

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Research Article

Quasi-idempotent ranks of the proper ideals in finite symmetric inverse semigroups

Leyla BUGAY^{*}

Department of Mathematics, Faculty of Science, Cukurova University, Adana, Turkey

Received: 02.01.2020	•	Accepted/Published Online: 23.11.2020	•	Final Version: 21.01.2021

Abstract: Let I_n and S_n be the symmetric inverse semigroup and the symmetric group on a finite chain $X_n = \{1, \ldots, n\}$, respectively. Also, let $I_{n,r} = \{\alpha \in I_n : |im(\alpha)| \le r\}$ for $1 \le r \le n-1$. For any $\alpha \in I_n$, if $\alpha \ne \alpha^2 = \alpha^4$ then α is called a quasi-idempotent. In this paper, we show that the quasi-idempotent rank of $I_{n,r}$ (both as a semigroup and as an inverse semigroup) is $\binom{n}{2}$ if r = 2, and $\binom{n}{r} + 1$ if $r \ge 3$. The quasi-idempotent rank of $I_{n,1}$ is n (as a semigroup) and n-1 (as an inverse semigroup).

Key words: Symmetric inverse semigroup, symmetric group, quasi-idempotent, rank

1. Introduction

Let I_n and S_n be the symmetric inverse semigroup and the symmetric group on a finite chain $X_n = \{1, \ldots, n\}$, respectively. Throughout this paper, we assume that $n \ge 2$ unless otherwise stated. It is well known that I_n is an inverse semigroup, and that every finite inverse semigroup S is embeddable in I_n . Hence, the importance of I_n in inverse semigroup theory is similar to the importance of S_n in group theory. Although the semigroup I_n has been extensively studied (see, for example, [1, 5, 10, 14]), there are still many interesting problems concerning I_n to be investigated.

For any $\alpha \in I_n$, for a suitable n, if $\alpha^2 = \alpha$ then α is called an idempotent; and if $\alpha \neq \alpha^2 = \alpha^4$ then α is called a quasi-idempotent. Throughout this paper we use the notation Q(U) to denote the set of all quasi-idempotents in any subset U of any semigroup.

Let S be a semigroup and let $\emptyset \neq A \subseteq S$. The smallest subsemigroup of S containing A is called the subsemigroup generated by A and denoted by $\langle A \rangle$. Clearly $\langle A \rangle$ is the set of all finite products of elements of A. If there exists a nonempty subset A of S such that $S = \langle A \rangle$, then A is called a generating set of S. Also, the rank of a finitely generated semigroup S is defined by

$$\operatorname{rank}(S) = \min\{|A| : \langle A \rangle = S\}.$$
(1.1)

There are studies of various ranks of semigroups, such as idempotent-rank, (m, r) rank and nilpotent rank, as well as of minimal generating sets of elements of a given kind (see, for example, [2, 3, 6, 8, 13, 17, 18]). In particular, if there exists a generating set A of S consisting entirely of quasi-idempotents, then A is called

²⁰¹⁰ AMS Mathematics Subject Classification: 20M20

^{*}Correspondence: ltanguler@cu.edu.tr

a quasi-idempotent generating set of S, and the quasi-idempotent rank of S is defined by

$$\operatorname{qrank}(S) = \min\{ |A| : \langle A \rangle = S, A \subseteq Q(S) \}.$$

$$(1.2)$$

Let S be an inverse semigroup and let $\emptyset \neq A \subseteq S$. The smallest inverse subsemigroup of S containing A is called the subsemigroup generated by A as an inverse semigroup. To avoid confusion, as in [11], we shall use the notation $\langle \langle A \rangle \rangle$ for this inverse subsemigroup. It is clear that $\langle \langle A \rangle \rangle$ is the set of all finite products of elements of A and their inverses. If there exists a nonempty subset A of S such that $S = \langle \langle A \rangle \rangle$, then A is called a generating set of S as an inverse semigroup. Also, the inverse rank of a finitely generated semigroup S is defined by

$$\operatorname{rank}^*(S) = \min\{ |A| : \langle \langle A \rangle \rangle = S \}.$$
(1.3)

Similarly, if there exists a generating set A of S as an inverse semigroup such that A consists of quasiidempotents, then A is called a quasi-idempotent generating set of S as an inverse semigroup, and if S is finitely generated, then the quasi-idempotent inverse rank of S is defined by

$$\operatorname{qrank}^*(S) = \min\{ |A| : \langle \langle A \rangle \rangle = S, A \subseteq Q(S) \}.$$

$$(1.4)$$

For every transformation $\alpha \in I_n$, we denote by dom(α) and im(α) the domain and the image of α , respectively. Let a_1, \ldots, a_k , where $k \ge 1$, be distinct elements of X_n . Then $\sigma \in I_n$ is called a cycle of length k(or a k-cycle), and denoted by $\sigma = (a_1 \ldots a_k)$, if $a_i \sigma = a_{i+1}$ $(1 \le i \le k-1)$, $a_k \sigma = a_1$, and $x\sigma$ is undefined if $x \notin \{a_1, \ldots, a_k\}$. Similarly, $\lambda \in I_n$ is called a chain of length k (or a k-chain), and denoted by $\lambda = [a_1 \ldots a_k]$, if $a_i \lambda = a_{i+1}$ $(1 \le i \le k-1)$, and $x\lambda$ is undefined if $x \notin \{a_1, \ldots, a_{k-1}\}$. Note that $[a_1]$ is the zero element of I_n . We say that $\alpha, \beta \in I_n$ are disjoint if $(\operatorname{dom}(\alpha) \cup \operatorname{im}(\alpha)) \cap (\operatorname{dom}(\beta) \cup \operatorname{im}(\beta)) = \emptyset$. Every nonzero $\alpha \in I_n$ can be written uniquely (up to the order) as a join (set theoretical union) of disjoint cycles and chains [14]. We write the join of α and β as $\alpha\beta$ (only if α and β are disjoint), and the product as $\alpha \circ \beta$.

If $\alpha \in I_n$ with dom $(\alpha) = A$ and im $(\alpha) = B$, we will write $\alpha : A \mapsto B$. Moreover, if dom (α) is specified, we will skip 1-cycles in the notation of α . With some abuse of the definition of a cycle, if $\alpha : A \mapsto A$ and $\alpha = (a_1 \dots a_k)$, with $k \ge 1$ and 1-cycles omitted (except one 1-cycle if k = 1), we will refer to α as a k-cycle on A. For example, the map $\alpha : \{1, 2, 3, 4, 5\} \mapsto \{1, 2, 3, 4, 6\}$ defined by tabular form

can be written as $\alpha = (12)[56]$ if we know that $\operatorname{dom}(\alpha) = \{1, 2, 3, 4, 5\}$.

It is well known that $S_2 = \langle (12) \rangle$, $S_3 = \langle (13), (23) \rangle = \langle (12), (123) \rangle$, and $S_n = \langle (12), (12...n) \rangle$ for $n \ge 4$; $I_2 = \langle (12), (1) \rangle$ and $I_n = \langle (12), (12...n), (1)(2) \dots (n-1) \rangle$ for $n \ge 3$. Furthermore,

$$\operatorname{rank}(S_n) = \begin{cases} 1 & \text{for } n = 2\\ 2 & \text{for } n \ge 3 \end{cases}, \text{ and } \operatorname{rank}(I_n) = \begin{cases} 2 & \text{for } n = 2\\ 3 & \text{for } n \ge 3 \end{cases}.$$
(1.5)

Umar showed in [15] that rank and quasi-idempotent rank of $L^{-}(n, n-1)$ are both equal to $\frac{n(n+1)}{2}$, where $L^{-}(n,r)$, $1 \leq r \leq n-1$ is the subsemigroup of I_n consisting of all decreasing partial one-to-one maps α (including the empty or zero map) for which $|\operatorname{im}(\alpha)| \leq r$. Also, Umar [16] calculated the quasi-idempotent rank of $L^{-}(n,r)$ for $1 \leq r \leq n-1$.

For any element a of a semigroup S, the smallest left ideal of S containing a is $Sa \cup \{a\}$, which is denoted by S^1a . We shall call it the principal left ideal of S generated by a. Principal right ideal of Sgenerated by a, aS^1 , can be defined similarly. An equivalence \mathcal{L} on S is defined by the rule that $a\mathcal{L}b$ if and only if $S^1a = S^1b$, and an equivalence \mathcal{R} on S is defined by the rule that $a\mathcal{R}b$ if and only if $aS^1 = bS^1$. It is well known that $\mathcal{L} \circ \mathcal{R} = \mathcal{R} \circ \mathcal{L}$ (see, for example, [12]). Also, an equivalence \mathcal{D} on S is defined by $\mathcal{D} = \mathcal{L} \circ \mathcal{R}$, and an equivalence \mathcal{H} on S is defined by $\mathcal{H} = \mathcal{L} \cap \mathcal{R}$. An element a of a semigroup S is called regular. It follows from [12, Proposition 2.3.1] that, for any \mathcal{D} -class D, either every element of D is regular or no element of Dis regular. If all elements of D are regular then we call the \mathcal{D} -class D regular. For more information see, for example, [12].

Now let

$$I_{n,r} = \{ \alpha \in I_n : |\operatorname{im}(\alpha)| \le r \}$$

$$(1.6)$$

for $1 \leq r \leq n-1$. Clearly $I_{n,r}$ is an ideal of I_n for each $1 \leq r \leq n-1$, and notice that $I_{n,n-1} = I_n \setminus S_n$. Moreover, it is easy to see that Green's equivalences $\mathcal{L}, \mathcal{R}, \mathcal{D}$, and \mathcal{H} on $I_{n,r}$ are characterized by

$$\begin{aligned} (\alpha, \beta) \in \mathcal{L} &\Leftrightarrow & \operatorname{im}(\alpha) = \operatorname{im}(\beta) \\ (\alpha, \beta) \in \mathcal{R} &\Leftrightarrow & \operatorname{dom}(\alpha) = \operatorname{dom}(\beta) \\ (\alpha, \beta) \in \mathcal{D} &\Leftrightarrow & |\operatorname{im}(\alpha)| = |\operatorname{im}(\beta)| \\ (\alpha, \beta) \in \mathcal{H} &\Leftrightarrow & \operatorname{dom}(\alpha) = \operatorname{dom}(\beta) \text{ and } \operatorname{im}(\alpha) = \operatorname{im}(\beta) \end{aligned}$$

for any $\alpha, \beta \in I_{n,r}$. Hence, there exist r+1 \mathcal{D} -classes in $I_{n,r}$ as follows:

$$D_k = \{ \alpha \in I_{n,r} : |\operatorname{im}(\alpha)| = k \} \quad \text{for } 0 \le k \le r.$$

$$(1.7)$$

All \mathcal{D} -classes of $I_{n,r}$ are regular, since $I_{n,r}$ is a regular semigroup. For $\alpha \in I_{n,r}$ with dom $(\alpha) = A$ and $\operatorname{im}(\alpha) = B$ we will denote the \mathcal{H} -class of α by $H_{A,B}$. The rank and inverse rank of $I_{n,r}$ have been determined. By [11, Theorem 3.7] and [7, Theorem 2.2],

$$\operatorname{rank}^{*}(I_{n,r}) = \begin{cases} n-1 & \text{for } r = 1\\ \binom{n}{2} & \text{for } r = 2\\ \binom{n}{r} + 1 & \text{for } 3 \le r \le n-1 \end{cases}$$
(1.8)

Nearly twenty years after the introduction of rank^{*} $(I_{n,r})$ into the literature, Zhao and Fernandes showed in [18, Theorem 4.2] that

$$\operatorname{rank}(I_{n,r}) = \begin{cases} n & \text{for } r = 1\\ \binom{n}{2} & \text{for } r = 2\\ \binom{n}{r} + 1 & \text{for } 3 \le r \le n - 1 \end{cases}$$
(1.9)

Note that the rank of $I_{n,r}$ coincides with its inverse rank for $2 \le r \le n-1$. However, rank $(I_{n,1}) = n$ while rank $(I_{n,1}) = n-1$. In the next section, we show that qrank $(I_{n,r}) = \operatorname{rank}(I_{n,r})$ and qrank $(I_{n,r}) = \operatorname{rank}(I_{n,r})$ for each $1 \le r \le n-1$.

2. Quasi-idempotent rank of $I_{n,r}$

It is clear that $\alpha \in I_n$ is a quasi-idempotent if and only if it is a join of some (perhaps none) 1-cycles and at least one 2-cycle or 2-chain.

Lemma 2.1 Let $n \ge 4$ and $3 \le r \le n-1$. Order $1, \ldots, r$ arbitrarily as a_1, \ldots, a_r , and let $a_{r+1} = r+1$. Consider the subsets A_1, \ldots, A_{r+1} of $\{a_1, \ldots, a_{r+1}\}$ defined by $A_i = \{a_1, \ldots, a_{r+1}\} \setminus \{a_{r+2-i}\}, 1 \le i \le r+1$. Then there are quasi-idempotents $\alpha_1, \ldots, \alpha_r, \beta_1, \beta_2 \in I_n$ such that $\alpha_i : A_i \mapsto A_{i+1}, 1 \le i \le r, \beta_1, \beta_2 : A_{r+1} \mapsto A_1, \alpha_1 \circ \ldots \circ \alpha_r \circ \beta_1 = (a_1 \cdots a_r), and \alpha_1 \circ \ldots \circ \alpha_r \circ \beta_2 = (a_1 \cdots a_{r-2}a_r).$

Proof Recall that we skip 1-cycles in $\alpha \in I_n$ when dom (α) is specified. Let $\alpha_i = [a_{r+1-i} a_{r+2-i}], 1 \le i \le r$, $\beta_1 = [a_{r+1} a_1], \text{ and } \beta_2 = [a_{r+1} a_1](a_{r-1} a_r)$. Then the result is clear.

Lemma 2.2 Let $n \ge 4$ and $3 \le r \le n-2$. Let $A_1 = \{1, \ldots, r\}$. Order the r-elements subsets of X_n that are not included in $\{1, \ldots, r+1\}$, A_{r+2}, \ldots, A_{m_r} , where $m_r = \binom{n}{r}$, with $A_{m_r} = \{1, \ldots, r-1, n\}$. Then there are quasi-idempotents $\gamma, \alpha_{r+2}, \ldots, \alpha_{m_r-1}, \delta \in I_n$ such that $\gamma : A_1 \mapsto A_{r+2}, \alpha_i : A_i \mapsto A_{i+1}, r+2 \le i \le m_r-1, \delta \le A_{m_r} \mapsto A_1$, and $\langle \gamma, \alpha_{r+2}, \ldots, \alpha_{m_r-1}, \delta \rangle$ contains a 2-cycle, or an (r-1)-cycle, or an r-cycle on A_1 .

Proof Define $\gamma, \alpha_{r+2}, \ldots, \alpha_{m_r-1}$ arbitrarily, and let $\eta = \gamma \circ \alpha_{r+2} \circ \cdots \circ \alpha_{m_r-1} \circ [n\,r]$, where dom $([n\,r]) = A_{m_r}$. If η is the identity on A_1 , take $\delta = [n\,r](1\,2)$.

Otherwise, let $(c_1^1 \dots c_{i_1}^1), \dots, (c_1^k \dots c_{i_k}^k), k \ge 1$ be the cycles in η of length at least 2. If r occurs in any of these cycles, we may assume that $r = c_1^1$. Define $\theta : A_{m_r} \mapsto A_1$ by $\theta : [n2]$ if k = 1, and $\theta = [nr][c_{i_1}^1 c_1^2] \cdots [c_{i_{k-1}}^{k-1} c_1^k]$, if $k \ge 2$. Then $\gamma \circ \alpha_{r+2} \circ \cdots \circ \alpha_{m_r-1} \circ \theta$ is an l-cycle on A_1 . If $l \in \{2, r-1, r\}$, take $\delta = \theta$.

If l = r - 2, then for $\delta = \theta(c_{i_k}^k d)$, where d is a fixed point of $\gamma \circ \alpha_{r+2} \circ \cdots \circ \alpha_{m_r-1} \circ \theta$ with $d \neq r$, $\gamma \circ \alpha_{r+2} \circ \cdots \circ \alpha_{m_r-1} \circ \delta$ is an (r-1)-cycle on A_1 .

Suppose $l \leq r-3$ and there are distinct fixed points d_1, d_2, d_3 of $\gamma \circ \alpha_{r+2} \circ \cdots \circ \alpha_{m_r-1} \circ \theta$ such that $r \notin \{d_1, d_2, d_3\}$. If l is odd, then for $\delta = \theta(d_1 d_2)$, we have $(d_1 d_2) = (\gamma \circ \alpha_{r+2} \circ \cdots \circ \alpha_{m_r-1} \circ \delta)^l \in \langle \gamma, \alpha_{r+2}, \ldots, \alpha_{m_r-1}, \delta \rangle$. If l is even, then for $\delta = \theta(c_{i_k}^k d_3)(d_1 d_2)$, we have $(d_1 d_2) = (\gamma \circ \alpha_{r+2} \circ \cdots \circ \alpha_{m_r-1} \circ \delta)^{l+1} \in \langle \gamma, \alpha_{r+2}, \ldots, \alpha_{m_r-1}, \delta \rangle$.

Suppose $l \leq r-3$ and there are only two distinct fixed points d_1, d_2 of $\gamma \circ \alpha_{r+2} \circ \cdots \circ \alpha_{m_r-1} \circ \theta$ such that $r \notin \{d_1, d_2\}$. Then l = r-3 and r is a fixed point of $\gamma \circ \alpha_{r+2} \circ \cdots \circ \alpha_{m_r-1} \circ \theta$. If $i_1 = \cdots = i_k = 2$, then taking $\delta = [n r](c_1^1 c_2^1) \cdots (c_1^k c_2^k)(d_1 d_2)$, we obtain $\gamma \circ \alpha_{r+2} \circ \cdots \circ \alpha_{m_r-1} \circ \delta = (d_1 d_2)$. Otherwise, we may assume that $i_1 \geq 3$. Then taking $\delta = \theta(c_1^1 d_1)(c_2^1 d_2)$, we obtain $\gamma \circ \alpha_{r+2} \circ \cdots \circ \alpha_{m_r-1} \circ \delta$ to be an (r-1)-cycle.

Lemma 2.3 Let S be a finite semigroup, and let D be a regular \mathcal{D} -class of S. Let G be a group \mathcal{H} -class of D, and let W be a subset of S that intersects each \mathcal{H} -class of D. Then $D \subseteq \langle G, W \rangle$.

Proof This is Lemma 4.9 in [18].

Lemma 2.4 Let $n \ge 2$ and $1 \le r \le n-1$. Then the ideal $I_{n,r}$ is generated by its elements of rank r.

Proof This is Lemma 4.7 in [18].

Lemma 2.5 Let $n \ge 2$ and $1 \le r \le n-1$. Suppose $\alpha_1, \ldots, \alpha_k \in I_n$ are elements of rank r such that there exists a group \mathcal{H} -class G of D_r such that $G \subseteq \langle \alpha_1, \ldots, \alpha_k \rangle$, and $\langle \alpha_1, \ldots, \alpha_k \rangle$ intersects each \mathcal{H} -class of D_r . Then $\langle \alpha_1, \ldots, \alpha_k \rangle = I_{n,r}$.

Proof The result follows immediately from Lemmas 2.3 and 2.4.

Lemma 2.6 For $n \ge 2$, let $A_i = \{i\}$ for $1 \le i \le n$, let $\alpha_i : A_i \mapsto A_{i+1}$ be the quasi-idempotent $\alpha_i = [ii+1]$ for $1 \le i \le n-1$, and let $\alpha_n : A_n \mapsto A_1$ be the quasi-idempotent $\alpha_n = [n1]$. Then $I_{n,1} = \langle \alpha_1, \ldots, \alpha_n \rangle$.

Proof For any $\alpha \in D_1$ there exist $1 \leq i, j \leq n$ such that $dom(\alpha) = \{i\}$ and $im(\alpha) = \{j\}$, so the result follows from the equality $\alpha = \alpha_i \circ \cdots \circ \alpha_n \circ \alpha_1 \circ \cdots \circ \alpha_{j-1}$ if $j \leq i$ and $\alpha = \alpha_i \circ \alpha_{i+1} \circ \cdots \circ \alpha_{j-1}$ if j > i. \Box

Lemma 2.7 For $n \ge 3$, let $A_{i,j} = \{i, j\}$ for $1 \le i < j \le n$, and let $\alpha_{i,j} : A_{i,j} \mapsto A_{i,j+1}$ for $1 \le i < j \le n-1$, $\alpha_{i,n} : A_{i,n} \mapsto A_{i+1,i+2}$ for $1 \le i \le n-2$, and $\alpha_{n-1,n} : A_{n-1,n} \mapsto A_{1,2}$ be the quasi-idempotents

Then $I_{n,2} = \langle \alpha_{1,2}, \alpha_{1,3}, \dots, \alpha_{1,n}, \alpha_{2,3}, \dots, \alpha_{2,n}, \dots, \alpha_{n-1,n} \rangle$.

Proof For convenience, order the sets $A_{1,2}, A_{1,3}, \ldots, A_{1,n}, A_{2,3}, \ldots, A_{2,n}, \ldots, A_{n-1,n}$, respectively, by $A_1, A_2, \ldots, A_{m_2}$, and order the elements $\alpha_{1,2}, \alpha_{1,3}, \ldots, \alpha_{1,n}, \alpha_{2,3}, \ldots, \alpha_{2,n}, \ldots, \alpha_{n-1,n}$, respectively, by $\alpha_1, \alpha_2, \ldots, \alpha_{m_2}$ where $m_2 = \binom{n}{2}$.

It is easy to see that $\alpha_1 \circ \alpha_2 \circ \cdots \circ \alpha_{m_2} = (12)$. Then, $(12) \in \langle \alpha_1, \alpha_2, \ldots, \alpha_{m_2} \rangle$, so $H_{A_1,A_1} \subseteq \langle \alpha_1, \alpha_2, \ldots, \alpha_{m_2} \rangle$. Moreover, for any $\alpha \in H_{A_i,A_i}$ $(1 \leq i, j \leq m_2)$, there exists $\overline{\alpha} \in H_{A_1,A_1}$ such that

$$\alpha = \alpha_i \circ \cdots \circ \alpha_{m_2} \circ \overline{\alpha} \circ \alpha_1 \circ \cdots \circ \alpha_{j-1}.$$

Hence, $I_{n,2} = \langle \alpha_1, \alpha_2, \dots, \alpha_{m_2} \rangle$, by Lemma 2.5.

Theorem 2.8 For $n \ge 2$ and $1 \le r \le n - 1$,

$$\operatorname{qrank}(I_{n,r}) = \operatorname{rank}(I_{n,r}) = \begin{cases} n & \text{for } r = 1\\ \binom{n}{2} & \text{for } r = 2\\ \binom{n}{r} + 1 & \text{for } 3 \le r \le n-1 \end{cases}$$

Proof The cases r = 1 and r = 2 follow from Lemmas 2.6 and 2.7, (1.9), and the fact that $\operatorname{rank}(I_{n,r}) \leq \operatorname{qrank}(I_{n,r})$. Let $n \geq 4$ and $3 \leq r \leq n-1$.

Suppose r = n - 1. Let A_1, \ldots, A_{r+1} be the *r*-element subsets of X_n as in Lemma 2.1, with $a_i = i$, and let $\alpha_1, \ldots, \alpha_r, \beta_1 \in I_n$ be the quasi-idempotents as in Lemma 2.1. Then $(1 \ldots r) \in \langle \alpha_1, \ldots, \alpha_r, \beta_1 \rangle$, and $\langle \alpha_1, \ldots, \alpha_r, \beta_1 \rangle$ intersects each \mathcal{H} -class of D_r . Consider (12) as a 2-cycle on A_1 . Then $H_{A_1,A_1} \subseteq \langle \alpha_1, \ldots, \alpha_r, \beta_1, (12) \rangle$. Hence, by Lemma 2.5, $\langle \alpha_1, \ldots, \alpha_r, \beta_1, (12) \rangle = I_{n,r}$, so $\operatorname{qrank}(I_{n,r}) \leq r+2 = {n \choose r} + 1$.

Suppose $r \leq n-2$. Let $A_1, A_{r+2}, \ldots, A_{m_r}$, where $m_r = \binom{n}{r}$, be the *r*-element subsets of X_n as in Lemma 2.2, and let $\gamma, \alpha_{r+2}, \ldots, \alpha_{m_r-1}, \delta \in I_n$ be the quasi-idempotents as in Lemma 2.2. Note that the set A_1 in Lemma 2.1 is the same as the A_1 in Lemma 2.2, namely $\{1, \ldots, r\}$. Then $\langle \gamma, \alpha_{r+2}, \ldots, \alpha_{m_r-1}, \delta \rangle$ contains a 2-cycle, or an (r-1)-cycle, or an r-cycle on A_1 . We now have three cases to consider.

Suppose $(b_1 \dots b_r) \in \langle \gamma, \alpha_{r+2}, \dots, \alpha_{m_r-1}, \delta \rangle$, where $(b_1 \dots b_r)$ is an *r*-cycle on A_1 . Let A_1, \dots, A_{r+1} be the *r*-element subsets of X_n as in Lemma 2.1, with $a_1 = b_1, \dots, a_{r-2} = b_{r-2}$ and $a_r = b_{r-1}$, and let $\alpha_1, \dots, \alpha_r, \beta_2 \in I_n$ be the quasi-idempotents as in Lemma 2.1. Then $(b_1 \dots b_{r-1}) \in \langle \alpha_1, \dots, \alpha_r, \beta_2 \rangle$, so $H_{A_1,A_1} \subseteq \langle \alpha_1, \dots, \alpha_r, \beta_2, \gamma, \alpha_{r+2}, \dots, \alpha_{m_r-1}, \delta \rangle$. Moreover, $\langle \alpha_1, \dots, \alpha_r, \beta_2, \gamma, \alpha_{r+2}, \dots, \alpha_{m_r-1}, \delta \rangle$ intersects each \mathcal{H} -class of D_r . Hence, by Lemma 2.5, $\langle \alpha_1, \dots, \alpha_r, \beta_2, \gamma, \alpha_{r+2}, \dots, \alpha_{m_r-1}, \delta \rangle = I_{n,r}$, so qrank $(I_{n,r}) \leq m_r - 2 + 3 = {n \choose r} + 1$.

Suppose $(b_1 \dots b_{r-1}) \in \langle \gamma, \alpha_{r+2}, \dots, \alpha_{m_r-1}, \delta \rangle$, where $(b_1 \dots b_{r-1})$ is an (r-1)-cycle on A_1 . Let A_1 , \dots, A_{r+1} be the *r*-element subsets of X_n as in Lemma 2.1, with $a_1 = b_1, \dots, a_{r-1} = b_{r-1}$ and $\{b_r\} = A_1 \setminus \{b_1, \dots, b_{r-1}\}$, and let $\alpha_1, \dots, \alpha_r, \beta_1 \in I_n$ be the quasi-idempotents as in Lemma 2.1. Then $(b_1 \dots b_r) \in \langle \alpha_1, \dots, \alpha_r, \beta_1 \rangle$, so $H_{A_1,A_1} \subseteq \langle \alpha_1, \dots, \alpha_r, \beta_1, \gamma, \alpha_{r+2}, \dots, \alpha_{m_r-1}, \delta \rangle$. Moreover, $\langle \alpha_1, \dots, \alpha_r, \beta_1, \gamma, \alpha_{r+2}, \dots, \alpha_{m_r-1}, \delta \rangle$ intersects each \mathcal{H} -class of D_r . Hence, by Lemma 2.5, $\langle \alpha_1, \dots, \alpha_r, \beta_1, \gamma, \alpha_{r+2}, \dots, \alpha_{m_r-1}, \delta \rangle = I_{n,r}$, so qrank $(I_{n,r}) \leq m_r - 2 + 3 = {n \choose r} + 1$.

Suppose $(b_1 b_2) \in \langle \gamma, \alpha_{r+2}, \ldots, \alpha_{m_r-1}, \delta \rangle$, where $(b_1 b_2)$ is a 2-cycle on A_1 . Let A_1, \ldots, A_{r+1} be the r-element subsets of X_n as in Lemma 2.1, with $a_1 = b_1, a_2 = b_2$ and $\{a_3, \ldots, a_r\} = A_1 \setminus \{b_1, b_2\}$, and let $\alpha_1, \ldots, \alpha_r, \beta_1 \in I_n$ be the quasi-idempotents as in Lemma 2.1. Then $(b_1 \ldots b_r) \in \langle \alpha_1, \ldots, \alpha_r, \beta_1 \rangle$, so $H_{A_1,A_1} \subseteq \langle \alpha_1, \ldots, \alpha_r, \beta_1, \gamma, \alpha_{r+2}, \ldots, \alpha_{m_r-1}, \delta \rangle$. Moreover, $\langle \alpha_1, \ldots, \alpha_r, \beta_1, \gamma, \alpha_{r+2}, \ldots, \alpha_{m_r-1}, \delta \rangle$ intersects each \mathcal{H} -class of D_r . Hence, by Lemma 2.5, $\langle \alpha_1, \ldots, \alpha_r, \beta_1, \gamma, \alpha_{r+2}, \ldots, \alpha_{m_r-1}, \delta \rangle = I_{n,r}$, so qrank $(I_{n,r}) \leq m_r - 2 + 3 = {n \choose r} + 1$.

Therefore, the result follows immediately from the fact that $\binom{n}{r} + 1 = \operatorname{rank}(I_{n,r}) \leq \operatorname{qrank}(I_{n,r}) \leq \binom{n}{r} + 1$.

Theorem 2.9 For $n \ge 2$ and $1 \le r \le n - 1$,

$$\operatorname{qrank}^{*}(I_{n,r}) = \operatorname{rank}^{*}(I_{n,r}) = \begin{cases} n-1 & \text{for } r = 1\\ \binom{n}{2} & \text{for } r = 2\\ \binom{n}{r} + 1 & \text{for } 3 \le r \le n-1 \end{cases}$$

Proof The case r = 1 is easy to prove directly. Let $n \ge 3$ and $2 \le r \le n-1$. Then the result follows immediately from the facts that rank^{*} $(I_{n,r}) \le \operatorname{qrank}^*(I_{n,r}) \le \operatorname{qrank}(I_{n,r})$ and rank^{*} $(I_{n,r}) = \operatorname{qrank}(I_{n,r})$ (by (1.8) and Theorem 2.8).

Acknowledgments

My sincere thanks are due to Prof. Dr. Hayrullah Ayık and the referees for their helpful suggestions and encouragement that really improved the paper.

References

- Al-Kharousi F, Kehinde R, Umar A. Combinatorial results for certain semigroups of partial isometries of a finite chain. Australasian Journal of Combinatorics 2014; 58 (3): 365-375.
- [2] Ayık G, Ayık H, Howie JM, Ünlü Y. Rank properties of the semigroup of singular transformations on a finite set. Communications in Algebra 2008; 36: 2581-2587.
- Bugay L, Yağcı M, Ayık H. The ranks of certain semigroups of partial isometries. Semigroup Forum 2018; 97: 214-222.
- [4] Ganyushkin O, Mazorchuk V. Classical Finite Transformation Semigroups. London, UK: Springer-Verlag, 2009.
- [5] Ganyushkin O, Mazorchuk V. Combinatorics of nilpotents in symmetric inverse semigroups. Annals of Combinatorics 2004; 8: 161-175.
- [6] Garba GU. Idempotents in partial transformation semigroups. Proceedings of the Royal Society of Edinburgh 1990; 116A: 359-366.
- [7] Garba GU. On the nilpotent ranks of certain semigroups of transformations. Glasgow Mathematical Journal 1994; 36 (1): 1-9.
- [8] Garba GU. On the idempotent ranks of certain semigroups of order-preserving transformations. Portugaliae Mathematica 1994; 51: 185-204.
- [9] Garba GU, Imam AT. Products of quasi-idempotents in finite symmetric inverse semigroups. Semigroup Forum 2016; 92: 645-658.
- [10] Gomes GMS, Howie JM. Nilpotents in finite symmetric inverse semigroups. Proceedings of the Edinburgh Mathematical Society 1987; 30: 383-395.
- [11] Gomes GMS, Howie JM. On the ranks of certain finite semigroups of transformations. Mathematical Proceedings of the Cambridge Philosophical Society 1987; 101: 395-403.
- [12] Howie JM. Fundamentals of Semigroup Theory. New York, NY, USA: Oxford University Press, 1995.
- [13] Howie JM, McFadden RB. Idempotent rank in finite full transformation semigroups. Proceedings of the Royal Society of Edinburgh 1990; 114A: 161-167.
- [14] Lipscomb S. Symmetric Inverse Semigroups. Mathematical Surveys, vol. 46. American Mathematical Society, Providence, 1996.
- [15] Umar A. On the semigroups of partial one-one order-decreasing finite transformations. Proceedings of the Royal Society of Edinburgh Section A 1993; 123: 355-363.
- [16] Umar A. On the ranks of certain finite semigroups of order-decreasing transformations. Portugaliae Mathematica 1996; 53 (1): 2-34.
- [17] Yiğit E, Ayık G, Ayık H. Minimal relative generating sets of some partial transformation semigroups. Communications in Algebra 2017; 45: 1239-1245.
- [18] Zhao P, Fernandes VH. The ranks of ideals in various transformation monoids. Communications in Algebra 2015; 43: 674-692.