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Abstract: Let In and Sn be the symmetric inverse semigroup and the symmetric group on a finite chain Xn =

{1, . . . , n} , respectively. Also, let In,r = {α ∈ In : |im(α)| ≤ r} for 1 ≤ r ≤ n− 1 . For any α ∈ In , if α ̸= α2 = α4 then
α is called a quasi-idempotent. In this paper, we show that the quasi-idempotent rank of In,r (both as a semigroup and
as an inverse semigroup) is

(
n
2

)
if r = 2 , and

(
n
r

)
+1 if r ≥ 3 . The quasi-idempotent rank of In,1 is n (as a semigroup)

and n− 1 (as an inverse semigroup).
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1. Introduction
Let In and Sn be the symmetric inverse semigroup and the symmetric group on a finite chain Xn = {1, . . . , n} ,
respectively. Throughout this paper, we assume that n ≥ 2 unless otherwise stated. It is well known that In is
an inverse semigroup, and that every finite inverse semigroup S is embeddable in In . Hence, the importance
of In in inverse semigroup theory is similar to the importance of Sn in group theory. Although the semigroup
In has been extensively studied (see, for example, [1, 5, 10, 14]), there are still many interesting problems
concerning In to be investigated.

For any α ∈ In , for a suitable n , if α2 = α then α is called an idempotent; and if α 6= α2 = α4

then α is called a quasi-idempotent. Throughout this paper we use the notation Q(U) to denote the set of all
quasi-idempotents in any subset U of any semigroup.

Let S be a semigroup and let ∅ 6= A ⊆ S . The smallest subsemigroup of S containing A is called the
subsemigroup generated by A and denoted by 〈A〉 . Clearly 〈A〉 is the set of all finite products of elements of
A . If there exists a nonempty subset A of S such that S = 〈A〉 , then A is called a generating set of S . Also,
the rank of a finitely generated semigroup S is defined by

rank(S) = min{ |A| : 〈A〉 = S}. (1.1)

There are studies of various ranks of semigroups, such as idempotent-rank, (m, r) rank and nilpotent
rank, as well as of minimal generating sets of elements of a given kind (see, for example, [2, 3, 6, 8, 13, 17, 18]).
In particular, if there exists a generating set A of S consisting entirely of quasi-idempotents, then A is called
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a quasi-idempotent generating set of S , and the quasi-idempotent rank of S is defined by

qrank(S) = min{ |A| : 〈A〉 = S, A ⊆ Q(S)}. (1.2)

Let S be an inverse semigroup and let ∅ 6= A ⊆ S . The smallest inverse subsemigroup of S containing
A is called the subsemigroup generated by A as an inverse semigroup. To avoid confusion, as in [11], we shall
use the notation 〈〈A〉〉 for this inverse subsemigroup. It is clear that 〈〈A〉〉 is the set of all finite products of
elements of A and their inverses. If there exists a nonempty subset A of S such that S = 〈〈A〉〉 , then A is
called a generating set of S as an inverse semigroup. Also, the inverse rank of a finitely generated semigroup
S is defined by

rank∗(S) = min{ |A| : 〈〈A〉〉 = S}. (1.3)

Similarly, if there exists a generating set A of S as an inverse semigroup such that A consists of quasi-
idempotents, then A is called a quasi-idempotent generating set of S as an inverse semigroup, and if S is
finitely generated, then the quasi-idempotent inverse rank of S is defined by

qrank∗(S) = min{ |A| : 〈〈A〉〉 = S, A ⊆ Q(S)}. (1.4)

For every transformation α ∈ In , we denote by dom(α) and im(α) the domain and the image of α ,
respectively. Let a1, . . . , ak , where k ≥ 1 , be distinct elements of Xn . Then σ ∈ In is called a cycle of length k

(or a k−cycle), and denoted by σ = (a1 . . . ak) , if aiσ = ai+1 (1 ≤ i ≤ k−1) , akσ = a1 , and xσ is undefined if
x /∈ {a1, . . . , ak} . Similarly, λ ∈ In is called a chain of length k (or a k−chain), and denoted by λ = [a1 . . . ak] ,
if aiλ = ai+1 (1 ≤ i ≤ k − 1) , and xλ is undefined if x /∈ {a1, . . . , ak−1} . Note that [a1] is the zero element
of In . We say that α, β ∈ In are disjoint if (dom(α) ∪ im(α)) ∩ (dom(β) ∪ im(β)) = ∅ . Every nonzero α ∈ In

can be written uniquely (up to the order) as a join (set theoretical union) of disjoint cycles and chains [14]. We
write the join of α and β as αβ (only if α and β are disjoint), and the product as α ◦ β .

If α ∈ In with dom(α) = A and im(α) = B , we will write α : A 7→ B . Moreover, if dom(α) is specified,
we will skip 1 -cycles in the notation of α . With some abuse of the definition of a cycle, if α : A 7→ A and
α = (a1 . . . ak) , with k ≥ 1 and 1 -cycles omitted (except one 1 -cycle if k = 1), we will refer to α as a k -cycle
on A . For example, the map α : {1, 2, 3, 4, 5} 7→ {1, 2, 3, 4, 6} defined by tabular form

α =

(
1 2 3 4 5 6 7 8
2 1 3 4 6 − − −

)
∈ I8,5

can be written as α = (12)[56] if we know that dom(α) = {1, 2, 3, 4, 5} .
It is well known that S2 = 〈(12)〉 , S3 = 〈(13), (23)〉 = 〈(12), (123)〉 , and Sn = 〈(12), (12 . . . n)〉 for n ≥ 4 ;

I2 = 〈(12), (1)〉 and In = 〈(12), (12 . . . n), (1)(2) . . . (n− 1)〉 for n ≥ 3 . Furthermore,

rank(Sn) =

{
1 for n = 2
2 for n ≥ 3

, and rank(In) =

{
2 for n = 2
3 for n ≥ 3

. (1.5)

Umar showed in [15] that rank and quasi-idempotent rank of L−(n, n− 1) are both equal to n(n+ 1)

2
, where

L−(n, r) , 1 ≤ r ≤ n − 1 is the subsemigroup of In consisting of all decreasing partial one-to-one maps α

(including the empty or zero map) for which |im(α)| ≤ r . Also, Umar [16] calculated the quasi-idempotent
rank of L−(n, r) for 1 ≤ r ≤ n− 1 .
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For any element a of a semigroup S , the smallest left ideal of S containing a is Sa ∪ {a} , which is
denoted by S1a . We shall call it the principal left ideal of S generated by a . Principal right ideal of S

generated by a , aS1 , can be defined similarly. An equivalence L on S is defined by the rule that aLb if and
only if S1a = S1b , and an equivalence R on S is defined by the rule that aRb if and only if aS1 = bS1 . It is
well known that L ◦R = R◦L (see, for example, [12]). Also, an equivalence D on S is defined by D = L ◦R ,
and an equivalence H on S is defined by H = L∩R . An element a of a semigroup S is called regular if there
exists x ∈ S such that axa = a . If all elements of a semigroup S are regular then S is called regular. It follows
from [12, Proposition 2.3.1 ] that, for any D -class D , either every element of D is regular or no element of D

is regular. If all elements of D are regular then we call the D -class D regular. For more information see, for
example, [12].

Now let
In,r = {α ∈ In : |im(α)| ≤ r} (1.6)

for 1 ≤ r ≤ n − 1 . Clearly In,r is an ideal of In for each 1 ≤ r ≤ n − 1 , and notice that In,n−1 = In \ Sn .
Moreover, it is easy to see that Green’s equivalences L,R,D , and H on In,r are characterized by

(α, β) ∈ L ⇔ im(α) = im(β)

(α, β) ∈ R ⇔ dom(α) = dom(β)

(α, β) ∈ D ⇔ |im(α)| = |im(β)|

(α, β) ∈ H ⇔ dom(α) = dom(β) and im(α) = im(β)

for any α, β ∈ In,r . Hence, there exist r + 1 D -classes in In,r as follows:

Dk = {α ∈ In,r : |im(α)| = k} for 0 ≤ k ≤ r. (1.7)

All D -classes of In,r are regular, since In,r is a regular semigroup. For α ∈ In,r with dom(α) = A and
im(α) = B we will denote the H -class of α by HA,B . The rank and inverse rank of In,r have been determined.
By [11, Theorem 3.7] and [7, Theorem 2.2],

rank∗(In,r) =


n− 1 for r = 1(
n
2

)
for r = 2(

n
r

)
+ 1 for 3 ≤ r ≤ n− 1

. (1.8)

Nearly twenty years after the introduction of rank∗(In,r) into the literature, Zhao and Fernandes showed in [18,
Theorem 4.2] that

rank(In,r) =


n for r = 1(
n
2

)
for r = 2(

n
r

)
+ 1 for 3 ≤ r ≤ n− 1

. (1.9)

Note that the rank of In,r coincides with its inverse rank for 2 ≤ r ≤ n − 1 . However, rank(In,1) = n while
rank∗(In,1) = n−1 . In the next section, we show that qrank(In,r) = rank(In,r) and qrank∗(In,r) = rank∗(In,r)

for each 1 ≤ r ≤ n− 1 .
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2. Quasi-idempotent rank of In,r

It is clear that α ∈ In is a quasi-idempotent if and only if it is a join of some (perhaps none) 1 -cycles and at
least one 2 -cycle or 2 -chain.

Lemma 2.1 Let n ≥ 4 and 3 ≤ r ≤ n − 1 . Order 1, . . . , r arbitrarily as a1, . . . , ar , and let ar+1 = r + 1 .
Consider the subsets A1, . . . , Ar+1 of {a1, . . . , ar+1} defined by Ai = {a1, . . . , ar+1} \ {ar+2−i} , 1 ≤ i ≤ r+ 1 .
Then there are quasi-idempotents α1, . . . , αr, β1, β2 ∈ In such that αi : Ai 7→ Ai+1 , 1 ≤ i ≤ r , β1, β2 : Ar+1 7→
A1 , α1 ◦ . . . ◦ αr ◦ β1 = (a1 · · · ar) , and α1 ◦ . . . ◦ αr ◦ β2 = (a1 · · · ar−2ar) .

Proof Recall that we skip 1 -cycles in α ∈ In when dom(α) is specified. Let αi = [ar+1−i ar+2−i] , 1 ≤ i ≤ r ,
β1 = [ar+1 a1] , and β2 = [ar+1 a1](ar−1 ar) . Then the result is clear. 2

Lemma 2.2 Let n ≥ 4 and 3 ≤ r ≤ n− 2 . Let A1 = {1, . . . , r} . Order the r -elements subsets of Xn that are
not included in {1, . . . , r + 1} , Ar+2, . . . , Amr

, where mr =
(
n
r

)
, with Amr

= {1, . . . , r − 1, n} . Then there are
quasi-idempotents γ, αr+2, . . . , αmr−1, δ ∈ In such that γ : A1 7→ Ar+2 , αi : Ai 7→ Ai+1 , r + 2 ≤ i ≤ mr − 1 ,
δ : Amr

7→ A1 , and 〈γ, αr+2, . . . , αmr−1, δ〉 contains a 2-cycle, or an (r − 1)-cycle, or an r -cycle on A1 .

Proof Define γ, αr+2, . . . , αmr−1 arbitrarily, and let η = γ◦αr+2◦· · ·◦αmr−1◦ [n r] , where dom([n r]) = Amr
.

If η is the identity on A1 , take δ = [n r](1 2) .
Otherwise, let (c11 . . . c

1
i1
), . . . , (ck1 . . . c

k
ik
) , k ≥ 1 be the cycles in η of length at least 2 . If r occurs

in any of these cycles, we may assume that r = c11 . Define θ : Amr 7→ A1 by θ : [n 2] if k = 1 , and
θ = [n r][c1i1 c

2
1] · · · [ck−1

ik−1
ck1 ] , if k ≥ 2 . Then γ ◦ αr+2 ◦ · · · ◦ αmr−1 ◦ θ is an l -cycle on A1 . If l ∈ {2, r − 1, r} ,

take δ = θ .
If l = r − 2 , then for δ = θ(ckik d) , where d is a fixed point of γ ◦ αr+2 ◦ · · · ◦ αmr−1 ◦ θ with d 6= r ,

γ ◦ αr+2 ◦ · · · ◦ αmr−1 ◦ δ is an (r − 1) -cycle on A1 .
Suppose l ≤ r − 3 and there are distinct fixed points d1, d2, d3 of γ ◦ αr+2 ◦ · · · ◦ αmr−1 ◦ θ such

that r /∈ {d1, d2, d3} . If l is odd, then for δ = θ(d1 d2) , we have (d1 d2) = (γ ◦ αr+2 ◦ · · · ◦ αmr−1 ◦ δ)l ∈
〈γ, αr+2, . . . , αmr−1, δ〉 . If l is even, then for δ = θ(ckik d3)(d1 d2) , we have (d1 d2) = (γ◦αr+2◦· · ·◦αmr−1◦δ)l+1 ∈
〈γ, αr+2, . . . , αmr−1, δ〉 .

Suppose l ≤ r − 3 and there are only two distinct fixed points d1, d2 of γ ◦ αr+2 ◦ · · · ◦ αmr−1 ◦ θ such
that r /∈ {d1, d2} . Then l = r − 3 and r is a fixed point of γ ◦ αr+2 ◦ · · · ◦ αmr−1 ◦ θ . If i1 = · · · = ik = 2 ,
then taking δ = [n r](c11 c

1
2) · · · (ck1 ck2)(d1 d2) , we obtain γ ◦ αr+2 ◦ · · · ◦ αmr−1 ◦ δ = (d1 d2) . Otherwise, we may

assume that i1 ≥ 3 . Then taking δ = θ(c11 d1)(c
1
2 d2) , we obtain γ ◦αr+2 ◦ · · · ◦αmr−1 ◦ δ to be an (r−1) -cycle.

2

Lemma 2.3 Let S be a finite semigroup, and let D be a regular D -class of S . Let G be a group H -class of
D , and let W be a subset of S that intersects each H -class of D . Then D ⊆ 〈G,W 〉 .

Proof This is Lemma 4.9 in [18]. 2

Lemma 2.4 Let n ≥ 2 and 1 ≤ r ≤ n− 1 . Then the ideal In,r is generated by its elements of rank r .
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Proof This is Lemma 4.7 in [18].

Lemma 2.5 Let n ≥ 2 and 1 ≤ r ≤ n − 1 . Suppose α1, . . . , αk ∈ In are elements of rank r such that there
exists a group H -class G of Dr such that G ⊆ 〈α1, . . . , αk〉 , and 〈α1, . . . , αk〉 intersects each H -class of Dr .
Then 〈α1, . . . , αk〉 = In,r .

Proof The result follows immediately from Lemmas 2.3 and 2.4. 2

Lemma 2.6 For n ≥ 2 , let Ai = {i} for 1 ≤ i ≤ n , let αi : Ai 7→ Ai+1 be the quasi-idempotent αi = [i i+ 1]

for 1 ≤ i ≤ n− 1 , and let αn : An 7→ A1 be the quasi-idempotent αn = [n 1] . Then In,1 = 〈α1, . . . , αn〉 .

Proof For any α ∈ D1 there exist 1 ≤ i, j ≤ n such that dom(α) = {i} and im(α) = {j} , so the result
follows from the equality α = αi ◦ · · · ◦ αn ◦ α1 ◦ · · · ◦ αj−1 if j ≤ i and α = αi ◦ αi+1 ◦ · · · ◦ αj−1 if j > i . 2

Lemma 2.7 For n ≥ 3 , let Ai,j = {i, j} for 1 ≤ i < j ≤ n , and let αi,j : Ai,j 7→ Ai,j+1 for 1 ≤ i < j ≤ n− 1 ,
αi,n : Ai,n 7→ Ai+1,i+2 for 1 ≤ i ≤ n− 2 , and αn−1,n : An−1,n 7→ A1,2 be the quasi-idempotents

αi,j = [j j + 1] for 1 ≤ i < j ≤ n− 1,
αi,n = [i i+ 1][n i+ 2] for 1 ≤ i ≤ n− 3,
αn−2,n = [n− 2 n− 1] and
αn−1,n = [n− 1 2][n 1].

Then In,2 = 〈α1,2, α1,3, . . . , α1,n, α2,3, . . . , α2,n, . . . , αn−1,n〉 .

Proof For convenience, order the sets A1,2, A1,3, . . . , A1,n, A2,3, . . . , A2,n, . . . , An−1,n , respectively, by A1, A2,

. . . , Am2
, and order the elements α1,2, α1,3, . . . , α1,n, α2,3, . . . , α2,n, . . . , αn−1,n , respectively, by α1, α2, . . . , αm2

where m2 =
(
n
2

)
.

It is easy to see that α1 ◦ α2 ◦ · · · ◦ αm2
= (12) . Then, (1 2) ∈ 〈α1, α2, . . . , αm2

〉 , so HA1,A1
⊆

〈α1, α2, . . . , αm2〉 . Moreover, for any α ∈ HAi,Aj (1 ≤ i, j ≤ m2), there exists α ∈ HA1,A1 such that

α = αi ◦ · · · ◦ αm2
◦ α ◦ α1 ◦ · · · ◦ αj−1.

Hence, In,2 = 〈α1, α2, . . . , αm2〉 , by Lemma 2.5. 2

Theorem 2.8 For n ≥ 2 and 1 ≤ r ≤ n− 1 ,

qrank(In,r) = rank(In,r) =


n for r = 1(
n
2

)
for r = 2(

n
r

)
+ 1 for 3 ≤ r ≤ n− 1

.

Proof The cases r = 1 and r = 2 follow from Lemmas 2.6 and 2.7, (1.9), and the fact that rank(In,r) ≤
qrank(In,r) . Let n ≥ 4 and 3 ≤ r ≤ n− 1 .

Suppose r = n − 1 . Let A1, . . . , Ar+1 be the r -element subsets of Xn as in Lemma 2.1, with ai = i ,
and let α1, . . . , αr, β1 ∈ In be the quasi-idempotents as in Lemma 2.1. Then (1 . . . r) ∈ 〈α1, . . . , αr, β1〉 ,
and 〈α1, . . . , αr, β1〉 intersects each H -class of Dr . Consider (1 2) as a 2 -cycle on A1 . Then HA1,A1 ⊆
〈α1, . . . , αr, β1, (1 2)〉 . Hence, by Lemma 2.5, 〈α1, . . . , αr, β1, (1 2)〉 = In,r , so qrank(In,r) ≤ r + 2 =

(
n
r

)
+ 1 .
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Suppose r ≤ n − 2 . Let A1, Ar+2, . . . , Amr , where mr =
(
n
r

)
, be the r -element subsets of Xn as in

Lemma 2.2, and let γ, αr+2, . . . , αmr−1, δ ∈ In be the quasi-idempotents as in Lemma 2.2. Note that the set A1

in Lemma 2.1 is the same as the A1 in Lemma 2.2, namely {1, . . . , r} . Then 〈γ, αr+2, . . . , αmr−1, δ〉 contains
a 2 -cycle, or an (r − 1) -cycle, or an r -cycle on A1 . We now have three cases to consider.

Suppose (b1 . . . br) ∈ 〈γ, αr+2, . . . , αmr−1, δ〉 , where (b1 . . . br) is an r -cycle on A1 . Let A1, . . . , Ar+1

be the r -element subsets of Xn as in Lemma 2.1, with a1 = b1, . . . , ar−2 = br−2 and ar = br−1 , and
let α1, . . . , αr, β2 ∈ In be the quasi-idempotents as in Lemma 2.1. Then (b1 . . . br−1) ∈ 〈α1, . . . , αr, β2〉 , so
HA1,A1

⊆ 〈α1, . . . , αr, β2, γ, αr+2, . . . , αmr−1, δ〉 . Moreover, 〈α1, . . . , αr, β2, γ, αr+2, . . . , αmr−1, δ〉 intersects
each H -class of Dr . Hence, by Lemma 2.5, 〈α1, . . . , αr, β2, γ, αr+2, . . . , αmr−1, δ〉 = In,r , so qrank(In,r) ≤
mr − 2 + 3 =

(
n
r

)
+ 1 .

Suppose (b1 . . . br−1) ∈ 〈γ, αr+2, . . . , αmr−1, δ〉 , where (b1 . . . br−1) is an (r − 1) -cycle on A1 . Let A1,

. . . , Ar+1 be the r -element subsets of Xn as in Lemma 2.1, with a1 = b1, . . . ar−1 = br−1 and {br} =

A1 \ {b1, . . . , br−1} , and let α1, . . . , αr, β1 ∈ In be the quasi-idempotents as in Lemma 2.1. Then (b1 . . . br) ∈
〈α1, . . . , αr, β1〉 , so HA1,A1

⊆ 〈α1, . . . , αr, β1, γ, αr+2, . . . , αmr−1, δ〉 . Moreover, 〈α1, . . . , αr, β1, γ, αr+2, . . . ,

αmr−1, δ〉 intersects each H -class of Dr . Hence, by Lemma 2.5, 〈α1, . . . , αr, β1, γ, αr+2, . . . , αmr−1, δ〉 = In,r ,
so qrank(In,r) ≤ mr − 2 + 3 =

(
n
r

)
+ 1 .

Suppose (b1 b2) ∈ 〈γ, αr+2, . . . , αmr−1, δ〉 , where (b1 b2) is a 2 -cycle on A1 . Let A1, . . . , Ar+1 be the
r -element subsets of Xn as in Lemma 2.1, with a1 = b1, a2 = b2 and {a3, . . . , ar} = A1 \ {b1, b2} , and
let α1, . . . , αr, β1 ∈ In be the quasi-idempotents as in Lemma 2.1. Then (b1 . . . br) ∈ 〈α1, . . . , αr, β1〉 , so
HA1,A1 ⊆ 〈α1, . . . , αr, β1, γ, αr+2, . . . , αmr−1, δ〉 . Moreover, 〈α1, . . . , αr, β1, γ, αr+2, . . . , αmr−1, δ〉 intersects
each H -class of Dr . Hence, by Lemma 2.5, 〈α1, . . . , αr, β1, γ, αr+2, . . . , αmr−1, δ〉 = In,r , so qrank(In,r) ≤
mr − 2 + 3 =

(
n
r

)
+ 1 .

Therefore, the result follows immediately from the fact that
(
n
r

)
+1 = rank(In,r) ≤ qrank(In,r) ≤

(
n
r

)
+1 .
2

Theorem 2.9 For n ≥ 2 and 1 ≤ r ≤ n− 1 ,

qrank∗(In,r) = rank∗(In,r) =


n− 1 for r = 1(
n
2

)
for r = 2(

n
r

)
+ 1 for 3 ≤ r ≤ n− 1

.

Proof The case r = 1 is easy to prove directly. Let n ≥ 3 and 2 ≤ r ≤ n − 1 . Then the result follows
immediately from the facts that rank∗(In,r) ≤ qrank∗(In,r) ≤ qrank(In,r) and rank∗(In,r) = qrank(In,r) (by
(1.8) and Theorem 2.8). 2

Acknowledgments

My sincere thanks are due to Prof. Dr. Hayrullah Ayık and the referees for their helpful suggestions and
encouragement that really improved the paper.

286



BUGAY/Turk J Math

References

[1] Al-Kharousi F, Kehinde R, Umar A. Combinatorial results for certain semigroups of partial isometries of a finite
chain. Australasian Journal of Combinatorics 2014; 58 (3): 365-375.

[2] Ayık G, Ayık H, Howie JM, Ünlü Y. Rank properties of the semigroup of singular transformations on a finite set.
Communications in Algebra 2008; 36: 2581-2587.

[3] Bugay L, Yağcı M, Ayık H. The ranks of certain semigroups of partial isometries. Semigroup Forum 2018; 97:
214-222.

[4] Ganyushkin O, Mazorchuk V. Classical Finite Transformation Semigroups. London, UK: Springer-Verlag, 2009.

[5] Ganyushkin O, Mazorchuk V. Combinatorics of nilpotents in symmetric inverse semigroups. Annals of Combinatorics
2004; 8: 161-175.

[6] Garba GU. Idempotents in partial transformation semigroups. Proceedings of the Royal Society of Edinburgh 1990;
116A: 359-366.

[7] Garba GU. On the nilpotent ranks of certain semigroups of transformations. Glasgow Mathematical Journal 1994;
36 (1): 1-9.

[8] Garba GU. On the idempotent ranks of certain semigroups of order-preserving transformations. Portugaliae Math-
ematica 1994; 51: 185-204.

[9] Garba GU, Imam AT. Products of quasi-idempotents in finite symmetric inverse semigroups. Semigroup Forum
2016; 92: 645-658.

[10] Gomes GMS, Howie JM. Nilpotents in finite symmetric inverse semigroups. Proceedings of the Edinburgh Mathe-
matical Society 1987; 30: 383-395.

[11] Gomes GMS, Howie JM. On the ranks of certain finite semigroups of transformations. Mathematical Proceedings
of the Cambridge Philosophical Society 1987; 101: 395-403.

[12] Howie JM. Fundamentals of Semigroup Theory. New York, NY, USA: Oxford University Press, 1995.

[13] Howie JM, McFadden RB. Idempotent rank in finite full transformation semigroups. Proceedings of the Royal
Society of Edinburgh 1990; 114A: 161-167.

[14] Lipscomb S. Symmetric Inverse Semigroups. Mathematical Surveys, vol. 46. American Mathematical Society,
Providence, 1996.

[15] Umar A. On the semigroups of partial one-one order-decreasing finite transformations. Proceedings of the Royal
Society of Edinburgh Section A 1993; 123: 355-363.

[16] Umar A. On the ranks of certain finite semigroups of order-decreasing transformations. Portugaliae Mathematica
1996; 53 (1): 2-34.

[17] Yiğit E, Ayık G, Ayık H. Minimal relative generating sets of some partial transformation semigroups. Communica-
tions in Algebra 2017; 45: 1239-1245.

[18] Zhao P, Fernandes VH. The ranks of ideals in various transformation monoids. Communications in Algebra 2015;
43: 674-692.

287


	Introduction
	Quasi-idempotent rank of In,r

