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Abstract: In this paper, we introduce nonstandard deformations of (1+2)- and (2+1)-superspaces via a contraction
using standard deformations of them. This deformed superspaces are denoted by A;‘Z and Ai‘,l , respectively. We find a
two-parameter R-matrix satisfying quantum Yang—Baxter equation and thus obtain a new two-parameter nonstandard
deformation of the supergroup GL(1|2). Finally, we get a new superalgebra derived from the Hopf superalgebra of

. 12
functions on the quantum superspace Apy.
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1. Introduction
There are two distinct deformations for general Lie (super)groups as standard and nonstandard (or Jordanian).
One of them is the well-known quantum (g-deformed) group and the other is the so-called Jordanian (h-
deformed) one. Specially, quantum groups GL4(2) [10] and GL(2) [9] have been obtained by deforming the
coordinates of a plane to be noncommutative objects. In [1], the authors showed that the h-deformed group
can be obtained from the g-deformed Lie group through a singular limit ¢ — 1 of a linear transformation. This
method is known as the contraction procedure. Using this method, one- and two-parameter h-deformations of
supergroup GL(1|1) were obtained in [7] and [2], respectively.

In this paper, we give some standard (as g-deformation) deformations of (142)-superspace using the
Hopf superalgebra structure of O(A'?) and nonstandard (as h-deformation) deformations using standard
deformations via a contraction. We also introduce an (h, h’)-deformed supergroup acting on these two-parameter

h-deformed superspaces. Finally, we define involutions on h-deformed superspaces and use the generators of
(p, ¢)-deformed superalgebra O(A,l,l,z) to get a new Lie superalgebra.

Throughout the paper, we will fix a base field K. The reader may consider it as the set of real numbers,

R, or the set of complex numbers, C. We will denote by G the Grassmann numbers and by K’ the set KUG.

2. On (p, q)-deformation of superspaces A'l?> and A2
In order to define superalgebras and Hopf superalgebras, some minor changes are made in familiar definitions.
These are briefly mentioned in the following.

A supervector space X over a field K is a Zs-graded vector space X together with two subspaces X

and X; of X such that X = Xy @ X;. If a space X is a superspace, then we denote by 7(a) the Zs-grade of
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the element a € X. If 7(a) = 0, then we will call the element a even and if 7(a) =1, it is called odd.

If f: X — )Y is a linear map of supervector spaces and it satisfies

T(f(v)) =7(f) +7(v) (mod2)

for all v € X', then f is called a supervector space homomorphism.
A superalgebra (or Zs-graded algebra) A over K is a supervector space over K with a map Ax A — A
such that A; - A; C A;y; for i,j =0,1. The superalgebra A is called supercommutative if

ab = (—1)7@7®)pg

for homogeneous elements a,b € A.

Let f: A — B be a map of definite degree of superalgebras. If it is a supervector space homomorphism
and it obeys

flab) = (=1)7 @7 f(a) f(b), Va,be A,

then f is called a superalgebra homomorphism.

2.1. The algebra of polynomials on the quantum superspace Aéu

Let K(X,01,02) be a free algebra with unit generated by X, 1, and Oy, where the coordinate X is even

and the coordinates ©1 and ©5 are odd.

Definition 2.1 [11] Let I, be the two-sided ideal of K(X,©1,02) generated by the elements X0 — ¢1X ,
X0y — q02X, 0102+ ¢ 10201, 07, and ©%. The quantum superspace Aé‘z with the function algebra

O(A]?) =K(X,01,0,)/1,
is called Zo-graded quantum space (or quantum superspace).

This associative algebra over the complex number is known as the algebra of polynomials over quantum (1+42)-

superspace. In accordance with the above definition, we have
X@i = q@iX, @i®j = —qi_j(%j@i, (’L,] = 17 2) (2.1)
where ¢ € K — {0}.

Example 2.2 If we consider the generators of the algebra O(Aélz) as linear maps, then we can find the matrix

representations of them. In fact, it can be seen that there exists a representation p : (’)(Aép) — M(3,K’) such

that matrices

qg 0 O 0 0 e 0 0 O
p(X)=10 g 0], p©1)=10 0 0, p(©2)=(0 0 & (2.2)
00 ¢ 00 0 00 0

representing the coordinate functions satisfy relations (2.1) for all e1,e4.

Remark 2.3 In the next section, we will assume that €1 and g5 are two Grassmann numbers.
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The following definition gives the product rule for tensor product of Zs-graded algebras.
Definition 2.4 The product rule is defined by

(a1 X az)(ag X CL4) = (—1)7(“2)7(“3)((11@3 X a2a4)
in the Zo-graded algebra A® A, where A is the Zo-graded algebra and a;’s are homogeneous elements in A.

A Hopf superalgebra is a supervector space A over K with two algebra homomorphisms A : A - AR A,
called the coproduct, €: A — K, called the counit, and an algebra antihomomorphism S : A — A, called the
antipode, such that

(A®id)c A= (ld® A)o A,
mo(e®id)oA=id=mo (id®e€)o A,
mo(S®id)oA=noe=mo (id®S) oA,

and A(1) =1®1, ¢1) =1, S(1) = 1, where m is the multiplication map, id is the identity map and
n:K— A.
Note. An element of a Hopf superalgebra A is expressed as a product on the generators and its antipode S is

calculated with the property
S(ab) = (—1)" W7 ®)IS[B)S(a),  Va,b e A

We denote the unital extension of O(Aép) by F (Aé‘z) adding the unit and x~!, the inverse of x, which

1 1

obeys zx~* = 1 = x7'x. The following theorem says that the superalgebra F (Aélz) has a Hopf algebra

structure [4]:

Theorem 2.5 [/] The superalgebra ]-'(Aéu) is a Hopf superalgebra with the defining coproduct, counit, and
antipode on the algebra ]-'(Aép) as follows:

(1) The coproduct A : }'(Aép) — }"(Aélz) ®]—"(A3|2) is defined by
AX)=X®X, AO)=02X+X®0;, A(Oy) =0, X*+ X?®0,. (2.3)

(2) The counit e : .F(Aélz) — K is given by

3) The algebra admits a K-algebra antthomomorphism (antipode : — 1) define
he algebra F(Ay?) ad K -algeb h h de) S : F(AL? F(AL2) defined
by
S(X) = X_17 S(®l> = _X_1®1X_17 S(@Q) = —X_2®2X_2.

2.2. The algebra of polynomials on the quantum superspace AIQ,‘,}I

Let K(®,Y7,Y5) be a free algebra with unit generated by ®, Y7 and Ya, where 7(®) =1 and 7(Y1) = 0 = 7(Y2).
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Definition 2.6 [5] Let A(A;p) be the algebra with the generators ®, Y1, and Ys satisfying the relations
B2=0, OV, =qpVi®, OV, =pg¥ad, YiYs=pgl VaYi. (2.4)

We call A(Aép) exterior algebra of the Zsg-graded space A(11|2.

Remark 2.7 The exterior algebra A(A;p) of the superspace Aéu can be thought of as a two-parameter

deformation of the (2+1)-superspace A?I*. Thus, we denote this algebra by (’)(Aﬁé).

Example 2.8 If we consider the generators of the algebra O(Af,!tll) as linear maps, then we can find the matriz

representations of them. In fact, it can be seen that there exists a representation p : O(Ai!é) — M(3,K’) such

that matrices

p(®) =

S O O
o O O
oSO m
o O O
SO0
S O O

qg 0 O
, pY1)=(0 p 0], p(Y2)=
0 0 p
representing the coordinate functions satisfy relations (2.4) for all c,¢.

3. Two-parameter h-deformation of the superspaces

In this section, we introduce a two-parameter h-deformation of the superspace A!l? (and its dual) from the

(p, q)-deformation via a contraction similar to the method of [1].

We consider the g-deformed algebra of functions on the quantum superspace A;‘Z generated by X, O,
and O with the relations (2.1) and we introduce new even coordinate 2 and odd coordinates 6y, 62 with the

change of basis in the coordinates of the g-superspace using the following ¢ matrix:

X 10 ”\ [z h Y
X = @1 =0 1 O (91 =JgX, h= 71, h/ = 1 (31)
S h 0 1 0 7= pa—

where h and k' (h # 0 # k') are two new deformation parameters that will be replaced with ¢ and p
(¢ # 1 # pq) in the limits ¢ =+ 1 and p — 1.

We now assume that the parameters h and h’ are both Grassmann numbers (h? = 0 = h'2, hh/ = —h'h)

and anticommute with 6; for ¢ = 1,2. When the relations (2.1) are used, one gets
3391 = qﬂla:, 3302 = qagﬂi + h.ﬁCQ, 9291 = —q9102, 9% = O, 0% = —hazl‘. (32)

Note that the parameter h’ does not enter the above relations. By taking the limit ¢ — 1, we obtain the

following exchange relations, which define the h-superspace A,llp:

Definition 3.1 [/] Let O(Ailz) be the algebra with the generators x, 01, and 69 satisfying the relations
r0 = 01x, x6y =0z + h.%‘2, 0105, = —0504, 9% =0, 9% = —hbszx. (33)

We call O(A;Lp) the algebra of functions on the Zs-graded quantum space A}JQ.
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Example 3.2 Let us assume that €1 and €9 are two Grassmann numbers. If the g matriz in (3.1) is used,

the matriz representation in (2.2) takes the following form:

1— hi' 0 0 00 & gh 0 0
oy =a| 0 1R g e |, ope)=(0 0 0], pB)=-(0 ah —(+hi)e
0 0 q(1 — hh') 00 0 0 0 a>h
(3.4)
These matrices satisfy the relations (3.2), for all €1 and eg.
Proof Existing claims come from the fact that p is an algebra homomorphism. O
In the case of dual (exterior) h'-superspace, we use the transformation

with the components ¢, y1, and yo of X. The definition is given below.

Definition 3.3 Let O(Ai‘,l) = A(A}llp) be the algebra with the generators ¢, y1, and ya satisfying the relations

YY1 =1, Y2 =Y+ h’yS, Yyi1y2 = Y241, 902 = h/ych (36)

where 7(p) = 1 and 7(y1) = 0 = 7(y2). We call A(A,ﬁ'z) the quantum exterior algebra of the Zs-graded

1]2
quantum space A" .

Remark 3.4 The parameter h does not enter the relations (3.6). The exterior algebra A(A:JQ) of the superspace

A,llp can be thought of as an h'-deformation of the (2+1)-superspace A2t

4. An R-matrix and its properties

The relations in (2.1) can be written in a compact form as follows:

pX@X=R,,X®X (4.1)
with an R-matrix given by [6]
p 0 0 0 0 0 0 0 0
0O p—=1 0 ¢ 0 0 0 0 0
0O 0 0 0 0 0 pg 0 0
0O pg* 0 0 0 0 0 0 0
R,,=l0 0 0 0 -1 0 0 0 0
O 0 0 0 0 0 0 —pg' 0
0O 0 ¢ 0 0 0 p-1 0 0
O 0 0 0 0 —¢ 0 p-1 0
o 0 0 0 0 0 0 0o -1

where p,q € K — {0}. This matrix satisfies the graded braid equation and the matrix R,, = PR, satisfies

the graded Yang-Baxter equation where P is the super permutation matrix.
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It can be considered that a change of basis in the quantum superspaces leads to a two-parameter R-

matrix. The corresponding R-matrix can be obtained as

é ;= i |: 71R
o (p,q)lg}m) (9®9) Rpqlg®9g)

where it is assumed that ® is graded. As a result, we obtain the following R-matrix

1+hh 0 B 0 0 0 —h 0 0
0 0 0 1 0 0 0 0 0
h 0 A 0O 0O 0 1 0 =N
0O 1 0 0 0 0 0 0 0
Ry = 0 0 0 0 -1 0 0 0 0
O 0 0 0 0 0 0 -1 0
~h 0 1 0 0 0 hW 0 —I
0O 0 0 0 0 -1 0 0 0
0 0 -h 0 0 0 —h 0 hi-1

The equation in (4.1) with the new R-matrix Ry, ;s takes the form

X®X =R XX,

that is, the relations (3.3) are equivalent to this equation.

The R-matrix ﬁhﬁ/ has some interesting properties. Some of them are listed below, where sometimes

we write R = f%;hh/ for simplicity.

1.

The matrix Rh,h/ satisfies the graded braid equation R12R23R12 = R23R12R23, where ng =R® I3 and
ng =13® R

The matrix Ry = PRh,h/ satisfies the graded Yang—Baxter equation
Ri3R13R23 = RogR13R12, where Rp3 acts both on the first and third spaces.

The matrix Ry, holds R%yh, = Iy; thus, it has two eigenvalues +1.
If we set hh/ =0, then the matrix Ry, ;s can be decomposed in the form

R = R(WR()

where
1 00 0 0 0 0 0 O
0O 1.0 0 0 O O OO
—-h 0 1 0 0 0 0 0 O
0O 001 0O0O0OO0OTO
RRhRy=10 0 0 0 1 0 0 0 0|, R()=PR""h)|p=n-
0O 00 0O 1O0O0TO0
h 01 0 0 0O 1 0O
0O 00 0 O0O OO T1TTO0
0O 0 h OO0 O A O1

It can be checked that these matrices satisfy the graded Yang-Baxter equation.
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5. If P, are the projections onto the eigenspaces +1 of thh/, then we have

Ryp =Py —P_.

Let O(A'?) and O(A2) be the quotients of algebras generated by =, 0y, 6 and ¢, y1, y» modulo the
two-sided ideals generated by KerP_ and KerP, , respectively. Then O(A?) and O(A?") are isomorphic

to O(A}LD) with defining relations (3.3) and O(Ail,l) with defining relations (3.6), respectively. That is,

we can write

P.x®x=0 and (-1)"® P, x@%=0.

5. The quantum superbialgebra O(M,, ;/(1|2))

Let T be a 3x3 matrix in Z,-graded space given by

where a, b, ¢, d, e are even and «, 3, v, and ¢ are odd. The coordinate ring of such matrices over a field K

is simply the polynomial ring in nine variables, that is O(M(1|2)) = K]a, b, ¢, d, e, v, 8,7, d].

In this section, we will assume that the matrix entries of 7' belong to a free superalgebra and define
a two-parameter h-analogue of O(M(1]2)). To do so, let x, 61, 02 be elements of the superalgebra (’)(A,ll‘z)
subject to the relations (3.3) and ¢, y1, y2 be elements of O(Ail,l) subject to the relations (3.6), and ¢;; be
nine generators which supercommute with the elements of O(A}lm) and O(Ail,l). It is well known that the

supermatrix T defines the linear transformations T : A}11|2 — A}11|2 and T : Ai‘,l — Ail,l. Let x = (z,01,02)"

and X = (¢, y1,%2)". Thus, we can give the following theorem.

Theorem 5.1 Under the above hypotheses, the following conditions are
equivalent:

(1) Tx=x"€ A,llp and Tx =x%x' € A,Qll,l,
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(ii) the relations are satisfied

ac = (1 + hh')aa — W' (ad +da), af = Ba+ h'(a* — ea — BS) — hj3?,
ay = (1+hh')ya+ h(yB —ca), ac = ca— hef — h'vya+ hh'~p,
ad = da + h(a* —ea +0B) + h'6%, ad = da + haa + h'ds — hh'ab,
ae =ea+hp(a—e) +h(e—a)s, aBf=—(1+hh)Ba+h(Bd+ ea),
ay = —vya, ac=ca, «af=—0a— hao+héd— hh'ad,
ad =da+ h'd*, oe=ea+ hBa+ h'ed—hh'dg,
By = —yB+ heB — h'ya — hi'ca, PBe= (1 —hh')eB — b (8 + ca),
86 = —68 + (hB + W6)(e —a), Bd=dB +haf + Wde — hi'ea,
Be =ef 4+ h'(e* — ea — 63) — hB%, ~c=cy+ h?,
v6 = —(1 + hh')dy + h(ey + dc), ~d = d, (5.1)
e = ey + hee — 'Sy — hh'cs, 8 = 6¢ — hec — W6y — hh'~e,
cd=de, ce=(1—hh)ec+ h'(ey—dc), 6d= (1 — hh')ds + h(ad — da),
Se = ed + h(e* — ea + B6) + h'6%, de = (1 — hh')ed + h(Bd — eq),
o =had, B*=hpBe—a), +*>=hye, 6 =hé(e—a),

btij =tiib, a(hB+h6)=(hB+hd)a, e(hB+h'6) = (hB+hde.

Proof A direct verification shows that the relations (5.1) respect the ideals defining Ayg and Ail,l. O

Standard FRT construction [8], namely, the relations (5.1), is obtained via the matrix Rh,h: given in

Section 4:
Theorem 5.2 A 3x8-matriz T is a Zo-graded quantum supermatriz if and only if
Rh,h’TlTZ = T1TQRh,h/

where Ty =T ® I3 and Ty = PT1P.

Definition 5.3 The superalgebra O(My, 5/ (1]2)) is the quotient of the free algebra K{a,b,c,d, e, o, B,7,6} by
the two-sided ideal Jy 5 generated by the relations (5.1) of Theorem 5.1.

Remark 5.4 The quantum matriz space My, 4(1|2) is obtained in [6]. It is clear that a change of basis in the
quantum superspace leads to the similarity transformation T = g~'T"g, where T' € My, ,(1|2). Therefore, the

entries of the transformed quantum matriz T fulfill the commutation relations (5.1) of the matriz elements of
the matriz T in M(1|2).

Theorem 5.5 The superalgebra O(My, 1, (1|2)) with the following two algebra homomorphisms of superalgebras
(1) the coproduct A : O(Mp 1 (1]2)) — O(Mp p/(1]2)) @ O(Mp 1/ (1]2)) determined by A(t;;) = Zi=1 tik @ty ,
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(2) the counit € : O(Mp 1 (1|2)) — K determined by e(t;;) = 6;;

becomes a super bialgebra.

Proof It can be easily checked the properties of the costructures hold:

(i) The coproduct A is coassociative in the sense of
(A®id)oA=(id®A)oA

where id denotes the identity map on My /(1]2) and A(ab) = A(a)A(d), A(1) =1 1.
(ii) The counit € has the property

mo(e®id)oA=id=mo(id®e)o A

where m stands for the algebra product and e(ab) = e(a)e(b), (1) = 1. O

It is well known that O(A'?) is comodule algebra over the bialgebra O(M(1]2)). The following theorem gives

a quantum version of this fact.

Theorem 5.6 There exist algebra homomorphisms

3
0 O(A)) — OMy 1 (112)) @ O(A®), dp(z) =Dt @ an,
k=1

3
3 O(AR) — OMy e (12)) @ O(ADY), dp(d:) =t © i
k=1

where x; € {x,01,02} and T; € {,y1,y2}-
Proof Using the relations (3.3) and (3.6) together with (5.1), it is enough to check that
O (201 — 012) = 61, (x)d(61) — 61,(01)dL(x) = 0,
ete., in O(Mp, 1 (1]2)) ® (’)(A,IL‘Q). To see that & defines a comodule structure we check that

(A®id)ody, =(d®dy)0dy, mo(e®id)od, =id.

O
A quantum supergroup (Hopf superalgebra) can be regarded as a generalization of the notion of a

supergroup. It is defined by
O(GLh,h’(HQ)) = O(th(1|2))[t}/(tsdeth7h/ — ]_)
This case is also inviting to generalize the corresponding notions of differential geometry [12]. A differential

calculus on O(GLy, 5/ (1]2)) will be discussed in the next work.

6. A Lie superalgebra derived from J—'(A})‘é)
It is known that an element of a Lie group can be represented by exponential of an element of its Lie algebra.

In [3], by virtue of this fact, using the generators of the superalgebra F (A;‘l), a new superalgebra is obtained
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from this algebra. In this section, we will obtain a new superalgebra from F (A,l,'j). Thus, let us begin with the

definition of F (A,l)lg) which is an extension to two parameters of F (Ayz).

Definition 6.1 Let I, be the two-sided ideal of K(X,01,02) generated by the elements X0; — ¢g1.X,

X0y —pO2X, 010, +pg 20,01, 0%, and ©%. The quantum superspace Aég with the function algebra

O(A}2) = K(X,01,0:) /I, 4
is called quantum superspace.
In accordance with this definition, we have
X0, =¢01X, XOy=p0:X, 0,0, =-pg ?0,0;, 07=0 (6.1)

where p,q € K— {0}.

Example 6.2 If we consider the generators of the algebra O(A,l,lj) as linear maps, then we can find the matriz

representations of them. In fact, it can be seen that there exists a representation p : (’)(A})!i) — M(3,K’) such

that matrices

qg 0 O 0 0 & 0 0 O
p(X)=10 p 0], p®O)=[0 0 0], pO2)=1{0 0 &
0 0 pg 00 0 00 0

representing the coordinate functions satisfy relations (6.1) for all €1,e4.

Let K(u,&1,&) be a free algebra generated by w, &, &, where 7(u) =0, 7(£&1) =1 = 7(&). Let £
be the quotient of the free algebra K(u,&;,&2) by the two-sided ideal Jy generated by the elements ué — &ru,

&6 + &6, & for k=1,2.
Now, we will show that the Hopf superalgebra of Theorem 2.5 can be embedded into the enveloping

superalgebra of a Lie superalgebra, with Lie structure and a deformed coproduct. Thus, let us define the
generators of the algebra F (A})E) as
Xi=e" ©O:=e",

for k =1,2. The first equality implies that the generator X is invertible. Then, by direct calculations we can

prove the following lemma.

Lemma 6.3 The generators w, &1, & have the following commutation relations (Lie (anti-)brackets), for
J k=12
[u, &) = ihe ks €55 Ek]+ =0, (6.2)

where g =™ | p=e'"2 with i=+v/—1 and k1, hy € R.

We denote the algebra for which the generators obey the relations (6.2) by Lp, s, := ﬁ(Azl,lg). Let U(L, k)
be the algebra defined by (6.2). The Hopf superalgebra structure of U(Lp, n,) can be read off from Theorem

2.5:
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Theorem 6.4 The superalgebra U(Ly, n,) is a Hopf superalgebra with coproduct, counit, and antipode on the
algebra Ly, p, defined by

Alw) =u; ®14+1® uy, e(u;) =0, S(u;) = —u,.
for u; € {u,&1,&}.
Example 6.5 There exists a Lie algebra homomorphism p from Ly, n, into M(3,K’).

Proof We see that there exists an algebra homomorphism p from F (Azl,!ﬁ) into M(3,K’) such that the
relations (6.1) hold. As a consequence of this fact, there exists a Lie algebra homomorphism p from Ly, p, into

M(3,K’). The action of p on the generators of Ly, 5, is of the form

ihy O 0 0 0 0 0 0 0
pw)=1 0 im 0 , w(&) = 0 0 0, w&) =10 0 0] (6.3)
0 0 i(h+he) e—ilitha)o o 0 0 e 2iath)e, g

where €1 and g2 are two Grassmann numbers. To see that the relations (6.2) are preserved under the action of

1, we use the fact that
pla, 0] = [p(a), p(b)],
for all a, be th,hz . O

7. x-Structures on the algebras (’)(A,llp) and (’)(Ai‘,l)

It is possible to define the star operation (or involution) on the Grassmann generators. However, there are two

possibilities to do so*. If & and /3 are two Grassmann generators and \ is a complex number and X its complex

conjugate, the star operation, denoted by x, is defined by
Aa)* = Aa*, (aB)* =pB*a*, () =«
and the superstar operation, denoted by #, is defined by

()\a)# = a7, (ab’)# = o7 7, (a#)# = —q.

It is easily shown that there exists a star operation on the algebra O(Aé‘z) if ¢ is a complex number of

modulus one:
Proposition 7.1 (i) If = q ! then the algebra O(Aé‘z) equipped with the involution determined by
X=X, ©/=06; (i=1,2) (7.1)
becomes a x-algebra.
(ii) If p=p~! and g = q~' then the algebra (’)(AZQ,!}]) equipped with the involution determined by
=, Yr=-Y, (i=12) (7.2)

becomes a x-algebra.

*arXiv.org e-Print archive (1996). Dictionary on Lie Superalgebras [online]. Website https://arxiv.org/abs/hep-th/9607161 [18
July 1996].
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7.1. x-Structures on the algebra O(A;Lp)

As noted in Section 3, the relations in (3.3) do not include the parameter h’. Thus, we can rearrange the change

of basis in the coordinates (see, equation (3.1)) as

X 1 0 0 x
o|l=(0 1 0|(6]. (7.3)
S 270 1/ \6,

This case can help us to define a star operation on the algebra O(A;Lp) by a coordinate transformation using
the generators of the algebra O(A}Ilz) and to prove the following lemma.
Lemma 7.2 For a certain special choice of h, there exists an involution on the algebra O(A,ll‘z).

Proof Using the equation (7.3), we introduce the coordinates x, 6;, and 0 with the change of basis in the

coordinates of the superspace A}I‘z as follows:

h
IZX, 91261, 02:@2—7)(.
q—1
Then, with |g| =1 and (7.1)
PN - h+ qh
=0~ X =bt T

so that, if we demand that h = —h, we obtain 65 = 6 — hz. Note that
(@) ==, (07)" =01, (05)" =62,

for all h. 0

Proposition 7.3 If h = —h, then the algebra O(A}llp) supplied with the involution determined by
=z, 0]=01, 05=0y—hx (7.4)
becomes a x-algebra.

Proof Since h = —h, we have

(2601 — 012)* = b1 — xby,

(205 — Oz — ha?)* = (03 — ha)x — x(0y — ha) + ha® = (o — 20, + ha?),

(0102 4 02601)* = (02 — ha)B1 + 01(82 — hx) = 6261 + 6162,

(02 + hboz)* = (s — ha)(0s — ha) + x(0y — ha)(—h) = 62 + hbaz.

Hence, the ideal (261 — 612, 202 — 022 — ha?, 0105 + 0201, 62, 03 + hlax) is x-invariant and the quotient algebra
K(x,01,05)/(x0, — 012, 205 — Ooxz — ha?, 0105 + 0201, 07, 03 + hbox)

becomes a -algebra. O
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Remark 7.4 Of course, we can consider the change of basis in the coordinates of the superspace Aém in (3.1).

In this case, since

o = (1+ Al — hi)z + (B — B')fs,

05 = (1~ h(i — )02 + (h — h)z,

we have again (7.4) with the choices h = —h and h' = h'.

7.2. x-Structure on the algebra O(Ail,l)

Since the relations in (3.6) do not include the parameter h, we can rearrange the change of basis in the

coordinates (see, equation (3.1)) as

P 1 0 5T %)
Yiy]=10 1 0 Yy |- (75>
Ys 0 0 1 Y2

There exists a special case, where the algebra (’)(Ai‘,l) admits an involution. The proofs of the following lemma

and proposition can be done in a similar way to Lemma 7.2 and Proposition 7.3.
Lemma 7.5 If h' = I/, there exists an involution on the algebra (’)(Ail,l).

Proposition 7.6 If b/ = k', then the algebra O(Aill) supplied with the involution determined by

80* =¢ - hly?» y: = —Yi, (Z = 17 2) (76)

becomes a x-algebra.
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