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Abstract: We are interested in investigating the Lp boundedness of the product of generalized Littlewood–Paley

functions S
(λ)
Φ (f) arising from kernels satisfying only size and cancellation conditions. We obtain Lp estimates of S(λ)

Φ (f)

for a sharp range of p and under optimal conditions on Φ . Using these estimates and an extrapolation argument, we
obtain some new and improved results on generalized Littlewood–Paley functions on product spaces. As a consequence
of our main results, we get two results, one of which answers a question posed by D. Fan and H. Wu and the other one
answers a question raised by Y. Wu and H. Wu. In addition, one of our lemmas on Triebel–Lizorkin spaces answers a
question posed by Y. Wu and H. Wu.
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1. Introduction
Throughout this paper, we let ξ′ denote ξ/ |ξ| for ξ ∈ Rn\{0} and p′ denote the exponent conjugate to p,

that is 1/p+ 1/p′ = 1 .
For a function Φ ∈ L1(Rn ×Rm) which satisfies∫

Rn

Φ(x, ·)dx =

∫
Rm

Φ(·, y)dy = 0, (1.1)

we define the product generalized Littlewood–Paley function S
(λ)
Φ f(x, y) on Rn ×Rm by

S
(λ)
Φ (f)(x, y) =

(∫ ∞

0

∫ ∞

0

|Φt,s ∗ f(x, y)|λ
dtds

ts

)1/λ

,

where 1 < λ <∞, Φt,s(x, y) = t−ns−mΦ(x/t, y/s) and f ∈ S(Rn ×Rm), the space of Schwartz functions.
The product Littlewood–Paley square g -function of f ∈ S(Rn ×Rm) is defined by

g(f)(x, y) =

(∫ ∞

0

∫ ∞

0

|Φt,s ∗ f(x, y)|2
dtds

ts

)1/2

.
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Clearly, g(f) = S
(2)
Φ (f) , which is often called a square function or a multiple Littlewood–Paley function.

Littlewood–Paley functions have a long history, and they are one of the central parts of harmonic analysis. The

use of the class of functions S(2)
Φ (f) appears in the study of singular integrals on product domains, the product

Hardy spaces as well as other function spaces. The generalized Paley–Littlewood functions, in the product
and nonproduct case, have attracted the attention of many authors in recent years. Readers are referred to
[20–22, 25, 26, 35] for their significance and historical developments.

One of the most important examples of this class of functions S(λ)
Φ (f)(x, y) (for λ = 2) is obtained by

letting
Φ(x, y) = |x|−n+1 |y|−m+1

Ω(x′, y′)χ(0,1](|x|)χ(0,1](|y|)

for x ∈ Rn \ {0}, y ∈ Rm \ {0} , where Ω ∈ L1(Sn−1 × Sm−1) and∫
Sn−1

Ω(x, ·)dσ(x) =
∫
Sm−1

Ω(·, y)dσ(y) = 0. (1.2)

Then S
(λ)
Φ (f) = µ

(λ)
Ω (f) , the generalized Marcinkiewicz integral on Rn ×Rm , is given by

µ
(λ)
Ω (f)(x, y) =

∫ ∞

0

∫ ∞

0

∣∣∣∣∣
∫
|v|≤s

∫
|u|≤t

f (x− u, y − v)
Ω(u′, v′)

|u|n−1 |v|m−1 dudv

∣∣∣∣∣
λ
dtds

t3s3

1/λ

.

If λ = 2, we write µΩ = µ
(λ)
Ω . Here µΩ(f)(x, y) is the classical Marcinkiewicz integral on Rn ×Rm.

One of the main issues of concern in this paper is investigating the Lp boundedness of S(λ)
Φ under optimal

conditions on Φ (in an appropriate sense) and for sharp ranges of p. We are very much motivated by the work

of several authors in the one parameter case of S(λ)
Φ and also by the work on generalized Marcinkiewicz integrals

on product domains (See work by S. Sato, L. Cheng, J. Duoandikoetxea, D. Fan and H. Wu, Y. Wu and H.
Wu, and H. Al-Qassem, L. Cheng and Y. Pan).

Before stating our results, we would like to mention that our results in this paper will mirror the recent

results obtained in the one parameter setting obtained by Duoandikoetxea concerning S
(λ)
Φ (for λ = 2) in [17]

and by Al-Qassem et al. concerning S
(λ)
Φ (for λ > 1) in [4]. Also, one of our results answers a question posed

by Fan and Wu concerning µ
(λ)
Ω in [19] and two of our results answer two questions posed by Wu and Wu in

[35] concerning a result on µ
(λ)
Ω and a result on Triebel-Lizorkin spaces.

We will begin by recalling some definitions. The class L(logL)α(Sn−1 × Sm−1) (for α > 0) denotes the
class of all measurable functions Ω on Sn−1 × Sm−1 which satisfy

∥Ω∥L(logL)α (Sn−1×Sm−1) =

∫
Sn−1×Sm−1

|Ω(x, y)| log
α

(2 + |Ω(x, y)|)dσ(x)dσ(y) <∞.

Let L(logL)α(Rn×Rm) (for α > 0) denote the class of all measurable functions Ψ on Rn×Rm which satisfy

∥Ψ∥L(logL)α (Rn×Rm) =

∫
Rn×Rm

|Ψ(x, y)| log
α

(2 + |Ψ(x, y)|)dxdy <∞.
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Now we recall the definition of the block space B
(0,υ)
q (Sn−1 × Sm−1). This space was introduced in the

one parameter case by Jiang and Lu (see [27]) in their study of the mapping properties of homogeneous singular
integral operators and it is defined as follows:

Definition 1.1. A q -block on Sn−1 × Sm−1 is an Lq (1 < q ≤ ∞) function b(x, y) that satisfies

(i) supp(b) ⊂ I; (ii) ∥b∥Lq ≤ |I|−1/q′
,

where |·| denotes the product measure on Sn−1 × Sm−1 and I is an interval on Sn−1 × Sm−1, i.e.

I =
{
x′ ∈ Sn−1 : |x′ − x′0| < α

}
×
{
y′ ∈ Sm−1 : |y′ − y′0| < β

}
for some α, β > 0 , x′0 ∈ Sn−1 and y′0 ∈ Sm−1.

Definition 1.2. The block space B
(0,υ)
q = B

(0,υ)
q (Sn−1 × Sm−1) is defined by

B(0,υ)
q =

{
Ω ∈ L1(Sn−1 × Sm−1): Ω =

∞∑
µ=1

λ
µ
b
µ
, M (0,υ)

q

(
{λ

µ
}
)
<∞

}

where each λ
µ

is a complex number, each b
µ

is a q -block supported on an interval I
µ

on Sn−1 × Sm−1 ,

υ > −1, and

M (0,υ)
q

(
{λ

µ
}
)

=

∞∑
µ=1

∣∣λ
µ

∣∣ {1 + log(υ+1)(
∣∣I

µ

∣∣−1
)
}
.

Let ∥Ω∥
B

(0,υ)
q (Sn−1×Sm−1)

= N
(0,υ)
q (Ω) = inf{M (0,υ)

q

(
{λ

µ
}
)
: Ω =

∑∞
µ=1 λµ

b
µ

and each b
µ

is a q -

block function supported on a cap I
µ

on Sn−1 × Sm−1} . Then ∥·∥
B

(0,υ)
q (Sn−1×Sm−1)

is a norm on the space

B
(0,υ)
q (Sn−1 × Sm−1), and (B

(0,υ)
q (Sn−1 × Sm−1), ∥·∥

B
(0,υ)
q (Sn−1×Sm−1)

) is a Banach space.

The definition of the block space B
(0,υ)
q (Rn × Rm) (for υ > −1) of functions on Rn × Rm is defined

similarly.
Remark. For any q > 1 and 0 < υ ≤ 1, the following inclusions hold and are proper:

Lq(Sn−1 × Sm−1) ⊂ L(logL)(Sn−1 × Sm−1) ⊂ L1(Sn−1 × Sm−1),⋃
r>1

Lr(Sn−1 × Sm−1) ⊂ B(0,υ)
q (Sn−1 × Sm−1) for any − 1 < υ and q > 1,

L(logL)
β

(Sn−1 × Sm−1) ⊂ L(logL)
α

(Sn−1 × Sm−1) if 0 < α < β.

The question with regard to the relationship between B
(0,υ−1)
q (Sn−1 × Sm−1) and L(log+ L)

υ

(Sn−1 × Sm−1)

(for υ > 0) remains open.

We remark that similar relations as above hold if the classes L(logL)α(Sn−1×Sm−1) and B
(0,υ)
q (Sn−1×

Sm−1) are replaced by L(logL)
α

(Rn ×Rm) and B
(0,υ)
q (Rn ×Rm).
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Now we recall the definition of the homogeneous Triebel–Lizorkin spaces Ḟ
−→s
p,q(R

n × Rm) . Let φ ∈
C∞

0 (Rn) and ψ ∈ C∞
0 (Rm) be functions satisfying

supp φ ⊂
{
x ∈ Rn :

1

2
≤ |x| ≤ 2

}
, supp ψ ⊂

{
y ∈ Rm :

1

2
≤ |y| ≤ 2

}
,

φ(x), ψ(y) ≥ c > 0 if 3

5
≤ |x| , |y| ≤ 5

3
for some constant c.

Let Φ and Ψ the Fourier transforms of φ and ψ, respectively. For 1 < p, q < ∞ and α, β ∈ R,−→s =

(α, β), the homogeneous Triebel–Lizorkin space Ḟ
−→s
p,q(R

n ×Rm) is defined to be the set of all distributions f
on Rn ×Rm such that ∥∥∥∥∥∥∥

 ∑
k,j∈Z

2kαq2jβq |(Φk ⊗Ψj) ∗ f |q
1/q

∥∥∥∥∥∥∥
Lp(Rn×Rm)

<∞

where Φk(x) = 2−knφ(2−kx) for k ∈ Z and Ψj(y) = 2−jmψ(2−jy) for j ∈ Z.

The following can be found in [19]:

(1) Lp(Rn ×Rm) = Ḟ
−→
0
p,2(R

n ×Rm);

(2)
(
Ḟ

−→s
p,q(R

n ×Rm)
)∗

= Ḟ−−→s
p′,q′(R

n ×Rm);

(3) Ḟ−→s
p,q1(R

n ×Rm) ⊆ Ḟ
−→s
p,q2(R

n ×Rm) if q1 ≤ q2.

2. Main results
The main results of this paper are the following:

Theorem 2.1. Let 1 < λ < ∞ and let K1 and K2 be two compact sets in Rn and Rm , respectively.
Suppose that Φ is a function supported in K1 ×K2 satisfying (1.1). If Φ ∈ Lq(Rn ×Rm) for some q > 1 ,

then for any p ∈
(
1/
(
min{1, 1

λ + 1
q′ }
)
,∞
)

there exists a constant Cp > 0 such that

∥∥∥S(λ)
Φ (f)

∥∥∥
Lp(Rn×Rm)

≤ Cp(q − 1)−
2
λ ∥Φ ∥Lq(Rn×Rm) ∥f∥Ḟ−→

0
λ,p(R

n×Rm)
(2.1)

for f ∈ Ḟ
−→
0
λ,p(R

n ×Rm). The constant Cp may depend on λ and on the diameters of K1 and K2, but it is
independent of q and Φ. The range of p is the best possible.

It is clear from Theorem 2.1 if λ > 1, the range of p is the entire interval (1,∞) if Φ ∈ Lq(Rn ×Rm)

for some q ≥ λ . However, if Φ is dominated by a function Φ̃ with Φ̃(x, y) = φ(|x| , |y|) for some function φ,

we have a better range of p if q < λ as in the following result.
Theorem 2.2. Suppose that n > 1 and m > 1 . Let 1 < λ <∞ and let K1 and K2 be two compact sets

in Rn and Rm , respectively. Let Φ be a function supported in K1×K2 satisfying (1.1) and |Φ(x, y)| ≤ Φ̃(x, y)

for some function Φ̃ ∈ Lq(Rn × Rm) for some q > 1 with Φ̃(x, y) = φ(|x| , |y|) for some function φ

defined on (0,∞) × (0,∞) . Then if q < λ, S
(λ)
Φ is a bounded operator on Lp(Rn × Rm) for any p ∈

((λqω)/(λqω − λ+ q),∞) , where ω = min{n,m}. The range of p is the best possible.
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In the case Φ ∈ Lq(Rn ×Rm) for q = 1 we have the following:
Theorem 2.3. Suppose that n > 1 and m > 1 . Let 1 < λ < ∞ and let K1 and K2 be two compact

sets in Rn\{0} and Rm\{0}, respectively. Let Φ(x, y) be an L1(Rn ×Rm) function satisfying (1.1) and that

is supported in K1 ×K2 and Φ(x, y) = φ(|x| , |y|) for some function φ defined on (0,∞)× (0,∞) . Then S
(λ)
Φ

is bounded on Lp(Rn × Rm) for any p ∈
(
(λω)

′
,∞
)
, where ω = min{n,m} . The range of p is the best

possible.
For certain other classes of Φ we get the range of p the entire interval (1,∞) as described in the following

theorem.
Theorem 2.4. Suppose that n > 1 and m > 1 . Let 1 < λ < ∞ and let K1 and K2 two compact

sets in Rn and Rm , respectively. Let Φ be a function supported in K1 × K2 satisfying (1.1). Suppose
that |Φ(x , y)| ≤ h1(|x|)h2(|y|)Ω(x′, y′) for all (x , y) ∈Rn\{0} × Rm\{0}, where h1 and h2 are nonnegative
nonincreasing functions on (0,∞) and supported in (0, 1] and Ω is a nonnegative function on Sn−1 × Sm−1.

Assume that h1(|x|) ∈ Lq(Rn), h2(|y|) ∈ Lq(Rm) and Ω ∈ Lq(Sn−1 × Sm−1) for some q > 1. Then for any
p ∈ (1,∞), there exists a constant Cp > 0 such that∥∥∥S(λ)

Φ (f)
∥∥∥
Lp(Rn×Rm)

≤ Cp(q − 1)−
2
λ ∥Ω ∥Lq(Sn−1×Sm−1) ∥f∥Ḟ−→

0
λ,p(R

n×Rm)
(2.2)

for f ∈ Ḟ
−→
0
λ,p(R

n × Rm).The constant Cp may depend on the diameters of K1 and K2, ∥h1(|·|)∥Lq(Rn) ,

∥h2(|·|)∥Lq(Rm) and λ, but it is independent of q and Ω.

By using an extrapolation argument and the estimates (2.1) and (2.2), we get the following results:
Theorem 2.5. Let 1 < λ <∞ and let K1 and K2 two compact sets in Rn and Rm , respectively. Let

Φ be a function supported in K1 ×K2 satisfying (1.1).

(a) If Φ ∈ B
(0, 2λ−1)
q (Rn ×Rm) for some q > 1 , then for any p ∈ [ λ,∞) there exists a a constant

Cp> 0 independent of Φ such that

∥∥∥S(λ)
Φ (f)

∥∥∥
Lp(Rn×Rm)

≤ Cp

(
1 + ∥Φ∥

B
(0, 2

λ
−1)

q (Rn×Rm)

)
∥f∥

Ḟ
−→
0

λ,p(R
n×Rm)

. (2.3)

(b) If Φ ∈ L(logL)2/λ (Rn ×Rm) , then for any p ∈ [ λ,∞) there exists a constant Cp> 0 independent
of Φ such that ∥∥∥S(λ)

Φ (f)
∥∥∥
Lp(Rn×Rm)

≤ Cp

(
1 + ∥Φ∥L(logL)2/λ(Rn×Rm)

)
∥f∥

Ḟ
−→
0

λ,p(R
n×Rm)

. (2.4)

Theorem 2.6. Let 1 < λ < ∞. Let K1 and K2 be two compact sets in Rn and Rm, respectively.
Let Φ be a function supported in K1 × K2 satisfying (1.1). Suppose that |Φ(x , y)| ≤ h1(|x|)h2(|y|)Ω(x′, y′)
for all (x , y) ∈Rn\{0} × Rm\{0}, where Ω is a nonnegative function on Sn−1 × Sm−1 and h1 and h2 are
as in Theorem 2.4 . Assume that h1(|x|) ∈ Lq(Rn), h2(|x|) ∈ Lq(Rm) and Ω ∈ L(logL)2/λ

(
Sn−1 × Sm−1

)
or

Ω ∈ B
(0, 2λ−1)
q

(
Sn−1 × Sm−1

)
for some q > 1. Then for any p ∈ (1,∞), there exists a constant Cp> 0 such

that ∥∥∥S(λ)
Φ (f)

∥∥∥
Lp(Rn×Rm)

≤ Cp ∥f∥Ḟ−→
0

λ,p(R
n×Rm)

. (2.5)
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As an application of Theorem 2.6, we get the following result.

Theorem 2.7. Let 1 < λ < ∞. If Ω ∈ L(logL)2/λ
(
Sn−1 × Sm−1

)
or Ω ∈ B

(0, 2λ−1)
q

(
Sn−1 × Sm−1

)
for some q > 1 and satisfies (1.2), then for any p ∈ (1,∞), there exists a constant Cp> 0 such that∥∥∥µ(λ)

Ω (f)
∥∥∥
Lp(Rn×Rm)

≤ Cp ∥f∥Ḟ−→
0

λ,p(R
n×Rm)

. (2.6)

Remarks. 1) The conditions on Φ in Theorem 2.5 and conditions on Ω in Theorem 2.6 are the weakest
conditions in their respective classes.

2) The result in Theorem 2.5 in the case Ω ∈ L(logL)2/λ
(
Sn−1 × Sm−1

)
improves substantially the main

result in [19] in which they proved µ
(λ)
Ω is bounded on Lp if Ω ∈ L(logL)2/λ

(
Sn−1 × Sm−1

)
for λ ≥ 2 and

bounded on Lp if 1 < λ < 2 and Ω ∈ L(logL)2/λ+ε(Sn−1×Sm−1) for any ε > 0. In fact, our result answers the
question posed by the authors in ([19], p. 102). Also, we point out the condition Ω ∈ L(logL)2/λ

(
Sn−1 × Sm−1

)
is the best possible in the case λ = 2 as indicated in [8].

3) The result in Theorem 2.5 in the case Ω ∈ B
(0, 2λ−1)
q

(
Sn−1 × Sm−1

)
for some q > 1) improves substan-

tially the main result in [35] in which they proved if 1 < p, q, λ <∞ and Ω ∈ B
(0,2/λ+2w−1)
q

(
Sn−1 × Sm−1

)
for

any w ∈ [w(p, λ), 1], then µ
(λ)
Ω is bounded on Lp where w(p, λ) = |2/λ− 1|+|2/p− 1| (1−|2/λ− 1|). We notice

that in the special case if p = λ = 2 we have w(p, λ) = 0 and Ω ∈ B
(0,0)
q

(
Sn−1 × Sm−1

)
. Our result answers

the question posed by the authors in ([35], p. 2397). We point out the condition Ω ∈ B
(0, 2λ−1)
q

(
Sn−1 × Sm−1

)
for some q > 1 is the best possible in the case λ = 2 as proved in [1] .

4) All our results obtained in Theorems 2.1–2.6 are new.

5) In [25], the authors proved S
(2)
Φ is bounded on L2 if Φ satisfies certain size conditions.

6) One of the key ingredients in the proof of our main results is Lemma 3.1 in which we have a
characterization on the homogeneous Triebel–Lizorkin spaces in terms of lacunary sequences. In the nonproduct
case this was obtained by [30]. This result provides an answer to an open problem left unresolved in [35].

Throughout this paper, the letter C will denote a positive constant that may vary at each occurrence
but is independent of the essential variables.

3. Some lemmas
Let {ak : k ∈ Z} be a lacunary sequence of positive numbers in the sense that ak+1

ak
≥ a > 1 for each k ∈ Z. A

sequence {Φn,a
k : k ∈ Z} of C∞(Rn) functions is said to be a partition of unity adapted to {ak : k ∈ Z} if

suppΦ̂n,a
k ⊂ {ξ ∈ Rn : ak−1 ≤ |ξ| ≤ ak+1} (k ∈ Z),∑

k∈Z

Φ̂n,a
k (ξ) = 1 (ξ ∈ Rn\ {0} ),

and ∣∣∣ξω∂ωΦ̂n,a
k (ξ)

∣∣∣ ≤ Cω

324



AL-QASSEM et al./Turk J Math

for any multiindex ω. Let α ∈ R and 1 < p, q <∞ . Let {ak : k ∈ Z} and {bj : j ∈ Z} be lacunary sequences

of positive numbers with ak+1

ak
≥ a > 1 and bk+1

bk
≥ b > 1 (k, j ∈ Z). Let 1 < p, q < ∞ , α, β ∈ R and

−→s = (α, β). For a distribution on f on Rn ×Rm we define the norm ∥f∥
Ḟ

−→s ,{Φ
n,a
k

,Φ
m,b
k }

p,q (Rn×Rm)

by

∥f∥
Ḟ

−→s ,{Φ
n,a
k

,Φ
m,b
j }

p,q (Rn×Rm)

=

∥∥∥∥∥∥∥
 ∑

k,j∈Z

aαqk bβqj

∣∣∣(Φn,a
k ⊗ Φm,b

j

)
∗ f
∣∣∣q
1/q

∥∥∥∥∥∥∥
Lp(Rn×Rm)

.

We shall need the following result which is similar to the corresponding result in the nonproduct case in [30].
Lemma 3.1. Let α ∈ R and 1 < p, q <∞ . Let {ak : k ∈ Z} and {bj : j ∈ Z} be lacunary sequences of

positive numbers with ak+1

ak
≥ a > 1 and bk+1

bk
≥ b > 1 (k, j ∈ Z). Then the norm ∥f∥

Ḟ
−→s ,{Φ

n,a
k

,Φ
m,b
k }

p,q (Rn×Rm)

is equivalent to the usual homogeneous Triebel–Lizorkin space norm ∥f∥Ḟα,q
p (Rn×Rm) if ak+1

ak
≤ d and bj+1

bj
≤ d

(k, j ∈ Z) for some d ≥ min{a, b} .
A proof of Lemma 3.1 can be obtained by following an argument similar to what was used in [30] for the

case α ̸= 0 . We notice also that the same argument works for the case α = 0 (see also the remark in [33]). We
omit the details.

For 1 ≤ q <∞ , define the maximal operator N (q) by

N (q)(f)(x) = sup
t>0

(
1

tn

∫ t

0

(∫
Sn−1

|f(x− rθ)| dσ(θ)
)q

rn−1dr

)1/q

.

The case q = ∞ corresponds to the spherical maximal operator

N (∞)(f)(x) = sup
t>0

∫
Sn−1

|f(x− tθ)| dσ(θ).

By the results of Stein [32] and Bourgain [10] we have

Lemma 3.2. Suppose that n ≥ 2 and p > n′. Then N (∞) is bounded on Lp(Rn).

We point out that N (1) is a constant multiple of the Hardy–Littlewood maximal operator. The class of
operators N (q) was used in [23], and the following result was proved by Duoandikoetxea [17].

Lemma 3.3. The maximal function N (q) is bounded on Lp(Rn) if and only if p′ < nq′ .

For 1 ≤ q <∞ , define the maximal operator N (q)
P on the product space Rn×Rm by

N
(q)
P (f)(x, y)

= sup
t,s>0

(
1

tnsm

∫ s

0

∫ t

0

(∫
Sn−1×Sm−1

|f(x− rθ, y − wη)| dσ(θ)dσ(η)
)q

rn−1wm−1drdw

)1/q

.

The case q = ∞ corresponds to the spherical maximal operator on Sn−1×Sm−1 given by

N
(∞)
P (f)(x, y) = sup

t,s>0

∫
Sn−1×Sm−1

|f(x− tθ, y − sη)| dσ(θ)dσ(η).
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Define four maximal operators N (∞)
1 , N (∞)

2 , N (1)
1 and N

(1)
2 on Rn ×Rm by

N
(∞)
1 (f)(x, y) = (N (∞))f(·, y)) (x) ,

N
(∞)
2 (f)(x, y) = (N (∞))f (x, ·) (y),

N
(1)
1 (f)(x, y) = (N (1))f(·, y) (x) ,

and
N

(1)
2 (f)(x, y) = (N (1))f (x, ·) (y).

Then
N

(∞)
P (f)(x, y) ≤

(
N

(∞)
2 ◦N (∞)

1

)
(f)(x, y) (3.1)

and
N

(1)
P (f)(x, y) ≤

(
N

(1)
2 ◦N (1)

1

)
(f)(x, y). (3.2)

By using Lemma 3.2 and (3.1) we get

Lemma 3.4. Suppose that n,m ≥ 2 and p > max {n′,m′} . Then N
(∞)
P is bounded on Lp(Rn×Rm).

By using Lemma 3.3 and (3.2) we get

Lemma 3.5. N
(1)
P is bounded on Lp(Rn×Rm) for 1 < p <∞.

Lemma 3.6. Suppose that n,m ≥ 2. Then N
(q)
P is bounded on Lp(Rn×Rm) for (p′/q′)

′
> max {n′,m′} .

Proof. The proof will be similar to the proof in the nonproduct case given by Duoandikoetxea in [17].
By Hölder’s inequality on the integral over Sn−1 × Sm−1 we get

N
(q)
P (f)(x, y) ≤

(
N

(∞)
P (|f |αq

′
)(x, y)

)1/q′ (
N

(1)
P (|f |(1−α)q

)(x, y)
)1/q

for some α ∈ [0, 1], which will be chosen later. Again by Hölder’s inequality we have

∥∥∥N (q)
P (f)

∥∥∥
p
≤
∥∥∥N (∞)

P (|f |(αq
′)
)
∥∥∥1/q′
p/(αq′)

∥∥∥N (1)
P (|f |(1−α)q

)
∥∥∥1/q
p/((1−α)q)

.

Now since (p′/q′)
′
> max {n′,m′} , we can choose α ∈ (0, 1) such that p/((1 − α)q) > 1 and p/(αq′) >

max {n′,m′} . The proof is complete.
Let θ ≥ 2. For a suitable function Φ defined on Rn×Rm, define the maximal operator MΦ on Rn×Rm

by

MΦ(f)(x, y) = sup
k,j∈Z

∫ θ(j+1)

θj

∫ θ(k+1)

θk

||Φt,s| ∗ f(x, y)|
dtds

ts
.

We shall need the following result, which will play a key role in the proof of Theorem 2.1.
Lemma 3.7. Let K1 and K2 be two compact sets in Rn and Rm, respectively. Let Φ be a function

supported in K1 × K2 . Suppose that Φ ∈ Lq(Rn × Rm) for some q > 1 and let θ = 2q
′
.Then for every

p, 1 < p ≤ ∞, there exists a positive constant Cp which is independent of q such that

∥MΦ(f)∥Lp(Rn×Rm) ≤ Cp(q − 1)−2 ∥Φ∥Lq(Rn×Rm) ∥f∥Lp(Rn×Rm) (3.3)
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for every f ∈ Lp(Rn ×Rm).

Proof. We will follow an argument similar to one in [6] and [7]. Choose and fix φ ∈ S (Rn) and
ψ ∈ S (Rm) such that φ̂(ξ) = 1 for |ξ| ≤ 1 and φ̂(ξ) = 0 for |ξ| ≥ 2, ψ̂(η) = 1 for |η| ≤ 1 and ψ̂(η) = 0 for

|η| ≥ 2. For each t, s ∈ R+, let (φt)̂(ξ) = φ̂(tξ) and (ψs)̂(η) = ψ̂(sη). Let µt,s = |Φt,s| . Define the family of
measures {Υt,s}t,s∈R+ and {σk,j}k,j∈Z by

Υ̂t,s(ξ, η)

= µ̂t,s(ξ, η)− µ̂
t,s
(0, η)(φt)̂(ξ)− µ̂

t,s
(ξ, 0)(ψs)̂(η)− µ̂

t,s
(0, 0)(φt)̂(ξ)(ψs)̂(η) (3.4)

and

σ̂k,j(ξ, η) =

∫ θ(j+1)

θj

∫ θ(k+1)

θk

Υ̂t,s(ξ, η)
dtds

ts
. (3.5)

Now, let

g (f) =

 ∑
k,j∈Z

|σk,j ∗ f |2


1/2

,

σ∗(f) = sup
k,j∈Z

(||σk,j | ∗ f |) ,

σ(i)∗(f) = sup
k,j∈Z

(∣∣∣σ(i)
k,j ∗ f

∣∣∣) , i = 1, 2,

σ̂
(1)
k,j(ξ, η) =

∫ θ(j+1)

θj

∫ θ(k+1)

θk

µ̂
t,s
(0, η)

dtds

ts
,

and

σ̂
(2)
k,j(ξ, η) =

∫ θ(j+1)

θj

∫ θ(k+1)

θk

µ̂t,s(ξ, 0)
dtds

ts
.

By definition,

µ̂t,s(ξ, η) =

∫
Rn×Rm

e−itη·ye−itξ·x |Φ(x, y)| dxdy.

Since Φ is supported in K1 ×K2 , it is easy to see that

|µ̂t,s(ξ, η)| ≤ C ∥Φ∥Lq(Rn×Rm) for t, s ∈ R+,

and hence
|σ̂k,j(ξ, η)| ≤ C(q − 1)−2 ∥Φ∥Lq(Rn×Rm) . (3.6)

Next, if |tξ| ≥ 2 and |sη| ≥ 2 , by the choices of φ and ψ we have Υ̂t,s(ξ, η) = µ̂t,s(ξ, η), and hence

σ̂k,j(ξ, η)

=

∫
Rn×Rm

|Φ(u, v)|

(∫ θ(k+1)

θk

e−itξ·u dt

t

)(∫ θ(j+1)

θj

e−isη·v ds

s

)
dudv. (3.7)
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By integration by parts we obtain∣∣∣∣∣
∫ θ(k+1)

θk

e−itξ·u dt

t

∣∣∣∣∣ ≤ C(q − 1)−1 min{1,
∣∣∣∣∣θkξ∣∣−1

∣∣∣ |ξ′ · u|−1}

and hence ∣∣∣∣∣
∫ θ(k+1)

θk

e−itξ·u dt

t

∣∣∣∣∣ ≤ C(q − 1)−1
∣∣∣∣∣θkξ∣∣−β

∣∣∣ |ξ′ · u|−β (3.8)

for any 0 < β ≤ 1. Hence by (3.6)–(3.8) we have

|σ̂k,j(ξ, η)| ≤ C(q − 1)−2
∣∣θkξ∣∣− β

q′
∣∣θjη∣∣ β

2q′ ∥Φ∥Lq(Rn×Rm) . (3.9)

Now if |tξ| ≥ 2 and |sη| < 2 we have

Υ̂t,s(ξ, η) = µ̂t,s(ξ, η)− µ̂
t,s
(ξ, 0)(ψs)̂(η)

=
(
µ̂t,s(ξ, η)− µ̂t,s(ξ, 0)

)
(ψs)̂(η) + µ̂t,s(ξ, 0)

(
1− (ψs)̂(η)

)
. (3.10)

Thus by (3.6), (3.8) and (3.10) we have

|σ̂k,j(ξ, η)| ≤ C(q − 1)−2
∣∣θkξ∣∣− β

q′
∣∣θjη∣∣ β

2q′ ∥Φ∥Lq(Rn×Rm) (3.11)

for some positive constants C and β. Similarly if |tξ| < 2 and |sη| ≥ 2 we have

|σ̂k,j(ξ, η)| ≤ C(q − 1)−2
∣∣θkξ∣∣ β

q′
∣∣θjη∣∣− β

2q′ ∥Φ∥Lq(Rn×Rm) (3.12)

for some positive constants C and β.

Finally, if |tξ| < 2 and |sη| < 2 we have

Υ̂t,s(ξ, η) = µ̂t,s(ξ, η)− µ̂t,s(0, η)− µ̂t,s(ξ, 0)− µ̂t,s(0, 0) +

=
(
µ̂t,s(ξ, η)− µ̂

t,s
(0, η)

) (
1− (ψs)̂(η)

)
+
(
µ̂

t,s
(ξ, 0)− µ̂

t,s
(0, 0)

) (
1− (φt)̂(ξ)

)
.

By the last inequality we have

|σ̂k,j(ξ, η)| ≤ C(q − 1)−2
∣∣θkξ∣∣ β

q′
∣∣θjη∣∣ β

2q′ ∥Φ∥Lq(Rn×Rm) (3.13)

for some positive constants C and β.

By (3.4) we have

MΦf(x, y) ≤ g (f) (x, y) + C
(
(MRn ⊗ idRm)

(
σ(1)∗f(x, y)

))
+
(
(idRn ⊗MRm )

(
σ(2)∗f(x, y)

))
+ C(q − 1)−2 (MRn ⊗MRm ) (3.14)
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and

σ∗f(x, y) ≤ g (f) (x, y) + 2C
(
(MRn ⊗ idRm) (σ(1)∗f(x, y))

)
+
(
(idRn ⊗MRm )

(
σ(2)∗f(x, y)

))
+ C(q − 1)−2 (MRn ⊗MRm ) , (3.15)

where MRd is the classical Hardy-Littlewood maximal function on Rd.

Now, ∣∣∣σ(1)
k,j ∗ f(x, y)

∣∣∣
≤ C(q − 1)−1

∫ θ(j+1)

θj

∫
Rm

| fx (y − v)|
∣∣∣Φ̃s (v)

∣∣∣ dv ds
s

= C(q − 1)−1 ζ∗(fx),

where

fx(y) = f(x, y), Φ̃s (v) =

∫
Rm

|Φt,s (u, v)| du =

∫
Rm

|Φ1,s (u, v)| du

and

ζ∗(fx) =

∫ θ(j+1)

θj

|fx| ∗
∣∣∣Φ̃s

∣∣∣ ds
s
.

It is easy to verify that Φ̃ is a function on Rm which is of compact support, Φ̃ ∈ L1(Rm) and Φ̃ ∈ Lq(Rm) .
Then by following the proof of the Lp boundedness of the corresponding maximal function in the one-parameter
setting in [29], we get

∥ζ∗(fx)∥Lp(Rm) ≤ Cp(q − 1)−1
∥∥∥Φ̃∥∥∥

Lq(Rm)
∥fx∥Lp(Rm)

for 1 < p <∞ and f ∈ Lp (Rm) , which in turn implies∥∥∥σ(1)∗(f)
∥∥∥
p
≤ Cp(q − 1)−2 ∥Φ∥Lq(Rn×Rm) ∥f∥p (3.16)

for 1 < p <∞ and f ∈ Lp (Rn ×Rm) . By the same method employed in proving (3.16), we have∥∥∥σ(2)∗(f)
∥∥∥
p
≤ Cp(q − 1)−2 ∥Φ∥Lq(Rn×Rm) ∥f∥p for 1 < p <∞ and f ∈ Lp (Rn ×Rm) . (3.17)

By (3.6), (3.9), (3.11)–(3.13) and Plancherel’s theorem, we obtain

∥g (f)∥2 ≤ C(q − 1)−2 ∥Φ∥Lq(Rn×Rm) ∥f∥2 . (3.18)

By the Lp boundedness of the Hardy–Littlewood maximal function and (3.16)–(3.18) we get

∥σ∗ (f)∥2 ≤ C(q − 1)−2 ∥Φ∥Lq(Rn×Rm) ∥f∥2 . (3.19)
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Now, by (3.6), (3.19), applying the proof of the lemma ([16], p. 189) with p0 = 4 and q = 2, and using the
trivial estimate ∥σk,j∥ ≤ (q − 1)−2 ∥Φ∥Lq(Rn×Rm) , we get

∥∥∥∥∥∥∥
 ∑

k,j∈Z

|σk,j ∗ gk,j |2
1/2

∥∥∥∥∥∥∥
p0

≤ Cp0(q − 1)−2 ∥Φ∥Lq(Rn×Rm)

∥∥∥∥∥∥∥
 ∑

k,j∈Z

|gk,j |2
1/2

∥∥∥∥∥∥∥
p0

(3.20)

for arbitrary functions {gk,j}k,j∈Z on Rn ×Rm. By (3.6), (3.9), (3.11)–(3.13) and applying Lemma 11 in [5],
we get

∥g(f)∥p ≤ Cp(q − 1)−2 ∥Φ∥Lq(Rn×Rm) ∥f∥p (3.21)

for all p satisfying p ∈ (4/3, 4) and f ∈ Lp(Rn×Rm). By replacing p = 2 with p = 4/3+ε (ε→ 0+) in (3.19)
and repeating the preceding arguments, we get (3.20) for every p satisfying p ∈ (8/7, 8) and f ∈ Lp(Rn×Rm).

By continuing this process, we ultimately get

∥g(f)∥p ≤ Cp(q − 1)−2 ∥Φ∥Lq(Rn×Rm) ∥f∥p (3.22)

for all p ∈ (1,∞) and Lp(Rn ×Rm). Therefore, by (3.22), and (3.14)–(3.15), we obtain (3.3) to complete the
proof of the lemma.

Lemma 3.8. Let K1 and K2 be two compact sets in Rn and Rm, respectively. Let Φ be a function
supported in K1 ×K2 . Suppose that Φ ∈ Lq(Rn ×Rm) for some q > 1 and θ = 2q

′
. Let λ be a real number

with λ > 1. Then for 1/
(
min{1, 1

λ + 1
q′ }
)
< p < ∞ there exists a positive constant Cp which is independent

of q such that the following inequality

∥∥∥∥∥∥∥
 ∑

k,j∈Z

∫ θ(j+1)

θj

∫ θ(k+1)

θk

|Φt,s ∗ gk,j |λ
dtds

ts

1/λ
∥∥∥∥∥∥∥
Lp(Rn×Rm)

≤ Cp(q − 1)−
2
λ ∥Φ∥Lq(Rn×Rm)

∥∥∥∥∥∥∥
 ∑

k,j∈Z

|gk,j |λ
1/λ

∥∥∥∥∥∥∥
Lp(Rn×Rm)

(3.23)

holds for arbitrary functions {gk,j(·, ·)}k,j∈Z on Rn ×Rm.

Proof. The proof of this lemma will be similar to the proof of Lemma 2.5 in [4]. For completeness and rigor,
we present its proof here. We need to consider two cases:

Case 1. p ≥ λ. This is further divided into two subcases.

Case 1 (i): p > λ. By duality there exists a nonnegative function b in L(p/λ)′(Rn × Rm) with

330



AL-QASSEM et al./Turk J Math

∥b∥(p/λ)′ ≤ 1 such that

∥∥∥∥∥∥∥
 ∑

k,j∈Z

∫ θ(j+1)

θj

∫ θ(k+1)

θk

|Φt,s ∗ gk,j |λ
dtds

ts

1/λ
∥∥∥∥∥∥∥
λ

Lp(Rn×Rm)

=

∫
Rn×Rm

∑
k,j∈Z

∫ θ(j+1)

θj

∫ θ(k+1)

θk

|Φt,s ∗ gk,j(x, y)|λ b(x, y)
dtds

ts
dxdy. (3.24)

By Hölder’s inequality we get

|Φt,s ∗ gk,j(x, y)|λ

≤ C
(
∥Φ∥L1(Rn×Rm)

)(λ/λ′)
(∫

Rn×Rm

|Φt,s(u, v)| |gk,j(x− u, y − v)|λ dudv
)
.

Thus ∥∥∥∥∥∥∥
 ∑

k,j∈Z

∫ θ(j+1)

θj

∫ θ(k+1)

θk

|Φt,s ∗ gk,j |λ dt/t

1/λ
∥∥∥∥∥∥∥
λ

Lp(Rn×Rm)

≤ C
(
∥Φ∥L1(Rn×Rm)

)(λ/λ′)
∫
Rn×Rm

∑
k,j∈Z

∫ θ(j+1)

θj

∫ θ(k+1)

θk

∫
Rn×Rm

|Φt,s(u, v)| ×

|gk,j(x, y)|λ b(x+ u, y + v)
dtds

ts
dudvdxdy. (3.25)

By the last inequality

∥∥∥∥∥∥∥
 ∑

k,j∈Z

∫ θ(j+1)

θj

∫ θ(k+1)

θk

|Φt,s ∗ gk,j |λ
dtds

ts

1/λ
∥∥∥∥∥∥∥
λ

Lp(Rn×Rm)

≤ C
(
∥Φ∥L1(Rn×Rm)

)(λ/λ′)
∫
Rn×Rm

 ∑
k,j∈Z

|gk,j(x, y)|λ
MΦb̃(−x,−y)dxdy, (3.26)

where b̃(x, y) = b(−x,−y). Thus, by Lemma 3.7, (3.26) and Hölder’s inequality, we get (3.23) for λ < p <∞.

Case 1 (ii): p = λ. We notice that

∥∥∥∥∥∥∥
 ∑

k,j∈Z

∫ θ(j+1)

θj

∫ θ(k+1)

θk

|Φt,s ∗ gk,j |λ
dtds

ts

1/λ
∥∥∥∥∥∥∥
λ

Lp(Rn×Rm)

=
∑
k,j∈Z

∫
Rn×Rm

∫ θ(j+1)

θj

∫ θ(k+1)

θk

|Φt,s ∗ gk,j(x, y)|λ
dtds

ts
dxdy.
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By Fubini’s theorem, Hölder’s inequality and the support of Φ we have

∥∥∥∥∥∥∥
 ∑

k,j∈Z

∫ θ(j+1)

θj

∫ θ(k+1)

θk

|Φt,s ∗ gk,j |λ
dtds

ts

1/λ
∥∥∥∥∥∥∥
λ

Lp(Rn×Rm)

≤ C
(
∥Φ∥L1(Rn×Rm)

)(λ/λ′) ∑
k,j∈Z

∫
Rn×Rm

∫ θ(j+1)

θj

∫ θ(k+1)

θk

×
(∫

Rn×Rm

|gk,j(x− u, y − v)|λ |Φt,s(u, v)| dudv
)
dtds

ts
dxdy

≤ C(q − 1)−2
(
∥Φ∥L1(Rn×Rm)

)(λ/λ′+1)
∫
Rn×Rm

 ∑
k,j∈Z

|gk,j(x, y)|λ
 dxdy,

which implies (3.23) for the case p = λ.

Case 2. 1/
(
min{1, 1

λ + 1
q′ }
)
< p < λ . By duality, there exist functions f = fk,j,t,s(x, y) defined on

Rn ×Rm ×R+ ×R+ with
∥∥∥∥∥∥∥fk,j,t,s∥Lλ′ ([θk,θk+1]×[θj ,θj+1], dtdsts )

∥∥∥
lλ′

∥∥∥
Lp′

≤ 1 such that

∥∥∥∥∥∥∥
 ∑

k,j∈Z

∫ θ(j+1)

θj

∫ θ(k+1)

θk

|Φt,s ∗ gk,j |λ
dtds

ts

1/λ
∥∥∥∥∥∥∥
p

=

∫
Rn×Rm

∑
k,j∈Z

∫ θ(j+1)

θj

∫ θ(k+1)

θk

(Φt,s ∗ gk,j(x, y)) fk,j,t,s(x, y)
dtds

ts
dxdy

≤ Cp(q − 1)−
2
λ

∥∥∥∥∥∥∥
 ∑

k,j∈Z

|gk,j |λ
1/λ

∥∥∥∥∥∥∥
p

∥∥∥(H(f))1/λ
′
∥∥∥
p′
, (3.27)

where

Hf(x, y) =
∑
k,j∈Z

∫ θ(j+1)

θj

∫ θ(k+1)

θk

|Φt,s ∗ fk,j,t,s(x, y)|λ
′ dtds

ts
.

Since p′ > λ′, there is a nonnegative function F ∈ L(p′/λ′)′(Rn ×Rm) such that ∥F∥(p′/λ′)′ ≤ 1 and

∥H(f)∥p′/λ′

=
∑
k,j∈Z

∫
Rn×Rm

∫ θ(j+1)

θj

∫ θ(k+1)

θk

|Φt,s ∗ fk,j,t,s(x, y)|λ
′ dtds

ts
F (x, y)dxdy. (3.28)

Again, we shall divide the discussion into two subcases.
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Case 2 (i): q < λ. By Hölder’s inequality we get

|Φt,s ∗ fk,j,t,s(x, y)|λ
′

≤ C

(∫
Rn×Rm

|Φt,s(x− u, y − v)|q dudv
)(λ′/λ)

×

(∫
Rn×Rm

|Φt,s(x− u, y − v)|(
λ−q
λ−1 ) |fk,j,t,s(u, v)|λ

′
dudv

)

and hence

|Φt,s ∗ fk,j,t,s(x, y)|λ
′

≤ C
(
tn(1−q)sm(1−q) ∥Φ∥qLq(Rn×Rm)

)(λ′/λ)
×(∫

Rn×Rm

|Φt,s(x− u, y − v)|(
λ−q
λ−1 ) |fk,j,t,s(u, v)|λ

′
dudv

)
. (3.29)

By (3.28)–(3.29) we easily get

∥H(f)∥p′/λ′

≤ C
(
tn(1−q)sm(1−q) ∥Φ∥qLq(Rn×Rm)

)(λ′/λ)
∫
Rn×Rm

∑
k,j∈Z

∫ θ(j+1)

θj

∫ θ(k+1)

θk

|fk,j,t,s(u, v)|λ
′

×
(∫

Rn×Rm

|Φt,s(x− u, y − v)|(
λ−q
λ−1 ) F (x, y)dxdy

)
dtds

ts
dudv. (3.30)

By Hölder’s inequality and the support of Φ , we obtain∫
Rn×Rm

|Φt,s(x− u, y − v)|(
λ−q
λ−1 ) F (x, y)dxdy

≤
(∫

Rn×Rm

|Φt,s(u, v)|q dudv
) λ−q

q(λ−1)

(∫
|y−v|≤s

∫
|x−u|≤t

|F (x, y)|
q′
λ′ dxdy

)λ′
q′

≤ s
−m(λ−q)

q′(λ−1) t
−n(λ−q)

q′(λ−1)

(
∥Φ∥Lq(Rn×Rm)

)(λ−q
λ−1 )

(∫
|y−v|≤s

∫
|x−u|≤t

|F (x, y)|
q′
λ′ dxdy

)λ′
q′

≤ s
−m(λ−q)

q′(λ−1) t
−n(λ−q)

q′(λ−1)

(
∥Φ∥Lq(Rn×Rm)

)(λ−q
λ−1 )

(
MRn×Rm

(
|F (u,v)|

q′
λ′

))
λ′
q′
, (3.31)

where MRn×Rm denotes the strong Hardy–Littlewood maximal function on Rn ×Rm. Thus by (3.30)–(3.31),
Hölder’s inequality, the Lp (1 < p ≤ ∞) boundedness of MRn×Rm and the choice of F , we obtain

∥H(f)∥p′/λ′ ≤ C ∥Φ∥λ
′

Lq(Rn×Rm)

∥∥∥∥∥∥
∑
k,j∈Z

∫ θ(j+1)

θj

∫ θ(k+1)

θk

|fk,j,t,s(·, ·)|λ
′ dtds

ts

∥∥∥∥∥∥
p′/λ′

. (3.32)

Thus by (3.27) and (3.32), we get (3.23) in the case 1/
(

1
λ + 1

q′

)
< p < λ and q < λ .
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Case 2 (ii): q ≥ λ. We shall again follow the same argument as in the proof of (3.32). By Hölder’s
inequality and the support of Φ , we obtain

|Φt,s ∗ fk,j,t,s(x, y)|λ
′
≤

(∫
|y−v|≤s

∫
|x−u|≤t

|Φt,s(x− u, y − v)|λ dudv

)(λ′/λ)

×

(∫
|y−v|≤s

∫
|x−u|≤t

|fk,j,t,s(u, v)|λ
′
dudv

)

≤ s
−mλ′

q′ t
−nλ′

q′
(
∥Φ∥Lq(Rn×Rm)

)λ′
(∫

|y−v|≤s

∫
|x−u|≤t

dudv

)λ′( 1
λ− 1

q )

×

(∫
|y−v|≤s

∫
|x−u|≤t

|fk,j,t,s(u, v)|λ
′
dudv

)

≤ s−mt−n
(
∥Φ∥Lq(Rn×Rm)

)λ′
(∫

|y−v|≤s

∫
|x−u|≤t

|fk,j,t,s(u, v)|λ
′
dudv

)
, (3.33)

which when combined with (3.28) implies that

∥H(f)∥p′/λ′

≤ Ct−ns−m
(
∥Φ∥Lq(Rn×Rm)

)λ′ ∫
Rn×Rm

∑
k,j∈Z

∫ θ(j+1)

θj

∫ θ(k+1)

θk

|fk,j,t,s(u, v)|λ
′
×

(∫
|y−v|≤s

∫
|x−u|≤t

F (x, y)dxdy

)
dtds

ts
dudv

≤
(
∥Φ∥Lq(Rn×Rm)

)λ′ ∫
Rn×Rm

∑
k,j∈Z

∫ θ(j+1)

θj

∫ θ(k+1)

θk

|fk,j,t,s(u, v)|λ
′
×

MRn×RmF (u, v)
dtds

ts
dudv. (3.34)

By Hölder’s inequality, the Lp (1 < p ≤ ∞) boundedness of MRn×Rm , and the choices of f and F , we get

∥H(f)∥p′/λ′ ≤ C
(
∥Φ∥Lq(Rn×Rm)

)λ′

∥F∥(p′/λ′)′ , (3.35)

which in turn ends the proof of (3.23) in the case p < λ and q ≥ λ.

Lemma 3.9. Suppose n > 1 . Let K1 and K2 be two compact sets in Rn and Rm, respectively. Let Φ

be a function supported in K1 ×K2 and |Φ(x, y)| ≤ Φ̃(x, y) for some function Φ̃ ∈ Lq(Rn ×Rm) for some
q > 1 with Φ̃(x, y) = φ(|x| , |y|) for some function φ defined on (0,∞)× (0,∞) . Let λ be a real number with
λ > q. Then for (λωq)/(λωq − λ + q) < p < ∞ there exists a positive constant Cp such that the following
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inequality

∥∥∥∥∥∥∥
 ∑

k,j∈Z

∫ 2(j+1)

2j

∫ 2(k+1)

2k
|Φt,s ∗ gk,j |λ dt/t

1/λ
∥∥∥∥∥∥∥
Lp(Rn×Rm)

≤ Cp ∥Φ∥Lq(Rn×Rm)

∥∥∥∥∥∥∥
 ∑

k,j∈Z

|gk,j |λ
1/λ

∥∥∥∥∥∥∥
Lp(Rn×Rm)

(3.36)

holds for arbitrary functions {gk,j(·, ·)}k,j∈Z on Rn ×Rm, where ω = min{n,m}.

Proof. The proof of (3.36) for the case p ≥ λ follows from Lemma 3.8. So we just need to prove (3.36)
for the case (λωq)/(λωq − λ + q) < p < λ . We follow the steps of the proof of (3.23) for the case p < λ until
we reach (3.29). By Hölder’s inequality and the support of Φ , we obtain

∫
Rn×Rm

|Φt,s(x− u, y − v)|(
λ−q
λ−1 ) F (x, y)dxdy

≤
∫ ∞

0

∫ ∞

0

|φt,s(r, w)|(
λ−q
λ−1 )

∫
Sn−1×Sm−1

F (x− ru, y − wv)dσ(u)dσ(v)rn−1wm−1drdw

≤
(∫ ∞

0

∫ ∞

0

|φt,s(r, w)|q rn−1wm−1drdw

) λ−q
q(λ−1)

×

∫ s

0

∫ t

0

(∫
Sn−1×Sm−1

F (x− ru, y − wv)dσ(u)dσ(v)

) q′
λ′

rn−1wm−1drdw

λ′
q′

≤ s
m(q−1)
(λ−1) t

n(q−1)
(λ−1)

(∥∥∥Φ̃∥∥∥
Lq(Rn×Rm)

)(λ−q
λ−1 )

N
( q′
λ′ )

P F (x, y). (3.37)

Thus by (3.30) and (3.37), Hölder’s inequality, Lemma 3.6 and the choice of F , we obtain

∥H(f)∥p′/λ′ ≤ C ∥Φ∥λ
′

Lq(Rn×Rm)

∥∥∥∥∥∥
∑
k,j∈Z

∫ 2(j+1)

2j

∫ 2(k+1)

2k
|fk,t(·, ·)|λ

′ dtds

ts

∥∥∥∥∥∥
p′/λ′

. (3.38)

Therefore, by (3.27) and (3.38) we get (3.36) for (λωq)/(λωq − λ + q) < p < λ. This completes the proof of
Lemma 3.9.

Lemma 3.10. Let n > 1 and let λ be a real number with λ > 1. Let Φ be an L1(Rn ×Rm) function,
which is supported in K1×K2 and Φ(x, y) = φ(|x| , |y|) for some function φ defined on (0,∞)× (0,∞) . Then
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for (λω)′ < p <∞ there exists a positive constant Cp such that the following inequality

∥∥∥∥∥∥∥
 ∑

k,j∈Z

∫ 2(j+1)

2j

∫ 2(k+1)

2k
|Φt,s ∗ gk,j |λ

dtds

ts

1/λ
∥∥∥∥∥∥∥
Lp(Rn×Rm)

≤ Cp ∥Φ∥L1(Rn×Rm)

∥∥∥∥∥∥∥
 ∑

k,j∈Z

|gk,j |λ
1/λ

∥∥∥∥∥∥∥
Lp(Rn×Rm)

(3.39)

holds for arbitrary functions {gk,j(·, ·)}k,j∈Z on Rn ×Rm, where ω = min{n,m}.

Proof. We first prove (3.39) in the case p ≥ λ. We follow the steps of the proof of (3.23) in the case
p > λ until we reach (3.25). By a change of variable we have

∥∥∥∥∥∥∥
 ∑

k,j∈Z

∫ 2(j+1)

2j

∫ 2(k+1)

2k
|Φt,s ∗ gk,j |λ

dtds

ts

1/λ
∥∥∥∥∥∥∥
λ

Lp(Rn×Rm)

≤ C
(
∥Φ∥L1(Rn×Rm)

)(λ/λ′)
∫
Rn×Rm

∫ 2(j+1)

2j

∫ 2(k+1)

2k

∫
Rn×Rm

|Φt,s(u, v)| ×

|gk,j(u, v)|λ b(x+ u, y + v)
dtds

ts
dxdy. (3.40)

By the assumption that Φ(x, y) = φ(|x| , |y|) , we obtain

∫ 2(j+1)

2j

∫ 2(k+1)

2k

∫
Rn×Rm

|Φt,s(u, v)| b(x+ u, y + v)
dtds

ts
dxdy

≤
∫ ∞

0

∫ ∞

0

|φ(r, w)|
∫ 2(j+1)

2j

∫ 2(k+1)

2k

∫
Sn−1×Sm−1

b(u+ rtρ, v + wsη)dσ(ρ)dσ(η)
dtds

ts
rn−1sm−1drdw

≤ C ∥Φ∥L1(Rn×Rm)MRn×Rm b̃(u, v), (3.41)

where b̃(x, y) = b(−x,−y). By (3.40)–(3.41) we obtain

∥∥∥∥∥∥∥
 ∑

k,j∈Z

∫ 2(j+1)

2j

∫ 2(k+1)

2k
|Φt,s ∗ gk,j |λ

dtds

ts

1/λ
∥∥∥∥∥∥∥
λ

Lp(Rn×Rm)

≤ C
(
∥Φ∥L1(Rn×Rm)

)(λ/λ′+1)
∫
Rn×Rm

∑
k,j∈Z

|gk,j(u, v)|λMRn×Rm(b̃)(u, v)dudv.
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By Hölder’s inequality, the Lp (1 < p ≤ ∞) boundedness of MRn×Rm and the choice of b , we obtain

∥∥∥∥∥∥∥
 ∑

k,j∈Z

∫ 2(j+1)

2j

∫ 2(k+1)

2k
|Φt,s ∗ gk,j |λ

dtds

ts

1/λ
∥∥∥∥∥∥∥
λ

Lp(Rn×Rm)

≤ C
(
∥Φ∥L1(Rn×Rm)

)(λ/λ′+1)
∥∥∥∥∥∥
∑
k,j∈Z

|gk,j |λ
∥∥∥∥∥∥
Lp/λ(Rn×Rm)

,

which in turn ends the proof of (3.39) for the case p > λ. The proof of (3.39) in the case p = λ will be the
same as in the proof of (3.23). We omit the details. Now, we need to prove (3.39) for the case (λω)′ < p < λ.

We follow the same lines of the proof of (3.23) for the case p < λ until we reach (3.28). By Hölder’s inequality
we get

|Φt,s ∗ fk,j,t,s(x, y)|λ
′

≤ C

(∫
Rn×Rm

|Φt,s(x− u, y − v)| dudv
)(λ′/λ)

×∫
Rn×Rm

|Φt,s(x− u, y − v)| |fk,j,t,s(u, v)|λ
′
dudv, (3.42)

and hence

|Φt,s ∗ fk,j,t,s(x, y)|λ
′

≤ C
(
sm(1−q)tn(1−q) ∥Φ∥L1(Rn×Rm)

)(λ′/λ)
×(∫

Rn×Rm

|Φt,s(x− u, y − v)| |fk,j,t,s(u, v)|λ
′
dudv

)
. (3.43)

By (3.28) and (3.34) we get

∥H(f)∥p′/λ′

≤ C(sm(1−q)tn(1−q) ∥Φ∥L1(Rn×Rm))
(λ′/λ)

∫
Rn×Rm

∑
k,j∈Z

∫ 2(j+1)

2j

∫ 2(k+1)

2k
|fk,j,t,s(u, v)|λ

′

×
(∫

Rn×Rm

|Φt,s(x− u, y − v)|F (x, y)dxdy
)
dtds

ts
dudv. (3.44)

Since Φ(x, y) = φ(|x| , |y|) , we get∫
Rn×Rm

|Φt,s(x− u, y − v)|F (x, y)dxdy

≤
∫ ∞

0

∫ ∞

0

|φ(r, w)|
∫
Sn−1×Sm−1

F (u+ rtρ, v + wsη)

dσ(ρ)dσ(η)
dtds

ts
rn−1sm−1drdw

≤ C ∥Φ∥L1(Rn×Rm)N
(∞)
P F̃ (u, v), (3.45)
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where F̃ (x, y) = F (−x,−y). Thus by (3.44)–(2.45), Hölder’s inequality, the Lp (p > max {n′,m′}) boundedness

of N (∞)
P and the choice of F we obtain

∥H(f)∥p′/λ′ ≤ C ∥Φ∥(λ
′/λ+1)

L1(Rn×Rm)

∥∥∥∥∥∥
∑
k,j∈Z

∫ 2(j+1)

2j

∫ 2(k+1)

2k
|fk,j,t,s(·, ·)|λ

′ dtds

ts

∥∥∥∥∥∥
p′/λ′

. (3.46)

Therefore by (3.28) and (3.44)–(3.46) we get (3.36) in the case (λω)′ < p < λ .

4. Proof of main results

Proof of Theorem 2.1. For q > 1, let θ = 2q
′
.Let {ψk}∞−∞ be a smooth partition of unity in (0,∞)

adapted to the intervals Ik = [θ−(k+1), θ−(k−1)]. More precisely, we require the following:

ψk ∈ C∞, 0 ≤ ψk ≤ 1,
∑
k

ψk (t) = 1;

supp ψk ⊆ Ik;∣∣∣∣dsψk (t)

dts

∣∣∣∣ ≤ C

ts
,

where C can be chosen to be independent of q. For k ∈ Z and ξ ∈ Rn, let Ψ̂n,k(ξ) = ψk(|ξ|). Decompose

f ∗ Φt,s(x, y)

=
∑

µ,ν∈Z

∑
k,j∈Z

((Ψm,j+ν ⊕Ψn,k+µ) ∗ f ∗ Φt,s) (x, y)χ
[θj,θ(j+1))

(s)χ
[θk,θ(k+1))

(t)

: =
∑

µ,ν∈Z

Υµ,ν(x, y, t, s),

and define

T
(λ)
Φ,µ,ν(f)(x, y) =

(∫ ∞

0

∫ ∞

0

|Υµ,ν(x, y, t, s)|λ
dtds

ts

) 1
λ

.

Then
T

(λ)
Φ (f) ≤

∑
µ,ν∈Z

T
(λ)
Φ,µ,ν(f). (4.1)

Therefore, by the last inequality we notice that (2.1) is proved if we show that∥∥∥T (λ)
Φ,µ,ν(f)

∥∥∥
Lp(Rn×Rm)

≤ C2−ϑ|µ|2−ϑ|ν|(q − 1)−2/λ ∥Φ∥Lq(Rn×Rm) ∥f∥F 0,λ
p (Rn×Rm) (4.2)

for 1/
(
min{1, 1

λ + 1
q′ }
)
< p < ∞ for some positive constants C and ϑ. The proof is based on a sharp L2

estimate and a cruder Lp estimate. We start by proving the L2 estimate. First we need to get some Fourier
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transform estimates. By definition,

(̂Φt,s)(ξ, η) =

∫
Rn×Rm

e−itη·ye−itξ·xΦ(x, y)dxy.

Since Φ is supported in the compact set K1 ×K2 we easily get

∫ θ(j+1)

θj

∫ θ(k+1)

θk

∣∣∣(̂Φt,s)(ξ, η)
∣∣∣2 dtds

ts
≤ C(q − 1)−2 ∥Φ∥2Lq(Rn×Rm) . (4.3)

Next, since Φ satisfies (1.1) and it is of compact support, we get∣∣∣(̂Φt,s)(ξ, η)
∣∣∣ ≤ C |tξ| ∥Φ∥Lq(Rn×Rm) for t, s ∈ R+ (4.4)

and ∣∣∣(̂Φt,s)(ξ, η)
∣∣∣ ≤ C |sη| ∥Φ∥Lq(Rn×Rm) for t, s ∈ R+. (4.5)

Therefore, by (4.4) we have

∫ θ(j+1)

θj

∫ θ(k+1)

θk

∣∣∣(̂Φt,s)(ξ, η)
∣∣∣2 dtds

ts

≤ C(q − 1)−2
∣∣∣θ(k+1)ξ

∣∣∣2 ∥Φ∥2Lq(Rn×Rm) . (4.6)

By combining the estimates (4.3) and (4.6) we obtain

(∫ θ(j+1)

θj

∫ θ(k+1)

θk

∣∣∣(̂Φt,s)(ξ, η)
∣∣∣2 dtds

ts

)1/2

≤ C(q − 1)−1 ∥Φ∥Lq(Rn×Rm)

∣∣θkξ∣∣ β
2q′ for some β > 0. (4.7)

Similarly, by (4.5) we have

(∫ θ(j+1)

θj

∫ θ(k+1)

θk

∣∣∣(̂Φt,s)(ξ, η)
∣∣∣2 dtds

ts

)1/2

≤ C(q − 1)−1 ∥Φ∥Lq(Rn×Rm)

∣∣θjη∣∣ β
2q′ for some β > 0. (4.8)

Finally, by the arguments employed in the proof in Lemma 3.7 we have

(∫ θ(j+1)

θj

∫ θ(k+1)

θk

∣∣∣(̂Φt,s)(ξ)
∣∣∣2 dtds

ts

)1/2

≤ C(q − 1)−1
∣∣θkξ∣∣− β

2q′ ∥Φ∥Lq(Rn×Rm) (4.9)

and (∫ θ(j+1)

θj

∫ θ(k+1)

θk

∣∣∣(̂Φt,s)(ξ)
∣∣∣2 dtds

ts

)1/2

≤ C(q − 1)−1
∣∣θjη∣∣− β

2q′ ∥Φ∥Lq(Rn×Rm) . (4.10)
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By (4.3), (4.7)–(4.10) we have

(∫ θ(j+1)

θj

∫ θ(k+1)

θk

∣∣∣(̂Φt,s)(ξ)
∣∣∣2 dtds

ts

)1/2

≤ C(q − 1)−1
∣∣θkξ∣∣± β

q′
∣∣θjη∣∣± β

q′ ∥Φ∥Lq(Rn×Rm) (4.11)

for some positive constants C and β.

Now, by Plancherel’s theorem we have

∥∥∥T (λ)
Φ,µ,ν(f)

∥∥∥2
L2(Rn×Rm)

=
∑
k,j∈Z

∫
Rn×Rm

∫ θ(j+1)

θj

∫ θ(k+1)

θk

|(Ψn,k+µ ⊕Ψm,j+ν) ∗ Φt,s ∗ f(x, y)|2
dtds

ts
dxdy

≤
∑
k,j∈Z

∫
Ij+v

∫
Ik+µ

(∫ θ(j+1)

θj

∫ θ(k+1)

θk

∣∣∣(̂Φt,s)(ξ, η)
∣∣∣2 dtds

ts

)∣∣∣f̂(ξ, η)∣∣∣2 dξdη
≤ C(q − 1)−2 ∥Φ∥2Lq(Rn×Rm)

×
∑
k,j∈Z

∫
Ij+v

∫
Ik+µ

(∣∣θjη∣∣± β
q′
∣∣θkξ∣∣± β

q′

) ∣∣∣f̂(ξ, η)∣∣∣2 dξdη
≤ C(q − 1)−22−ϑ|µ|2−ϑ|ν| ∥Φ∥2Lq(Rn×Rm)

∑
k,j∈Z

∫
Ij+v

∫
Ik+µ

∣∣∣f̂(ξ, η)∣∣∣2 dξdη
≤ C(q − 1)−22−ϑ|µ|2−ϑ|ν| ∥Φ∥2Lq(Rn×Rm) ∥f∥

2
L2(Rn×Rm) . (4.12)

By (4.12) and ∥f∥
F

−→
0

2,2(R
n×Rm)

= ∥f∥L2(Rn×Rm) , we obtain (4.2) in the case p = λ = 2.

Now by Lemma 3.8 we have∥∥∥T (λ)
Φ,µ,ν(f)

∥∥∥
Lp(Rn×Rm)

≤ C(q − 1)−
2
λ ∥Φ∥Lq(Rn×Rm) ∥f∥F−→

0
p,λ(R

n×Rm)
(4.13)

for 1/
(
min{1, 1

λ + 1
q′ }
)
< p < ∞ . By interpolating (4.12) with (4.13), we get (4.2). Hence the proof of

Theorem 1.1 is complete.
Proof of Theorem 2.2. We point out that this theorem can be proved by the same method as used in

the proof of Theorem 2.1, except that one will be using Lemma 3.9 instead of Lemma 3.8. Details are omitted.
Proof of Theorem 2.3. We shall follow an argument similar to the one used in the proof of Theorem

2.1. Let θ = 2 . By the support of Φ, we have∣∣∣Φ̂(ξ, η)∣∣∣ ≤ C |ξ| and
∣∣∣Φ̂(ξ, η)∣∣∣ ≤ C |η|

for some positive constant C . Therefore,

(∫ 2(j+1)

2j

∫ 2(k+1)

2k

∣∣∣(̂Φt,s)(ξ, η)
∣∣∣2 dtds

ts

)1/2

≤ Cmin{1,
∣∣∣2(k+1)ξ

∣∣∣2} (4.14)
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and (∫ 2(j+1)

2j

∫ 2(k+1)

2k

∣∣∣(̂Φt,s)(ξ, η)
∣∣∣2 dtds

ts

)1/2

≤ Cmin{1,
∣∣∣2(j+1)η

∣∣∣2}. (4.15)

Let

µ
k
(u) =

∫
Sk−1

eiu·vdσ(v) for u ∈ Rk.

It is well-known that

|µ
k
(ξ)| ≤ Ck min{1, |ξ|−

(k−1)
2 }. (4.16)

Since Φ is supported in K1 ×K2 with K1 ⊆ Rn − {0} and K2 ⊆ Rm − {0} and since Φ(x, y) = φ(|x| , |y|),
we may assume that supp(φ)⊆ [a,∞)× [b,∞) for some positive numbers a and b.

Now

(̂Φ)(ξ, η) =

∞∫
b

∞∫
a

φ(r, w)rn−1wm−1µ
n
(rξ)µ

m
(wη)drdw.

By (4.16) we have

∣∣∣(̂Φt,s)(ξ, η)
∣∣∣ ≤ Cmin{1, a−

(n−1)
2 |tξ|−

(n−1)
2 }min{1, b−

(m−1)
2 |sη|−

(m−1)
2 }.

Thus we have (∫ 2(j+1)

2j

∫ 2(k+1)

2k

∣∣∣(̂Φt,s)(ξ, η)
∣∣∣2 dtds

ts

)1/2

≤ C
∣∣2kξ∣∣±α

(
∣∣2jη∣∣±α

. (4.17)

By using (4.17) and following an argument similar to the one used in the proof of (4.12), we get

∥∥∥S(λ)
Φ,µ,ν(f)

∥∥∥
L2(Rn×Rm)

≤ C2−γ|µ|2−γ|ν| ∥f∥L2(Rn×Rm) . (4.18)

By invoking Lemma 3.10, we get

∥∥∥S(λ)
Φ,j(f)

∥∥∥
Lp(Rn×Rm)

≤ C ∥f∥
Ḟ

−→
0

p,λ(R
n×Rm)

(4.19)

for (λω)′ < p <∞ , where ω = min{n,m} . By interpolation between (4.18)–(4.19) we obtain

∥∥∥S(λ)
Ω,h,j(f)

∥∥∥
Lp(Rn×Rm)

≤ C2−η|µ|2−η|ν| ∥f∥Ḟ 0,λ
p (Rn×Rm) (4.20)

for (λω)′ < p <∞. The proof of Theorem 2.3 is complete.
Proof of Theorem 2.4. Define the maximal operators ζ∗Φ on Rn ×Rm by

ζ∗Φ(f) = sup
t,s∈R+

||Φt,s| ∗ f | .
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Now we shall prove the Lp boundedness of ζ∗Φ(f). We follow an argument similar to the proof of (3.2) in [11].
To this end, we notice that

|Φt,s ∗ f(x, y)|

≤
∫

Sn−1×Sm−1

Ω(x, y)

∞∫
0

∞∫
0

f(x− ru, y − wv)h1(r)h2(w)r
n−1wm−1drdwdσ(u)dσ(v)

≤
∫

Sn−1×Sm−1

Ω(x, y)
(
M (m)

v ◦M (n)
u

)
f(x, y)×

∞∑
j=−∞

∞∑
k=−∞

2n(k+1) 2m(j+1)h1(2
k)h2(2

j)drdwdσ(u)dσ(v)

≤ ∥h1(|·|)∥L1(Rn) ∥h2(|·|)∥L1(Rm) ×∫
Sn−1×Sm−1

|Ω(x, y)|
(
H(m)

v ◦H(n)
u

)
f(x, y)dσ(u)dσ(v), (4.21)

where

H(n)
u g(x) = sup

r>0

1

r

r∫
0

f(x− ru)dr


is the Hardy–Littlewood maximal function in the direction of u ∈ Sn−1. By (4.24) and the boundedness of

H
(n)
u on Lp(1 < p <∞) with a bound independent of u , we get

∥ζ∗Φ(f)∥p ≤ Cp ∥Ω∥L1(Sn−1×Sm−1) ∥h1(|·|)∥L1(Rn) ∥h2(|·|)∥L1(Rm) ∥f∥p (4.22)

for 1 < p <∞. It is easy to see that

MΦ(f)(x, y) ≤ C(q − 1)−2ζ∗Φf(x, y),

which in turn implies that

∥MΦ(f)∥p ≤ Cp(q − 1)−2 ∥Ω∥L1(Sn−1×Sm−1)

×∥h1(|·|)∥L1(Rn) ∥h2(|·|)∥L1(Rm) ∥f∥p (4.23)

for 1 < p <∞. By the proof of Lemma 3.8 we get∥∥∥∥∥∥∥
 ∑

k,j∈Z

∫ θ(j+1)

θj

∫ θ(k+1)

θk

|Φt,s ∗ gk,j |λ
dtds

ts

1/λ
∥∥∥∥∥∥∥
Lp(Rn×Rm)

≤ Cp(q − 1)−
2
λ ∥Ω∥L1(Sn−1×Sm−1)

×∥h1(|·|)∥L1(Rn) ∥h2(|·|)∥L1(Rm)

∥∥∥∥∥∥∥
 ∑

k,j∈Z

|gk,j |λ
1/λ

∥∥∥∥∥∥∥
Lp(Rn×Rm)

(4.24)
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holds for 1 < p < ∞ and for arbitrary functions {gk,j(·, ·)}k,j∈Z on Rn ×Rm. By the assumptions on Φ and

the proof employed in Lemma 2 in [29], we get

(∫ θ(j+1)

θj

∫ θ(k+1)

θk

∣∣∣(̂Φt,s)(ξ, η)
∣∣∣2 dtds

ts

)1/2

≤ C(q − 1)−2
∣∣θkξ∣∣± α

q′
∣∣θjη∣∣± α

q′ ∥h1(|·|)∥Lq(Rn) ∥h2(|·|)∥Lq(Rm) ∥Ω∥Lq(Sn−1×Sm−1) . (4.25)

By (4.24)–(4.25) and following an argument similar to one in the proof of Theorem 2.1, we get (2.2) which ends
the proof of Theorem 2.4.

Proof of Theorems 2.5, 2.6 and 2.7. We can prove Theorem 2.5 by an extrapolation method similar
to the one employed in [29] and [2] along with the estimate in (2.2). A proof of Theorems 2.6 and 2.7 can be
obtained by an extrapolation method similar to the one employed in [2] along with the estimate (2.2). We omit
the details.
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