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Abstract: Let I, and S, be the symmetric inverse semigroup and the symmetric group on a finite chain X, =
{1,...,n}, respectively. Also, let I, , = {a € I, : [im(a)| <7} for 1 <r <n—1. For any a € I, if @ # a®> = a* then

a is called a quasi-idempotent. In this paper, we show that the quasi-idempotent rank of I, , (both as a semigroup and

n

as an inverse semigroup) is (2

) if =2, and (:f) + 1 if » > 3. The quasi-idempotent rank of I, 1 is n (as a semigroup)

and n — 1 (as an inverse semigroup).
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1. Introduction

Let I,, and S,, be the symmetric inverse semigroup and the symmetric group on a finite chain X,, = {1,...,n},
respectively. Throughout this paper, we assume that n > 2 unless otherwise stated. It is well known that I, is
an inverse semigroup, and that every finite inverse semigroup S is embeddable in I,,. Hence, the importance
of I, in inverse semigroup theory is similar to the importance of S,, in group theory. Although the semigroup
I, has been extensively studied (see, for example, [1, 5, 10, 14]), there are still many interesting problems

concerning I,, to be investigated.

For any o € I,, for a suitable n, if a® = o then « is called an idempotent; and if o # a? = o

then « is called a quasi-idempotent. Throughout this paper we use the notation Q(U) to denote the set of all
quasi-idempotents in any subset U of any semigroup.

Let S be a semigroup and let ) # A C S. The smallest subsemigroup of S containing A is called the
subsemigroup generated by A and denoted by (A). Clearly (A) is the set of all finite products of elements of
A. If there exists a nonempty subset A of S such that S = (A4), then A is called a generating set of S. Also,
the rank of a finitely generated semigroup S is defined by

rank(S) = min{ |A] : (A) = S}. (1.1)

There are studies of various ranks of semigroups, such as idempotent-rank, (m,r) rank and nilpotent
rank, as well as of minimal generating sets of elements of a given kind (see, for example, [2, 3, 6, 8, 13, 17, 18]).

In particular, if there exists a generating set A of S consisting entirely of quasi-idempotents, then A is called
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a quasi-idempotent generating set of .5, and the quasi-idempotent rank of S is defined by
grank(S) = min{ |4| : (A) =S, A C Q(S)}. (1.2)

Let S be an inverse semigroup and let () # A C S. The smallest inverse subsemigroup of S containing
A is called the subsemigroup generated by A as an inverse semigroup. To avoid confusion, as in [11], we shall
use the notation ((A)) for this inverse subsemigroup. It is clear that ((A)) is the set of all finite products of
elements of A and their inverses. If there exists a nonempty subset A of S such that S = ((A)), then A is

called a generating set of S as an inverse semigroup. Also, the inverse rank of a finitely generated semigroup
S is defined by
rank™(S) = min{ |4] : ((4)) = S}. (1.3)

Similarly, if there exists a generating set A of S as an inverse semigroup such that A consists of quasi-
idempotents, then A is called a quasi-idempotent generating set of S as an inverse semigroup, and if S is

finitely generated, then the quasi-idempotent inverse rank of S is defined by

grank™(S) = min{ [A| : ((A)) =S, A C Q(S)}. (1.4)

For every transformation a € I,,, we denote by dom(«) and im(a) the domain and the image of «,
respectively. Let aq,...,ar, where k > 1, be distinct elements of X,,. Then ¢ € I,, is called a cycle of length k
(or a k—cycle), and denoted by o = (a1 ...ax), if ;0 = a;41 (1 <i<k-—1), axoc = a1, and zo is undefined if
x ¢ {ay,...,ax}. Similarly, A € I, is called a chain of length k (or a k—chain), and denoted by A = [a; ... ax],
if ;A =a;41 (1 <i<k—1),and z) is undefined if « ¢ {a;,...,ax—1}. Note that [a;] is the zero element
of I,. We say that «, € I, are disjoint if (dom () Uim(a)) N (dom(B) Uim(B)) = 0. Every nonzero « € I,
can be written uniquely (up to the order) as a join (set theoretical union) of disjoint cycles and chains [14]. We
write the join of @ and 8 as af (only if « and g are disjoint), and the product as « o f.

If a € I, with dom(«) = A and im(a) = B, we will write oo : A — B. Moreover, if dom(«) is specified,
we will skip 1-cycles in the notation of . With some abuse of the definition of a cycle, if a : A — A and
a=(ay...a), with £ > 1 and 1-cycles omitted (except one 1-cycle if k =1), we will refer to o as a k-cycle
on A. For example, the map o : {1,2,3,4,5} — {1,2,3,4,6} defined by tabular form

(1 2 3 4 5 6 7 8 cr
““l 21346 - - - 85
can be written as o = (12)[56] if we know that dom(a) = {1,2,3,4,5}.

It is well known that Sy = ((12)), S5 = ((13),(23)) = ((12), (123)), and S,, = ((12), (12...n)) for n > 4;
I, ={((12),(1)) and I, = ((12),(12...n),(1)(2) ... (n — 1)) for n > 3. Furthermore,

1 forn=2 2 forn=2
rank(S,) = { 9 forn>3 and rank(I,,) = { 3 forn>3 (1.5)
. . _ n(n+1)
Umar showed in [15] that rank and quasi-idempotent rank of L~ (n,n — 1) are both equal to — where

L~ (n,r), 1 <r < n—1 is the subsemigroup of I,, consisting of all decreasing partial one-to-one maps «
(including the empty or zero map) for which |[im(«)| < r. Also, Umar [16] calculated the quasi-idempotent
rank of L= (n,r) for 1 <r<n-—1.
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For any element a of a semigroup S, the smallest left ideal of S containing a is Sa U {a}, which is
denoted by S'a. We shall call it the principal left ideal of S generated by a. Principal right ideal of §
generated by a, aS', can be defined similarly. An equivalence £ on S is defined by the rule that a£b if and
only if S'a = S'b, and an equivalence R on S is defined by the rule that aRb if and only if aS' = bS*. It is
well known that LoR = R o L (see, for example, [12]). Also, an equivalence D on S is defined by D = Lo R,
and an equivalence H on S is defined by H = LNR. An element a of a semigroup S is called regular if there
exists © € S such that axa = a. If all elements of a semigroup S are regular then S is called regular. It follows
from [12, Proposition 2.3.1 | that, for any D-class D, either every element of D is regular or no element of D
is regular. If all elements of D are regular then we call the D-class D regular. For more information see, for
example, [12].

Now let

I, ={acl,:|im(a)| <r} (1.6)

for 1 <r <n—1. Clearly I, , is an ideal of I, for each 1 <7 < n — 1, and notice that I, ,—1 = I, \ Sy.

Moreover, it is easy to see that Green’s equivalences £,R,D, and H on I, , are characterized by

(0,8) e L & im(a) =1im(p)

(a,8) e R < dom(a) = dom(p)

(,f) €D & [im(a)| = [im(5)]

(, ) e H < dom(a)= dom(f) and im(«) = im(3)

for any «, 8 € I,, . Hence, there exist r+ 1 D-classes in I, as follows:
Dy={acl,,:|im(a) =k for0<k<r (1.7)

All D-classes of I, are regular, since I, ,» is a regular semigroup. For « € I, , with dom(a) = A and
im(a) = B we will denote the H-class of @ by H4 p. The rank and inverse rank of I,, , have been determined.
By [11, Theorem 3.7] and [7, Theorem 2.2],

n—1 forr=1
rank*(I,,) = (5 for r =2 . (1.8)
(Z +1 for3<r<n-1

Nearly twenty years after the introduction of rank* (I, ) into the literature, Zhao and Fernandes showed in [18,
Theorem 4.2] that

n forr=1

rank(Z,,) =4 () for r =2 . (1.9)

(2)4—1 for3<r<n-1

Note that the rank of I, , coincides with its inverse rank for 2 < r < mn — 1. However, rank(l, 1) = n while
rank*([,1) = n—1. In the next section, we show that qrank([, ,) = rank(l,,) and qrank*(I, ,) = rank*(I, )
foreach 1 <r<n-1.
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2. Quasi-idempotent rank of I, ,

It is clear that « € I,, is a quasi-idempotent if and only if it is a join of some (perhaps none) 1-cycles and at

least one 2-cycle or 2-chain.

Lemma 2.1 Let n >4 and 3 <r <n—1. Order 1,...,r arbitrarily as ai1,...,a,, and let a,41 =r+ 1.
Consider the subsets Ay,...,Ary1 of {a1,...,ar11} defined by A; ={a1,...,ar41} \{arg2—i}, 1 <i<r+1.
Then there are quasi-idempotents ay,...,q,, 51,82 € I, such that a; 1 Ay — Ajpq, 1 <i<r, B1,02: Ay —

Ay, ago...oar0f; = (a1 - -a;), and a1 0...0a;, 0 fa = (a1 ar_2a,).
Proof Recall that we skip 1-cycles in « € I, when dom(«) is specified. Let o; = [apy1—; arpa—i], 1 < <7,

B1 = lar+1 a1], and By = [a,+1 a1](ar—1 a,-). Then the result is clear.

Lemma 2.2 Let n >4 and 3<r <n-—2. Let Ay ={1,...,r}. Order the r-elements subsets of X,, that are
not included in {1,...,r+ 1}, Apio,..., Ap, , where m, = (:), with Ay, ={1,...,7—1,n}. Then there are

quasi-idempotents v, Qp42, ..., 0m,—1,0 € I, such that v: Ay — Apyo, ot A= Ajpr, r+2<i<m,—1,
0: Am, — A1, and (V,Qpq2y. .., Qm,—1,0) contains a 2-cycle, or an (r — 1)-cycle, or an r-cycle on Aj.
Proof Define 7, @42, .., 0, —1 arbitrarily, and let 7 = yoq, 4200y, _10[nr], where dom([nr]) = A, .

If n is the identity on A;, take § = [n7r](12).

Otherwise, let (ci...cl),...,(cf...ck), k > 1 be the cycles in 7 of length at least 2. If r occurs
in any of these cycles, we may assume that r = ci. Define § : A, + A; by 0 : [n2] if k = 1, and
0 =[nr]lc! i) [cf,;ll k], if k> 2. Then yoa,;20---0ay, _1060 isan l-cycleon A;. If I € {2,r — 1,7},
take 0 = 6.

If | = —2, then for § = 0(cf_d), where d is a fixed point of v o @90+ 0 am,—1 00 with d # r,
YO Q420 0y, 100 isan (r—1)-cycle on Aj.

Suppose [ < r — 3 and there are distinct fixed points di,d2,ds of vy o qpp2 0 -0 ay,,—1 00 such
that r ¢ {dy,ds,ds}. If [ is odd, then for § = 6(dy ds), we have (dids) = (Yo Qpip 0 -0y, _1006) €
(v, g2y .oy Q. —1,0). If | is even, then for § = H(ka d3)(dy d3), we have (dy da) = (Y04 20- - -00y,, _100)F! €
(v, Qrg2y ey Qo —1,0).

Suppose [ < r — 3 and there are only two distinct fixed points dy,d2 of yo 200y, —1 06 such
that r ¢ {di,d2}. Then | = r —3 and r is a fixed point of Yo 1900y, —100. If iy = -+ =i = 2,
then taking & = [n7](ci cl) - (c¥ c&)(dy d2), we obtain yoa, 20 0, 103 = (di dg). Otherwise, we may

assume that i; > 3. Then taking § = 6(cl dy)(c} da), we obtain yoa, 490+ 0, 1008 to be an (r—1)-cycle.
O

Lemma 2.3 Let S be a finite semigroup, and let D be a reqular D-class of S. Let G be a group H-class of
D, and let W be a subset of S that intersects each H-class of D. Then D C (G,W).

Proof This is Lemma 4.9 in [18]. O

Lemma 2.4 Let n>2 and 1 <r <n—1. Then the ideal I, , is generated by its elements of rank r.
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Proof This is Lemma 4.7 in [18].

Lemma 2.5 Let n > 2 and 1 <r <mn—1. Suppose ay,...,a € I, are elements of rank r such that there
exists a group H-class G of D, such that G C {aq,...,ak), and {aq,...,ak) intersects each H-class of D,..
Then {(aq,...,ox) = Ip .

Proof The result follows immediately from Lemmas 2.3 and 2.4. O

Lemma 2.6 Forn >2,let A; ={i} for 1 <i<mn,let a;: A; — A;y1 be the quasi-idempotent o; = [i 1 + 1]
for 1<i<n-—1, and let o, : A, — Ay be the quasi-idempotent o, = [n1]. Then I,1 = (a1,...,0p).

Proof For any a € Dy there exist 1 < i,5 < n such that dom(a) = {i} and im(a) = {j}, so the result

follows from the equality a = aj0---oapoaio0---oa;_1 if j<iand a=a;0a;410---o0a;1 if j>4¢. O

Lemma 2.7 Forn >3, let A;; ={i,j} for1<i<j<mn,andlet o;;:A;;— A jy1 for1<i<j<n-—1,
Qi Ain = Aipr,ige for 1 <i<n—2, and ap_1n : An—1.n — A12 be the quasi-idempotents

Q; g = [] j—|—1] for1<i<j<mn-1,
Qi p = [ i+1n i+2] forl<i<n-3,
Op—2n = [n—2 n-—1] and
Qp-1n = [n—1 2][n 1]
Then In2 = <061,27 Q135+, XL, 23,00, A2 0y e - ey an—l,n> .
Proof For convenience, order the sets A; 2, A13,...,A1n,423,...,A2n,..., An_1n, respectively, by A;, As,
.., A, , and order the elements oy 2,13, ..., Q1,n,Q23,...,025,...,0n_1p, respectively, by a1, a9, ..., am,
_(n
where mo = (2)
It is easy to see that a; o g 0 -+ 0 @, = (12). Then, (12) € (a1,q2,...,0Qm,), s0 Ha, a4, C
(1, @2,...,0Qm,) . Moreover, for any o € Ha, 4, (1 <4,j < my), there exists @ € Ha, 4, such that
Q= Q; 0 0Qpy, 0QXO0Q] O+ 0Q;_1.
Hence, I, 2 = (a1, a2, ...,0m,), by Lemma 2.5. O

Theorem 2.8 Forn>2 and 1 <r<n-—1,

n forr=1
qrank([l, ) = rank(I, ) = %) forr =2
7:)—1—1 for3<r<n-1

Proof The cases r = 1 and r = 2 follow from Lemmas 2.6 and 2.7, (1.9), and the fact that rank(l, ,) <
grank(l,,). Let n >4 and 3<r <n-—1.

Suppose r =n — 1. Let Aj,...,A.+1 be the r-element subsets of X, as in Lemma 2.1, with a; = 7,
and let ay,...,a,,01 € I, be the quasi-idempotents as in Lemma 2.1. Then (1...r) € {(aq,...,q,, 01

)
and (ai,...,a., (1) intersects each H-class of D,. Consider (12) as a 2-cycle on A;. Then Ha, a, C
(aq,...,0r,01,(12)). Hence, by Lemma 2.5, (a1,...,0y,61,(12)) = I, ,, so qrank(l,,) <r+2= (:f) +1.
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Suppose r < n —2. Let Ay, A 49,..., Ay, , where m, = (’Z), be the r-element subsets of X, as in
Lemma 2.2, and let 7, ap19, ..., Qm,—1,6 € I, be the quasi-idempotents as in Lemma 2.2. Note that the set A,
in Lemma 2.1 is the same as the A; in Lemma 2.2, namely {1,...,7}. Then (v, y2,...,Qn, —1,d) contains

a 2-cycle, or an (r — 1)-cycle, or an r-cycle on A;. We now have three cases to consider.

Suppose (by...b.) € {(y,ar42,...,m, —1,0), where (by...b.) is an r-cycle on A;. Let Ay, ..., A,

be the r-element subsets of X, as in Lemma 2.1, with a; = b1,...,a,_2 = b._> and a, = b,._1, and
let ai,...,a., B2 € I, be the quasi-idempotents as in Lemma 2.1. Then (by...b,—_1) € {(a1,...,ap,B2), S0
Ha, o, C (0a,... 00, 082,% Qrg2y. .oy O, —1,0). Moreover, (ai,...,0Qr,B2,7, Qry2,...,0mn.—1,0) intersects
each H-class of D,. Hence, by Lemma 2.5, (0aq,..., &, 52,7, Qry2,...,0m.—1,0) = I, so qrank(l, ,) <

m, —2+3= () +1.
Suppose (by...b—1) € (V,Qr42,...,Qm,—1,0), where (by...b,—1) is an (r — 1)-cycle on A;. Let Ay,
.., Ar41 be the r-element subsets of X,, as in Lemma 2.1, with a1 = b1,...a,—1 = b,—1 and {b.} =
A\ {b1,...,b._1}, and let «a1,...,,,B1 € I, be the quasi-idempotents as in Lemma 2.1. Then (by...b,) €
(01,..., a0, 01), s0 Ha,a, C {01, ,Qr,B1,7, Qrya, ..., Qm,—1,0). Moreover, {(ai,...,an, 1,7, 042, ..,
Qm,—1,0) intersects each H-class of D,.. Hence, by Lemma 2.5, {(a1,..., &, B1,7, Qrig2, - s Qumyp—1,0) = I r\
so grank(l,,) <m, —2+3 = (:) +1.

Suppose (b1 b2) € (v, @12y, Qn,—1,0), where (b1 ba) is a 2-cycle on A;. Let Ay,...,A.+1 be the
r-element subsets of X, as in Lemma 2.1, with a; = bj,a2 = b2 and {as,...,a,} = Ay \ {b1,b2}, and
let aq,...,0p,01 € I, be the quasi-idempotents as in Lemma 2.1. Then (by...b.) € {(a1,...,a,51), s0
Ha, 4, € (a1,...,00, 01,7, Qry2, ..., Quy—1,0). Moreover, {(o1,...,ar, B1,7,Qry2,...,Qn,—1,0) intersects
each #H-class of D,. Hence, by Lemma 2.5, (a1,..., &, B1,7, Qri2,...,0m,—1,0) = I, so qrank(l, ,) <
my—2+3= (") +1.

Therefore, the result follows immediately from the fact that (") +1 = rank([,, ,) < qrank(I,,) < () +1.

O

Theorem 2.9 Forn>2 and 1 <r<n-—1,

n—1 forr=1
qrank® (I, ) = rank* (I, ) = ) forr =2
:)—i—l for3<r<n-1

Proof The case r = 1 is easy to prove directly. Let n > 3 and 2 < r < n — 1. Then the result follows
immediately from the facts that rank*(I, ,) < qrank*(l,,) < qrank(l,,) and rank*(I,,) = qrank(Z,,) (by
(1.8) and Theorem 2.8). O
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