On the growth of maximum modulus of rational functions with prescribed poles

Lubna WALI SHAH* ${ }^{\text {(D) }}$
Department of Mathematics, Central University of Kashmir, Ganderbal, Kashmir, India

Received: 21.03.2020 • Accepted/Published Online: 04.09.2020 \quad • Final Version: 21.01 .2021

Abstract

In this paper we prove a sharp growth estimate for rational functions with prescribed poles and restricted zeros in the Chebyshev norm on the unit disk in the complex domain. In particular we extend a polynomial inequality due to Dubinin (2007) to rational functions which also improves a result of Govil and Mohapatra (1998).

Key words: Rational functions, polynomials, inequalities, growth estimates, Schwarz lemma

1. Introduction and statement of results

Let \mathcal{P}_{n} denote the class of all complex algebraic polynomials $p(z):=\sum_{j=0}^{n} c_{j} z^{j}$ of degree atmost n and $p^{\prime}(z)$ be the derivative of $p(z)$. Let D_{k}^{-}represent the set of all points which lie inside $T_{k}:=\{z:|z|=k\}$ and D_{k}^{+}be the set of points which lie outside T_{k}. We write,

$$
\mathcal{R}_{n}=\mathcal{R}_{n}\left(a_{1}, a_{2}, \ldots, a_{n}\right):=\left\{\frac{p(z)}{w(z)}: \quad p \in \mathcal{P}_{n}\right\}
$$

where

$$
w(z):=\prod_{j=1}^{n}\left(z-a_{j}\right), a_{j} \in D_{1}^{+}, j=1,2, \cdots, n
$$

And for a function f defined on T_{1} in the complex domain \mathbb{C},

$$
\begin{aligned}
& \|f\|:=\sup _{z \in T_{1}}|f(z)| \quad ; \quad f^{*}(z):=z^{n} \overline{f\left(\frac{1}{\bar{z}}\right)}, \quad \text { if } \quad f \in \mathcal{P}_{n} \quad ; \\
& f^{*}(z)=B(z) f\left(\frac{1}{\bar{z}}\right), \quad \text { if } \quad f \in \mathcal{R}_{n}
\end{aligned}
$$

Thus \mathcal{R}_{n} is the set of all rational functions with poles $a_{1}, a_{2}, \ldots, a_{n}$ at most and with finite limit at ∞. We observe that the Blaschke product $B(z) \in \mathcal{R}_{n}$, where

$$
\begin{equation*}
B(z):=\prod_{j=1}^{n}\left(\frac{1-\overline{a_{j}} z}{z-a_{j}}\right)=\frac{w^{*}(z)}{w(z)} \tag{1.1}
\end{equation*}
$$

[^0]If $p \in \mathcal{P}_{n}$, then

$$
\begin{equation*}
\left\|p^{\prime}\right\| \leq n\|p\| \tag{1.2}
\end{equation*}
$$

and for $R \geq 1$

$$
\begin{equation*}
\|p(R .)\| \leq R^{n}\|p\| \tag{1.3}
\end{equation*}
$$

where $\|p(R)\|:.=\sup _{z \in T_{1}}|p(R z)|=\sup _{z \in T_{R}}|p(z)|$.
Inequality (1.2) is an immediate consequence of Bernstein's theorem on the derivative of a trigonometric polynomial (for reference see [3] and also [10, 13]), whereas inequality (1.3) is a simple deduction from the maximum modulus principle (for reference see [12]). In both (1.2) and (1.3) equality holds only for $p(z)=e^{i \varphi} z^{n}, \varphi \in R$, that is, if and only if $p(z)$ has all its zeros at the origin.
Inequalities (1.2) and (1.3) can be sharpened if we restrict ourselves to the class of polynomials having no zeros in D_{1}^{-}. In fact, if $p \in \mathcal{P}_{n}$ does not vanish in D_{1}^{-}, then (1.2) and (1.3) can be respectively replaced by

$$
\begin{equation*}
\left\|p^{\prime}\right\| \leq \frac{n}{2}\|p\| \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\|p(R .)\| \leq \frac{R^{n}+1}{2}\|p\| \tag{1.5}
\end{equation*}
$$

Inequality (1.4) was conjectured by Erdös and later verified by Lax [8], whereas Ankeny and Rivlin [1] used (1.4) to prove inequality (1.5). In both (1.4) and (1.5) equality holds for $p(z)=\alpha z^{n}+\beta$, where $\alpha, \beta \in T_{1}$. The inequalities (1.2) - -(1.5) were respectively extended to rational functions $r \in \mathcal{R}_{n}$ with prescribed poles to read as follows:

$$
\begin{align*}
\left\|r^{\prime}\right\| & \leq\left|B^{\prime}(z)\right|\|r\| \tag{1.6}\\
\|r(R .)\| & \leq|B(R z)|\|r\| \tag{1.7}\\
\left\|r^{\prime}\right\| & \leq \frac{\left|B^{\prime}(z)\right|}{2}\|r\| \tag{1.8}\\
\|r(R .)\| & \leq \frac{|B(R z)|+1}{2}\|r\|, \quad \text { for } z \in T_{1} . \tag{1.9}
\end{align*}
$$

Inequalities (1.6) and (1.8) are due to Li, Mohapatra and Rodriguez [9], whereas inequality (1.7) is due to Walsh [14] and inequality (1.9) is due to Govil and Mohapatra [5] (see also Aziz and Rather [2]). Recently Dubinin [4] improved inequality (1.5) by obtaining the following result:

Theorem A If $p(z):=c_{0}+c_{1} z+\ldots+c_{n} z^{n}, n \geq 2$ is a polynomial without zeros in D_{1}^{-}, then for $R \geq 1$,

$$
\|p(R .)\| \leq \frac{\left(R^{n}+1\right)\left(\left|c_{0}\right|+\left|c_{n}\right| R\right)}{(1+R)\left(\left|c_{0}\right|+\left|c_{n}\right|\right)}\|p\|
$$

In this paper by using a generalized form of Schwarz lemma, we first prove the following extension of Theorem A to rational functions with prescribed poles. Our result besides improving inequality (1.9) yields Theorem A as a special case. In fact we prove:

WALI SHAH/Turk J Math

Theorem 1.1 Suppose $r \in \mathcal{R}_{n}$ is such that $r(z)=\frac{p(z)}{w(z)}$, where $p(z):=\sum_{j=0}^{n} c_{j} z^{j}$ is a polynomial of degree $n \geq 2$ without zeros in D_{1}^{-}. Then for $z \in T_{1} \cup D_{1}^{+}$

$$
\begin{equation*}
|r(z)| \leq \frac{\left|c_{n}\right||z|+\left|c_{0}\right|}{(1+|z|)\left(\left|c_{n}\right|+\left|c_{0}\right|\right)}(|B(z)|+1)\|r\|, \tag{1.10}
\end{equation*}
$$

where $B(z)$ is defined in (1.1).
The result is sharp and equality holds for $r(z)=B(z)+\lambda$, where $\lambda \in T_{1}$ is chosen suitably.
If we take $z=R e^{i \theta}, R \geq 1,0 \leq \theta<2 \pi$, then from Theorem 1.1 we have :

Corollary 1.2 Suppose $r \in \mathcal{R}_{n}$ and all the zeros of r lie in $T_{1} \cup D_{1}^{+}$. Then for $z \in T_{1}$ and $R \geq 1$,

$$
\|r(R .)\| \leq \frac{\left|c_{n}\right| R+\left|c_{0}\right|}{(R+1)\left(\left|c_{n}\right|+\left|c_{0}\right|\right)}(|B(R z)|+1)\|r\|
$$

Equality holds for $r(z)=B(z)+\lambda$, where $\lambda \in T_{1}$ is choosen suitably.
Since all the zeros of $p(z):=\sum_{j=0}^{n} c_{j} z^{j}$ lie in $T_{1} \cup D_{1}^{+}$, therefore $\left|c_{0}\right| \geq\left|c_{n}\right|$ and it can be easily verified that for $R \geq 1$

$$
\frac{\left|c_{n}\right| R+\left|c_{0}\right|}{(R+1)\left(\left|c_{n}\right|+\left|c_{0}\right|\right)} \leq \frac{1}{2}
$$

This shows that Corollary (1.2) is a refinement of a result due to Govil and Mohapatra [5] (see also Aziz and Rather [2, Theorem 2]).

Remark 1.3 Taking $a_{j}=\alpha>1, j=1,2, \ldots, n$, so that $r \in \mathcal{R}_{n}$ has a pole of order n at α, we have from (1.10) for $z \in T_{1} \cup D_{1}^{+}$,

$$
\begin{equation*}
\left|\frac{p(z)}{(z-\alpha)^{n}}\right| \leq \frac{\left|c_{n}\right||z|+\left|c_{0}\right|}{(1+|z|)\left(\left|c_{n}\right|+\left|c_{0}\right|\right)}\left\{\left|\left(\frac{1-\alpha z}{z-\alpha}\right)^{n}\right|+1\right\} \sup _{z \in T_{1}}\left|\frac{p(z)}{(z-\alpha)^{n}}\right| \tag{1.11}
\end{equation*}
$$

If $\sup \left|\frac{p(z)}{(z-\alpha)^{n}}\right|$ on T_{1} is attained at $\zeta \in T_{1}$, then

$$
\sup _{z \in T_{1}}\left|\frac{p(z)}{(z-\alpha)^{n}}\right|=\left|\frac{p(\zeta)}{(\zeta-\alpha)^{n}}\right| \leq \frac{\|p\|}{\left|(\zeta-\alpha)^{n}\right|}
$$

Therefore for $z \in T_{1} \cup D_{1}^{+}$, we get from (1.11) for every $\alpha>1$

$$
|p(z)| \leq \frac{\left|c_{n}\right||z|+\left|c_{0}\right|}{(1+|z|)\left(\left|c_{n}\right|+\left|c_{0}\right|\right)}\left\{\left|\left(\frac{1-\alpha z}{\zeta-\alpha}\right)^{n}\right|+\left|\left(\frac{z-\alpha}{\zeta-\alpha}\right)^{n}\right|\right\}\|p\|
$$

Letting $|\alpha| \rightarrow \infty$, we get

$$
\begin{equation*}
|p(z)| \leq \frac{\left|c_{n}\right||z|+\left|c_{0}\right|}{(1+|z|)\left(\left|c_{n}\right|+\left|c_{0}\right|\right)}\left(\left|z^{n}\right|+1\right)\|p\| \quad \text { for } \quad z \in T_{1} \cup D_{1}^{+} \tag{1.12}
\end{equation*}
$$

In particular, if we take $z=R e^{i \theta}, 0 \leq \theta<2 \pi, R \geq 1$, so that $z \in T_{1} \cup D_{1}^{+}$, then from (1.12) we get

$$
\|p(R .)\| \leq \frac{\left|c_{n}\right| R+\left|c_{0}\right|}{(1+R)\left(\left|c_{n}\right|+\left|c_{0}\right|\right)}\left(R^{n}+1\right)\|p\|
$$

This is the same as Theorem A, a result earlier proved by Dubinin [4].

2. Lemmas and proof of the theorem

For the proof of Theorem 1.1 we need the following lemmas. The first lemma is due to Govil et al. [6].
Lemma 2.1 If f is analytic in $T_{1} \cup D_{1}^{-}, f(0)=a, f^{\prime}(0)=b,|f(z)|<1$ for $z \in D_{1}^{-}$, then

$$
\begin{equation*}
|f(z)| \leq \frac{(1-|a|)|z|^{2}+|b||z|+|a|(1-|a|)}{|a|(1-|a|)|z|^{2}+|b||z|+(1-|a|)} \tag{2.1}
\end{equation*}
$$

From Lemma (2.1), one can easily deduce the following generalised form of Schwarz lemma (for reference see also [11]).

Lemma 2.2 If f is analytic in $T_{1} \cup D_{1}^{-}, f(0)=0$ and $|f(z)| \leq 1$ for $z \in T_{1} \cup D_{1}^{-}$, then

$$
\begin{equation*}
|f(z)| \leq|z| \frac{|z|+\left|f^{\prime}(0)\right|}{1+\left|f^{\prime}(0)\right||z|} \quad \text { for } \quad z \in D_{1}^{-} \tag{2.2}
\end{equation*}
$$

Proof of Theorem 1.1. We have $|r(z)|<|\beta|\|r\|$ for every β with $|\beta|>1$ and $z \in T_{1}$. Hence as an application of Rouche's theorem $F(z)=r(z)+\beta\|r\|$ does not vanish in $T_{1} \cup D_{1}^{-}$. If $F^{*}(z)=B(z) \overline{F\left(\frac{1}{\bar{z}}\right)}$, then we have $\left|F^{*}(z)\right|=|F(z)|$ for $z \in T_{1}$. Further it can be easily verified that

$$
\begin{equation*}
F^{*}(z)=r^{*}(z)+\bar{\beta} B(z)\|r\| \tag{2.3}
\end{equation*}
$$

where

$$
\begin{align*}
r^{*}(z) & =B(z) r \overline{\left(\frac{1}{\bar{z}}\right)} \tag{2.4}\\
& =\prod_{j=1}^{n}\left(\frac{1-\overline{a_{j}} z}{z-a_{j}}\right) \frac{\overline{p\left(\frac{1}{\bar{z}}\right)}}{\overline{w\left(\frac{1}{\bar{z}}\right)}} \\
& =\prod_{j=1}^{n}\left(\frac{1-\overline{a_{j}} z}{z-a_{j}}\right) \frac{z^{n} \overline{p\left(\frac{1}{\bar{z}}\right)}}{\prod_{j=1}^{n}\left(1-\overline{a_{j}} z\right)} \\
& =\frac{p^{*}(z)}{w(z)} .
\end{align*}
$$

Using (2.4) and the fact that $B(z) w(z)=\prod_{j=1}^{n}\left(1-\overline{a_{j}} z\right)=w^{*}(z)$, we get from (2.3)

$$
\begin{align*}
F^{*}(z) & =\frac{p^{*}(z)}{w(z)}+\bar{\beta} B(z)\|r\| \tag{2.5}\\
& =\frac{p^{*}(z)+\bar{\beta} w^{*}(z)\|r\|}{w(z)}
\end{align*}
$$

WALI SHAH/Turk J Math

Since the zeros of $w(z)$ lie in D_{1}^{+}, therefore F^{*} is analytic in $T_{1} \cup D_{1}^{-}$and also $F \neq 0$ in $T_{1} \cup D_{1}^{-}$. Hence in particular $\frac{F^{*}}{F}$ is analytic in $T_{1} \cup D_{1}^{-}$and

$$
\left|\frac{F^{*}(z)}{F(z)}\right|=|B(z)|=1, \quad z \in T_{1}
$$

By the maximum modulus principle, it follows that

$$
\left|F^{*}(z)\right| \leq|F(z)| \quad \text { for } z \in T_{1} \cup D_{1}^{-}
$$

Replacing z by $\frac{1}{\bar{z}}$, this gives

$$
|F(z)| \leq\left|F^{*}(z)\right| \quad \text { for } z \in T_{1} \cup D_{1}^{+}
$$

That is, for $z \in T_{1} \cup D_{1}^{+}$we have

$$
\begin{equation*}
|r(z)+\beta\|r\|| \leq\left|r^{*}(z)+\bar{\beta} B(z)\|r\|\right| \tag{2.6}
\end{equation*}
$$

Since, $r^{*} \in \mathcal{R}_{n}$, we can choose by inequality (1.7) the argument of β such that

$$
\begin{equation*}
\left|r^{*}(z)+\bar{\beta} B(z)\|r\|\right|=|\beta||B(z)|\|r\|-\left|r^{*}(z)\right| \tag{2.7}
\end{equation*}
$$

Using (2.7) in (2.6), we get for $z \in T_{1} \cup D_{1}^{+}$

$$
|r(z)|-|\beta|\|r\| \leq|\beta||B(z)|\|r\|-\left|r^{*}(z)\right|
$$

This implies

$$
|r(z)|+\left|r^{*}(z)\right| \leq|\beta|(|B(z)|+1)\|r\|
$$

Letting $|\beta| \rightarrow 1$, we get

$$
\begin{equation*}
|r(z)|+\left|r^{*}(z)\right| \leq(|B(z)|+1)\|r\| \tag{2.8}
\end{equation*}
$$

Here we note that this result was also proved by Aziz and Rather [2, Theorem 1]. Again $r(z)=\frac{p(z)}{w(z)}$, where $p(z):=\sum_{j=0}^{n} c_{j} z^{j}=c_{n} \prod_{k=1}^{n}\left(z-\alpha_{k}\right), \alpha_{k} \in T_{1} \cup D_{1}^{+}$, therefore all the zeros of $p^{*}(z)=z^{n} \overline{p\left(\frac{1}{\bar{z}}\right)}=\overline{c_{n}} \prod_{k=1}^{n}\left(1-\overline{a_{k}} z\right)$ are in $T_{1} \cup D_{1}^{-}$. If

$$
G(z)=\frac{z p^{*}(z)}{p(z)}=z \frac{\overline{c_{n}}}{c_{n}} \prod_{k=1}^{n}\left(\frac{1-\overline{\alpha_{k}} z}{z-\alpha_{k}}\right)
$$

then $G(z)$ is regular in $T_{1} \cup D_{1}^{-}, G(0)=0$ and $|G(z)| \leq 1$ for $z \in T_{1} \cup D_{1}^{-}$. Hence by Lemma (2.2) we conclude that

$$
\begin{equation*}
|G(z)| \leq|z| \frac{|z|+\left|G^{\prime}(0)\right|}{1+\left|G^{\prime}(0)\right||z|} \quad \text { for } z \in D_{1}^{-} \tag{2.9}
\end{equation*}
$$

Using the fact that

$$
\left|G^{\prime}(0)\right|=\frac{1}{\left|\prod_{k=1}^{n} \alpha_{k}\right|}=\left|\frac{c_{n}}{c_{0}}\right|
$$

and substituting for $G(z)$, we get from (2.9)

$$
\left|\frac{p^{*}(z)}{p(z)}\right| \leq \frac{\left|c_{0}\right||z|+\left|c_{n}\right|}{\left|c_{0}\right|+\left|c_{n}\right||z|} \quad z \in T_{1} \cup D_{1}^{-}
$$

This in particular gives,

$$
\left|\frac{p(z)}{p^{*}(z)}\right| \leq \frac{\left|c_{n}\right||z|+\left|c_{0}\right|}{\left|c_{n}\right|+\left|c_{0}\right||z|} \quad z \in T_{1} \cup D_{1}^{+}
$$

Equivalently for $z \in T_{1} \cup D_{1}^{+}$, we have

$$
\begin{equation*}
\left|\frac{p^{*}(z)}{p(z)}\right| \geq \frac{\left|c_{0}\right||z|+\left|c_{n}\right|}{\left|c_{0}\right|+\left|c_{n}\right||z|} \tag{2.10}
\end{equation*}
$$

Since $r(z)=\frac{p(z)}{w(z)}$ and $r^{*}(z)=\frac{p^{*}(z)}{w(z)}$, therefore for $z \in T_{1} \cup D_{1}^{+}$, we have from (2.10),

$$
\left|\frac{r^{*}(z)}{r(z)}\right|=\left|\frac{p^{*}(z)}{p(z)}\right| \geq \frac{\left|c_{0}\right||z|+\left|c_{n}\right|}{\left|c_{0}\right|+\left|c_{n}\right||z|}
$$

This implies

$$
\begin{equation*}
\frac{\left|c_{0}\right||z|+\left|c_{n}\right|}{\left|c_{0}\right|+\left|c_{n}\right||z|}|r(z)| \leq\left|r^{*}(z)\right|, \quad z \in T_{1} \cup D_{1}^{+} \tag{2.11}
\end{equation*}
$$

Adding $|r(z)|$ on both sides of (2.11), we get

$$
\begin{equation*}
\left\{\frac{\left|c_{0}\right||z|+\left|c_{n}\right|}{\left|c_{0}\right|+\left|c_{n}\right||z|}+1\right\}|r(z)| \leq|r(z)|+\left|r^{*}(z)\right| \tag{2.12}
\end{equation*}
$$

Using (2.8) in (2.12) it follows that for $z \in T_{1} \cup D_{1}^{+}$,

$$
|r(z)| \leq \frac{\left|c_{0}\right|+\left|c_{n}\right||z|}{(1+|z|)\left(\left|c_{0}\right|+\left|c_{n}\right|\right)}(|B(z)|+1)\|r\|
$$

This completes the proof of Theorem 1.1.

References

[1] Ankeny NC, Rivlin TJ. On a theorem of S. Bernstein. Pacific Journal of Mathematics 1955; 5: 849-852.
[2] Aziz A, Rather NA. Growth of maximum modulus of rational functions with prescribed poles. Mathematical Inequalities and Applications 1999; 2: 165-173.
[3] Bernstein S. Sur la limitation des dérivées des polynomes. Comptes Rendus de l'Académie des Sciences 1930; 190: 338-340.
[4] Dubinin VN. Applications of the Schwarz lemma to inequalities for entire functions with constraints on zeros. Journal of Mathematical Sciences 2007; 143 (3): 3069-3076.
[5] Govil NK, Mohapatra RN. Inequalities for maximum modulus of rational functions with prescribed poles. In: Govil NK, Mohapatra RN, Nashed Z, Sharma A, Szabados J (editors). Approximation Theory: In Memory of A. K. Varma. New York, NY, USA: Marcel Dekker, Inc., 1998, pp. 255-263.
[6] Govil NK, Rahman QI, Schmeisser S. On the derivative of a polynomial. Illinois Journal of Mathematics 1979; 23: 319-329.
[7] Krantz SG. The Schwarz lemma at the boundary. Complex Variables and Elliptic Equations 2011; 56 (5): 455-468.
[8] Lax PD. Proof of a conjecture of P. Erdös on the derivative of a polynomial. Bulletin of American Mathematical Society 1944; 50: 509-513.
[9] Li X, Mohapatra RN, Rodriguez RS. Bernstien-type inequalities for rational functions with prescribed poles. Journal of London Mathametical Society 1995; 1: 523-531.
[10] Milovanovic GV, Mitrinovic DV, Rassias ThM. Topics In Polynomials: Extremal Polynomials, Inequalities, Zeros. Singapore: World Scientific Publishing Co. Pte. Ltd., 1994.
[11] Nehari Z, Conformal Mapping. New York, NY, USA: McGraw Hill, 1952.
[12] Polya G, Szego G. Problems and Theorems in Analysis I. New York, NY, USA: Springer, 1972.
[13] Rahman QI, Schmeisser S. Analytic Theory of Polynomials. Oxford, UK: Oxford University Press, 2002.
[14] Walsh JL. Interpolation and Approximation by Rational Function in the Complex Domain. 5th ed. Providence, RI, USA: American Mathematical Society, 1969.

[^0]: *Correspondence: shahlw@yahoo.co.in
 2010 AMS Mathematics Subject Classification: 30A10, 30C15.

