тӥвітак

Quasi-idempotent ranks of the proper ideals in finite symmetric inverse semigroups

Leyla BUGAY* ${ }^{\text {© }}$
Department of Mathematics, Faculty of Science, Çukurova University, Adana, Turkey

| Received: 02.01 .2020 | Accepted/Published Online: 23.11 .2020 | Final Version: 21.01 .2021 |
| :--- | :--- | :--- | :--- | :--- |

Abstract

Let I_{n} and S_{n} be the symmetric inverse semigroup and the symmetric group on a finite chain $X_{n}=$ $\{1, \ldots, n\}$, respectively. Also, let $I_{n, r}=\left\{\alpha \in I_{n}:|\operatorname{im}(\alpha)| \leq r\right\}$ for $1 \leq r \leq n-1$. For any $\alpha \in I_{n}$, if $\alpha \neq \alpha^{2}=\alpha^{4}$ then α is called a quasi-idempotent. In this paper, we show that the quasi-idempotent rank of $I_{n, r}$ (both as a semigroup and as an inverse semigroup) is $\binom{n}{2}$ if $r=2$, and $\binom{n}{r}+1$ if $r \geq 3$. The quasi-idempotent rank of $I_{n, 1}$ is n (as a semigroup) and $n-1$ (as an inverse semigroup).

Key words: Symmetric inverse semigroup, symmetric group, quasi-idempotent, rank

1. Introduction

Let I_{n} and S_{n} be the symmetric inverse semigroup and the symmetric group on a finite chain $X_{n}=\{1, \ldots, n\}$, respectively. Throughout this paper, we assume that $n \geq 2$ unless otherwise stated. It is well known that I_{n} is an inverse semigroup, and that every finite inverse semigroup S is embeddable in I_{n}. Hence, the importance of I_{n} in inverse semigroup theory is similar to the importance of S_{n} in group theory. Although the semigroup I_{n} has been extensively studied (see, for example, $[1,5,10,14]$), there are still many interesting problems concerning I_{n} to be investigated.

For any $\alpha \in I_{n}$, for a suitable n, if $\alpha^{2}=\alpha$ then α is called an idempotent; and if $\alpha \neq \alpha^{2}=\alpha^{4}$ then α is called a quasi-idempotent. Throughout this paper we use the notation $Q(U)$ to denote the set of all quasi-idempotents in any subset U of any semigroup.

Let S be a semigroup and let $\emptyset \neq A \subseteq S$. The smallest subsemigroup of S containing A is called the subsemigroup generated by A and denoted by $\langle A\rangle$. Clearly $\langle A\rangle$ is the set of all finite products of elements of A. If there exists a nonempty subset A of S such that $S=\langle A\rangle$, then A is called a generating set of S. Also, the rank of a finitely generated semigroup S is defined by

$$
\begin{equation*}
\operatorname{rank}(S)=\min \{|A|:\langle A\rangle=S\} . \tag{1.1}
\end{equation*}
$$

There are studies of various ranks of semigroups, such as idempotent-rank, (m, r) rank and nilpotent rank, as well as of minimal generating sets of elements of a given kind (see, for example, $[2,3,6,8,13,17,18]$). In particular, if there exists a generating set A of S consisting entirely of quasi-idempotents, then A is called

[^0]
BUGAY/Turk J Math

a quasi-idempotent generating set of S, and the quasi-idempotent rank of S is defined by

$$
\begin{equation*}
\operatorname{qrank}(S)=\min \{|A|:\langle A\rangle=S, A \subseteq Q(S)\} \tag{1.2}
\end{equation*}
$$

Let S be an inverse semigroup and let $\emptyset \neq A \subseteq S$. The smallest inverse subsemigroup of S containing A is called the subsemigroup generated by A as an inverse semigroup. To avoid confusion, as in [11], we shall use the notation $\langle\langle A\rangle\rangle$ for this inverse subsemigroup. It is clear that $\langle\langle A\rangle\rangle$ is the set of all finite products of elements of A and their inverses. If there exists a nonempty subset A of S such that $S=\langle\langle A\rangle\rangle$, then A is called a generating set of S as an inverse semigroup. Also, the inverse rank of a finitely generated semigroup S is defined by

$$
\begin{equation*}
\operatorname{rank}^{*}(S)=\min \{|A|:\langle\langle A\rangle\rangle=S\} . \tag{1.3}
\end{equation*}
$$

Similarly, if there exists a generating set A of S as an inverse semigroup such that A consists of quasiidempotents, then A is called a quasi-idempotent generating set of S as an inverse semigroup, and if S is finitely generated, then the quasi-idempotent inverse rank of S is defined by

$$
\begin{equation*}
\operatorname{qrank}^{*}(S)=\min \{|A|:\langle\langle A\rangle\rangle=S, A \subseteq Q(S)\} \tag{1.4}
\end{equation*}
$$

For every transformation $\alpha \in I_{n}$, we denote by $\operatorname{dom}(\alpha)$ and $\operatorname{im}(\alpha)$ the domain and the image of α, respectively. Let a_{1}, \ldots, a_{k}, where $k \geq 1$, be distinct elements of X_{n}. Then $\sigma \in I_{n}$ is called a cycle of length k (or a k-cycle), and denoted by $\sigma=\left(a_{1} \ldots a_{k}\right)$, if $a_{i} \sigma=a_{i+1}(1 \leq i \leq k-1), a_{k} \sigma=a_{1}$, and $x \sigma$ is undefined if $x \notin\left\{a_{1}, \ldots, a_{k}\right\}$. Similarly, $\lambda \in I_{n}$ is called a chain of length k (or a k-chain), and denoted by $\lambda=\left[a_{1} \ldots a_{k}\right]$, if $a_{i} \lambda=a_{i+1}(1 \leq i \leq k-1)$, and $x \lambda$ is undefined if $x \notin\left\{a_{1}, \ldots, a_{k-1}\right\}$. Note that [a_{1}] is the zero element of I_{n}. We say that $\alpha, \beta \in I_{n}$ are disjoint if $(\operatorname{dom}(\alpha) \cup \operatorname{im}(\alpha)) \cap(\operatorname{dom}(\beta) \cup \operatorname{im}(\beta))=\emptyset$. Every nonzero $\alpha \in I_{n}$ can be written uniquely (up to the order) as a join (set theoretical union) of disjoint cycles and chains [14]. We write the join of α and β as $\alpha \beta$ (only if α and β are disjoint), and the product as $\alpha \circ \beta$.

If $\alpha \in I_{n}$ with $\operatorname{dom}(\alpha)=A$ and $\operatorname{im}(\alpha)=B$, we will write $\alpha: A \mapsto B$. Moreover, if $\operatorname{dom}(\alpha)$ is specified, we will skip 1 -cycles in the notation of α. With some abuse of the definition of a cycle, if $\alpha: A \mapsto A$ and $\alpha=\left(a_{1} \ldots a_{k}\right)$, with $k \geq 1$ and 1-cycles omitted (except one 1-cycle if $k=1$), we will refer to α as a k-cycle on A. For example, the map $\alpha:\{1,2,3,4,5\} \mapsto\{1,2,3,4,6\}$ defined by tabular form

$$
\alpha=\left(\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
2 & 1 & 3 & 4 & 6 & - & - & -
\end{array}\right) \in I_{8,5}
$$

can be written as $\alpha=(12)[56]$ if we know that $\operatorname{dom}(\alpha)=\{1,2,3,4,5\}$.
It is well known that $S_{2}=\langle(12)\rangle, S_{3}=\langle(13),(23)\rangle=\langle(12),(123)\rangle$, and $S_{n}=\langle(12),(12 \ldots n)\rangle$ for $n \geq 4$; $I_{2}=\langle(12),(1)\rangle$ and $I_{n}=\langle(12),(12 \ldots n),(1)(2) \ldots(n-1)\rangle$ for $n \geq 3$. Furthermore,

$$
\operatorname{rank}\left(S_{n}\right)=\left\{\begin{array}{ll}
1 & \text { for } n=2 \tag{1.5}\\
2 & \text { for } n \geq 3
\end{array}, \text { and } \operatorname{rank}\left(I_{n}\right)= \begin{cases}2 & \text { for } n=2 \\
3 & \text { for } n \geq 3\end{cases}\right.
$$

Umar showed in [15] that rank and quasi-idempotent rank of $L^{-}(n, n-1)$ are both equal to $\frac{n(n+1)}{2}$, where $L^{-}(n, r), 1 \leq r \leq n-1$ is the subsemigroup of I_{n} consisting of all decreasing partial one-to-one maps α (including the empty or zero map) for which $|\operatorname{im}(\alpha)| \leq r$. Also, Umar [16] calculated the quasi-idempotent rank of $L^{-}(n, r)$ for $1 \leq r \leq n-1$.

For any element a of a semigroup S, the smallest left ideal of S containing a is $S a \cup\{a\}$, which is denoted by $S^{1} a$. We shall call it the principal left ideal of S generated by a. Principal right ideal of S generated by $a, a S^{1}$, can be defined similarly. An equivalence \mathcal{L} on S is defined by the rule that $a \mathcal{L} b$ if and only if $S^{1} a=S^{1} b$, and an equivalence \mathcal{R} on S is defined by the rule that $a \mathcal{R} b$ if and only if $a S^{1}=b S^{1}$. It is well known that $\mathcal{L} \circ \mathcal{R}=\mathcal{R} \circ \mathcal{L}$ (see, for example, [12]). Also, an equivalence \mathcal{D} on S is defined by $\mathcal{D}=\mathcal{L} \circ \mathcal{R}$, and an equivalence \mathcal{H} on S is defined by $\mathcal{H}=\mathcal{L} \cap \mathcal{R}$. An element a of a semigroup S is called regular if there exists $x \in S$ such that $a x a=a$. If all elements of a semigroup S are regular then S is called regular. It follows from [12, Proposition 2.3.1] that, for any \mathcal{D}-class D, either every element of D is regular or no element of D is regular. If all elements of D are regular then we call the \mathcal{D}-class D regular. For more information see, for example, [12].

Now let

$$
\begin{equation*}
I_{n, r}=\left\{\alpha \in I_{n}:|\operatorname{im}(\alpha)| \leq r\right\} \tag{1.6}
\end{equation*}
$$

for $1 \leq r \leq n-1$. Clearly $I_{n, r}$ is an ideal of I_{n} for each $1 \leq r \leq n-1$, and notice that $I_{n, n-1}=I_{n} \backslash S_{n}$. Moreover, it is easy to see that Green's equivalences $\mathcal{L}, \mathcal{R}, \mathcal{D}$, and \mathcal{H} on $I_{n, r}$ are characterized by

$$
\begin{aligned}
(\alpha, \beta) \in \mathcal{L} & \Leftrightarrow \operatorname{im}(\alpha)=\operatorname{im}(\beta) \\
(\alpha, \beta) \in \mathcal{R} & \Leftrightarrow \operatorname{dom}(\alpha)=\operatorname{dom}(\beta) \\
(\alpha, \beta) \in \mathcal{D} & \Leftrightarrow|\operatorname{im}(\alpha)|=|\operatorname{im}(\beta)| \\
(\alpha, \beta) \in \mathcal{H} & \Leftrightarrow \operatorname{dom}(\alpha)=\operatorname{dom}(\beta) \text { and } \operatorname{im}(\alpha)=\operatorname{im}(\beta)
\end{aligned}
$$

for any $\alpha, \beta \in I_{n, r}$. Hence, there exist $r+1 \mathcal{D}$-classes in $I_{n, r}$ as follows:

$$
\begin{equation*}
D_{k}=\left\{\alpha \in I_{n, r}:|\operatorname{im}(\alpha)|=k\right\} \quad \text { for } 0 \leq k \leq r \tag{1.7}
\end{equation*}
$$

All \mathcal{D}-classes of $I_{n, r}$ are regular, since $I_{n, r}$ is a regular semigroup. For $\alpha \in I_{n, r}$ with $\operatorname{dom}(\alpha)=A$ and $\operatorname{im}(\alpha)=B$ we will denote the \mathcal{H}-class of α by $H_{A, B}$. The rank and inverse rank of $I_{n, r}$ have been determined. By [11, Theorem 3.7] and [7, Theorem 2.2],

$$
\operatorname{rank}^{*}\left(I_{n, r}\right)=\left\{\begin{array}{ll}
n-1 & \text { for } r=1 \tag{1.8}\\
\binom{n}{2} & \text { for } r=2 \\
n \\
r
\end{array}\right)+1 \quad \text { for } 3 \leq r \leq n-1 .
$$

Nearly twenty years after the introduction of $\operatorname{rank}^{*}\left(I_{n, r}\right)$ into the literature, Zhao and Fernandes showed in [18, Theorem 4.2] that

$$
\operatorname{rank}\left(I_{n, r}\right)=\left\{\begin{array}{ll}
n & \text { for } r=1 \tag{1.9}\\
\binom{n}{2} & \text { for } r=2 \\
\left.\begin{array}{c}
n \\
r
\end{array}\right)+1 & \text { for } 3 \leq r \leq n-1
\end{array} .\right.
$$

Note that the rank of $I_{n, r}$ coincides with its inverse rank for $2 \leq r \leq n-1$. However, $\operatorname{rank}\left(I_{n, 1}\right)=n$ while $\operatorname{rank}^{*}\left(I_{n, 1}\right)=n-1$. In the next section, we show that $\operatorname{qrank}\left(I_{n, r}\right)=\operatorname{rank}\left(I_{n, r}\right)$ and $\operatorname{qrank}^{*}\left(I_{n, r}\right)=\operatorname{rank}^{*}\left(I_{n, r}\right)$ for each $1 \leq r \leq n-1$.

2. Quasi-idempotent rank of $I_{n, r}$

It is clear that $\alpha \in I_{n}$ is a quasi-idempotent if and only if it is a join of some (perhaps none) 1-cycles and at least one 2 -cycle or 2 -chain.

Lemma 2.1 Let $n \geq 4$ and $3 \leq r \leq n-1$. Order $1, \ldots, r$ arbitrarily as a_{1}, \ldots, a_{r}, and let $a_{r+1}=r+1$. Consider the subsets A_{1}, \ldots, A_{r+1} of $\left\{a_{1}, \ldots, a_{r+1}\right\}$ defined by $A_{i}=\left\{a_{1}, \ldots, a_{r+1}\right\} \backslash\left\{a_{r+2-i}\right\}, 1 \leq i \leq r+1$. Then there are quasi-idempotents $\alpha_{1}, \ldots, \alpha_{r}, \beta_{1}, \beta_{2} \in I_{n}$ such that $\alpha_{i}: A_{i} \mapsto A_{i+1}, 1 \leq i \leq r, \beta_{1}, \beta_{2}: A_{r+1} \mapsto$ $A_{1}, \alpha_{1} \circ \ldots \circ \alpha_{r} \circ \beta_{1}=\left(a_{1} \cdots a_{r}\right)$, and $\alpha_{1} \circ \ldots \circ \alpha_{r} \circ \beta_{2}=\left(a_{1} \cdots a_{r-2} a_{r}\right)$.

Proof Recall that we skip 1-cycles in $\alpha \in I_{n}$ when $\operatorname{dom}(\alpha)$ is specified. Let $\alpha_{i}=\left[a_{r+1-i} a_{r+2-i}\right], 1 \leq i \leq r$, $\beta_{1}=\left[a_{r+1} a_{1}\right]$, and $\beta_{2}=\left[a_{r+1} a_{1}\right]\left(a_{r-1} a_{r}\right)$. Then the result is clear.

Lemma 2.2 Let $n \geq 4$ and $3 \leq r \leq n-2$. Let $A_{1}=\{1, \ldots, r\}$. Order the r-elements subsets of X_{n} that are not included in $\{1, \ldots, r+1\}, A_{r+2}, \ldots, A_{m_{r}}$, where $m_{r}=\binom{n}{r}$, with $A_{m_{r}}=\{1, \ldots, r-1, n\}$. Then there are quasi-idempotents $\gamma, \alpha_{r+2}, \ldots, \alpha_{m_{r}-1}, \delta \in I_{n}$ such that $\gamma: A_{1} \mapsto A_{r+2}, \alpha_{i}: A_{i} \mapsto A_{i+1}, r+2 \leq i \leq m_{r}-1$, $\delta: A_{m_{r}} \mapsto A_{1}$, and $\left\langle\gamma, \alpha_{r+2}, \ldots, \alpha_{m_{r}-1}, \delta\right\rangle$ contains a 2 -cycle, or an ($r-1$)-cycle, or an r-cycle on A_{1}.

Proof Define $\gamma, \alpha_{r+2}, \ldots, \alpha_{m_{r}-1}$ arbitrarily, and let $\eta=\gamma \circ \alpha_{r+2} \circ \cdots \circ \alpha_{m_{r}-1} \circ[n r]$, where $\operatorname{dom}([n r])=A_{m_{r}}$. If η is the identity on A_{1}, take $\delta=[n r](12)$.

Otherwise, let $\left(c_{1}^{1} \ldots c_{i_{1}}^{1}\right), \ldots,\left(c_{1}^{k} \ldots c_{i_{k}}^{k}\right), k \geq 1$ be the cycles in η of length at least 2 . If r occurs in any of these cycles, we may assume that $r=c_{1}^{1}$. Define $\theta: A_{m_{r}} \mapsto A_{1}$ by $\theta:[n 2]$ if $k=1$, and $\theta=[n r]\left[c_{i_{1}}^{1} c_{1}^{2}\right] \cdots\left[c_{i_{k-1}}^{k-1} c_{1}^{k}\right]$, if $k \geq 2$. Then $\gamma \circ \alpha_{r+2} \circ \cdots \circ \alpha_{m_{r}-1} \circ \theta$ is an l-cycle on A_{1}. If $l \in\{2, r-1, r\}$, take $\delta=\theta$.

If $l=r-2$, then for $\delta=\theta\left(c_{i_{k}}^{k} d\right)$, where d is a fixed point of $\gamma \circ \alpha_{r+2} \circ \cdots \circ \alpha_{m_{r}-1} \circ \theta$ with $d \neq r$, $\gamma \circ \alpha_{r+2} \circ \cdots \circ \alpha_{m_{r}-1} \circ \delta$ is an $(r-1)$-cycle on A_{1}.

Suppose $l \leq r-3$ and there are distinct fixed points d_{1}, d_{2}, d_{3} of $\gamma \circ \alpha_{r+2} \circ \cdots \circ \alpha_{m_{r}-1} \circ \theta$ such that $r \notin\left\{d_{1}, d_{2}, d_{3}\right\}$. If l is odd, then for $\delta=\theta\left(d_{1} d_{2}\right)$, we have $\left(d_{1} d_{2}\right)=\left(\gamma \circ \alpha_{r+2} \circ \cdots \circ \alpha_{m_{r}-1} \circ \delta\right)^{l} \in$ $\left\langle\gamma, \alpha_{r+2}, \ldots, \alpha_{m_{r}-1}, \delta\right\rangle$. If l is even, then for $\delta=\theta\left(c_{i_{k}}^{k} d_{3}\right)\left(d_{1} d_{2}\right)$, we have $\left(d_{1} d_{2}\right)=\left(\gamma \circ \alpha_{r+2} \circ \cdots \circ \alpha_{m_{r}-1} \circ \delta\right)^{l+1} \in$ $\left\langle\gamma, \alpha_{r+2}, \ldots, \alpha_{m_{r}-1}, \delta\right\rangle$.

Suppose $l \leq r-3$ and there are only two distinct fixed points d_{1}, d_{2} of $\gamma \circ \alpha_{r+2} \circ \cdots \circ \alpha_{m_{r}-1} \circ \theta$ such that $r \notin\left\{d_{1}, d_{2}\right\}$. Then $l=r-3$ and r is a fixed point of $\gamma \circ \alpha_{r+2} \circ \cdots \circ \alpha_{m_{r}-1} \circ \theta$. If $i_{1}=\cdots=i_{k}=2$, then taking $\delta=[n r]\left(c_{1}^{1} c_{2}^{1}\right) \cdots\left(c_{1}^{k} c_{2}^{k}\right)\left(d_{1} d_{2}\right)$, we obtain $\gamma \circ \alpha_{r+2} \circ \cdots \circ \alpha_{m_{r}-1} \circ \delta=\left(d_{1} d_{2}\right)$. Otherwise, we may assume that $i_{1} \geq 3$. Then taking $\delta=\theta\left(c_{1}^{1} d_{1}\right)\left(c_{2}^{1} d_{2}\right)$, we obtain $\gamma \circ \alpha_{r+2} \circ \cdots \circ \alpha_{m_{r}-1} \circ \delta$ to be an ($r-1$)-cycle.

Lemma 2.3 Let S be a finite semigroup, and let D be a regular \mathcal{D}-class of S. Let G be a group \mathcal{H}-class of D, and let W be a subset of S that intersects each \mathcal{H}-class of D. Then $D \subseteq\langle G, W\rangle$.

Proof This is Lemma 4.9 in [18].

Lemma 2.4 Let $n \geq 2$ and $1 \leq r \leq n-1$. Then the ideal $I_{n, r}$ is generated by its elements of rank r.

Proof This is Lemma 4.7 in [18].
Lemma 2.5 Let $n \geq 2$ and $1 \leq r \leq n-1$. Suppose $\alpha_{1}, \ldots, \alpha_{k} \in I_{n}$ are elements of rank r such that there exists a group \mathcal{H}-class G of D_{r} such that $G \subseteq\left\langle\alpha_{1}, \ldots, \alpha_{k}\right\rangle$, and $\left\langle\alpha_{1}, \ldots, \alpha_{k}\right\rangle$ intersects each \mathcal{H}-class of D_{r}. Then $\left\langle\alpha_{1}, \ldots, \alpha_{k}\right\rangle=I_{n, r}$.

Proof The result follows immediately from Lemmas 2.3 and 2.4.

Lemma 2.6 For $n \geq 2$, let $A_{i}=\{i\}$ for $1 \leq i \leq n$, let $\alpha_{i}: A_{i} \mapsto A_{i+1}$ be the quasi-idempotent $\alpha_{i}=[i i+1]$ for $1 \leq i \leq n-1$, and let $\alpha_{n}: A_{n} \mapsto A_{1}$ be the quasi-idempotent $\alpha_{n}=[n 1]$. Then $I_{n, 1}=\left\langle\alpha_{1}, \ldots, \alpha_{n}\right\rangle$.

Proof For any $\alpha \in D_{1}$ there exist $1 \leq i, j \leq n$ such that $\operatorname{dom}(\alpha)=\{i\}$ and $\operatorname{im}(\alpha)=\{j\}$, so the result follows from the equality $\alpha=\alpha_{i} \circ \cdots \circ \alpha_{n} \circ \alpha_{1} \circ \cdots \circ \alpha_{j-1}$ if $j \leq i$ and $\alpha=\alpha_{i} \circ \alpha_{i+1} \circ \cdots \circ \alpha_{j-1}$ if $j>i$.

Lemma 2.7 For $n \geq 3$, let $A_{i, j}=\{i, j\}$ for $1 \leq i<j \leq n$, and let $\alpha_{i, j}: A_{i, j} \mapsto A_{i, j+1}$ for $1 \leq i<j \leq n-1$, $\alpha_{i, n}: A_{i, n} \mapsto A_{i+1, i+2}$ for $1 \leq i \leq n-2$, and $\alpha_{n-1, n}: A_{n-1, n} \mapsto A_{1,2}$ be the quasi-idempotents

$$
\begin{array}{lll}
\alpha_{i, j} & =\left[\begin{array}{ll}
j & j+1
\end{array}\right] & \text { for } 1 \leq i<j \leq n-1, \\
\alpha_{i, n} & =\left[\begin{array}{ll}
i & i+1
\end{array}\right]\left[\begin{array}{ll}
n & i+2
\end{array}\right] & \text { for } 1 \leq i \leq n-3 \\
\alpha_{n-2, n} & =\left[\begin{array}{ll}
n-2 & n-1
\end{array}\right] & \text { and } \\
\alpha_{n-1, n} & =\left[\begin{array}{ll}
n-1 & 2
\end{array}\right]\left[\begin{array}{ll}
n & 1
\end{array}\right] . &
\end{array}
$$

Then $I_{n, 2}=\left\langle\alpha_{1,2}, \alpha_{1,3}, \ldots, \alpha_{1, n}, \alpha_{2,3}, \ldots, \alpha_{2, n}, \ldots, \alpha_{n-1, n}\right\rangle$.
Proof For convenience, order the sets $A_{1,2}, A_{1,3}, \ldots, A_{1, n}, A_{2,3}, \ldots, A_{2, n}, \ldots, A_{n-1, n}$, respectively, by A_{1}, A_{2}, $\ldots, A_{m_{2}}$, and order the elements $\alpha_{1,2}, \alpha_{1,3}, \ldots, \alpha_{1, n}, \alpha_{2,3}, \ldots, \alpha_{2, n}, \ldots, \alpha_{n-1, n}$, respectively, by $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m_{2}}$ where $m_{2}=\binom{n}{2}$.

It is easy to see that $\alpha_{1} \circ \alpha_{2} \circ \cdots \circ \alpha_{m_{2}}=(12)$. Then, (12) $\in\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m_{2}}\right\rangle$, so $H_{A_{1}, A_{1}} \subseteq$ $\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m_{2}}\right\rangle$. Moreover, for any $\alpha \in H_{A_{i}, A_{j}}\left(1 \leq i, j \leq m_{2}\right)$, there exists $\bar{\alpha} \in H_{A_{1}, A_{1}}$ such that

$$
\alpha=\alpha_{i} \circ \cdots \circ \alpha_{m_{2}} \circ \bar{\alpha} \circ \alpha_{1} \circ \cdots \circ \alpha_{j-1}
$$

Hence, $I_{n, 2}=\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m_{2}}\right\rangle$, by Lemma 2.5.

Theorem 2.8 For $n \geq 2$ and $1 \leq r \leq n-1$,

$$
\operatorname{qrank}\left(I_{n, r}\right)=\operatorname{rank}\left(I_{n, r}\right)=\left\{\begin{array}{ll}
n & \text { for } r=1 \\
\binom{n}{2} & \text { for } r=2 \\
\binom{n}{r}+1 & \text { for } 3 \leq r \leq n-1
\end{array} .\right.
$$

Proof The cases $r=1$ and $r=2$ follow from Lemmas 2.6 and 2.7, (1.9), and the fact that $\operatorname{rank}\left(I_{n, r}\right) \leq$ $\operatorname{qrank}\left(I_{n, r}\right)$. Let $n \geq 4$ and $3 \leq r \leq n-1$.

Suppose $r=n-1$. Let A_{1}, \ldots, A_{r+1} be the r-element subsets of X_{n} as in Lemma 2.1, with $a_{i}=i$, and let $\alpha_{1}, \ldots, \alpha_{r}, \beta_{1} \in I_{n}$ be the quasi-idempotents as in Lemma 2.1. Then $(1 \ldots r) \in\left\langle\alpha_{1}, \ldots, \alpha_{r}, \beta_{1}\right\rangle$, and $\left\langle\alpha_{1}, \ldots, \alpha_{r}, \beta_{1}\right\rangle$ intersects each \mathcal{H}-class of D_{r}. Consider (12) as a 2 -cycle on A_{1}. Then $H_{A_{1}, A_{1}} \subseteq$ $\left\langle\alpha_{1}, \ldots, \alpha_{r}, \beta_{1},(12)\right\rangle$. Hence, by Lemma $2.5,\left\langle\alpha_{1}, \ldots, \alpha_{r}, \beta_{1},(12)\right\rangle=I_{n, r}$, so $\operatorname{qrank}\left(I_{n, r}\right) \leq r+2=\binom{n}{r}+1$.

BUGAY/Turk J Math

Suppose $r \leq n-2$. Let $A_{1}, A_{r+2}, \ldots, A_{m_{r}}$, where $m_{r}=\binom{n}{r}$, be the r-element subsets of X_{n} as in Lemma 2.2, and let $\gamma, \alpha_{r+2}, \ldots, \alpha_{m_{r}-1}, \delta \in I_{n}$ be the quasi-idempotents as in Lemma 2.2. Note that the set A_{1} in Lemma 2.1 is the same as the A_{1} in Lemma 2.2, namely $\{1, \ldots, r\}$. Then $\left\langle\gamma, \alpha_{r+2}, \ldots, \alpha_{m_{r}-1}, \delta\right\rangle$ contains a 2 -cycle, or an $(r-1)$-cycle, or an r-cycle on A_{1}. We now have three cases to consider.

Suppose $\left(b_{1} \ldots b_{r}\right) \in\left\langle\gamma, \alpha_{r+2}, \ldots, \alpha_{m_{r}-1}, \delta\right\rangle$, where $\left(b_{1} \ldots b_{r}\right)$ is an r-cycle on A_{1}. Let A_{1}, \ldots, A_{r+1} be the r-element subsets of X_{n} as in Lemma 2.1, with $a_{1}=b_{1}, \ldots, a_{r-2}=b_{r-2}$ and $a_{r}=b_{r-1}$, and let $\alpha_{1}, \ldots, \alpha_{r}, \beta_{2} \in I_{n}$ be the quasi-idempotents as in Lemma 2.1. Then $\left(b_{1} \ldots b_{r-1}\right) \in\left\langle\alpha_{1}, \ldots, \alpha_{r}, \beta_{2}\right\rangle$, so $H_{A_{1}, A_{1}} \subseteq\left\langle\alpha_{1}, \ldots, \alpha_{r}, \beta_{2}, \gamma, \alpha_{r+2}, \ldots, \alpha_{m_{r}-1}, \delta\right\rangle$. Moreover, $\left\langle\alpha_{1}, \ldots, \alpha_{r}, \beta_{2}, \gamma, \alpha_{r+2}, \ldots, \alpha_{m_{r}-1}, \delta\right\rangle$ intersects each \mathcal{H}-class of D_{r}. Hence, by Lemma 2.5, $\left\langle\alpha_{1}, \ldots, \alpha_{r}, \beta_{2}, \gamma, \alpha_{r+2}, \ldots, \alpha_{m_{r}-1}, \delta\right\rangle=I_{n, r}$, so qrank $\left(I_{n, r}\right) \leq$ $m_{r}-2+3=\binom{n}{r}+1$.

Suppose $\left(b_{1} \ldots b_{r-1}\right) \in\left\langle\gamma, \alpha_{r+2}, \ldots, \alpha_{m_{r}-1}, \delta\right\rangle$, where $\left(b_{1} \ldots b_{r-1}\right)$ is an $(r-1)$-cycle on A_{1}. Let A_{1}, \ldots, A_{r+1} be the r-element subsets of X_{n} as in Lemma 2.1, with $a_{1}=b_{1}, \ldots a_{r-1}=b_{r-1}$ and $\left\{b_{r}\right\}=$ $A_{1} \backslash\left\{b_{1}, \ldots, b_{r-1}\right\}$, and let $\alpha_{1}, \ldots, \alpha_{r}, \beta_{1} \in I_{n}$ be the quasi-idempotents as in Lemma 2.1. Then $\left(b_{1} \ldots b_{r}\right) \in$ $\left\langle\alpha_{1}, \ldots, \alpha_{r}, \beta_{1}\right\rangle$, so $H_{A_{1}, A_{1}} \subseteq\left\langle\alpha_{1}, \ldots, \alpha_{r}, \beta_{1}, \gamma, \alpha_{r+2}, \ldots, \alpha_{m_{r}-1}, \delta\right\rangle$. Moreover, $\left\langle\alpha_{1}, \ldots, \alpha_{r}, \beta_{1}, \gamma, \alpha_{r+2}, \ldots\right.$, $\left.\alpha_{m_{r}-1}, \delta\right\rangle$ intersects each \mathcal{H}-class of D_{r}. Hence, by Lemma 2.5, $\left\langle\alpha_{1}, \ldots, \alpha_{r}, \beta_{1}, \gamma, \alpha_{r+2}, \ldots, \alpha_{m_{r}-1}, \delta\right\rangle=I_{n, r}$, so $\operatorname{qrank}\left(I_{n, r}\right) \leq m_{r}-2+3=\binom{n}{r}+1$.

Suppose $\left(b_{1} b_{2}\right) \in\left\langle\gamma, \alpha_{r+2}, \ldots, \alpha_{m_{r}-1}, \delta\right\rangle$, where $\left(b_{1} b_{2}\right)$ is a 2 -cycle on A_{1}. Let A_{1}, \ldots, A_{r+1} be the r-element subsets of X_{n} as in Lemma 2.1, with $a_{1}=b_{1}, a_{2}=b_{2}$ and $\left\{a_{3}, \ldots, a_{r}\right\}=A_{1} \backslash\left\{b_{1}, b_{2}\right\}$, and let $\alpha_{1}, \ldots, \alpha_{r}, \beta_{1} \in I_{n}$ be the quasi-idempotents as in Lemma 2.1. Then $\left(b_{1} \ldots b_{r}\right) \in\left\langle\alpha_{1}, \ldots, \alpha_{r}, \beta_{1}\right\rangle$, so $H_{A_{1}, A_{1}} \subseteq\left\langle\alpha_{1}, \ldots, \alpha_{r}, \beta_{1}, \gamma, \alpha_{r+2}, \ldots, \alpha_{m_{r}-1}, \delta\right\rangle$. Moreover, $\left\langle\alpha_{1}, \ldots, \alpha_{r}, \beta_{1}, \gamma, \alpha_{r+2}, \ldots, \alpha_{m_{r}-1}, \delta\right\rangle$ intersects each \mathcal{H}-class of D_{r}. Hence, by Lemma $2.5,\left\langle\alpha_{1}, \ldots, \alpha_{r}, \beta_{1}, \gamma, \alpha_{r+2}, \ldots, \alpha_{m_{r}-1}, \delta\right\rangle=I_{n, r}$, so qrank $\left(I_{n, r}\right) \leq$ $m_{r}-2+3=\binom{n}{r}+1$.

Therefore, the result follows immediately from the fact that $\binom{n}{r}+1=\operatorname{rank}\left(I_{n, r}\right) \leq \operatorname{qrank}\left(I_{n, r}\right) \leq\binom{ n}{r}+1$.

Theorem 2.9 For $n \geq 2$ and $1 \leq r \leq n-1$,

$$
\operatorname{qrank}^{*}\left(I_{n, r}\right)=\operatorname{rank}^{*}\left(I_{n, r}\right)= \begin{cases}n-1 & \text { for } r=1 \\ \binom{n}{2} & \text { for } r=2 \\ \binom{n}{r}+1 & \text { for } 3 \leq r \leq n-1\end{cases}
$$

Proof The case $r=1$ is easy to prove directly. Let $n \geq 3$ and $2 \leq r \leq n-1$. Then the result follows immediately from the facts that $\operatorname{rank}^{*}\left(I_{n, r}\right) \leq \operatorname{qrank}^{*}\left(I_{n, r}\right) \leq \operatorname{qrank}\left(I_{n, r}\right)$ and $\operatorname{rank}^{*}\left(I_{n, r}\right)=\operatorname{qrank}\left(I_{n, r}\right)$ (by (1.8) and Theorem 2.8).

Acknowledgments

My sincere thanks are due to Prof. Dr. Hayrullah Ayık and the referees for their helpful suggestions and encouragement that really improved the paper.

References

[1] Al-Kharousi F, Kehinde R, Umar A. Combinatorial results for certain semigroups of partial isometries of a finite chain. Australasian Journal of Combinatorics 2014; 58 (3): 365-375.
[2] Ayık G, Ayık H, Howie JM, Ünlü Y. Rank properties of the semigroup of singular transformations on a finite set. Communications in Algebra 2008; 36: 2581-2587.
[3] Bugay L, Yağcı M, Ayık H. The ranks of certain semigroups of partial isometries. Semigroup Forum 2018; 97: 214-222.
[4] Ganyushkin O, Mazorchuk V. Classical Finite Transformation Semigroups. London, UK: Springer-Verlag, 2009.
[5] Ganyushkin O, Mazorchuk V. Combinatorics of nilpotents in symmetric inverse semigroups. Annals of Combinatorics 2004; 8: 161-175.
[6] Garba GU. Idempotents in partial transformation semigroups. Proceedings of the Royal Society of Edinburgh 1990; 116A: 359-366.
[7] Garba GU. On the nilpotent ranks of certain semigroups of transformations. Glasgow Mathematical Journal 1994; 36 (1): 1-9.
[8] Garba GU. On the idempotent ranks of certain semigroups of order-preserving transformations. Portugaliae Mathematica 1994; 51: 185-204.
[9] Garba GU, Imam AT. Products of quasi-idempotents in finite symmetric inverse semigroups. Semigroup Forum 2016; 92: 645-658.
[10] Gomes GMS, Howie JM. Nilpotents in finite symmetric inverse semigroups. Proceedings of the Edinburgh Mathematical Society 1987; 30: 383-395.
[11] Gomes GMS, Howie JM. On the ranks of certain finite semigroups of transformations. Mathematical Proceedings of the Cambridge Philosophical Society 1987; 101: 395-403.
[12] Howie JM. Fundamentals of Semigroup Theory. New York, NY, USA: Oxford University Press, 1995.
[13] Howie JM, McFadden RB. Idempotent rank in finite full transformation semigroups. Proceedings of the Royal Society of Edinburgh 1990; 114A: 161-167.
[14] Lipscomb S. Symmetric Inverse Semigroups. Mathematical Surveys, vol. 46. American Mathematical Society, Providence, 1996.
[15] Umar A. On the semigroups of partial one-one order-decreasing finite transformations. Proceedings of the Royal Society of Edinburgh Section A 1993; 123: 355-363.
[16] Umar A. On the ranks of certain finite semigroups of order-decreasing transformations. Portugaliae Mathematica 1996; 53 (1): 2-34.
[17] Yiğit E, Ayık G, Ayık H. Minimal relative generating sets of some partial transformation semigroups. Communications in Algebra 2017; 45: 1239-1245.
[18] Zhao P, Fernandes VH. The ranks of ideals in various transformation monoids. Communications in Algebra 2015; 43: 674-692.

[^0]: *Correspondence: ltanguler@cu.edu.tr
 2010 AMS Mathematics Subject Classification: 20M20

