.
The CPU time is nearly the same for NGNL, CGN, and INM. The numerical results indicate that NGNL
has nearly the same efficiency compared with CGN and INM for one-dimensional nonlinear equation.

3. In terms of the numerical results in Table 4, the iterative method NGNL needs more CPU time for some
test problems. However, we can see that the iterative method INM fails to obtain real solutions for test
problems (F12, · · · , F17), the iterative method CGN fails to obtain real solutions for test problem (F17),
while our proposed new Gauss–Newton-like method can solve all test problems successfully.

4. The results in Figures 1 and 2 indicate that the numerical performance of the iterative method NGNL is
superior to those of the iterative method CGN and iterative method INM for nonlinear equations.
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From the above comparison, we see that the new proposed method (NGNL) is effective and the numerical
results also lead us to believe that the new method has definite practical utility.

6. Conclusion
In this paper, we apply the rational approximation model to solve the least squares problem, and obtain a new
Gauss–Newton-like method for solving nonlinear equations, where the new method revises the JT

k Jk matrix by
a rank-one matrix at each iteration. Besides, we proposed an algorithm for new Gauss–Newton-like method
and analyzed its convergence. The numerical results show that the new method is more effective than some
existing methods for solving nonlinear equations. Hence, the new proposed method provides a new choice for
science and engineering practice.

There are some questions related to the study. For example, how to find the best ak in the rational
approximation model and how to extend the new proposed method for nonsmooth problems are not be well
solved in this paper and will be topics for our future work.
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[5] Dolan ED, Mor é JJ. Benchmarking optimization software with performance profiles. Mathematical Programming
2002; 91: 201-213. doi: 10.1007/s101070100263

[6] Fan JY, Yuan YX. On the quadratic convergence of the Levenberg-Marquardt method without nonsingularity
assumption. Computing 2005; 74: 23-39.

[7] Fan JY. Accelerating the modified Levenberg-Marquardt method for nonlinear equations. Mathematics of Compu-
tation 2014; 83: 1173-1187. doi: 10.1090/S0025-5718-2013-02752-4

[8] Fang XW, Ni Q, Zeng ML. A modified quasi-Newton method for nonlinear equations. Journal of Computational
and Applied Mathematics 2018; 328: 44-58. doi: 10.1016/j.cam.2017.06.024

[9] Levenberg K. A method for the solution of certain nonlinear problems in least squares. The Quarterly of Applied
Mathematics 1944; 2: 164-166. doi: 10.1090/qam/10666

[10] Marquardt DW. An algorithm for least-squares estimation of nonlinear parameters. SIAM Journal on Applied
Mathematics 1963; 11: 431-441. doi: 10.1137/0111030

279



WANG and WANG/Turk J Math
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