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Abstract: We are interested in investigating the LP boundedness of the product of generalized Littlewood—Paley

functions S’((I)A) (f) arising from kernels satisfying only size and cancellation conditions. We obtain L? estimates of Sf;‘) (f)
for a sharp range of p and under optimal conditions on ®. Using these estimates and an extrapolation argument, we
obtain some new and improved results on generalized Littlewood—Paley functions on product spaces. As a consequence
of our main results, we get two results, one of which answers a question posed by D. Fan and H. Wu and the other one
answers a question raised by Y. Wu and H. Wu. In addition, one of our lemmas on Triebel-Lizorkin spaces answers a
question posed by Y. Wu and H. Wu.
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1. Introduction
Throughout this paper, we let & denote &/|¢| for £ € R™\{0} and p’ denote the exponent conjugate to p,
that is 1/p+1/p’ = 1.

For a function ® € L'(R"™ x R™) which satisfies

/n B(x, )dz = / B(-y)dy = 0, (1.1)

we define the product generalized Littlewood—Paley function S,(I))‘) f(z,y) on R™ x R™ by

SO () (/ / By fla )P‘“ds)/,

where 1 < A < 00, @ 4(x,y) =t "s ™®(x/t,y/s) and f € S(R™ x R™), the space of Schwartz functions.
The product Littlewood—Paley square g-function of f € S(R™ x R™) is defined by

s = ([ [ 1w s >|2dtds>/.
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Clearly, g(f) = S<(I>2) (f), which is often called a square function or a multiple Littlewood—Paley function.

Littlewood—Paley functions have a long history, and they are one of the central parts of harmonic analysis. The

use of the class of functions Sg)( /) appears in the study of singular integrals on product domains, the product
Hardy spaces as well as other function spaces. The generalized Paley—Littlewood functions, in the product
and nonproduct case, have attracted the attention of many authors in recent years. Readers are referred to

[20-22, 25, 26, 35] for their significance and historical developments.

One of the most important examples of this class of functions Sg‘)( f)(z,y) (for A = 2) is obtained by
letting

O(z,y) = |51”|7nJr1 ly| O (ff/»y/)X(o,l](\$|)X(o,1](|y\)

for r € R"\ {0},y € R™\ {0}, where Q € L1(S"~1 x S™~1) and
/ Qx, )do(z) = / Q(-,y)do(y) = 0. (1.2)
S’nfl Smfl

Then S’g‘)( f)= ug‘)( f), the generalized Marcinkiewicz integral on R™ x R™ | is given by

- ([

If A =2, we write ug = ug). Here puq(f)(z,y) is the classical Marcinkiewicz integral on R™ x R™.

1/A

A
Qu/,v") dtds
[z —u,y v)Hanmlddv 1343

v|<s

u|<t

One of the main issues of concern in this paper is investigating the LP boundedness of S((I,)‘) under optimal

conditions on ® (in an appropriate sense) and for sharp ranges of p. We are very much motivated by the work

of several authors in the one parameter case of S((I))‘) and also by the work on generalized Marcinkiewicz integrals
on product domains (See work by S. Sato, L. Cheng, J. Duoandikoetxea, D. Fan and H. Wu, Y. Wu and H.
Wu, and H. Al-Qassem, L. Cheng and Y. Pan).

Before stating our results, we would like to mention that our results in this paper will mirror the recent
results obtained in the one parameter setting obtained by Duoandikoetxea concerning S((;‘) (for A =2) in [17]

and by Al-Qassem et al. concerning S((;‘) (for A > 1) in [4]. Also, one of our results answers a question posed

by Fan and Wu concerning ug\ ) in [19] and two of our results answer two questions posed by Wu and Wu in

(M)

[35] concerning a result on g’ and a result on Triebel-Lizorkin spaces.

We will begin by recalling some definitions. The class L(log L)” (S"~! x 8™~1) (for a > 0) denotes the

class of all measurable functions € on S"~! x S™~! which satisfy

1201 L og )= (-1 x5m-1) = / 1Q(x,y)|log™ (2 + [, y)|)do(x)do(y) < oo.

gn—1ygm-—1

Let L(log L)" (R® x R™) (for o > 0) denote the class of all measurable functions ¥ on R" x R™ which satisfy

T ——— /R epllog” 2+ W,y dady < .
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Now we recall the definition of the block space B((IO’U)(S”*1 x 8™m~1). This space was introduced in the
one parameter case by Jiang and Lu (see [27]) in their study of the mapping properties of homogeneous singular

integral operators and it is defined as follows:

Definition 1.1. A g-block on S"1 x S™~! jsan LY (1 < q < o0) function b(z,y) that satisfies

(i) supp(b) C I; (i) [|bll. < 1177,

where |-| denotes the product measure on S"~1 x S™~L and I is an interval on S"~1 x S™~1 ..

I={2'eS" |2/ —a{| <a} x{y €S™ |y —y)| < B}

for some o, B >0, xj € S*1 and y, € S"L.

Definition 1.2. The block space B{"") = B{"")(S"=1 x §™=1) is defined by

oo

B = {Q eLNS" I x8" =) "\b,, MO ({\}) < oo}

P
p=1

where each A, is a complexr number, each b, is a q-block supported on an interval I, on St x §m—1
v>—1, and

Méo’“) () = i |/\u| {1—|—10g(v+1)(|[u|_1)}.
p=1

Let ||Q||B;U=“)(Snflxsvnfl) = N(Q) = inf{M" ({A3): @ =32 Ab, and each b, is a ¢-

p=1

block function supported on a cap I, on 8"~ x §™~!}. Then H'HB(SO*”)(snflxsmfl) is a norm on the space

B(go’v)(S”*1 x 8™~1) and (BéO“’)(S”*l x §m—1) is a Banach space.

) ||.||B((10’v)(Sn71 Xsmfl))
The definition of the block space BSO’T))(R” x R™) (for v > —1) of functions on R™ x R™ is defined

similarly.

Remark. For any ¢ > 1 and 0 < v < 1, the following inclusions hold and are proper:

LYS" ' x 8™ 1) < L(ogL)(S" ' x8™ 1) c L}S" ! x8m1),

U Lr(8" ' x8sm 1) ¢ Béo’“)(S"_1 x 8™71) for any —1 < v and ¢ > 1,
r>1

LlogL)" (8" 1 x 8™ 1) ¢ L(logL) (S" ' x S™ 1) if0 < a < B.

The question with regard to the relationship between B((I()’Wl)(SYL_1 x 8™~ 1) and L(log™ L) (S"~! x S™~1)
(for v > 0) remains open.
We remark that similar relations as above hold if the classes L(log L) (S"~! x S™=1) and B (S~ x

S™=1) are replaced by L(logL)” (R™ x R™) and B,go’v)(R" x R™).
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Now we recall the definition of the homogeneous Triebel-Lizorkin spaces Fﬁl(R” x R™). Let ¢ €
Ce(R™) and 9 € C3°(R™) be functions satisfying

Slylé2},

| —

§|x|§2},suppwc{y€Rm:

1
supp ¢ C {xER":2

o), Y(y) > e¢>0if % <zl |yl < g for some constant c.

Let ® and ¥ the Fourier transforms of ¢ and 1, respectively. For 1 < p,q < oo and «,f € R,? =
(a, B), the homogeneous Triebel-Lizorkin space Fp?,q(R” x R™) is defined to be the set of all distributions f
on R™ x R™ such that
1/q
D 2keaif (@) @ U;) « £ < 00

kjEZ
L?(R™ xR™)

where @y (z) = 27*p(27%z) for k € Z and V;(y) = 277m(277y) for j € Z.
The following can be found in [19]:
(1) LP(R" x R™) = EG,(R" x R™);
NI * - n m
2) (prq(R" X Rm)> — F, 5 (R x R™);

(3) FZ (R" x R™) C F'5

P;q1 P;q2

(Rn X Rm) if q1 < q2.

2. Main results
The main results of this paper are the following:
Theorem 2.1. Let 1 < A < 0o and let Ky and Ko be two compact sets in R™ and R™, respectively.
Suppose that ® is a function supported in K1 x Ko satisfying (1.1). If & € LYR"™ x R™) for some q¢ > 1,

then for any p € (1/ (min{L T+ %}) ,oo) there exists a constant Cp > 0 such that

|58V

poeerey = O@= D2 Do) 1157 gy (21)
for f € F;‘?;(R” x R™). The constant C, may depend on X and on the diameters of Ki and Ka, but it is
independent of q and ®. The range of p is the best possible.

It is clear from Theorem 2.1 if A > 1, the range of p is the entire interval (1,00) if & € LI(R™ x R™)
for some ¢ > \. However, if ® is dominated by a function ® with ®(z,y) = ¢(|z|, |y|) for some function ¢,
we have a better range of p if ¢ < A as in the following result.

Theorem 2.2. Suppose that n > 1 and m > 1. Let 1 < A < o0 and let K1 and Ky be two compact sets
in R™ and R™, respectively. Let ® be a function supported in K1 x Ky satisfying (1.1) and |®(z,y)| < @(m,y)
for some function ® € LI(R™ x R™) for some q > 1 with ®(x,y) = ¢(|z|,|y|) for some function ¢
defined on (0,00) x (0,00). Then if q < A, S((;) is a bounded operator on LP(R™ x R™) for any p €
((Mw)/(Agqw — XA+ q),0) , where w = min{n,m}. The range of p is the best possible.
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In the case & € LI(R™ x R™) for ¢ =1 we have the following:

Theorem 2.3. Suppose that n > 1 and m > 1. Let 1 < XA < 0o and let K1 and Ky be two compact
sets in R™\{0} and R™\{0}, respectively. Let ®(x,y) be an L*(R"™ x R™) function satisfying (1.1) and that
is supported in K1 x Ky and ®(z,y) = o(|x|,|y|) for some function ¢ defined on (0,00) x (0,00). Then Sg‘)
is bounded on LP(R™ x R™) for any p € (()\w)/,oo), where w = min{n,m}. The range of p is the best
possible.

For certain other classes of & we get the range of p the entire interval (1,00) as described in the following

theorem.
Theorem 2.4. Suppose that n>1 and m > 1. Let 1 < A < oo and let K; and Ko two compact

sets in R™ and R™, respectively. Let ® be a function supported in Ky x Ka satisfying (1.1). Suppose
that |®(z,y)| < hi(lz)he(Jy))Q",y") for all (z,y) ER™\{0} x R™\{0}, where hy and he are nonnegative
nonincreasing functions on (0,00) and supported in (0,1] and € is a nonnegative function on S"~1 x S™~1L,
Assume that hi(|z]) € LY(R"™), ha(ly]) € LYR™) and Q € LI(S"~ x S™71) for some q > 1. Then for any
p € (1,00), there exists a constant Cp > 0 such that

|58V

_2
Lr(RnxRm) < Cplg—1)"3 || ”LQ(sn—l xSm—1) ||f||FEp(RnXRnL) (2.2)

for f € FFP(R" x R™). The constant C, may depend on the diameters of Ki and K, ||hi(]-)]pemn)
[h2(I"Dll La(mremy and A, but it is independent of q and Q.

By using an extrapolation argument and the estimates (2.1) and (2.2), we get the following results:
Theorem 2.5. Let 1 < A < 0o and let K1 and Ko two compact sets in R™ and R™ , respectively. Let
O be a function supported in K; x Ko satisfying (1.1).

2 _
(a) If @ € B((IO’X 2 (R™ x R™) for some q > 1, then for any p € [ A, 00) there exists a a constant
Cp> 0 independent of ® such that

[ESI]

<C,|1 P T . 2.3
REL= (RN ISR L1 P, (23)

(b) If ® € L(log L)** (R™ x R™), then for any p € [ \,00) there exists a constant Cp> 0 independent
of ® such that

|5

LP(R™ xR™) < CP (1 + ||(I)HL(logL)2/>\(R”XR"")) ||f||F)\_0,)p(Rn xRm) (24)

Theorem 2.6. Let 1 < A < co. Let K1 and Ky be two compact sets in R™ and R™, respectively.
Let ® be a function supported in K; x Ky satisfying (1.1). Suppose that |@(z,y)| < hi(Jz|)he(|y)Q(’,y")
for all (z,y) ER™\{0} x R™\{0}, where Q is a nonnegative function on S"~1 x S™ 1 and hy and hy are
as in Theorem 2.4. Assume that hi(|z|) € LY(R™), ho(|z|) € LY(R™) and Q € L(log L)*/* (S"~! x S™~1) or

2_
Qe B(go’A 2 (S”’1 X Sm’l) for some g > 1. Then for any p € (1,00), there exists a constant Cp> 0 such
that

<C,

. . 2.5
Le(R7xRm) — p”fHF;fp(R"XRm) (2:5)
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As an application of Theorem 2.6, we get the following result.

Theorem 2.7. Let 1 < A < co. If Q € L(log L) (871 x 8™1) or Qe B3 (871 x gm-1)
for some g > 1 and satisfies (1.2), then for any p € (1,00), there exists a constant Cp> 0 such that

< . .
LP(R”XRm) — Cp ||f||F3p(RnXRm)

16 s

(2.6)

Remarks. 1) The conditions on ® in Theorem 2.5 and conditions on 2 in Theorem 2.6 are the weakest

conditions in their respective classes.

2) The result in Theorem 2.5 in the case Q € L(log L)*/* (S"~! x §™~!) improves substantially the main
result in [19] in which they proved p} is bounded on L? if Q € L(log L)?/* (8"t x 8™71) for A > 2 and
bounded on L? if 1 < A < 2 and Q € L(log L)?/**¢(S"~1 xS™~1) for any ¢ > 0. In fact, our result answers the
question posed by the authors in ([19], p. 102). Also, we point out the condition Q € L(log L)?/* (S"71 x sm~1)
is the best possible in the case A =2 as indicated in [8].

3) The result in Theorem 2.5 in the case Q € Béo’%il) (8"~ x 8™~1) for some ¢ > 1) improves substan-
tially the main result in [35] in which they proved if 1 < p,q,A < oo and Q € Béog/M_Qw_l) (8"~ x 8™~1) for
any w € [w(p, A), 1], then ug‘) is bounded on L? where w(p,A) = |2/X — 1|+]2/p — 1| (1—|2/X — 1|). We notice
that in the special case if p = A = 2 we have w(p,\) =0 and Q € B,go’o) (S"’1 X Smfl) . Our result answers
the question posed by the authors in ([35], p. 2397). We point out the condition 2 € B,gO%A) (8"t x sm~1)
for some ¢ > 1 is the best possible in the case A =2 as proved in [1] .

4) All our results obtained in Theorems 2.1-2.6 are new.

5) In [25], the authors proved S((I)z) is bounded on L? if ® satisfies certain size conditions.

6) One of the key ingredients in the proof of our main results is Lemma 3.1 in which we have a
characterization on the homogeneous Triebel-Lizorkin spaces in terms of lacunary sequences. In the nonproduct
case this was obtained by [30]. This result provides an answer to an open problem left unresolved in [35].

Throughout this paper, the letter C' will denote a positive constant that may vary at each occurrence

but is independent of the essential variables.

3. Some lemmas
Let {ay : k € Z} be a lacunary sequence of positive numbers in the sense that GZ—T >a>1foreach k€Z. A

sequence {®" : k € Z} of C°°(R™) functions is said to be a partition of unity adapted to {ay : k € Z} if

supp®, € {E€R":ap-1 < €] < apia} (kb € Z),

STeptE) = 1(eRM{0}),

kEZ

and

oo ()] < C,
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for any multiindex w. Let « € R and 1 < p,q < oco. Let {ay : k € Z} and {b; : j € Z} be lacunary sequences

of positive numbers with a(’;—:l >a>1 and b’;;—:l >b>1(kjeZ) Let 1 < pg< o0, a,8 € R and

S = (o, B). For a distribution on f on R™ x R™ we define the norm || f|| - {opeemb) by
F, bk R J(RexR™)
1/q
— aqpBq | (gm.a mb !
71 oo aoy = | X ey |(op @ @)« f]
Fp.q (R™xXR™) k,jEZ LP(R" xR™)

We shall need the following result which is similar to the corresponding result in the nonproduct case in [30].

Lemma 3.1. Let « € R and 1 < p,q < oco. Let {ay : k € Z} and {b; : j € Z} be lacunary sequences of

.y . b .
positive numbers with afl% >a>1and 5= >b>1(k,j€Z). Then the norm ||f||F_5,{q>zaq,m

.
pra (Rn XR’NL)

is equivalent to the usual homogeneous Triebel-Lizorkin space norm ”fHF];”’I(R"me) if aflzl <d and b{)% <d
(k,j € Z) for some d > min{a,b}.

A proof of Lemma 3.1 can be obtained by following an argument similar to what was used in [30] for the
case a # 0. We notice also that the same argument works for the case a = 0 (see also the remark in [33]). We
omit the details.

For 1 < ¢ < 00, define the maximal operator N(@ by

W) =g (& [ ([ =@ )

The case ¢ = co corresponds to the spherical maximal operator

NIf)@) =sup [ 11— )] do(o)

>0
By the results of Stein [32] and Bourgain [10] we have
Lemma 3.2. Suppose that n > 2 and p > n'. Then N is bounded on L?(R™).
We point out that N is a constant multiple of the Hardy-Littlewood maximal operator. The class of
operators N9 was used in [23], and the following result was proved by Duoandikoetxea [17].

Lemma 3.3. The mazimal function N9 is bounded on LP(R™) if and only if p' < ng'.

For 1 < g < oo, define the maximal operator Nl(gq) on the product space R®"xR™ by

N () (x,y)

1 s rt a
= sup ( / / (/ |f(x —rf,y —wn)] dcr(@)do’(n)) r"le1drdw>
t.s>0 \ "™ Jo Jo \Jgn-1xgm-1

The case ¢ = oo corresponds to the spherical maximal operator on S 'xS™~! given by

1/q

N = s [ 10y )| do(0)do ().

t,s>0
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Define four maximal operators Nl(oo), NQOO), Nl(l) and N2(1) on R"™ x R™ by
NP N@y) = (NEDFCw) @),
N (D) = (N () W)

NV (H)(y) = (NO)f(y) (),

and
N3 (F) (. y) = (NO)f (@) (9)-
Then
NE ()@ y) < (N o NI () (@) (3.1)
and
NP ()yy) < (N o M) () (@, ). (3:2)

By using Lemma 3.2 and (3.1) we get

Lemma 3.4. Suppose that n,m > 2 and p > max{n’,m’}. Then NI(JOC) is bounded on LP(R™"xR™).

By using Lemma 3.3 and (3.2) we get
Lemma 3.5. NI(DU is bounded on LP(R"xR™) for 1 <p < co.

Lemma 3.6. Suppose that n,m > 2. Then NI(Dq) is bounded on LP(R"xR™) for (p'/q')' > max {n/,m'} .

Proof. The proof will be similar to the proof in the nonproduct case given by Duoandikoetxea in [17].

By Holder’s inequality on the integral over S”~1 x S™~! we get

ND (D) < (VEA) @) (V1A )

for some « € [0, 1], which will be chosen later. Again by Hélder’s inequality we have

1/q'

p/ (g

1/4q

)| < [NEase)| |
[v ], < | p/(1-0)0)

AR asten|

Now since (p'/q’) > max{n’,m'}, we can choose a € (0,1) such that p/((1 — a)q) > 1 and p/(aq) >
max {n/,m'} . The proof is complete.

Let 8 > 2. For a suitable function ® defined on R"™ x R™, define the maximal operator Mg on R™ x R™
by

pi+1) g(k+1)

%Ww=wé / 1B10] % £ )] L5

k,jEZ j ok ts '
We shall need the following result, which will play a key role in the proof of Theorem 2.1.
Lemma 3.7. Let K| and Ko be two compact sets in R™ and R™, respectively. Let ® be a function

supported in Ky x Ko. Suppose that ® € LI(R™ x R™) for some q > 1 and let § = 24" Then for every

p,1 < p < oo, there exists a positive constant C, which is independent of q such that
1M (F)ll o rnxremy < Cold = D72 NPl pagrn xmemy 1l Lo (rr xcrm) (3.3)
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for every f € LP(R™ x R™).

Proof. We will follow an argument similar to one in [6] and [7]. Choose and fix ¢ € S(R™) and
¢ € S(R™) such that $(€) =1 for €] <1 and @(€) = 0 for |¢] > 2,4p(n) =1 for |n| < 1 and ¢(n) = 0 for
In| > 2. For cach t,5 € Ry, let (¢4)(€) = ¢(t€) and (¥5)(n) = $(sn). Let pes = |®44|. Define the family of

measures {Yy}¢ser, and {0k ;}i jez by

Yt,s(é-v 77)
= fus(&m) — 2, 0,m)(0e)(€) — £, (& 0)(¥s)(n) — .., (0,0)(0)(€) (40s) (m) (3.4)
and
gi+1) 9(k+1)
R dtds
sen= [ [ TS (35)
0i ok
Now, let
1/2
g(f) = | D lows=fP|
k.jEZ
o™ (f) = sup ([loggl=*f]),
k,jEZ
o (1) = sw (|of) 1)) i=1.2
k,jeZ ’
QUHD L (k+1)
dtds
0;(@1) / / e, (0,m) ——
i ok
and
pU+1) g(k+1)
dtds
Ukj(g 77) /9]_ o Mtb(£7 ) ts
By definition,
fieaeon) = [ e e 0,y dady,
Rn XR'IYl
Since @ is supported in K7 x Ko, it is easy to see that
|ﬂt,s(§777)| S C Hq)HLq(R"xRW) for t78 € R+7
and hence
G103 (€| < Ca =1 ]| o o em - (3.6)

Next, if [t£] > 2 and |sn| > 2, by the choices of ¢ and @ we have Yt73(§,17) = fit.s(§,m), and hence

&k,j(fv 77)

g(k+1)

gG+D)
, )
= / |®(u,v)| / e‘”f'“@ / e L) qudy. (3.7
R”xR™ ok t 97 S
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By integration by parts we obtain

g(k+1)

/ e—it&u@
o t

gUk+1)
/ efitfvuﬁ
ok t

for any 0 < 8 < 1. Hence by (3.6)—(3.8) we have

< C(qg—1)"'min{1,

05| 1wl ™

and hence

<Clg—1)" |0k 7] 1g - ul ™

_B B
(60,5 (€m)| < Cla—1)72 0% 070> |@]| oo xmm) -

Now if |t&] > 2 and |sn| < 2 we have

Tos(Eym) = fies(€m) = i, (€,0) (%) ()
= (s (&m) = £ (6,0)) () (0) + 1, (6,0) (1= (8)(m))

Thus by (3.6), (3.8) and (3.10) we have

B
q

6.5 (&m)| < Clg—1)72 6% 7

8
67n| > 1@l Lo(mr xR

for some positive constants C' and 8. Similarly if |[t{] < 2 and |sn| > 2 we have

B
Y

6,5 (&,m)| < Clg—1)2|0%¢

B
G7n| 2 1Rl Lo (rr xrom)

for some positive constants C' and £.

Finally, if [t£] < 2 and |sn| < 2 we have

Tes(&n) = fus(&m) — f1,,(0,m) — f1,., (£,0) — f1,.(0,0) +

= (&) = i (0.m) (1= () ()
(7. (6,0) = 1, (0.0)) (1= (2)(©))

By the last inequality we have

B
4

. B
65,5 (&m)| < Clg = 1) 05 67|27 | @] Lo (o scmem)

for some positive constants C' and f.
By (3.4) we have

Mof(z.y) < g(f)(ay)+C ((Mrr @idrn) (V" f(x,9)))

+ ((idre @ My ) (0@ f(,9)) ) + Cla = 1) (Mo © Mrn )
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and

o fay) < g(f) (@y)+20 (Mre @idpn) (0" f(2,1)))

+ ((idrn Mo ) (67 f(a)) ) + Cla =172 (Mrn @ M ),

where Mga is the classical Hardy-Littlewood maximal function on R,

Now,
’0,9]) * f(x,y)’

pli+1)

< Clg—1)~ / /|f1 —v|‘¢) ‘dv—

R’m
= Clg—1)7" ¢ (fa),
where
T2 (y) = f(z,y), /|<I3tg uv|du—/|¢1guv|du

and
(G+1)
0 ds

<*<fi>=/w_ ful # |8 &

(3.15)

It is easy to verify that @ is a function on R™ which is of compact support, ® € L*(R™) and ® € LI(R™).

Then by following the proof of the L? boundedness of the corresponding maximal function in the one-parameter

setting in [29], we get

1 Gllgnmmy < Cola =D ]| el e

Li(R™)

for 1 <p<ooand f € LP(R™), which in turn implies
[e ()] < Cota =17 12l paoser 111,
for 1 <p<ooand f € LP(R"™ x R™). By the same method employed in proving (3.16), we have
HU@)*U)HP < Cp(a—= 1) @] yu oo I, for 1 <p < ooand f € LP (R" x R™).
y (3.6), (3.9), (3.11)—(3.13) and Plancherel’s theorem, we obtain

lg (Dl < Cla =172 19| pamoxrm) £l -

By the LP boundedness of the Hardy—Littlewood maximal function and (3.16)—(3.18) we get

lo* (H)llz < Cla =12 N/l poqmnscrem) 1Fl2 -

(3.16)

(3.17)

(3.18)

(3.19)
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Now, by (3.6), (3.19), applying the proof of the lemma ([16], p. 189) with pp = 4 and ¢ = 2, and using the

trivial estimate |lo ;|| < (¢ —1)72 [Pl o (mr xmom)» We get

1/2

2
> 1ok * gk
k,jeZ

Po
1/2
_ 2
< Cpo(a= D)2l pamewrm) ||| D 1951 (3.20)
k,jEZ
Po

for arbitrary functions {gr,;}, ;o on R™ x R™. By (3.6), (3.9), (3.11)-(3.13) and applying Lemma 11 in [5],

we get

lg(Hl, < Cola = D72 N poqmnxrm 11, (3.21)

for all p satisfying p € (4/3,4) and f € LP(R™ xR™). By replacing p = 2 with p =4/3+¢ (¢ — 07) in (3.19)
and repeating the preceding arguments, we get (3.20) for every p satisfying p € (8/7,8) and f € LP(R™ x R™).
By continuing this process, we ultimately get

lg(Hl, < Cola = D72 N poqmnxrmy 111, (3.22)

for all p € (1,00) and LP(R™ x R™). Therefore, by (3.22), and (3.14)—(3.15), we obtain (3.3) to complete the
proof of the lemma.

Lemma 3.8. Let Ky and Ky be two compact sets in R™ and R™, respectively. Let ® be a function
supported in K; x Ko. Suppose that ® € LI(R"™ x R™) for some ¢ >1 and § = 24", Let \ be a real number

with X > 1. Then for 1/ (min{l, % + %}) < p < oo there exists a positive constant C, which is independent

of q such that the following inequality

FICES)) (k+1) L/

[
dtds
N [ ——
) /0 /Ok |®t,s * g, ”

k,jEZ
LP(R™ xR™)

1/x
_2 A
< Gola= 1) 312l pomrxrem) Z |9k, (3.23)
k,j€Z
Lr(R"xR™)
holds for arbitrary functions {gr;(-;*)}y jez on R™ x R™.

Proof. The proof of this lemma will be similar to the proof of Lemma 2.5 in [4]. For completeness and rigor,
we present its proof here. We need to consider two cases:

Case 1. p > \. This is further divided into two subcases.

Case 1 (i): p > A By duality there exists a nonnegative function b in L®/Y)'(R™ x R™) with
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[l (p/n)» <1 such that

A
pi+1) g(k+1) /A

dtds
Z / / |(I)ts *gk]|)\
i k ts

k,jEZ
Lr(R™*xR™)

(J+1) (k+1)
0 dtds

- / / / [Bs = g o) bl ) S iy (3.24)
RnXRmk]eZ 07 0k

By Holder’s inequality we get
A
‘q)t,s * gk,j (.’L', y)|
(/) A
< O (2o xrm) (11, 0) g (2 — 0,y — o) dudv )
R1L><R7n,
Thus

A
1/X
pU+D  gk+1) /

> / / |®, 5 gr ;| dt/t
N

k,jcZ o*
gi+1) g(k+1)

(A7)
kEZ

dtd
91,5, 9) b + o,y + v)fdudvdxdy. (3.25)

Lr(R™xXR™)

By the last inequality

A
pUi+1) g(k+1) /A

dtds
/ / |®t,s * g, |/\
93 ts

kjeZ 0%

Lr(R"xR™)

() :
< C(10gnn) [ S o | Maba ey, (326)
nxRM ,]EZ

where b(z,y) = b(—z, —y). Thus, by Lemma 3.7, (3.26) and Hélder’s inequality, we get (3.23) for A < p < co.
Case 1 (ii): p = A\. We notice that

A
pUi+1) g(k+1) dtds /A
A
S [ a5
k,jEZ 09
Lr(RnxR™)
9U+1) g(k+1)
) dtds
S e Gy,
TLX m

k,jEZ
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By Fubini’s theorem, Hélder’s inequality and the support of ® we have

A
1/
(G+1) (k+1)
0 o A dids
D5 * G, s
,JEZ 07 o*
L?(R™ xR™)
pU+D)  p(k+1)
S (LI SN A A
R7L><RNL 9 0

k,jEZ

dtd
X (/ lgk,;(z —u,y — v)|>‘ [ Dy s (u, v)] dudv) —dedy
R xR™ ts

_ (A/N+1)
< Cl-1) 2<||¢)HL1(R"><RW)> / E |gk,j($7y)|)\ dxdy,
R’!LxRin

k,jEZ

which implies (3.23) for the case p = A.

Case 2. 1/ (mln{l + = }) < p < A. By duality, there exist functions f = fi j.s(z,y) defined on

R X R™ x Ry x Ry with ||| feitsllpa o gnsnpegon ooy, e <1 such that
ei+1) g(k+1) /A
A dtds
|<I)t,s*gk,j| )
9 ts
k ]€Z
P
pU+1) g(k+1)
dtds
= / / / (Pt.s % gk (2,9) Frjit.s (@, y)idrdy
R xRm 2y Joi o*
1/A
_2 ’
< Cla—0 A X lgesl ||| || (3.27)
k.jez P
P
where
g+ pUet1)
2\ dtds
o= [0 [ s foanwa? G
k,jeEZ 67
Since p’ > X, there is a nonnegative function F € L®/*)"(R” x R™) such that [ F |l yary <1 and
IH () e
oGi+1) g(k+1)
dtds
S Lo [ e e G F sy (328)
nxRm g3 o*

k,jeZ

Again, we shall divide the discussion into two subcases.
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Case 2 (i): ¢ < A\. By Holder’s inequality we get

\ (/)
[Pes % frjes(zy)l” < C (/ Dy s(z —u,y —v)|? dudv) x
R’n. XRm
(/ [P s(x — u,y — v)|(%) | frjt,s (U v)|’\/ dudv)
R xR™
and hence

X

! n(l— m(l— ()‘,/)‘)
(o frgasl@n)l < C (00O oyt o)

(/ 1@s( — uyy — )| S0 | fspa(,0)]) dudv> . (3.29)
R xR™

By (3.28)—(3.29) we easily get

IH ()l ae
- - ( /k) pi+1) g(k+1) ,
< C (t’ﬂ(l Q)sm(l q) H(I)H%LI(R”XR"L)) / / / |fk7jt s\U U)‘A
RrxR™ S o ok
A-q dtd
X </ [Py s(x —u,y — v)|(§—1) F(x, y)dzdy) t—sdudv. (3.30)
R" xR™ S

By Holder’s inequality and the support of ®, we obtain

/ [Py s(x —u,y — )| 5D Pz, y)dady
R™xR™

’

AT

< (/ |<I>t,8(u,v)|qdudv> / / |F(x,y)|> dzdy

R”xR™ ly—v|<s J|z—u|<t

xﬁ/

—mA—q) —n(A=q)

< TR TE (|0l o) / [ PG day
ly—v|<s J|z— u|<t

—m(A—q) —n(A—q) (A_il)(MR"me (\F(U”)V'))%

< §VG-D TG (||<I)||Lq(Ranm)) , (3.31)

where Mgnyxrm denotes the strong Hardy—Littlewood maximal function on R™ x R™. Thus by (3.30)—(3.31),
Holder’s inequality, the LP (1 < p < oo) boundedness of Mgrr»xr= and the choice of F', we obtain

9(i+1) g(k+1)

+ dtds
‘/9 |fk‘jt8 7')‘)\ - . (332)

ts
p' /N

H Py = IR0 | S [

k.jEZ
Thus by (3.27) and (3.32), we get (3.23) in the case 1/ (% + %) <p<AXand g <A.
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Case 2 (ii): ¢ > A. We shall again follow the same argument as in the proof of (3.32). By Holder’s
inequality and the support of ®, we obtain

|(I)t,s * fk,j,t,s(l'vy”)\ é

(M/X)
[ [ e o
ly—vI<s J|z—ul<t
X / / |fk,j7t75(u’v)|A dudv
ly—v|<s J|z—u|<t
’ )\/(
—mal oy ’
< s dt . (”‘I)HLCI(R"xR"‘)) / / dudv
ly—v|<s J|z—u|<t
x / / |fk,j7tys(u’v)|A dudv
ly—v|<s J|z—u|<t

A/ !’
—myi—n A
< 5™ (||<I>||L4(Ranm)) </| < / » | fr,j.t,s(u,0)] dudv> , (3.33)
y—v|<s J|z—u|<

which when combined with (3.28) implies that

M=
Q=
~

1y
Y pU+1) p(k+1)
o N
< Ct™"s M(H‘I)HLq Ranm)) / / / | frjt,s(u, )" %
RnXRmk ez 93 ok
dtd
/ / F(z,y)dxdy Sdudv
ly—v|<s J|z—u|<t ts
’ plit+1) g(k+1)
A N
ST / / osealwn) x
R"xR™ ¢ k.j 25}

dtds
MRn XRmF(U,’U) Is (334)

By Holder’s inequality, the LP (1 < p < 0o) boundedness of Mgrnxgrm , and the choices of f and F', we get

>\/
1Dy jre < C (180 gy 1F oy (3.35)

which in turn ends the proof of (3.23) in the case p < A and ¢ > .
Lemma 3.9. Suppose n > 1. Let Ky and Ko be two compact sets in R™ and R™, respectively. Let ®
be a function supported in K1 x Ky and |®(x,y)| < ®(x,y) for some function ® € LI(R™ x R™) for some

q > 1 with ®(x,y) = o(|z|,|y|) for some function ¢ defined on (0,00) x (0,00). Let \ be a real number with
A > q. Then for (Awq)/(Awg— A+ ¢q) < p < oo there exists a positive constant C, such that the following
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inequality

2(i+1) o(k+1) /A
S [ e ae
kjez 2 2"
LP(R"™ xR™)
1/A
A
< Gl pemnxrm) > gk (3.36)
k,jEZ
LP(R"™ xR™)

holds for arbitrary functions {gr;(-,*)}; jez on R™ x R™, where w = min{n, m}.

Proof. The proof of (3.36) for the case p > A follows from Lemma 3.8. So we just need to prove (3.36)
for the case (Awq)/(Awg — A+ ¢q) < p < A. We follow the steps of the proof of (3.23) for the case p < A until
we reach (3.29). By Holder’s inequality and the support of ®, we obtain

/ |Pss(x —u,y — )| 30 Pz, y)dady
R” xR™

=i

< / / loe,s (T, w)|(§%) / F(z — ru,y — wv)do(u)do (v)r" w™ tdrdw
0 0 Sn—lxgm-1
A—gq
> > n—1, m—1 9=
< (/ / lot.s(r,w)|Tr™~tw drdw) X
o Jo
, »
s t % a
/ / </ F(z —ru,y — wv)dcr(u)da(v)) L™ L drdw
0 Jo \Jsn-ixsm-1
< 7}(\(1:11))757&1:11)) H(i)’ (%)N(%)F( ) (3 37)
< s Jp— I x,y). .

Thus by (3.30) and (3.37), Holder’s inequality, Lemma 3.6 and the choice of F', we obtain

20i+1) o(k+1)

/ /dtds
1y < Ol | 2 [ [ e 552

(3.38)
kjez”’? 2k ts

/N

Therefore, by (3.27) and (3.38) we get (3.36) for (Awq)/(Awg — A+ ¢) < p < A. This completes the proof of
Lemma 3.9.

Lemma 3.10. Let n>1 and let A be a real number with X\ > 1. Let ® be an L'(R™ x R™) function,
which is supported in K1 x Ko and ®(x,y) = ¢(|x|,|y|) for some function ¢ defined on (0,00) x (0,00). Then
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for (Aw)" < p < oo there exists a positive constant C, such that the following inequality

2(]+1) 2(k+1> /\dtds 1/)\

) ‘(I)ts gk,]| n
kjez” ¥ 2k 5

LP(R™xR™)
1/
< Gl @l mnsmmy ||| D loksl’ (3.39)
k,jEZ
LP(R" xR™)

holds for arbitrary functions {gr;(-,-)}y jez on R" x R™, where w = min{n, m}.
Proof. We first prove (3.39) in the case p > A. We follow the steps of the proof of (3.23) in the case
p > A until we reach (3.25). By a change of variable we have

A
QlGi+1)  o(h+D) 1/
A dtds
|q)t s * gk ]|
kjez”? 2k ts
’ L?(R" xR™)
CRS NG ERY
<c (\|<1>||L1(Ranm) / / / / By s (1, 0)] %
nxR™ J2J 2k ny«R™
dtd
1915, 0) blar 4w,y + 0) == dedy. (3.40)

By the assumption that ®(x,y) = ¢(|z|, |y|), we obtain

/. L

20i+1) o(k+1)

/ [Py s (u,v)| bz + u,y + v)%da:dy
R xR™ ts

QG+ o(k+1)

o Jo 2k Sn—1xgm-1
dtd
b(u + rtp,v + wsn)do(p)do(n) — ; % =1 gm=1 gy duy
s
< CHq)”Ll(R"XRm)MR"XR’”B(U’ v), (3.41)

where b(z,y) = b(—z, —y). By (3.40)-(3.41) we obtain

(G+1) (k+1) 1/)\ A
z 2 A dids
v D+, * gh
kjez’? 2* ts
LP(R™ xR™)
(AN +1) -
< C(||<I>||L1(Ranm)) /R > gk (w,0)[* Meor s (0) (u, v) dud.

"XR™ k,jEZ
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By Holder’s inequality, the LP (1 < p < 0o) boundedness of Mgn»xr= and the choice of b, we obtain

>,

< (190 )’

/A2

2(i+1) o(k+1)

dtds
/ ‘(I)ts *gk‘j|/\
2k ts

k,jeZ
LP(R"xR™)

Z |gk‘,J| )

k.jez LP/A (R xR™)

A/N'+1)

which in turn ends the proof of (3.39) for the case p > A. The proof of (3.39) in the case p = A will be the
same as in the proof of (3.23). We omit the details. Now, we need to prove (3.39) for the case (Aw)’ <p < \.
We follow the same lines of the proof of (3.23) for the case p < A until we reach (3.28). By Holder’s inequality

we get
y (312)
|Ps.s * frojts(z,y)] < C (/ @tvs(zu,yvﬂdudv) X
R7»xR™
[ e =y = 0 g ()] dud, (3.42)
RnxR™
and hence
; o) (1 (N/X)
‘(I)t,s*fk,j,t,s(xay”)\ < 0(5 (1=a)yn q)H(I)”Ll(R"me)) x
( / 1By (2 — 1,y — )] | fr gt (11, 0) dudv) . (3.43)
R»xR™
By (3.28) and (3.34) we get
V()
2(i+1) o(k+1) ,
< OO )Y [ ST
R»xR™ kjeZ 27 2k
dtd
X </ | Dt s(z —u,y —v)| Fx, y)dxdy) t—sdudv. (3.44)
nyR™ S

Since ®(z,y) = ¢(|z[, [y]), we get
/ [B0a(x — u,y — 0)| Fla,y)dedy

F(u+rtp,v + wsn)

§n—1yxgm—1

INA
ﬁ
o\

8

S

>

S

dtd
do(p)do(n) t—sr”_lsm_ldrdw
s

IN

C 1@ s (g xrmy Np* F (u,0), (3.45)
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where F(z,y) = F(—x, —y). Thus by (3.44)-(2.45), Holder’s inequality, the L? (p > max {n/,m'} ) boundedness
of N }(DOO) and the choice of F' we obtain

2(i+1) o(k+1)

(M/2A+1) \ dtds
e < 11 e | 2 [ PRI (3.40)
k,JEZ 27 p’/)\l

Therefore by (3.28) and (3.44)—(3.46) we get (3.36) in the case (Aw) <p < A.

4. Proof of main results
Proof of Theorem 2.1. For ¢ > 1, let 6§ = 29 .Let {1}~ be a smooth partition of unity in (0, o)

adapted to the intervals I, = [#=(*+1) 9= =D] More precisely, we require the following:
Y € C®, 0<Yp <1, ) () =
k
supp r & I

a5y (1) c
dts ts

where C' can be chosen to be independent of ¢q. For k € Z and £ € R™, let a(ﬁ) = ¢ (€]). Decompose

[ ®es(z,y)

- Z Z ((\Ilm»j"!‘y © \Ij"»k"ﬁu) * f * (I)tas) (IE, y)X[g‘jyg(j«Fl)) (S)X[ek_ﬂ(k#rl)) (t)

wVvEZ k,jEZ

= Z Yuo(z,y,t,s),

w,vEZ

A o0 oo dtds\ X
Té,l)hv(f)(‘r7y) = (/ / ‘T#’V(‘rvyvtv S)‘)\ t)
0 0 8

<y Tqﬁ; A (4.1)

w,vEZ

and define

Then

Therefore, by the last inequality we notice that (2.1) is proved if we show that

A
|70

Lr(R"xR™)

< 0272 (g = 1) 8] gy 10 (o e (4.2)

for 1/ (min{l, % + %}) < p < oo for some positive constants C' and . The proof is based on a sharp L?

estimate and a cruder LP estimate. We start by proving the L? estimate. First we need to get some Fourier
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transform estimates. By definition,
@(577]) Z/ e MY HETYH (1 ) dy.
R xR™

Since @ is supported in the compact set K; x Ko we easily get

J,

Next, since ® satisfies (1.1) and it is of compact support, we get

pU+1) g(k+1)

2 dtds _
[ [@en] 55 < 0= 191w (43)

‘(‘I’t,s)(f’ﬁ)‘ < ClE®Pllparnxmm)  fort,s € Ry (4.4)
and
(@0 (En)| < Clsnl 18l pormny  for bos € R (45

Therefore, by (4.4) we have

p(i+1) g(k+1)

2 dtds
/ / <I)t $)(&:m)
09 ok ts
< C(q- 1)—2‘9<k+1>5‘ [EI - (4.6)

By combining the estimates (4.3) and (4.6) we obtain

gU+D)  gk+1) > dtds 1/2
(I) s 5 77) T
(/9 /9 b ts
8
< Cg-1)71 1Pl Lo (mn xmm) f0k§|2q for some 3 > 0. (4.7
Similarly, by (4.5) we have
gUt+D L g(k+1) > dids 1/2
(I) s f 77) e
(/9 _/0 b ts
.8
< Clg—1)71 [P/l e (mr xRy 67|« for some 3 > 0. (4.8)

Finally, by the arguments employed in the proof in Lemma 3.7 we have

9U+1) 0(k+1> 2 dids 1/2 s
( [ |eae t) < Ofa =17 1% 1] o (49)
03 ok S
and
PICRRS a<k+1> 2 dtds 1/2 s
( L[ [@oe t) < Cla— 1)~ |07 10 oo (4.10)
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By (4.3), (4.7)—(4.10) we have

pU+1) 0<k+1> 2 dids 1/2
( A (©) t) < Clg— 1)t 5[ |07 10 gy (411)
6 ok s
for some positive constants C' and f.
Now, by Plancherel’s theorem we have
2
7N ‘
H & (f) L2(R"xR™M)
QU+ g(k+1)
dtds

= / / / nk-‘ru@\ym,j-l—u)*q)t,s*f(xay)|2 76{ d

kjez /R xR™ Joi ok

pi+1) 9(k+) 2 dtds

</ (/ [ @ )\ff, )| dedn

k,jEZ Tjvw S Intp 67 oF
< Cla—1)72 @70 mexmem

xZ/ / (9]\ e )]f«sn\dfdn

k,jEZ J+v Ik+u
< =12y S [ [ [ dedn

k,jEZ J+v k+u
—20—9|pu|o—>3v 2 2

< Clg—1)7227" 27" M1 Ly o mom) 1122 ) - (4.12)

By (4.12) and ||f]| = [|fll 2@~ xrm), We obtain (4.2) in the case p = =2.

N
Fl (R xR™)

Now by Lemma 3.8 we have

|70 )]

2
L) Cla= D)7 1@l awnscrm) 17155 sy (4.13)

for 1/ (min{l,%—I— %}) < p < o0. By interpolating (4.12) with (4.13), we get (4.2). Hence the proof of

Theorem 1.1 is complete.
Proof of Theorem 2.2. We point out that this theorem can be proved by the same method as used in
the proof of Theorem 2.1, except that one will be using Lemma 3.9 instead of Lemma 3.8. Details are omitted.
Proof of Theorem 2.3. We shall follow an argument similar to the one used in the proof of Theorem
2.1. Let 8 = 2. By the support of ®, we have

[écm| < Clel and |é(em)| < O

for some positive constant C'. Therefore,

(/

(G+1) (k+1)
2 2 2 dtds

1/2
2
[ @ ts) < Cmin{1, 20+0¢]) (4.14)
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and

2(i+1) 2(k+1)

1/2
2 dtd . 2
/ @t ) (&, n)’ 8) < C'min{1, ‘2(]+1)77‘ b
2k

ts

(1

Let

w (u) = / e"do(v) for u € R
gk—1

It is well-known that
_(k=1)
2

I, ()] <

(4.15)

(4.16)

Since @ is supported in K7 x Ky with K3 C R™ — {0} and K3 C R™ — {0} and since ®(z,y) = ¢(|z|, |y]),

we may assume that supp(¢)C [a,00) X [b,00) for some positive numbers a and b.

Now

- / / o (r, W)™ Y™, (€, (wn)drduw.
b

a

By (4.16) we have

— _ (n—1) (m-1)
‘(@tﬁs)(&n)‘ < Cmin{l,a_( 7 7 lmin{1, IS
Thus we have
2G+1) 2(k+1> 1/2
dtds +a - fa
([ [ moenf %) <cle e
27 2k s

By using (4.17) and following an argument similar to the one used in the proof of (4.12), we get

|55, (1)

Yulo—7lv|
e < O gy

By invoking Lemma 3.10, we get

550

poirny < I, oy

for (Aw)' < p < 0o, where w = min{n, m}. By interpolation between (4.18)—(4.19) we obtain

< ¢2 - ulg=nlvi ”fHFI?‘)‘(R”me)

A
[s&0], I

for (Aw)’ < p < co. The proof of Theorem 2.3 is complete.
Proof of Theorem 2.4. Define the maximal operators (3 on R"™ x R"™ by

Co(f) = sup [|®ss| f|.

t,sER 4

(4.17)

(4.18)

(4.19)

(4.20)
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Now we shall prove the L? boundedness of (j(f). We follow an argument similar to the proof of (3.2) in [11].

To this end, we notice that

|q)t,s * f(l'vy)|

IN

Qz /O/f x —ru,y — wv)hy (r)ho(w)r™ ™ drdwdo (u)do (v)

(=)

Sn—1ygm—1

[ 0w (M o M) fay) ¢

Sn—1lygm-—1

IN

> 2 gmUTpy (28)hy(27)drdwdo (u)do (v)

j=—00 k=—00

IN

1Dl s ey P2 (DI L1 eomy X

920w, y)| (HS™ 0 HE) f(@,y)do(u)do(v), (4.21)

Sn—1lygm—1

where

Hﬁ")g ) = sup /f (z —ru)d
r>0

is the Hardy-Littlewood maximal function in the direction of u € S"~!. By (4.24) and the boundedness of

2™ on LP(1 < p < 00) with a bound independent of u, we get

1A < Co I s gy 1t (DL ey 2 (D L oy 151, (4.22)
for 1 < p < co. It is easy to see that
Moy (f)(z,y) < Clg —1)"2C f(z,y),
which in turn implies that
IMa(H)ll, < Cpla=1)72 Q1 (gn-1xsm-1)
< s (D e gy 2 (D gy 1L, (4.23)
for 1 < p < co. By the proof of Lemma 3.8 we get
1/A
pi+1) g(k+1)
2 dtds _2
S L[ e < Gyla = 1) ¥ 19 gnscam
kjez 0 ok
Lr(R"xR™)
/A
< (Dl s gy o2 (Dl gemy ||| D Tl (4.24)
k.jez
LP(R7xR™)
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holds for 1 < p < oo and for arbitrary functions {gx;(-,")}, jez On R"™ x R™. By the assumptions on ¢ and

the proof employed in Lemma 2 in [29], we get

g(k+1)

oy s\
[0 -
( [ [eaen] % )

< Clg—1)2|oke["7

0| 1 (1Dl o oy

P2 (1Dl Lo @m) 1920 La(sn—1csm1y - (4.25)

By (4.24)-(4.25) and following an argument similar to one in the proof of Theorem 2.1, we get (2.2) which ends
the proof of Theorem 2.4.

Proof of Theorems 2.5, 2.6 and 2.7. We can prove Theorem 2.5 by an extrapolation method similar

to the one employed in [29] and [2] along with the estimate in (2.2). A proof of Theorems 2.6 and 2.7 can be

obtained by an extrapolation method similar to the one employed in [2] along with the estimate (2.2). We omit
the details.
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