Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/
Research Article

Turk J Math
(2021) 45: 346 - 359
© TÜBİTAK
doi:10.3906/mat-1907-80

On q - and h-deformations of 3d-superspaces

SALİH ÇELİK* ${ }^{*}$
Department of Mathematics, Yıldız Technical University, İstanbul, Turkey

Received: 18.07.2019 • Accepted/Published Online: 08.12.2020 \quad Final Version: 21.01 .2021

Abstract

In this paper, we introduce nonstandard deformations of $(1+2)$ - and $(2+1)$-superspaces via a contraction using standard deformations of them. This deformed superspaces are denoted by $\mathbb{A}_{h}^{1 \mid 2}$ and $\mathbb{A}_{h^{\prime}}^{2 \mid 1}$, respectively. We find a two-parameter R-matrix satisfying quantum Yang-Baxter equation and thus obtain a new two-parameter nonstandard deformation of the supergroup GL(1|2). Finally, we get a new superalgebra derived from the Hopf superalgebra of functions on the quantum superspace $\mathbb{A}_{p, q}^{1 \mid 2}$.

Key words: Quantum superspace, Hopf superalgebra, quantum supergroup, quantum Lie superalgebra, super \star-algebra

1. Introduction

There are two distinct deformations for general Lie (super)groups as standard and nonstandard (or Jordanian). One of them is the well-known quantum (q-deformed) group and the other is the so-called Jordanian (h deformed) one. Specially, quantum groups $\mathrm{GL}_{q}(2)$ [10] and $\mathrm{GL}_{h}(2)$ [9] have been obtained by deforming the coordinates of a plane to be noncommutative objects. In [1], the authors showed that the h-deformed group can be obtained from the q-deformed Lie group through a singular limit $q \rightarrow 1$ of a linear transformation. This method is known as the contraction procedure. Using this method, one- and two-parameter h-deformations of supergroup GL(1|1) were obtained in [7] and [2], respectively.

In this paper, we give some standard (as q-deformation) deformations of ($1+2$)-superspace using the Hopf superalgebra structure of $\mathcal{O}\left(\mathbb{A}^{1 / 2}\right)$ and nonstandard (as h-deformation) deformations using standard deformations via a contraction. We also introduce an $\left(h, h^{\prime}\right)$-deformed supergroup acting on these two-parameter h-deformed superspaces. Finally, we define involutions on h-deformed superspaces and use the generators of (p, q)-deformed superalgebra $\mathcal{O}\left(\mathbb{A}_{p, q}^{1 / 2}\right)$ to get a new Lie superalgebra.

Throughout the paper, we will fix a base field \mathbb{K}. The reader may consider it as the set of real numbers, \mathbb{R}, or the set of complex numbers, \mathbb{C}. We will denote by \mathbb{G} the Grassmann numbers and by \mathbb{K}^{\prime} the set $\mathbb{K} \cup \mathbb{G}$.

2. On (p, q)-deformation of superspaces $\mathbb{A}^{1 \mid 2}$ and $\mathbb{A}^{2 \mid 1}$

In order to define superalgebras and Hopf superalgebras, some minor changes are made in familiar definitions. These are briefly mentioned in the following.

A supervector space \mathcal{X} over a field \mathbb{K} is a \mathbb{Z}_{2}-graded vector space \mathcal{X} together with two subspaces \mathcal{X}_{0} and \mathcal{X}_{1} of \mathcal{X} such that $\mathcal{X}=\mathcal{X}_{0} \oplus \mathcal{X}_{1}$. If a space \mathcal{X} is a superspace, then we denote by $\tau(a)$ the \mathbb{Z}_{2}-grade of

[^0]the element $a \in \mathcal{X}$. If $\tau(a)=0$, then we will call the element a even and if $\tau(a)=1$, it is called odd.
If $f: \mathcal{X} \longrightarrow \mathcal{Y}$ is a linear map of supervector spaces and it satisfies
$$
\tau(f(v))=\tau(f)+\tau(v) \quad(\bmod 2)
$$
for all $v \in \mathcal{X}$, then f is called a supervector space homomorphism.
A superalgebra (or \mathbb{Z}_{2}-graded algebra) \mathcal{A} over \mathbb{K} is a supervector space over \mathbb{K} with a map $\mathcal{A} \times \mathcal{A} \longrightarrow \mathcal{A}$ such that $\mathcal{A}_{i} \cdot \mathcal{A}_{j} \subset \mathcal{A}_{i+j}$ for $i, j=0,1$. The superalgebra \mathcal{A} is called supercommutative if
$$
a b=(-1)^{\tau(a) \tau(b)} b a
$$
for homogeneous elements $a, b \in \mathcal{A}$.
Let $f: \mathcal{A} \longrightarrow \mathcal{B}$ be a map of definite degree of superalgebras. If it is a supervector space homomorphism and it obeys
$$
f(a b)=(-1)^{\tau(a) \tau(f)} f(a) f(b), \quad \forall a, b \in \mathcal{A}
$$
then f is called a superalgebra homomorphism.

2.1. The algebra of polynomials on the quantum superspace $\mathbb{A}_{q}^{1 / 2}$

Let $\mathbb{K}\left\langle X, \Theta_{1}, \Theta_{2}\right\rangle$ be a free algebra with unit generated by X, Θ_{1}, and Θ_{2}, where the coordinate X is even and the coordinates Θ_{1} and Θ_{2} are odd.

Definition 2.1 [11] Let I_{q} be the two-sided ideal of $\mathbb{K}\left\langle X, \Theta_{1}, \Theta_{2}\right\rangle$ generated by the elements $X \Theta_{1}-q \Theta_{1} X$, $X \Theta_{2}-q \Theta_{2} X, \Theta_{1} \Theta_{2}+q^{-1} \Theta_{2} \Theta_{1}, \Theta_{1}^{2}$, and Θ_{2}^{2}. The quantum superspace $\mathbb{A}_{q}^{1 \mid 2}$ with the function algebra

$$
\mathcal{O}\left(\mathbb{A}_{q}^{1 \mid 2}\right)=\mathbb{K}\left\langle X, \Theta_{1}, \Theta_{2}\right\rangle / I_{q}
$$

is called \mathbb{Z}_{2}-graded quantum space (or quantum superspace).
This associative algebra over the complex number is known as the algebra of polynomials over quantum (1+2)superspace. In accordance with the above definition, we have

$$
\begin{equation*}
X \Theta_{i}=q \Theta_{i} X, \quad \Theta_{i} \Theta_{j}=-q^{i-j} \Theta_{j} \Theta_{i}, \quad(i, j=1,2) \tag{2.1}
\end{equation*}
$$

where $q \in \mathbb{K}-\{0\}$.

Example 2.2 If we consider the generators of the algebra $\mathcal{O}\left(\mathbb{A}_{q}^{1 \mid 2}\right)$ as linear maps, then we can find the matrix representations of them. In fact, it can be seen that there exists a representation $\rho: \mathcal{O}\left(\mathbb{A}_{q}^{1 \mid 2}\right) \rightarrow M\left(3, \mathbb{K}^{\prime}\right)$ such that matrices

$$
\rho(X)=\left(\begin{array}{ccc}
q & 0 & 0 \tag{2.2}\\
0 & q & 0 \\
0 & 0 & q^{2}
\end{array}\right), \quad \rho\left(\Theta_{1}\right)=\left(\begin{array}{ccc}
0 & 0 & \varepsilon_{1} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad \rho\left(\Theta_{2}\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & \varepsilon_{2} \\
0 & 0 & 0
\end{array}\right)
$$

representing the coordinate functions satisfy relations (2.1) for all $\varepsilon_{1}, \varepsilon_{2}$.

Remark 2.3 In the next section, we will assume that ε_{1} and ε_{2} are two Grassmann numbers.

ÇELİK/Turk J Math

The following definition gives the product rule for tensor product of \mathbb{Z}_{2}-graded algebras.

Definition 2.4 The product rule is defined by

$$
\left(a_{1} \otimes a_{2}\right)\left(a_{3} \otimes a_{4}\right)=(-1)^{\tau\left(a_{2}\right) \tau\left(a_{3}\right)}\left(a_{1} a_{3} \otimes a_{2} a_{4}\right)
$$

in the \mathbb{Z}_{2}-graded algebra $\mathcal{A} \otimes \mathcal{A}$, where \mathcal{A} is the \mathbb{Z}_{2}-graded algebra and a_{i} 's are homogeneous elements in \mathcal{A}.
A Hopf superalgebra is a supervector space \mathcal{A} over \mathbb{K} with two algebra homomorphisms $\Delta: \mathcal{A} \rightarrow \mathcal{A} \otimes \mathcal{A}$, called the coproduct, $\epsilon: \mathcal{A} \rightarrow \mathbb{K}$, called the counit, and an algebra antihomomorphism $S: \mathcal{A} \rightarrow \mathcal{A}$, called the antipode, such that

$$
\begin{aligned}
(\Delta \otimes \mathrm{id}) \circ \Delta & =(\mathrm{id} \otimes \Delta) \circ \Delta, \\
m \circ(\epsilon \otimes \mathrm{id}) \circ \Delta & =\mathrm{id}=m \circ(\mathrm{id} \otimes \epsilon) \circ \Delta, \\
m \circ(S \otimes \mathrm{id}) \circ \Delta & =\eta \circ \epsilon=m \circ(\mathrm{id} \otimes S) \circ \Delta,
\end{aligned}
$$

and $\Delta(\mathbf{1})=\mathbf{1} \otimes \mathbf{1}, \epsilon(\mathbf{1})=1, S(\mathbf{1})=\mathbf{1}$, where m is the multiplication map, id is the identity map and $\eta: \mathbb{K} \longrightarrow \mathcal{A}$.
Note. An element of a Hopf superalgebra \mathcal{A} is expressed as a product on the generators and its antipode S is calculated with the property

$$
S(a b)=(-1)^{\tau(a) \tau(b)} S(b) S(a), \quad \forall a, b \in \mathcal{A}
$$

We denote the unital extension of $\mathcal{O}\left(\mathbb{A}_{q}^{1 \mid 2}\right)$ by $\mathcal{F}\left(\mathbb{A}_{q}^{1 \mid 2}\right)$ adding the unit and x^{-1}, the inverse of x, which obeys $x x^{-1}=\mathbf{1}=x^{-1} x$. The following theorem says that the superalgebra $\mathcal{F}\left(\mathbb{A}_{q}^{1 \mid 2}\right)$ has a Hopf algebra structure [4]:

Theorem 2.5 [4] The superalgebra $\mathcal{F}\left(\mathbb{A}_{q}^{1 \mid 2}\right)$ is a Hopf superalgebra with the defining coproduct, counit, and antipode on the algebra $\mathcal{F}\left(\mathbb{A}_{q}^{1 \mid 2}\right)$ as follows:
(1) The coproduct $\Delta: \mathcal{F}\left(\mathbb{A}_{q}^{1 \mid 2}\right) \longrightarrow \mathcal{F}\left(\mathbb{A}_{q}^{1 \mid 2}\right) \otimes \mathcal{F}\left(\mathbb{A}_{q}^{1 \mid 2}\right)$ is defined by

$$
\begin{equation*}
\Delta(X)=X \otimes X, \quad \Delta\left(\Theta_{1}\right)=\Theta_{1} \otimes X+X \otimes \Theta_{1}, \quad \Delta\left(\Theta_{2}\right)=\Theta_{2} \otimes X^{2}+X^{2} \otimes \Theta_{2} \tag{2.3}
\end{equation*}
$$

(2) The counit $\epsilon: \mathcal{F}\left(\mathbb{A}_{q}^{1 \mid 2}\right) \longrightarrow \mathbb{K}$ is given by

$$
\epsilon(X)=1, \quad \epsilon\left(\Theta_{i}\right)=0, \quad(i=1,2)
$$

(3) The algebra $\mathcal{F}\left(\mathbb{A}_{q}^{1 \mid 2}\right)$ admits a \mathbb{K}-algebra antihomomorphism (antipode) $S: \mathcal{F}\left(\mathbb{A}_{q}^{1 \mid 2}\right) \longrightarrow \mathcal{F}\left(\mathbb{A}_{q^{-1}}^{1 \mid 2}\right)$ defined by

$$
S(X)=X^{-1}, \quad S\left(\Theta_{1}\right)=-X^{-1} \Theta_{1} X^{-1}, \quad S\left(\Theta_{2}\right)=-X^{-2} \Theta_{2} X^{-2}
$$

2.2. The algebra of polynomials on the quantum superspace $\mathbb{A}_{p, q}^{2 \mid 1}$

Let $\mathbb{K}\left\langle\Phi, Y_{1}, Y_{2}\right\rangle$ be a free algebra with unit generated by Φ, Y_{1} and Y_{2}, where $\tau(\Phi)=1$ and $\tau\left(Y_{1}\right)=0=\tau\left(Y_{2}\right)$.

ÇELİK/Turk J Math

Definition 2.6[5] Let $\Lambda\left(\mathbb{A}_{q}^{1 \mid 2}\right)$ be the algebra with the generators Φ, Y_{1}, and Y_{2} satisfying the relations

$$
\begin{equation*}
\Phi^{2}=0, \quad \Phi Y_{1}=q p^{-1} Y_{1} \Phi, \quad \Phi Y_{2}=p q Y_{2} \Phi, \quad Y_{1} Y_{2}=p q^{-1} Y_{2} Y_{1} \tag{2.4}
\end{equation*}
$$

We call $\Lambda\left(\mathbb{A}_{q}^{1 \mid 2}\right)$ exterior algebra of the \mathbb{Z}_{2}-graded space $\mathbb{A}_{q}^{1 \mid 2}$.

Remark 2.7 The exterior algebra $\Lambda\left(\mathbb{A}_{q}^{1 \mid 2}\right)$ of the superspace $\mathbb{A}_{q}^{1 \mid 2}$ can be thought of as a two-parameter deformation of the $(\mathcal{Z}+1)$-superspace $\mathbb{A}^{2 \mid 1}$. Thus, we denote this algebra by $\mathcal{O}\left(\mathbb{A}_{p, q}^{2 \mid 1}\right)$.

Example 2.8 If we consider the generators of the algebra $\mathcal{O}\left(\mathbb{A}_{p, q}^{2 \mid 1}\right)$ as linear maps, then we can find the matrix representations of them. In fact, it can be seen that there exists a representation $\rho: \mathcal{O}\left(\mathbb{A}_{p, q}^{2 \mid 1}\right) \rightarrow M\left(3, \mathbb{K}^{\prime}\right)$ such that matrices

$$
\rho(\Phi)=\left(\begin{array}{lll}
0 & 0 & \epsilon \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad \rho\left(Y_{1}\right)=\left(\begin{array}{ccc}
q & 0 & 0 \\
0 & p & 0 \\
0 & 0 & p
\end{array}\right), \quad \rho\left(Y_{2}\right)=\left(\begin{array}{ccc}
0 & c & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

representing the coordinate functions satisfy relations (2.4) for all c, ε.

3. Two-parameter h-deformation of the superspaces

In this section, we introduce a two-parameter h-deformation of the superspace $\mathbb{A}^{1 \mid 2}$ (and its dual) from the (p, q)-deformation via a contraction similar to the method of [1].

We consider the q-deformed algebra of functions on the quantum superspace $\mathbb{A}_{q}^{1 \mid 2}$ generated by X, Θ_{1}, and Θ_{2} with the relations (2.1) and we introduce new even coordinate x and odd coordinates θ_{1}, θ_{2} with the change of basis in the coordinates of the q-superspace using the following g matrix:

$$
\mathbf{X}=\left(\begin{array}{c}
X \tag{3.1}\\
\Theta_{1} \\
\Theta_{2}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & \tilde{h}^{\prime} \\
0 & 1 & 0 \\
\tilde{h} & 0 & 1
\end{array}\right)\left(\begin{array}{c}
x \\
\theta_{1} \\
\theta_{2}
\end{array}\right)=g \mathbf{x}, \quad \tilde{h}=\frac{h}{q-1}, \quad \tilde{h}^{\prime}=\frac{h^{\prime}}{p q-1}
$$

where h and $h^{\prime}\left(h \neq 0 \neq h^{\prime}\right)$ are two new deformation parameters that will be replaced with q and p $(q \neq 1 \neq p q)$ in the limits $q \rightarrow 1$ and $p \rightarrow 1$.

We now assume that the parameters h and h^{\prime} are both Grassmann numbers ($h^{2}=0=h^{\prime 2}, h h^{\prime}=-h^{\prime} h$) and anticommute with θ_{i} for $i=1,2$. When the relations (2.1) are used, one gets

$$
\begin{equation*}
x \theta_{1}=q \theta_{1} x, \quad x \theta_{2}=q \theta_{2} x+h x^{2}, \quad \theta_{2} \theta_{1}=-q \theta_{1} \theta_{2}, \quad \theta_{1}^{2}=0, \quad \theta_{2}^{2}=-h \theta_{2} x . \tag{3.2}
\end{equation*}
$$

Note that the parameter h^{\prime} does not enter the above relations. By taking the limit $q \rightarrow 1$, we obtain the following exchange relations, which define the h-superspace $\mathbb{A}_{h}^{1 \mid 2}$:

Definition $3.1[4]$ Let $\mathcal{O}\left(\mathbb{A}_{h}^{1 \mid 2}\right)$ be the algebra with the generators x, θ_{1}, and θ_{2} satisfying the relations

$$
\begin{equation*}
x \theta_{1}=\theta_{1} x, \quad x \theta_{2}=\theta_{2} x+h x^{2}, \quad \theta_{1} \theta_{2}=-\theta_{2} \theta_{1}, \quad \theta_{1}^{2}=0, \quad \theta_{2}^{2}=-h \theta_{2} x \tag{3.3}
\end{equation*}
$$

We call $\mathcal{O}\left(\mathbb{A}_{h}^{1 \mid 2}\right)$ the algebra of functions on the \mathbb{Z}_{2}-graded quantum space $\mathbb{A}_{h}^{1 \mid 2}$.

Example 3.2 Let us assume that ε_{1} and ε_{2} are two Grassmann numbers. If the g matrix in (3.1) is used, the matrix representation in (2.2) takes the following form:

$$
\rho(x)=q\left(\begin{array}{ccc}
1-\tilde{h} \tilde{h}^{\prime} & 0 & 0 \tag{3.4}\\
0 & 1-\tilde{h} \tilde{h}^{\prime} & -q^{-1} \tilde{h}^{\prime} \varepsilon_{2} \\
0 & 0 & q\left(1-\tilde{h} \tilde{h}^{\prime}\right)
\end{array}\right), \quad \rho\left(\theta_{1}\right)=\left(\begin{array}{ccc}
0 & 0 & \varepsilon_{1} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad \rho\left(\theta_{2}\right)=-\left(\begin{array}{ccc}
q \tilde{h} & 0 & 0 \\
0 & q \tilde{h} & -\left(1+\tilde{h} \tilde{h}^{\prime}\right) \varepsilon_{2} \\
0 & 0 & q^{2} \tilde{h}
\end{array}\right)
$$

These matrices satisfy the relations (3.2), for all ε_{1} and ε_{2}.
Proof Existing claims come from the fact that ρ is an algebra homomorphism.
In the case of dual (exterior) h^{\prime}-superspace, we use the transformation

$$
\begin{equation*}
\hat{\mathbf{X}}=g \hat{\mathbf{x}} \tag{3.5}
\end{equation*}
$$

with the components φ, y_{1}, and y_{2} of $\hat{\mathbf{x}}$. The definition is given below.

Definition 3.3 Let $\mathcal{O}\left(\mathbb{A}_{h^{\prime}}^{2 \mid 1}\right):=\Lambda\left(\mathbb{A}_{h}^{1 \mid 2}\right)$ be the algebra with the generators φ, y_{1}, and y_{2} satisfying the relations

$$
\begin{equation*}
\varphi y_{1}=y_{1} \varphi, \quad \varphi y_{2}=y_{2} \varphi+h^{\prime} y_{2}^{2}, \quad y_{1} y_{2}=y_{2} y_{1}, \quad \varphi^{2}=h^{\prime} y_{2} \varphi \tag{3.6}
\end{equation*}
$$

where $\tau(\varphi)=1$ and $\tau\left(y_{1}\right)=0=\tau\left(y_{2}\right)$. We call $\Lambda\left(\mathbb{A}_{h}^{1 \mid 2}\right)$ the quantum exterior algebra of the \mathbb{Z}_{2}-graded quantum space $\mathbb{A}_{h}^{1 \mid 2}$.

Remark 3.4 The parameter h does not enter the relations (3.6). The exterior algebra $\Lambda\left(\mathbb{A}_{h}^{1 \mid 2}\right)$ of the superspace $\mathbb{A}_{h}^{1 \mid 2}$ can be thought of as an h^{\prime}-deformation of the (2+1)-superspace $\mathbb{A}^{2 \mid 1}$.

4. An R-matrix and its properties

The relations in (2.1) can be written in a compact form as follows:

$$
\begin{equation*}
p \mathbf{X} \otimes \mathbf{X}=\hat{R}_{p, q} \mathbf{X} \otimes \mathbf{X} \tag{4.1}
\end{equation*}
$$

with an R-matrix given by [6]

$$
\hat{R}_{p, q}=\left(\begin{array}{ccccccccc}
p & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & p-1 & 0 & q & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & p q & 0 & 0 \\
0 & p q^{-1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -p q^{-1} & 0 \\
0 & 0 & q^{-1} & 0 & 0 & 0 & p-1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -q & 0 & p-1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1
\end{array}\right)
$$

where $p, q \in \mathbb{K}-\{0\}$. This matrix satisfies the graded braid equation and the matrix $R_{p, q}=P \hat{R}_{p, q}$ satisfies the graded Yang-Baxter equation where P is the super permutation matrix.

It can be considered that a change of basis in the quantum superspaces leads to a two-parameter R matrix. The corresponding R-matrix can be obtained as

$$
\hat{R}_{h, h^{\prime}}=\lim _{(p, q) \rightarrow(1,1)}\left[(g \otimes g)^{-1} \hat{R}_{p, q}(g \otimes g)\right]
$$

where it is assumed that \otimes is graded. As a result, we obtain the following R-matrix

$$
\hat{R}_{h, h^{\prime}}=\left(\begin{array}{ccccccccc}
1+h h^{\prime} & 0 & h^{\prime} & 0 & 0 & 0 & -h^{\prime} & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
h & 0 & h h^{\prime} & 0 & 0 & 0 & 1 & 0 & -h^{\prime} \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\
-h & 0 & 1 & 0 & 0 & 0 & h h^{\prime} & 0 & -h^{\prime} \\
0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & -h & 0 & 0 & 0 & -h & 0 & h h^{\prime}-1
\end{array}\right) .
$$

The equation in (4.1) with the new R-matrix $\hat{R}_{h, h^{\prime}}$ takes the form

$$
\mathbf{x} \otimes \mathbf{x}=\hat{R}_{h, h^{\prime}} \mathbf{x} \otimes \mathbf{x}
$$

that is, the relations (3.3) are equivalent to this equation.
The R-matrix $\hat{R}_{h, h^{\prime}}$ has some interesting properties. Some of them are listed below, where sometimes we write $\hat{R}=\hat{R}_{h, h^{\prime}}$ for simplicity.

1. The matrix $\hat{R}_{h, h^{\prime}}$ satisfies the graded braid equation $\hat{R}_{12} \hat{R}_{23} \hat{R}_{12}=\hat{R}_{23} \hat{R}_{12} \hat{R}_{23}$, where $\hat{R}_{12}=\hat{R} \otimes I_{3}$ and $\hat{R}_{12}=I_{3} \otimes \hat{R}$.
2. The matrix $R_{h, h^{\prime}}=P \hat{R}_{h, h^{\prime}}$ satisfies the graded Yang-Baxter equation $R_{12} R_{13} R_{23}=R_{23} R_{13} R_{12}$, where R_{13} acts both on the first and third spaces.
3. The matrix $\hat{R}_{h, h^{\prime}}$ holds $\hat{R}_{h, h^{\prime}}^{2}=I_{9}$; thus, it has two eigenvalues ± 1.
4. If we set $h h^{\prime}=0$, then the matrix $R_{h, h^{\prime}}$ can be decomposed in the form

$$
R_{h, h^{\prime}}=R(h) R\left(h^{\prime}\right)
$$

where

$$
R(h)=\left(\begin{array}{ccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-h & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
h & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & h & 0 & 0 & 0 & h & 0 & 1
\end{array}\right), \quad R\left(h^{\prime}\right)=\left.R^{\text {st }}(h)\right|_{h=h^{\prime}}
$$

It can be checked that these matrices satisfy the graded Yang-Baxter equation.
5. If $P_{ \pm}$are the projections onto the eigenspaces ± 1 of $\hat{R}_{h, h^{\prime}}$, then we have

$$
\hat{R}_{h, h^{\prime}}=P_{+}-P_{-}
$$

Let $\mathcal{O}\left(\mathbb{A}^{1 \mid 2}\right)$ and $\mathcal{O}\left(\mathbb{A}^{2 \mid 1}\right)$ be the quotients of algebras generated by $x, \theta_{1}, \theta_{2}$ and φ, y_{1}, y_{2} modulo the two-sided ideals generated by $\operatorname{Ker} P_{-}$and $\operatorname{Ker} P_{+}$, respectively. Then $\mathcal{O}\left(\mathbb{A}^{1 \mid 2}\right)$ and $\mathcal{O}\left(\mathbb{A}^{2 \mid 1}\right)$ are isomorphic to $\mathcal{O}\left(\mathbb{A}_{h}^{1 \mid 2}\right)$ with defining relations (3.3) and $\mathcal{O}\left(\mathbb{A}_{h^{\prime}}^{2 \mid 1}\right)$ with defining relations (3.6), respectively. That is, we can write

$$
P_{-} \mathbf{x} \otimes \mathbf{x}=0 \quad \text { and } \quad(-1)^{\tau(\hat{\mathbf{x}})} P_{+} \hat{\mathbf{x}} \otimes \hat{\mathbf{x}}=0
$$

5. The quantum superbialgebra $\mathcal{O}\left(\mathrm{M}_{h, h^{\prime}}(1 \mid 2)\right)$

Let T be a 3×3 matrix in \mathbb{Z}_{2}-graded space given by

$$
T=\left(\begin{array}{lll}
a & \alpha & \beta \\
\gamma & b & c \\
\delta & d & e
\end{array}\right)=\left(t_{i j}\right)
$$

where a, b, c, d, e are even and α, β, γ, and δ are odd. The coordinate ring of such matrices over a field \mathbb{K} is simply the polynomial ring in nine variables, that is $\mathcal{O}(\mathrm{M}(1 \mid 2))=\mathbb{K}[a, b, c, d, e, \alpha, \beta, \gamma, \delta]$.

In this section, we will assume that the matrix entries of T belong to a free superalgebra and define a two-parameter h-analogue of $\mathcal{O}(\mathrm{M}(1 \mid 2))$. To do so, let $x, \theta_{1}, \theta_{2}$ be elements of the superalgebra $\mathcal{O}\left(\mathbb{A}_{h}^{1 \mid 2}\right)$ subject to the relations (3.3) and φ, y_{1}, y_{2} be elements of $\mathcal{O}\left(\mathbb{A}_{h^{\prime}}^{2 \mid 1}\right)$ subject to the relations (3.6), and $t_{i j}$ be nine generators which supercommute with the elements of $\mathcal{O}\left(\mathbb{A}_{h}^{1 \mid 2}\right)$ and $\mathcal{O}\left(\mathbb{A}_{h^{\prime}}^{2 \mid 1}\right)$. It is well known that the supermatrix T defines the linear transformations $T: \mathbb{A}_{h}^{1 \mid 2} \longrightarrow \mathbb{A}_{h}^{1 \mid 2}$ and $T: \mathbb{A}_{h^{\prime}}^{2 \mid 1} \longrightarrow \mathbb{A}_{h^{\prime}}^{2 \mid 1}$. Let $\mathbf{x}=\left(x, \theta_{1}, \theta_{2}\right)^{t}$ and $\hat{\mathbf{x}}=\left(\varphi, y_{1}, y_{2}\right)^{t}$. Thus, we can give the following theorem.

Theorem 5.1 Under the above hypotheses, the following conditions are equivalent:
(i) $T \mathbf{x}=\mathbf{x}^{\prime} \in \mathbb{A}_{h}^{1 \mid 2}$ and $T \hat{\mathbf{x}}=\hat{\mathbf{x}}^{\prime} \in \mathbb{A}_{h^{\prime}}^{2 \mid 1}$,
(ii) the relations are satisfied

$$
\begin{align*}
& a \alpha=\left(1+h h^{\prime}\right) \alpha a-h^{\prime}(\alpha \delta+d a), \quad a \beta=\beta a+h^{\prime}\left(a^{2}-e a-\beta \delta\right)-h \beta^{2}, \\
& a \gamma=\left(1+h h^{\prime}\right) \gamma a+h(\gamma \beta-c a), \quad a c=c a-h c \beta-h^{\prime} \gamma a+h h^{\prime} \gamma \beta, \\
& a \delta=\delta a+h\left(a^{2}-e a+\delta \beta\right)+h^{\prime} \delta^{2}, \quad a d=d a+h \alpha a+h^{\prime} d \delta-h h^{\prime} \alpha \delta, \\
& a e=e a+h \beta(a-e)+h^{\prime}(e-a) \delta, \quad \alpha \beta=-\left(1+h h^{\prime}\right) \beta \alpha+h^{\prime}(\beta d+e \alpha), \\
& \alpha \gamma=-\gamma \alpha, \quad \alpha c=c \alpha, \quad \alpha \delta=-\delta \alpha-h a \alpha+h^{\prime} \delta d-h h^{\prime} a d, \\
& \alpha d=d \alpha+h^{\prime} d^{2}, \quad \alpha e=e \alpha+h \beta \alpha+h^{\prime} e d-h h^{\prime} d \beta, \\
& \beta \gamma=-\gamma \beta+h c \beta-h^{\prime} \gamma a-h h^{\prime} c a, \quad \beta c=\left(1-h h^{\prime}\right) c \beta-h^{\prime}(\gamma \beta+c a), \\
& \beta \delta=-\delta \beta+\left(h \beta+h^{\prime} \delta\right)(e-a), \quad \beta d=d \beta+h \alpha \beta+h^{\prime} d e-h h^{\prime} e \alpha, \\
& \beta e=e \beta+h^{\prime}\left(e^{2}-e a-\delta \beta\right)-h \beta^{2}, \quad \gamma c=c \gamma+h c^{2}, \\
& \gamma \delta=-\left(1+h h^{\prime}\right) \delta \gamma+h(e \gamma+\delta c), \quad \gamma d=d \gamma, \tag{5.1}\\
& \gamma e=e \gamma+h e c-h^{\prime} \delta \gamma-h h^{\prime} c \delta, \quad c \delta=\delta c-h e c-h^{\prime} \delta \gamma-h h^{\prime} \gamma e, \\
& c d=d c, \quad c e=\left(1-h h^{\prime}\right) e c+h^{\prime}(e \gamma-\delta c), \quad \delta d=\left(1-h h^{\prime}\right) d \delta+h(\alpha \delta-d a), \\
& \delta e=e \delta+h\left(e^{2}-e a+\beta \delta\right)+h^{\prime} \delta^{2}, \quad d e=\left(1-h h^{\prime}\right) e d+h(\beta d-e \alpha), \\
& \alpha^{2}=h^{\prime} \alpha d, \quad \beta^{2}=h^{\prime} \beta(e-a), \quad \gamma^{2}=h \gamma c, \quad \delta^{2}=h \delta(e-a), \\
& b t_{i j}=t_{i j} b, \quad a\left(h \beta+h^{\prime} \delta\right)=\left(h \beta+h^{\prime} \delta\right) a, \quad e\left(h \beta+h^{\prime} \delta\right)=\left(h \beta+h^{\prime} \delta\right) e .
\end{align*}
$$

Proof A direct verification shows that the relations (5.1) respect the ideals defining $\mathbb{A}_{h}^{1 / 2}$ and $\mathbb{A}_{h^{\prime}}^{2 \mid 1}$.
Standard FRT construction [8], namely, the relations (5.1), is obtained via the matrix $\hat{R}_{h, h^{\prime}}$ given in Section 4:

Theorem 5.2 A 3x3-matrix T is a \mathbb{Z}_{2}-graded quantum supermatrix if and only if

$$
\hat{R}_{h, h^{\prime}} T_{1} T_{2}=T_{1} T_{2} \hat{R}_{h, h^{\prime}}
$$

where $T_{1}=T \otimes I_{3}$ and $T_{2}=P T_{1} P$.
Definition 5.3 The superalgebra $\mathcal{O}\left(\mathrm{M}_{h, h^{\prime}}(1 \mid 2)\right)$ is the quotient of the free algebra $\mathbb{K}\{a, b, c, d, e, \alpha, \beta, \gamma, \delta\}$ by the two-sided ideal $J_{h, h^{\prime}}$ generated by the relations (5.1) of Theorem 5.1.

Remark 5.4 The quantum matrix space $\mathrm{M}_{p, q}(1 \mid 2)$ is obtained in [6]. It is clear that a change of basis in the quantum superspace leads to the similarity transformation $T=g^{-1} T^{\prime} g$, where $T^{\prime} \in \mathrm{M}_{p, q}(1 \mid 2)$. Therefore, the entries of the transformed quantum matrix T fulfill the commutation relations (5.1) of the matrix elements of the matrix T in $\mathrm{M}(1 \mid 2)$.

Theorem 5.5 The superalgebra $\mathcal{O}\left(\mathrm{M}_{h, h^{\prime}}(1 \mid 2)\right)$ with the following two algebra homomorphisms of superalgebras (1) the coproduct $\Delta: \mathcal{O}\left(\mathrm{M}_{h, h^{\prime}}(1 \mid 2)\right) \longrightarrow \mathcal{O}\left(\mathrm{M}_{h, h^{\prime}}(1 \mid 2)\right) \otimes \mathcal{O}\left(\mathrm{M}_{h, h^{\prime}}(1 \mid 2)\right)$ determined by $\Delta\left(t_{i j}\right)=\sum_{k=1}^{3} t_{i k} \otimes t_{k j}$,

ÇELİK/Turk J Math

(2) the counit $\epsilon: \mathcal{O}\left(\mathrm{M}_{h, h^{\prime}}(1 \mid 2)\right) \longrightarrow \mathbb{K}$ determined by $\epsilon\left(t_{i j}\right)=\delta_{i j}$ becomes a super bialgebra.

Proof It can be easily checked the properties of the costructures hold:
(i) The coproduct Δ is coassociative in the sense of

$$
(\Delta \otimes \mathrm{id}) \circ \Delta=(\mathrm{id} \otimes \Delta) \circ \Delta
$$

where id denotes the identity map on $\mathrm{M}_{h, h^{\prime}}(1 \mid 2)$ and $\Delta(a b)=\Delta(a) \Delta(b), \Delta(\mathbf{1})=\mathbf{1} \otimes \mathbf{1}$.
(ii) The counit ϵ has the property

$$
m \circ(\epsilon \otimes \mathrm{id}) \circ \Delta=\mathrm{id}=m \circ(\mathrm{id} \otimes \epsilon) \circ \Delta
$$

where m stands for the algebra product and $\epsilon(a b)=\epsilon(a) \epsilon(b), \epsilon(\mathbf{1})=1$.
It is well known that $\mathcal{O}\left(\mathbb{A}^{1 \mid 2}\right)$ is comodule algebra over the bialgebra $\mathcal{O}(\mathrm{M}(1 \mid 2))$. The following theorem gives a quantum version of this fact.

Theorem 5.6 There exist algebra homomorphisms

$$
\begin{aligned}
& \delta_{L}: \mathcal{O}\left(\mathbb{A}_{h}^{1 \mid 2}\right) \longrightarrow \mathcal{O}\left(\mathrm{M}_{h, h^{\prime}}(1 \mid 2)\right) \otimes \mathcal{O}\left(\mathbb{A}_{h}^{1 \mid 2}\right), \quad \delta_{L}\left(x_{i}\right)=\sum_{k=1}^{3} t_{i k} \otimes x_{k} \\
& \tilde{\delta}_{L}: \mathcal{O}\left(\mathbb{A}_{h^{\prime}}^{2 \mid 1}\right) \longrightarrow \mathcal{O}\left(\mathrm{M}_{h, h^{\prime}}(1 \mid 2)\right) \otimes \mathcal{O}\left(\mathbb{A}_{h^{\prime}}^{2 \mid 1}\right), \quad \tilde{\delta}_{L}\left(\hat{x}_{i}\right)=\sum_{k=1}^{3} t_{i k} \otimes \hat{x}_{k}
\end{aligned}
$$

where $x_{i} \in\left\{x, \theta_{1}, \theta_{2}\right\}$ and $\hat{x}_{i} \in\left\{\varphi, y_{1}, y_{2}\right\}$.
Proof Using the relations (3.3) and (3.6) together with (5.1), it is enough to check that

$$
\delta_{L}\left(x \theta_{1}-\theta_{1} x\right)=\delta_{L}(x) \delta_{L}\left(\theta_{1}\right)-\delta_{L}\left(\theta_{1}\right) \delta_{L}(x)=0
$$

etc., in $\mathcal{O}\left(\mathrm{M}_{h, h^{\prime}}(1 \mid 2)\right) \otimes \mathcal{O}\left(\mathbb{A}_{h}^{1 \mid 2}\right)$. To see that δ_{L} defines a comodule structure we check that

$$
(\Delta \otimes \mathrm{id}) \circ \delta_{L}=\left(\mathrm{id} \otimes \delta_{L}\right) \circ \delta_{L}, \quad m \circ(\epsilon \otimes \mathrm{id}) \circ \delta_{L}=\mathrm{id}
$$

A quantum supergroup (Hopf superalgebra) can be regarded as a generalization of the notion of a supergroup. It is defined by

$$
\mathcal{O}\left(\operatorname{GL}_{h, h^{\prime}}(1 \mid 2)\right)=\mathcal{O}\left(\mathrm{M}_{h, h^{\prime}}(1 \mid 2)\right)[t] /\left(t \operatorname{sdet}_{h, h^{\prime}}-1\right)
$$

This case is also inviting to generalize the corresponding notions of differential geometry [12]. A differential calculus on $\mathcal{O}\left(\mathrm{GL}_{h, h^{\prime}}(1 \mid 2)\right)$ will be discussed in the next work.

6. A Lie superalgebra derived from $\mathcal{F}\left(\mathbb{A}_{p, q}^{1 \mid 2}\right)$

It is known that an element of a Lie group can be represented by exponential of an element of its Lie algebra. In [3], by virtue of this fact, using the generators of the superalgebra $\mathcal{F}\left(\mathbb{A}_{q}^{1 \mid 1}\right)$, a new superalgebra is obtained

ÇELİK/Turk J Math

from this algebra. In this section, we will obtain a new superalgebra from $\mathcal{F}\left(\mathbb{A}_{p, q}^{1 \mid 2}\right)$. Thus, let us begin with the definition of $\mathcal{F}\left(\mathbb{A}_{p, q}^{1 \mid 2}\right)$ which is an extension to two parameters of $\mathcal{F}\left(\mathbb{A}_{q}^{1 \mid 2}\right)$.

Definition 6.1 Let $I_{p, q}$ be the two-sided ideal of $\mathbb{K}\left\langle X, \Theta_{1}, \Theta_{2}\right\rangle$ generated by the elements $X \Theta_{1}-q \Theta_{1} X$, $X \Theta_{2}-p \Theta_{2} X, \Theta_{1} \Theta_{2}+p q^{-2} \Theta_{2} \Theta_{1}, \Theta_{1}^{2}$, and Θ_{2}^{2}. The quantum superspace $\mathbb{A}_{p, q}^{1 \mid 2}$ with the function algebra

$$
\mathcal{O}\left(\mathbb{A}_{p, q}^{1 \mid 2}\right)=\mathbb{K}\left\langle X, \Theta_{1}, \Theta_{2}\right\rangle / I_{p, q}
$$

is called quantum superspace.
In accordance with this definition, we have

$$
\begin{equation*}
X \Theta_{1}=q \Theta_{1} X, \quad X \Theta_{2}=p \Theta_{2} X, \quad \Theta_{1} \Theta_{2}=-p q^{-2} \Theta_{2} \Theta_{1}, \quad \Theta_{i}^{2}=0 \tag{6.1}
\end{equation*}
$$

where $p, q \in \mathbb{K}-\{0\}$.

Example 6.2 If we consider the generators of the algebra $\mathcal{O}\left(\mathbb{A}_{p, q}^{1 \mid 2}\right)$ as linear maps, then we can find the matrix representations of them. In fact, it can be seen that there exists a representation $\rho: \mathcal{O}\left(\mathbb{A}_{p, q}^{1 \mid 2}\right) \rightarrow M\left(3, \mathbb{K}^{\prime}\right)$ such that matrices

$$
\rho(X)=\left(\begin{array}{ccc}
q & 0 & 0 \\
0 & p & 0 \\
0 & 0 & p q
\end{array}\right), \quad \rho\left(\Theta_{1}\right)=\left(\begin{array}{ccc}
0 & 0 & \varepsilon_{1} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad \rho\left(\Theta_{2}\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & \varepsilon_{2} \\
0 & 0 & 0
\end{array}\right)
$$

representing the coordinate functions satisfy relations (6.1) for all $\varepsilon_{1}, \varepsilon_{2}$.
Let $\mathbb{K}\left\langle u, \xi_{1}, \xi_{2}\right\rangle$ be a free algebra generated by u, ξ_{1}, ξ_{2}, where $\tau(u)=0, \tau\left(\xi_{1}\right)=1=\tau\left(\xi_{2}\right)$. Let \mathcal{L} be the quotient of the free algebra $\mathbb{K}\left\langle u, \xi_{1}, \xi_{2}\right\rangle$ by the two-sided ideal J_{0} generated by the elements $u \xi_{k}-\xi_{k} u$, $\xi_{1} \xi_{2}+\xi_{2} \xi_{1}, \xi_{k}^{2}$ for $k=1,2$.

Now, we will show that the Hopf superalgebra of Theorem 2.5 can be embedded into the enveloping superalgebra of a Lie superalgebra, with Lie structure and a deformed coproduct. Thus, let us define the generators of the algebra $\mathcal{F}\left(\mathbb{A}_{p, q}^{1 \mid 2}\right)$ as

$$
X:=e^{u}, \quad \Theta_{k}:=e^{k u} \xi_{k}
$$

for $k=1,2$. The first equality implies that the generator X is invertible. Then, by direct calculations we can prove the following lemma.

Lemma 6.3 The generators u, ξ_{1}, ξ_{2} have the following commutation relations (Lie (anti-)brackets), for $j, k=1,2$

$$
\begin{equation*}
\left[u, \xi_{k}\right]=\mathbf{i} \hbar_{k} \xi_{k}, \quad\left[\xi_{j}, \xi_{k}\right]_{+}=0 \tag{6.2}
\end{equation*}
$$

where $q=e^{\mathbf{i} \hbar_{1}}, p=e^{\mathbf{i} \hbar_{2}}$ with $\mathbf{i}=\sqrt{-1}$ and $\hbar_{1}, \hbar_{2} \in \mathbb{R}$.
We denote the algebra for which the generators obey the relations (6.2) by $\mathcal{L}_{\hbar_{1}, \hbar_{2}}:=\mathcal{L}\left(\mathbb{A}_{p, q}^{1 \mid 2}\right)$. Let $U\left(\mathcal{L}_{\hbar_{1}, \hbar_{2}}\right)$ be the algebra defined by (6.2). The Hopf superalgebra structure of $U\left(\mathcal{L}_{\hbar_{1}, \hbar_{2}}\right)$ can be read off from Theorem 2.5:

Theorem 6.4 The superalgebra $U\left(\mathcal{L}_{\hbar_{1}, \hbar_{2}}\right)$ is a Hopf superalgebra with coproduct, counit, and antipode on the algebra $\mathcal{L}_{\hbar_{1}, \hbar_{2}}$ defined by

$$
\Delta\left(u_{i}\right)=u_{i} \otimes \mathbf{1}+\mathbf{1} \otimes u_{i}, \quad \epsilon\left(u_{i}\right)=0, \quad S\left(u_{i}\right)=-u_{i}
$$

for $u_{i} \in\left\{u, \xi_{1}, \xi_{2}\right\}$.

Example 6.5 There exists a Lie algebra homomorphism μ from $\mathcal{L}_{\hbar_{1}, \hbar_{2}}$ into $\mathrm{M}\left(3, \mathbb{K}^{\prime}\right)$.
Proof We see that there exists an algebra homomorphism ρ from $\mathcal{F}\left(\mathbb{A}_{p, q}^{1 \mid 2}\right)$ into $\mathrm{M}\left(3, \mathbb{K}^{\prime}\right)$ such that the relations (6.1) hold. As a consequence of this fact, there exists a Lie algebra homomorphism μ from $\mathcal{L}_{\hbar_{1}, \hbar_{2}}$ into $\mathrm{M}\left(3, \mathbb{K}^{\prime}\right)$. The action of μ on the generators of $\mathcal{L}_{\hbar_{1}, \hbar_{2}}$ is of the form

$$
\mu(u)=\left(\begin{array}{ccc}
\mathbf{i} \hbar_{2} & 0 & 0 \tag{6.3}\\
0 & \mathbf{i} \hbar_{1} & 0 \\
0 & 0 & \mathbf{i}\left(\hbar_{1}+\hbar_{2}\right)
\end{array}\right), \quad \mu\left(\xi_{1}\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
e^{-\mathbf{i}\left(\hbar_{1}+\hbar_{2}\right)} \varepsilon_{1} & 0 & 0
\end{array}\right), \quad \mu\left(\xi_{2}\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & e^{-2 \mathbf{i}\left(\hbar_{1}+\hbar_{2}\right)} \varepsilon_{2} & 0
\end{array}\right)
$$

where ε_{1} and ε_{2} are two Grassmann numbers. To see that the relations (6.2) are preserved under the action of μ, we use the fact that

$$
\mu[a, b]=[\mu(a), \mu(b)],
$$

for all $a, b \in \mathcal{L}_{\hbar_{1}, \hbar_{2}}$.

7. \star-Structures on the algebras $\mathcal{O}\left(\mathbb{A}_{h}^{1 \mid 2}\right)$ and $\mathcal{O}\left(\mathbb{A}_{h^{\prime}}^{2 \mid 1}\right)$

It is possible to define the star operation (or involution) on the Grassmann generators. However, there are two possibilities to do so ${ }^{*}$. If α and β are two Grassmann generators and λ is a complex number and $\bar{\lambda}$ its complex conjugate, the star operation, denoted by \star, is defined by

$$
(\lambda \alpha)^{\star}=\bar{\lambda} \alpha^{\star}, \quad(\alpha \beta)^{\star}=\beta^{\star} \alpha^{\star}, \quad\left(\alpha^{\star}\right)^{\star}=\alpha
$$

and the superstar operation, denoted by $\#$, is defined by

$$
(\lambda \alpha)^{\#}=\bar{\lambda} \alpha^{\#}, \quad(\alpha \beta)^{\#}=\alpha^{\#} \beta^{\#}, \quad\left(\alpha^{\#}\right)^{\#}=-\alpha
$$

It is easily shown that there exists a star operation on the algebra $\mathcal{O}\left(\mathbb{A}_{q}^{1 \mid 2}\right)$ if q is a complex number of modulus one:

Proposition 7.1 (i) If $\bar{q}=q^{-1}$ then the algebra $\mathcal{O}\left(\mathbb{A}_{q}^{1 \mid 2}\right)$ equipped with the involution determined by

$$
\begin{equation*}
X^{\star}=X, \quad \Theta_{i}^{\star}=\Theta_{i} \quad(i=1,2) \tag{7.1}
\end{equation*}
$$

becomes a \star-algebra.
(ii) If $\bar{p}=p^{-1}$ and $\bar{q}=q^{-1}$ then the algebra $\mathcal{O}\left(\mathbb{A}_{p, q}^{2 \mid 1}\right)$ equipped with the involution determined by

$$
\begin{equation*}
\Phi^{\star}=\Phi, \quad Y_{i}^{\star}=-Y_{i} \quad(i=1,2) \tag{7.2}
\end{equation*}
$$

becomes a \star-algebra.

[^1]
7.1. \star-Structures on the algebra $\mathcal{O}\left(\mathbb{A}_{h}^{1 \mid 2}\right)$

As noted in Section 3, the relations in (3.3) do not include the parameter h^{\prime}. Thus, we can rearrange the change of basis in the coordinates (see, equation (3.1)) as

$$
\left(\begin{array}{c}
X \tag{7.3}\\
\Theta_{1} \\
\Theta_{2}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
\frac{h}{q-1} & 0 & 1
\end{array}\right)\left(\begin{array}{c}
x \\
\theta_{1} \\
\theta_{2}
\end{array}\right)
$$

This case can help us to define a star operation on the algebra $\mathcal{O}\left(\mathbb{A}_{h}^{1 \mid 2}\right)$ by a coordinate transformation using the generators of the algebra $\mathcal{O}\left(\mathbb{A}_{q}^{1 \mid 2}\right)$ and to prove the following lemma.

Lemma 7.2 For a certain special choice of h, there exists an involution on the algebra $\mathcal{O}\left(\mathbb{A}_{h}^{1 \mid 2}\right)$.
Proof Using the equation (7.3), we introduce the coordinates x, θ_{1}, and θ_{2} with the change of basis in the coordinates of the superspace $\mathbb{A}_{q}^{1 \mid 2}$ as follows:

$$
x=X, \quad \theta_{1}=\Theta_{1}, \quad \theta_{2}=\Theta_{2}-\frac{h}{q-1} X
$$

Then, with $|q|=1$ and (7.1)

$$
\theta_{2}^{\star}=\Theta_{2}^{\star}-\frac{q \bar{h}}{1-q} X^{\star}=\theta_{2}+\frac{h+q \bar{h}}{q-1} x
$$

so that, if we demand that $\bar{h}=-h$, we obtain $\theta_{2}^{\star}=\theta_{2}-h x$. Note that

$$
\left(x^{\star}\right)^{\star}=x, \quad\left(\theta_{1}^{\star}\right)^{\star}=\theta_{1}, \quad\left(\theta_{2}^{\star}\right)^{\star}=\theta_{2}
$$

for all h.
Proposition 7.3 If $\bar{h}=-h$, then the algebra $\mathcal{O}\left(\mathbb{A}_{h}^{1 \mid 2}\right)$ supplied with the involution determined by

$$
\begin{equation*}
x^{\star}=x, \quad \theta_{1}^{\star}=\theta_{1}, \quad \theta_{2}^{\star}=\theta_{2}-h x \tag{7.4}
\end{equation*}
$$

becomes a \star-algebra.
Proof Since $\bar{h}=-h$, we have

$$
\begin{aligned}
\left(x \theta_{1}-\theta_{1} x\right)^{\star} & =\theta_{1} x-x \theta_{1}, \\
\left(x \theta_{2}-\theta_{2} x-h x^{2}\right)^{\star} & =\left(\theta_{2}-h x\right) x-x\left(\theta_{2}-h x\right)+h x^{2}=\left(\theta_{2} x-x \theta_{2}+h x^{2}\right), \\
\left(\theta_{1} \theta_{2}+\theta_{2} \theta_{1}\right)^{\star} & =\left(\theta_{2}-h x\right) \theta_{1}+\theta_{1}\left(\theta_{2}-h x\right)=\theta_{2} \theta_{1}+\theta_{1} \theta_{2}, \\
\left(\theta_{2}^{2}+h \theta_{2} x\right)^{\star} & =\left(\theta_{2}-h x\right)\left(\theta_{2}-h x\right)+x\left(\theta_{2}-h x\right)(-h)=\theta_{2}^{2}+h \theta_{2} x .
\end{aligned}
$$

Hence, the ideal $\left(x \theta_{1}-\theta_{1} x, x \theta_{2}-\theta_{2} x-h x^{2}, \theta_{1} \theta_{2}+\theta_{2} \theta_{1}, \theta_{1}^{2}, \theta_{2}^{2}+h \theta_{2} x\right)$ is \star-invariant and the quotient algebra

$$
\mathbb{K}\left\langle x, \theta_{1}, \theta_{2}\right\rangle /\left(x \theta_{1}-\theta_{1} x, x \theta_{2}-\theta_{2} x-h x^{2}, \theta_{1} \theta_{2}+\theta_{2} \theta_{1}, \theta_{1}^{2}, \theta_{2}^{2}+h \theta_{2} x\right)
$$

becomes a \star-algebra.

Remark 7.4 Of course, we can consider the change of basis in the coordinates of the superspace $\mathbb{A}_{q}^{1 \mid 2}$ in (3.1). In this case, since

$$
\begin{aligned}
& x^{\star}=\left(1+\tilde{h} \tilde{\tilde{h}}^{\prime}-\overline{\tilde{h}} \tilde{h}^{\prime}\right) x+\left(\tilde{h}^{\prime}-\overline{\tilde{h}}^{\prime}\right) \theta_{2} \\
& \theta_{1}^{\star}=\theta_{1} \\
& \theta_{2}^{\star}=\left(1-\overline{\tilde{h}}\left(\tilde{h}^{\prime}-\overline{\tilde{h}}^{\prime}\right)\right) \theta_{2}+(\tilde{h}-\overline{\tilde{h}}) x
\end{aligned}
$$

we have again (7.4) with the choices $\bar{h}=-h$ and $\bar{h}^{\prime}=h^{\prime}$.

7.2. \star-Structure on the algebra $\mathcal{O}\left(\mathbb{A}_{h^{\prime}}^{2 \mid 1}\right)$

Since the relations in (3.6) do not include the parameter h, we can rearrange the change of basis in the coordinates (see, equation (3.1)) as

$$
\left(\begin{array}{c}
\Phi \tag{7.5}\\
Y_{1} \\
Y_{2}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & \frac{h^{\prime}}{p q-1} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
\varphi \\
y_{1} \\
y_{2}
\end{array}\right)
$$

There exists a special case, where the algebra $\mathcal{O}\left(\mathbb{A}_{h^{\prime}}^{2 \mid 1}\right)$ admits an involution. The proofs of the following lemma and proposition can be done in a similar way to Lemma 7.2 and Proposition 7.3.

Lemma 7.5 If $\bar{h}^{\prime}=h^{\prime}$, there exists an involution on the algebra $\mathcal{O}\left(\mathbb{A}_{h^{\prime}}^{2 \mid 1}\right)$.

Proposition 7.6 If $\bar{h}^{\prime}=h^{\prime}$, then the algebra $\mathcal{O}\left(\mathbb{A}_{h}^{2 \mid 1}\right)$ supplied with the involution determined by

$$
\begin{equation*}
\varphi^{\star}=\varphi-h^{\prime} y_{2}, \quad y_{i}^{\star}=-y_{i}, \quad(i=1,2) \tag{7.6}
\end{equation*}
$$

becomes a \star-algebra.

References

[1] Aghamohammadi A, Khorrami M, Shariati A. h-deformation as a contraction of q-deformation. Jordanian deformation of SL(2) as a contraction of its Drinfeld-Jimbo deformation. Journal of Physics A: Mathematical and General 1995; 28 (8): L225-L231.
[2] Celik S. Two-parametric extension of h-deformation of GL (1|1). Letters in Mathematical Physics 1997; 42: 299-308.
[3] Celik S. Differential geometry of the Lie algebra of the quantum superplane. Balkan Physics Letters 2003; 11: 119-127. (arXiv:math/0201170)
[4] Celik S. Bicovariant differential calculus on the quantum superspace $\mathbb{R}_{q}(1 \mid 2)$. Journal of Algebra and its Applications 2016; 15: 1650172 (17 pages).
[5] Celik Sultan A. Differential calculi on super-Hopf algebra $\mathcal{F}\left(\mathbb{R}_{q}(1 \mid 2)\right)$. Advanced in Applied Clifford Algebras 2018; 28: 85:1-16.
[6] Celik Sultan A. A two-parameter deformation of supergroup GL (1|2). Journal of the Institute of Science and Technology 2018; 8(4): 271-280.
[7] Dabrowski L, Parashar P. h-deformation of GL (1|1). Letters in Mathematical Physisc 1996; 38: 331-336.

ÇELİK/Turk J Math

[8] Faddeev LD, Reshetikhin NY, Takhtajan LA. Quantization of Lie groups and Lie algebras. Leningrad Mathematical Journal 1990; 1 (1): 193-225.
[9] Kupershmidt BA. The quantum group GL ${ }_{h}(2)$. Journal of Physics A: Mathematical and General 1992; 25: L1239L1244.
[10] Manin YI. Quantum groups and noncommutative geometry. Montreal, Canada: Centre de Recherches Mathematiques, Universite de Montreal, 1988.
[11] Manin YI. Multiparametric quantum deformation of the general linear supergroup. Communications in Mathematical Physics 1989; 123 (1): 163-175.
[12] Woronowicz SL. Differential calculus on compact matrix pseudogroups (quantum groups). Communications in Mathematical Physics 1989; 122 (1): 125-170.

[^0]: *Correspondence: sacelik@yildiz.edu.tr

[^1]: *arXiv.org e-Print archive (1996). Dictionary on Lie Superalgebras [online]. Website https://arxiv.org/abs/hep-th/9607161 [18 July 1996].

