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Abstract: We explore the Peiffer pairings within the Moore complex of multisimplicial groups, and as an application,
we give a detailed construction of a crossed n - cube from an n -simplicial group in terms of these pairings. We also give
explicit calculations of Peiffer pairings in the Moore bicomplex of a bisimplicial group to see the role of these pairings in
the relationship between bisimplicial groups and crossed squares.
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1. Introduction
As algebraic models for homotopy 2 -types, the notion of crossed module was introduced by Whitehead in [21].
Crossed squares as introduced by Guin-Walery and Loday [12], model connected 3 -types. Crossed n -cubes (cf.
[11]) model connected (n + 1) -types, and they will be most interest to us in this paper. The observation that
simplicial groups whose Moore complex is of length 1 are equivalent to Whitehead’s crossed modules is well
known. Conduché in [9] also proved that a 1-truncated bisimplicial group gives a crossed square.

The original motivation of Peiffer elements comes from the observation of Brown and Loday [5], about
the normalisation of simplical groups. Let G = {Gn} be a simplicial group and let N = {Nn} be its
Moore complex. Brown and Loday observed that if the group of 2-simplices G2 is generated by degenerate
elements, then ∂2(N2) = [ker d0, ker d1] . In this construction, N0 acts on N1 via congugation using so, namely
xy = s0xys0x

−1 for x ∈ N0 and y ∈ N1. One gets easily that ∂1 : N1 → N0 is a precrossed module. In such
a context the element ∂1xyxy−1x−1 is called the Peiffer commutator of x, y or more briefly a Peiffer element.
An easy argument shows that the subgroup [Kerd0,Kerd1] of N1 is generated by elements of this form and
it is thus entirely the Peiffer subgroup of N1 . If the length of Moore complex of the simplicial group G is
2, then ∂2(N2) = [ker d0, ker d1] = {1} and then ∂1xyxy−1x−1 = 1 for all x, y ∈ N1 , and this is equivalent
to ∂1 : N1 → N0 being a crossed module. In [18], Mutlu and Porter developed a variant of the Carrasco and
Cegarra [6] pairing operators, that they called Peiffer pairings by denoting Fα,β and showed that these pairings
give product of operators.

Mutlu and Porter [16, 17], using the ideas based on the works of Conduché [8], and Carrasco and Cegarra,
[6], generalized Peiffer elements to higher dimensions by giving systematic maps of generating them and have
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investigated the images of the functions Fα,β in the Moore complex of a simplicial group. For further accounts
of these functions in simplicial Lie algebras and simplicial commutative algebras see [1] and [3, 4], respectively.

The main aim of this paper is to define the functions Fα,β introduced by Mutlu and Porter in [16] for
the Moore n-complex of an n -simplicial group, and as an application of these maps, to give the relationship
between crossed n -cubes and n -simplicial groups. Porter in [19] has proven the relationship between n -types
of simplicial groups and crossed n -cubes. Our result is closely related to the results of Porter. We prove in
Theorem 3.3 that a 1-truncated n -simplicial group gives a crossed n -cube. In this relationship, it has been seen
that the h -maps of a crossed n -cube are obtained by the images of the functions Fα,β .

Subsequently, another interest of this paper is to give detailed calculations of the functions Fα,β in
dimension 2 , that is, in the Moore bicomplex of a bisimplicial group. Particularly, for dimension 2 , in
Proposition 4.4 of this work, we obtain the Conduché’s result given in Proposition 3.2 of [9] between crossed
squares and bisimplicial groups in terms of Fα,β functions. That is, we obtain that the h -map of a crossed square
can be given by an image of the functions Fα,β in the Moore complex of a bisimplicial group. Furthermore,
Carrasco and Cegarra gave the relation between simplicial groups and crossed complexes as a non-Abelian
version of Dold–Kan theorem. Using the functions Fα,β in the Moore bicomplex of a bisimplicial group, in
Theorem 4.15, we obtain a double crossed complex from a Moore bicomplex of a bisimplical group as a 2-
dimensional version of Carrasco and Cegarra’s result.

2. Simplicial groups

We refer the reader to Loday’s and May’s books (cf. [14, 15]), and Artin’s and Mazur’s [2] article and Duskin
[10] for the basic properties of simplicial groups, bisimplicial groups, etc.

Let ∆ be the category of finite ordinals [n] = {0 < 1 < · · · < n} . A simplicial group is a functor from
the opposite category ∆op to the category of groups Grp . That is, a simplicial group G consists of a family
of groups Gn together with homomorphisms dni : Gn → Gn−1 , 0 ⩽ i ⩽ n , (n 6= 0) and snj : Gn → Gn+1 ,
0 ⩽ j ⩽ n , called face and degeneracy maps, satisfying the usual simplicial identities given in [15]. We will
denote the category of simplicial groups by SimpGrp .

A chain complex of groups is a sequence of any length of groups and homomorphisms of groups;

· · · // Cn
∂n // Cn−1

∂n−1 // Cn−2
// · · ·

in which each composite ∂n−1 ◦ ∂n is trivial. The chain complex is normal if each image ∂n(Cn) is a normal
subgroup of Cn−1 .

Given a simplicial group G , the Moore complex (NG ,∂ ) of G is defined by

(NG)n = ker dn0 ∩ ker dn1 ∩ · · · ∩ ker dnn−1

with boundaries ∂n : NGn → NGn−1 induced from dnn by restriction. If G is a simplicial group then its Moore
complex NG is a normal chain complex of groups.

We say that the Moore complex NG of a simplicial group G is of length k if NGn = {1} for all n ⩾ k+1 .
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2.1. Poset of surjective maps

In this section, we give the definition of the ordered set S(n) from Mutlu and Porter [16, 18]. In the following
we give from [16] hypercrossed complex pairings which are adapted by Carrasco and Cegarra’s study (cf. [6]).

For the ordered set [n] = {0 < 1 < . . . < n}, let αn
i : [n+1] → [n] be the increasing surjective map given

by

αn
i (j) =

{
j if j ≤ i
j − 1 if j > i

Let S(n, n − l) be the set of all monotone increasing surjective maps form [n] to [n − l]. This can be
generated from the various αn

i by composition. The composition of these generating maps satisfies the rule
αjαi = αi−1αj with j < i. This implies that every element α ∈ S(n, n − l) has a unique expression as
α = αi1αi2 . . . αil with 0 ≤ i1 < i2 < . . . < il ≤ n, where the indices ik are the elements of [n] at which
{i1, . . . , il} = {i : α(i) = α(i + 1)}. Thus, Mutlu and Porter (cf. [16]) have identified S(n, n − l) with the
set {(il, . . . , i1) : 0 ≤ i1 < i2 < . . . < il ≤ n − 1}. In particular the single element of S(n, n), defined by the
identity map on [n], corresponds to the empty 0 -tuple ( ) denoted by ∅n . Similarly the only element of S(n, 0)

is (n− 1, n− 2, . . . , 0). For all n ≥ 0, let

S(n) =
⋃

0≤l≤n

S(n, n− l).

It has been defined in [16] that α = (il, . . . , i1) > β = (jm, . . . , j1) in S(n) if i1 = j1, . . . ik = jk but
ik+1 < jk+1, (k ≥ 0) or if i1 = j1, . . . im = jm and l > m.

This makes S(n) an ordered set. For instance, the orders of S(2) and S(3) and S(4) are respectively:

S(2) = {∅2 < (1) < (0) < (1, 0)},

S(3) = {∅3 < (2) < (1) < (2, 1) < (0) < (2, 0) < (1, 0) < (2, 1, 0)},

S(4) = {∅4 < (3) < (2) < (3, 2) < (1) < (3, 1) < (2, 1) < (3, 2, 1) < (0)

< (3, 0) < (2, 0) < (3, 2, 0) < (1, 0) < (3, 1, 0) < (2, 1, 0) < (3, 2, 1, 0)}.

If α, β ∈ S(n) , Mutlu and Porter have defined α ∩ β to be the set of indices which belong to both α and β. If
α = (il, . . . , i1), then, it is called that α has length l and written #α = l.

2.2. Peiffer pairings in simplicial groups

From [16], we give the definition of the set P (n) consisting of pairs of elements (α, β) from S(n) with α∩β = ∅
and β < α , with respect to lexicographic ordering in S(n) where α = (ir, . . . , i1), β = (js, . . . , j1) ∈ S(n) . The
pairings

{Fα,β : NGn−#α ×NGn−#β → NGn : (α, β) ∈ P (n), n ⩾ 0}

are given as composites by the diagram

NGn−#α ×NGn−#β

(sα,sβ)

��

Fα,β // NGn

Gn ×Gn
[−,−]

// Gn

p

OO
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where sα = sir . . . si1 : NGn−#α → Gn, sβ = sjs . . . sj1 : NGn−#β → Gn, p : Gn → NGn is defined by
composite projections p(x) = pn−1 . . . p0(x), where pj(z) = zsjdj(z)

−1 with j = 0, 1, . . . , n − 1. The map
[−,−] : Gn ×Gn → Gn is given by the commutator map. Thus,

Fα,β(xα, yβ) = p[sα(xα), sβ(xβ)].

Definition 2.1 ([16]) Let Nn or more exactly NG
n be the normal subgroup of Gn generated by elements of the

form Fα,β(xα, yβ) where xα ∈ NGn−#α and yβ ∈ NGn−#β .

This normal subgroup NG
n depends functorially on G , but it is usually abbreviated NG

n to Nn , when no change
of group is involved. Mutlu and Porter in [16] illustrate this normal subgroup for n = 2, 3, 4. As a corollary
they obtained the following equality

∂n(NGn ∩Dn) = ∂n(N
G
n ∩Dn)

where Dn is subgroup generated by the degenerate elements in dimension n.

Proposition 2.2 ([16]) Let G be a simplicial group. Then for n ⩾ 2 and I, J ⊆ [n− 1] with I ∪ J = [n− 1] ,

[
⋂
i∈I

ker di ,
⋂
j∈J

ker dj ] ⊆ ∂n(NGn ∩Dn).

Castiglioni and Ladra [7] gave a general proof over operads for these inclusions given by Mutlu and Porter in
[16].

3. Multisimplicial groups
An n -simplicial group G•1•2···•n is a functor from the product category

∆op ×∆op × · · · ×∆op = (∆op)n

to the category of groups Grp, with the face and degeneracy maps denoted by respectively

djij : Gk1,...,kj ,...,kn
−→ Gk1,...,kj−1,...,kn

, ( 0 ⩽ ij ⩽ kj , 1 ⩽ j ⩽ n, )

and
sjij : Gk1,...,kj ,...,kn

−→ Gk1,...,kj+1,...,kn
, ( 0 ⩽ ij < kj , 1 ⩽ j ⩽ n, ),

where each j indicates the directions of n -simplicial group. The Moore n -complex (cf. [9]) of an n -simplicial
group can be given by

NGk1,k2,...,kn
=

(k1−1,k2−1,...,kn−1)⋂
(i1,i2,...,in)=(0,0,...,0)

Kerd1i1 ∩ Kerd2i2 ∩ · · · ∩ Kerdnin

with the boundary homomorphism

∂j
ij
: NGk1,...,kj ,...,kn

−→ NGk1,...,kj−1,...,kn

induced by djij . We denote the category of n -simplicial groups by SimpGrpn.
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3.1. Peiffer pairings in n-simplicial groups

In this section, we define the functions Fα,β given in [16] for multisimplicial groups.
For n, q ∈ N with q ⩽ n and for α ∈ S(n, q) , the target of α is called b(α) : q = b(α) . Recall that the

set S(n) is partially ordered by the following relation α ⩽ β if, for i ∈ [n] , one has α (i) ⩾ β (i) where [b (α)]

and [b (β)] are considered as subsets of N .
Given n 6= 0, n ∈ N and n = (k1, k2, . . . , kn) ∈ N×N×...×N = Nn , let S (n) = S (k1)×S (k2)×...×S (kn)

with the product (partial) order.
Let α, β ∈ S (n) and α = (α1, α2, . . . , αn) ;β = (β1, β2, . . . , βn) where αi ∈ S (ki) and βj ∈ S (kj) , 1 ⩽

i, j ⩽ n.

The n -dimensional case of the functions Fα,β can be given as follows. The pairings that we will need

{Fα,β : NGn−#α ×NGn−#β −→ NGn ; α, β ∈ S (n)}

are given as composites by the diagram

NGk1−#α1,k2−#α2,...,kn−#αn
×NGk1−#β1,k2−#β2,...,kn−#βn

(sα1
sα2

...sαn ,sβ1
sβ2

...sβn )

��

Fα,β // NGk1,k2,...,kn

Gk1,k2,...,kn
×Gk1,k2,...,kn [−,−]

// Gk1,k2,...,kn

p

OO

where sα : sα1sα2 ...sαn , for 1 ⩽ i ⩽ n; sαi : sir · · · si1 for αi = (ir, . . . , i1) ∈ S(ki) and similarly sβi , and p is
defined by the composite projection

p = (pk1−1...p0) (pk2−1...p0) ... (pkn−1...p0)

where pj (x) = x−1sjdj (x) in each simplicial directions, for any j , and [−,−] is given by the commutator map.

3.2. Crossed n-cubes and n-simplicial groups

Crossed n -cubes were defined by Ellis and Steiner [11] for homotopy connected (n + 1) -types. The following
definition is equivalent to that given in [11]. In this section by use of the functions Fα,β for n -simplicial groups,
we will construct a crossed n -cube structure from as n -simplicial groups.

Definition 3.1 We denote by 〈n〉 the set {1, 2, ..., n} . A crossed n-cube, M , is a family of groups,
{MA : A ⊆ 〈n〉} , together with homomorphisms, µi : MA → MA\{i} , for i ∈ 〈n〉 , A ⊆ 〈n〉 , and functions,
h : MA × MB → MA∪B , for all A,B ⊆ 〈n〉 , such that if ab denotes h(a, b)b for a ∈ MA and b ∈ MB with
A ⊆ B , then for a, a′ ∈ MA, b, b′ ∈ MB , c ∈ MC and i, j ∈ 〈n〉 , the following axioms hold:

1. µia = a if i /∈ A

2. µiµja = µjµia

3. µih(a, b) = h(µia, µib)
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4. h(a, b) = h(µia, b) = h(a, µib) if i ∈ A ∩B

5. h(a, a′) = [a, a′]

6. h(a, b) = h(b, a)−1

7. h(a, b) = 1 if a = 1 or b = 1

8. h(aa′, b) =a h(a′, b)h(a, b)

9. h(a, bb′) = h(a, b)bh(a, b′)

10. ah(h(a−1, b), c)ch(h(c−1, a), b)bh(h(b−1, c), a) = 1

11. ah(b, c) = h(ab,a c) if A ⊆ B ∩ C.

A morphism of crossed n -cubes
f : {MA} −→ {M′

A}

is a family of homomorphisms, {fA : MA → M ′
A | A ⊆ 〈n〉} , which commute with the maps, µki

, and the h

maps. We denote the category of crossed n -cubes by Crsn .

Example 3.2 (a) For n = 1 , a crossed 1-cube is the same as a crossed module M1 → M∅ .
(b) For n = 2 , one has a crossed square

M{1,2}
µ2 //

µ1

��

M1

µ1

��
M2 µ2

// M∅,

where each µi is a crossed module. The h-maps give actions and a pairing

h : M1 ×M2 → M{1,2}.

(c) For n = 3 , one has a crossed 3-cube

M{1,3}
µ3 //

µ1

��

M{1}

µ1

��

M{1,2,3}

µ2

99ttttttttt µ3 //

µ1

��

M{1,2}

µ2

;;vvvvvvvvv

µ1

��

M{3}
µ3 // M∅

M{2,3} µ3

//

µ2

99

M{2}

µ2

;;vvvvvvvvv
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where each µi is a crossed module, and the h-maps give actions and the following pairings

h : M1 ×M2 → M{1,2} , h : M1 ×M3 → M{1,3}
h : M2 ×M3 → M{2,3} , h : M{1,2} ×M3 → M{1,2,3}
h : M1 ×M{2,3} → M{1,2,3} , h : M{1,3} ×M2 → M{1,2,3}
h : M{2,3} ×M{1,2} → M{1,2,3} , h : M{1,2} ×M{1,3} → M{1,2,3}
h : M{2,3} ×M{1,3} → M{1,2,3} .

We can give the main result of this section.

Theorem 3.3 Let G•1•2···•n be an n-simplicial group with Moore n-complex NG•1•2···•n , such that NG•1•2···•n =

{1} for any •j ⩾ 2, (1 ⩽ j ⩽ n). Then this Moore n-complex has a crossed n-cube structure.

Proof First, we define MA for any subset A ⊂ 〈n〉 = {1, 2, . . . , n} by

MA = NGϵ

where ϵ = (ϵi|1 ≤ i ≤ n) with ϵi = 1 if i ∈ A and 0 otherwise.
The map

µi : MA −→ MA−{i}

is given by the face operator dxi
1 : NGϵ(:ϵi=1) −→ NGϵ(:ϵi=0) , where xi indicates the simplicial directions. For

the subsets B ⊆ A ⊆< n >, the structure morphism µ : MA → MB is given by the simplicial structure, namely
the operator

∏
i∈A\B

di1.

For A = {i, i+ 1, . . . j} and B = {l, l + 1, . . .m} where 1 ≤ i, j, l,m ≤ n , we have

MA = NGϵ

where ϵ = (ϵk : 1 ≤ k ≤ n) and for i ≤ k ≤ j , ϵk = 1 and 0 otherwise and

MB = NGϵ

where ϵ = (ϵk : 1 ≤ k ≤ n) and for l ≤ k ≤ m , ϵk = 1 and 0 otherwise.
Let

X =


(ϵ = (ϵk : 1 ≤ k ≤ n)), for i ≤ k ≤ m, ϵk = 1, otherwise 0, if i ⩽ l, j ⩽ m
(ϵ = (ϵk : 1 ≤ k ≤ n)), for i ≤ k ≤ j, ϵk = 1, otherwise 0, if i ⩽ l, j ⩾ m
(ϵ = (ϵk : 1 ≤ k ≤ n)), for l ≤ k ≤ m, ϵk = 1, otherwise 0, if i ⩾ l, j ⩽ m
(ϵ = (ϵk : 1 ≤ k ≤ n)), for l ≤ k ≤ j, ϵk = 1, otherwise 0, if i ⩾ l, j ⩾ m.

The h maps h : MA ×MB → MA∪B are obtained from the commutative diagram

NGϵ:(ϵk=1:i≤k≤j) ×NGϵ:(ϵk=1:l≤k≤m)

(sα,sβ)

��

Fα,β // NGX

GX ×GX
[−,−]

// GX

p

OO
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by composing of the maps p, [−,−], (sα, sβ), for MA, MB as follows:

Fα,β(x, y) = p[−,−](sα, sβ)(x, y)

= p[sα(x), sβ(y)]

=
[
sxi
0 s

xi+1

0 · · · sxj

0 (x), sxl
0 s

xl+1

0 · · · sxm
0 (y)

]
where xi and xl indicate the simplicial directions and

α = ( ∅, ∅, . . . , ∅︸ ︷︷ ︸
(i−1)−times

, (0), (0), . . . , (0)︸ ︷︷ ︸
(j−i)−times

, ∅, ∅, . . . , ∅︸ ︷︷ ︸
(n−j)−times

)

β = (∅, ∅, . . . , ∅︸ ︷︷ ︸
(l−1)−times

, (0), (0), . . . , (0)︸ ︷︷ ︸
(m−l)−times

, ∅, ∅, . . . , ∅︸ ︷︷ ︸
(n−l)−times

).

For any subsets A, B ⊆< n >= {1, 2, . . . , n} and MA = Nε where ε = (εi|1 ≤ i ≤ n) with εi = 1 if i ∈ A and
εi = 0 otherwise, and MB = Nε where ε = (εj |1 ≤ j ≤ n) with εj = 1 if j ∈ A and εj = 0 otherwise.

The structure morphism h : MA × MB → MA∪B is induced by the commutator on GA∪B via the
morphisms

sB\(A∩B) :=
∏

i∈B\(A∩B)

si0 : GA → GA∪B

sA\(A∩B) :=
∏

j∈A\(A∩B)

sj0 : GB → GA∪B .

Thus for x ∈ MA, y ∈ MB the h -map is induced by the commutator

[sB\(A∩B)(x), sA\(A∩B)(y)] ∈ GA∪B .

Using the projection map p : GX → NGX given above, we obtain the h -map as follows: for x ∈ MA, y ∈ MB

h(x, y) = [pxk
0 . . . pxi

0 (sxi
0 . . . sxk

0 )(x), pxm
0 . . . p

xj

0 (s
xj

0 . . . sxm
0 )(y)] ∈ MA∪B

where for any j, p
xj

0 (a) = as
xj

0 d
xj

0 (a)−1 for all 1 ≤ i ≤ k ≤ n; i, . . . , k ∈ A\(A∩B) , 1 ≤ j ≤ m ≤ n; j, . . . ,m ∈
B\(A ∩B) and where xi, . . . xk, xj . . . xn indicate the simplicial directions.

The action of a ∈ MA and b ∈ MB for A ⊆ B ⊆< n >, can be given by

ab = (sxi
0 . . . sxk

0 )(a)b(sxi
0 . . . sxk

0 )(a)−1

where i, . . . , k ∈ A\B.

From the definition of µ : MA → MB given by the operator
∏

i∈A\B
di1, the axioms (1),(2) are immediate.

We show for this h -map the following equalities.
If i /∈ A, a ∈ MA then µi = dxi

1 sxi
0 . We obtain µi(a) = dxi

1 sxi
0 (a) = id(a) = a from the simplicial

identities.
By the commutativity of the face and degeneracy maps in the simplicial directions, we obtain µiµj = µjµi.
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For MA = NGε where ε := (εi|1 ≤ i ≤ n), εi = 1 if i ∈ A and 0 otherwise, we obtain for the simplicial
directions xi, and for α = (∅, ∅, . . . , (0)i, ∅, . . . , ∅) and β = (∅, ∅, . . . , (1)i, ∅, . . . , ∅)

Fα,β(x, y) = [sxi
0 (x), sxi

1 (y)][sxi
1 (y), sxi

1 (x)] ∈ NGε

where ε := (εi|εi = 2, for i 6= j, εj = 1 if j ∈ A and 0 otherwise) and since NG•1•2...•n
= {1} for j ≥ 2, we

obtain
dxi
2 (Fα,β(x, y)) = [sxi

0 dxi
1 (x), y][y, x] = 1

and then
h(µi(x), y) = [sxi

0 dxi
1 (x), y] = [x, y] = h(x, y).

Let α = (∅, ∅, . . . , ∅), β = (∅, ∅, . . . , ∅) and for x, x′ ∈ MA, we have h(x, x′) : MA ×MA → MA,

h(x, x′) = [x, x′].

For x ∈ MA, y ∈ MB , we have

h(x, y) = [sxi
0 s

xi+1

0 · · · sxj

0 (x), sxl
0 s

xl+1

0 · · · sxm
0 (y)]

= [sxl
0 s

xl+1

0 · · · sxm
0 (y), sxi

0 s
xi+1

0 · · · sxj

0 (x)]−1

= h(y, x)−1.

Similarly , if x = 1 or y = 1, we obtain

h(x, y) = [sxi
0 s

xi+1

0 · · · sxj

0 (x), sxl
0 s

xl+1

0 · · · sxm
0 (y)] = 1.

Furthermore we have for x, x′ ∈ MA, y, y′ ∈ MB

h(xx′, y) = [sxi
0 s

xi+1

0 · · · sxj

0 (xx′), sxl
0 s

xl+1

0 · · · sxm
0 (y)]

= [sxi
0 s

xi+1

0 · · · sxj

0 (x)sxi
0 s

xi+1

0 · · · sxj

0 (x′), sxl
0 s

xl+1

0 · · · sxm
0 (y)]

= sxi
0 s

xi+1

0 · · · sxj

0 (x)sxi
0 s

xi+1

0 · · · sxj

0 (x′)sxl
0 s

xl+1

0 · · · sxm
0 (y)sxi

0 s
xi+1

0 · · · sxj

0 (x
′−1)

(sxl
0 s

xl+1

0 · · · sxm
0 (y−1)sxi

0 s
xi+1

0 · · · sxj

0 (x−1)sxi
0 s

xi+1

0 · · · sj0(x)s
xl
0 s

xl+1

0 · · · sxm
0 (y))

sxi
0 s

xi+1

0 · · · sxj

0 (x−1)sxl
0 s

xl+1

0 · · · sxm
0 (y−1)

= xh(x′, y)h(x, y)

h(x, yy′) = [sxi
0 s

xi+1

0 · · · sxj

0 (x), sxl
0 s

xl+1

0 · · · sxm
0 (yy′)]

= [sxi
0 s

xi+1

0 · · · sxj

0 (x), sxl
0 s

xl+1

0 · · · sxm
0 (y)sxl

0 s
xl+1

0 · · · sxm
0 (y′)]

= sxi
0 s

xi+1

0 · · · sxj

0 (x)sxl
0 s

xl+1

0 · · · sxm
0 (y)(sxi

0 s
xi+1

0 · · · sxj

0 (x−1)sxl
0 s

xl+1

0 · · · sxm
0 (y)−1

sxl
0 s

xl+1

0 · · · sxi−1

0 (y)sxi
0 s

xi+1

0 · · · sxj

0 (x))sxl
0 s

xl+1

0 · · · sxm
0 (y′)sxi

0 s
xi+1

0 · · · sxj

0 (x−1)

sxl
0 s

xl+1

0 · · · sxm
0 (y′)−1sxl

0 s
xl+1

0 · · · sxm
0 (y)−1

= h(x, y)yh(x, y′).
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The remaining axioms can be shown similarly. 2

We can illustrate this result for n = 3. A crossed 3-cube can be obtained from a 3-simplicial group as
follows:

For < n >= {1, 2, 3} we have the following diagrams

M{1,3}
µ3 //

µ1

��

M{1}

µ1

��

M{1,2,3}

µ2

99ttttttttt µ3 //

µ1

��

M{1,2}

µ2

;;vvvvvvvvv

µ1

��

M{3}
µ3 // M∅

M{2,3} µ3

//

µ2

99

M{2}

µ2

;;vvvvvvvvv

NG101

d
x3
1 //

d
x1
1

��

NG100

d
x1
1

��

NG111

d
x2
1

99ttttttttt d
x3
1 //

d
x1
1

��

NG110

d
x2
1

99ttttttttt

µ1

��

NG001

d
x3
1 // NG000

NG011
d
x3
1

//

d
x2
1

99

NG010

d
x2
1

99ttttttttt

we show the simplicial directions by

x2

•

==|||||||| //

��

x3

x1

The sets MA can be given by

M∅ = NG000 = G000 , M{1} = NG100 = Kerdx1
0

M{2} = NG010 = Kerdx2
0 , M{3} = NG001 = Kerdx3

0

M{1,2} = NG110 = Kerdx1
0 ∩Kerdx2

0 , M{2,3} = NG011 = Kerdx2
0 ∩Kerdx3

0

M{1,3} = NG101 = Kerdx1
0 ∩Kerdx3

0 , M{1,2,3} = NG111 = Kerdx1
0 ∩Kerdx2

0 ∩Kerdx3
0 .

The maps µi : MA → MA−{i} are given in the above diagram.
The h -maps can be defined as follows:

h : NG100 ×NG010 −→ NG110

(x, y) 7−→ [sx2
0 (x), sx1

0 (y)]
,
h : NG100 ×NG001 −→ NG101

(x, y) 7−→ [sx3
0 (x), sx1

0 (y)]
,

h : NG010 ×NG001 −→ NG011

(x, y) 7−→ [sx3
0 (x), sx2

0 (y)]
,
h : NG110 ×NG001 −→ NG111

(x, y) 7−→ [sx3
0 (x), sx1

0 sx2
0 (y)]

,

h : NG100 ×NG011 −→ NG111

(x, y) 7−→ [sx2
0 sx3

0 (x), sx1
0 (y)]

,
h : NG101 ×NG010 −→ NG111

(x, y) 7−→ [sx2
0 (x), sx1

0 sx3
0 (y)]

,
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h : NG011 ×NG101 −→ NG111

(x, y) 7−→ [sx1
0 (x), sx2

0 (y)]
,
h : NG110 ×NG101 −→ NG111

(x, y) 7−→ [sx3
0 (x), sx2

0 (y)]
,

h : NG1,1,0 ×NG0,1,1 −→ NG1,1,1

(a, b) 7−→ [sx3
0 (a), sx1

0 (b)].

We can show the crossed 3-cubes axioms as follows:
1. Let A = {2, 3}. Then if we have i = 1 /∈ A, µi : MA → MA is given by

µi = µ1 = dx1
1 sx1

0 .

From the simplicial identities, we have dx1
1 sx1

0 = id. Therefore, for i = 1 /∈ A = {2, 3} we obtain µi(a) = a.

3. For the h-map given by

h : NG1,1,0 ×NG0,1,1 −→ NG1,1,1

(a, b) 7−→ [sx3
0 (a), sx1

0 (b)]

we can write,

µ2h(a, b) = dx2
1 [sx3

0 (a), sx1
0 (b)]

= [sx3
0 dx2

1 (a), sx1
0 dx2

1 (b)] (∵ commutativity of simplicial directions)

= h(µ2a, µ2b)

Similarly

µ3h(a, b) = dx3
1 [sx3

0 (a), sx1
0 (b)]

= [sx3
0 dx3

1 (a), sx1
0 dx3

1 (b)] (∵ commutativity of simplicial directions)

= h(µ3a, µ3b).

By using similar calculations, this result for the other µi maps can be proven.
4. For example, for x, y ∈ NG110, we obtain

F((0),∅,∅)((1),∅,∅)(x, y) = [sx1
0 (x), sx1

1 (y)][sx1
1 (y), sx1

1 (x)] ∈ NG110

Since NG210 = {1}, we obtain

dx1
2 (Fα,β(x, y)) = [sx1

0 dx1
1 (x), y][y, x] = 1 ∈ NG110.

Thus we obtain
h(µ1(x), y) = [sx1

0 dx1
1 (x), y] = [x, y] ∈ NG110.

and for x, y ∈ NG111,

F(∅,∅,(0))(∅,∅,(1))(x, y) = [sx3
0 (x), sx3

1 (y)][sx3
1 (y), sx3

1 (x)] ∈ NG112
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Since NG112 = {1}, we obtain

dx3
2 (Fα,β(x, y)) = [sx3

0 dx3
1 (x), y][y, x] = 1 ∈ NG111.

Thus we obtain
h(µ1(x), y) = [sx3

0 dx3
1 (x), y] = [x, y] = h(x, y).

5. Let α = (∅, ∅, ∅), β = (∅, ∅, ∅) and for a, a′ ∈ MA, we have h : MA ×MA → MA,

h(a, a′) = [a, a′].

6. For the map h : NG1,1,0 ×NG0,1,1 → NG1,1,1 , we have

h(a, b) = [sx3
0 (a), sx1

0 (b)] = [sx1
0 (b), sx3

0 (a)]−1 = h(b, a)−1.

7. For example for h : NG1,1,0 ×NG0,1,1 → NG1,1,1 if a = 1, we obtain

h(1, b) = [sx3
0 (1), sx1

0 (b)] = [1, sx1
0 (b)] = 1.

8. For the map h : NG1,1,0 ×NG0,1,1 → NG1,1,1, we obtain

h(aa′, b) = [sx3
0 (aa′), sx1

0 (b)]

= sx3
0 (a)sx3

0 (a′)sx1
0 (b)sx3

0 (a′)−1sx3
0 (a)−1sx1

0 (b)−1

= sx3
0 (a)sx3

0 (a′)sx1
0 (b)sx3

0 (a′)−1(sx1
0 (b)−1sx1

0 (b))sx3
0 (a)−1sx1

0 (b)−1

= sx3
0 (a)[sx3

0 (a′), sx1
0 (b)]sx3

0 (a)−1[sx3
0 (a), sx1

0 (b)]

= ah(a′, b)h(a, b).

9. For the map h : NG1,1,0 ×NG0,1,1 → NG1,1,1, we obtain

h(a, bb′) = [sx3
0 (a), sx1

0 (bb′)]

= sx3
0 (a)sx1

0 (b)sx1
0 (b′)sx3

0 (a)−1sx1
0 (b′)−1sx1

0 (b)−1

= sx3
0 (a)sx1

0 (b)sx3
0 (a)−1sx1

0 (b)−1sx1
0 (b)sx3

0 (a)sx1
0 (b′)

sx3
0 (a)−1sx1

0 (b)−1sx1
0 (b′)−1

= h(a, b)sx1
0 (b)sx3

0 (a)sx1
0 (b′)sx3

0 (a)−1sx1
0 (b′)−1sx1

0 (b)−1

= h(a, b)sx1
0 (b)h(a, b′)sx1

0 (b)−1

= h(a, b)bh(a, b′).

10. We must show that
ah(h(a−1, b), c)ch(h(c−1, a), b)bh(h(b−1, c), a) = 1.

We calculate that for a ∈ NG1,0,0, b ∈ NG0,1,0, c ∈ NG0,1,1,

ah(h(a−1, b), c) = sx3
0 sx2

0 (a)h(h(a−1, b), c)sx3
0 sx2

0 (a)−1

= sx3
0 sx2

0 (a)[sx3
0 [sx2

0 (a)−1, sx1
0 (b)]sx1

0 (c)]sx3
0 sx2

0 (a)−1

= sx3
0 sx1

0 (b)sx3
0 sx2

0 (a)sx3
0 sx1

0 (b)−1sx1
0 (c)sx3

0 sx1
0 (b)

sx3
0 sx2

0 (a)−1sx3
0 sx1

0 (b)−1sx3
0 sx2

0 (a)sx1
0 (c)sx3

0 sx2
0 (a)−1
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and,

ch(h(c−1, a), b) = sx3
0 sx2

0 (a)sx1
0 (c)−1sx3

0 sx2
0 (a)−1sx3

0 sx1
0 (b)sx3

0 sx2
0 (a)

sx1
0 (c)−1sx3

0 sx2
0 (a)−1sx1

0 (c)sx3
0 sx1

0 (b)−1sx1
0 (c)−1

and,

bh(h(b−1, c), a) = sx1
0 (c)sx3

0 sx1
0 (b)sx1

0 (c)−1sx3
0 sx2

0 (a)sx1
0 (c)sx3

0 sx1
0 (b)−1

sx1
0 (c)−1sx3

0 sx1
0 (b)sx3

0 sx2
0 (a)−1sx3

0 sx1
0 (b)−1

thus we obtain
ah(h(a−1, b), c)ch(h(c−1, a), b)bh(h(b−1, c), a) = 1.

11. For A = {1}, B = {1, 2}, C = {2, 3} and A ⊆ B ∩ C then,

ah(b, c) = sx3
0 sx1

0 (a)h(b, c)sx3
0 sx1

0 (a)−1

= sx3
0 sx1

0 (a)[sx3
0 (b), sx1

0 (c)]sx3
0 sx1

0 (a)−1

= [sx3
0 (sx1

0 (a)bsx1
0 (a)−1), sx1

0 (a)(sx3
0 (a)csx3

0 (a)−1)] (∵ simplicial directions)

= [sx3
0 (ab), sx1

0 (ac)]

= h(ab,a c).

4. Applications in low dimensions of Fα,β functions

In the following subsections, we give applications of the functions Fα,β in dimensions 1 and 2. In particular,
in dimension 1, we obtain Mutlu and Porter’s result about the relation between crossed modules and simplicial
groups with Moore complex of length 1 and in dimension 2, we obtain Conduché’s result about the relation
between crossed squares and bisimplicial groups with Moore bicomplex of length 1.

4.1. 1-dimensional case
In Theorem 3.3, if we take n = 1 , then we obtain a simplicial group, G• and we obtain the following well-known
result (cf. [8, 9, 16]).

Proposition 4.1 ([16]) Let G• be a simplicial group and NG• its Moore complex. Suppose N(G)n = {1}
for n ⩾ 2 . Then the morphism ∂1 : N(G)1 → N(G)0 is a crossed module where N(G)0 acts on N(G)1 by
conjugacy via the degeneracy map s0 .

In the proof of this proposition, the role of Fα,β functions in the simplicial group whose Moore complex of
length 1 can be summarised as follows. We know from [16] that for x, y ∈ NG1 = ker d0, F(0)(1)(x, y) =

[s0x, s1y][s1y, s1x] ∈ NG2 ∩D2 = N2 ∩D2. Now we explain how we are using the hypothesis that NG vanishes
if the simplicial degree is > 1. Since the Moore complex of the simplicial group G is of length 1, we have
NG2 ∩D2 = {1} and then we obtain ∂2(NG2 ∩D2) = {1}, thus

d2F(0)(1)(x, y) = d2([s0x, s1y][s1y, s1x])

= [s0d1x, y][y, x]

= 1
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and

∂1(x)y = s0d1xys0d1x
−1

= xyx−1

for x, y ∈ NG1.

4.2. 2-dimensional case
A 2 -simplicial group or a bisimplicial group G•,• is a functor from the product category ∆op × ∆op to the
category of groups Grp, with the face and degeneracy maps given by

dhi : Gp,q → Gp−1,q

shi : Gp,q → Gp+1,q 0 ≤ i ≤ p

dvj : Gp,q → Gp,q−1

svj : Gp,q → Gp,q+1 0 ≤ j ≤ q

such that the maps dhi , s
h
i commute with dvj , s

v
j and that dhi , s

h
i (resp. dvj , s

v
j ) satisfy the usual simplicial

identities.
We think of dvj , svj as the vertical operators and dhi , s

h
i as the horizontal operators. If G•,• is a bisimplicial

group, it is convenient to think of an element of Gp,q as a product of a p -simplex and a q -simplex.
The Moore bicomplex of a bisimplicial group G•,• is defined by

NGn,m =

(n−1,m−1)⋂
(i,j)=(0,0)

Kerdhi ∩ Kerdvj

with the boundary homomorphisms
∂h
i : NGn,m −→ NGn−1,m

and
∂v
j : NGn,m −→ NGn,m−1

induced by the face maps dhi and dvj .
This Moore bicomplex is illustrated by the following diagram.

�� �� ��
· · · // NG2,2

��

... // NG1,2
∂h
1

... //

∂v
2

��

NG0,2

∂v
2

��
· · · // NG2,1

��

// NG1,1

∂v
1

��

∂h
1

// NG0,1

∂v
1

��
· · · // NG2,0

∂h
2

// NG1,0
∂h
1

// NG0,0.
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Now we can give the functions Fα,β in the Moore (bi)complex of a bisimplicial group.

Given n = (k1, k2) ∈ N×N , let S (n) = S (k1)×S (k2) with the product (partial) order. Let α, β ∈ S (n)

and α = (α1, α2) ; β = (β1, β2) where αi, βi ∈ S (ki) for 1 ⩽ i ⩽ 2. The pairings that we will need{
Fα,β : NGn−#α ×NGn−#β −→ NGn ; α, β ∈ S (n) , α 6= β

}
are given by composing of the maps in the following diagram

NGk1−#α1,k2−#α2
×NGk1−#β1,k2−#β2

(sα,sβ)

��

Fα,β // NGk1,k2

Gk1,k2
×Gk1,k2 µ

// Gk1,k2

p

OO

where sα : shα1
svα2

, and where shα1
= shir . . . s

h
i1

for α1 = (ir, . . . , i1) ∈ S(k1) and similarly sβ = shβ1
svβ2

,

svβ2
= svjm . . . svj1 for β1 = (jm, . . . , j1) ∈ S(k2) and where

p : Gk1,k2 → NGk1,k2

is defined by the composite projection

p =
(
phk1−1...p

h
0

) (
pvk2−1...p

v
0

)
where pj (x) = x−1sjdj (x) in both horizontal and vertical directions and µ is given by the commutator map.

For α = (α1, α2), β = (β1, β2) ∈ S(k1)× S(k2) , we obtain

Fα,β(x, y) = p[−,−](sα, sβ)(x, y)

= p[−,−](shα1
svα2

(x), shβ1
svβ2

(y))

= p[shα1
svα2

(x), shβ1
svβ2

(y)]

where x ∈ NGk1−#α1,k2−#α2
and y ∈ NGk1−#β1,k2−#β2

.

4.3. Calculations of the functions Fα,β in low dimensions for bisimplical groups

For 0 ⩽ k1, k2 ⩽ 2 , we consider the sets S(k1)× S(k2). We shall calculate the images of the functions Fα,β for
all α, β ∈ S(k1)× S(k2).

First, consider (n,m) = (0, 1) or (n,m) = (1, 0) . We get the Fα,β functions whose codomain is NG0,1

or NG1,0 respectively. Let (n,m) = (0, 1) . We get

S(n,m) = S(0)× S(1) = {(∅, ∅), (∅, (0))}.

For α = (∅, ∅) and β = (∅, (0)) , the function

F(∅,∅),(∅,(0)) : NG0,1 ×NG0,0 −→ NG0,1
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can be given as follows:

F(∅,∅),(∅,(0))(x, y) = p[−,−](sh∅s
v
∅(x), s

h
∅s

v
(0)(y))

= pv0[id(x), s
v
0(y)] (∵ sh∅ = sv∅ = id)

= [x, sv0y]s
v
0d

v
0[s

v
0y, x]

= [x, sv0y][s
v
0y, s

v
0d

v
0(x)]

= [x, sv0y][s
v
0y, 1] ((∵ x ∈ ker dv0 = NG0,1)

= [x, sv0y]

for x ∈ NG0,1 and y ∈ NG0,0 .
Suppose now that (n,m) = (1, 0) . We have S(1) × S(0) = {(∅, ∅), ((0), ∅)} . For α = (∅, ∅) and

β = ((0), ∅) , the function
F(∅,∅),((0),∅) : NG1,0 ×NG0,0 −→ NG1,0

is defined by

F(∅,∅),((0),∅)(x, y) = p[−,−](sh∅s
v
∅(x), s

h
0s

v
∅(y))

= ph0 [id(x), s
h
0 (y)]

= [x, sh0y]s
h
0d

h
0 [s

h
0y, x]

= [x, sh0y][s
h
0y, s

h
0d

h
0 (x)]

= [x, sh0y][s
h
0y, 1] ((∵ x ∈ ker dh0 = NG1,0)

= [x, sh0y]

for all x ∈ NG1,0 and y ∈ NG00 .
We give the calculations of other functions in Appendix.

Definition 4.2 Let G•,• be a bisimplicial group and n,m > 1, and Dn,m the subgroup in Gn,m generated by
degenerate elements. Let NG

n,m be the normal subgroup of Gn,m generated by elements of the form

Fα,β(x, y) with α = (α1, α2), β = (β1, β2) ∈ S(n)× S(m)

where x ∈ NGn−#α1,m−#α2
and y ∈ NGn−#β1,m−#β2

.

Considering the equalities given in Definition 2.1 of Section 2, for bisimplicial groups, we can write the
following equalities

∂h
n(NGn,m ∩Dn,m) = ∂h

n(N
G
n,m ∩Dn,m),

and
∂v
m(NGn,m ∩Dn,m) = ∂v

m(NG
n,m ∩Dn,m)

in each direction.
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As we stated in Proposition 2.2. that Mutlu and Porter obtained the following inclusion

[
⋂
i∈I

ker di ,
⋂
j∈J

ker dj ] ⊆ ∂n(NGn ∩Dn).

for n ⩾ 2 and I, J ⊆ [n− 1] with I ∪ J = [n− 1] , in the Moore complex of a simplicial group G .
The following result is corresponding to 2-dimensional version of this result given in [16].

Theorem 4.3 Let G•,• be a bisimplicial group. Then for n ⩾ 1,m ⩾ 2 and I, J ⊆ [m−1] with I∪J = [m−1] ,
there is the inclusion

[KI ∩KH ,KJ ∩KH ] ⊆ ∂v
m (NGn,m ∩Dn,m)

where

KH =

n−1⋂
i=0

ker dhi

and
KI =

⋂
i∈I

ker dvi and KJ =
⋂
j∈J

ker dvj .

Similarly, for n ⩾ 2,m ⩾ 1 and I ′, J ′ ⊆ [n− 1] with I ′ ∪ J ′ = [n− 1] , there is the inclusion

[KI′ ∩KV ,KJ′ ∩KV ] ⊆ ∂h
n (NGn,m ∩Dn,m)

where

KV =

m−1⋂
i=0

ker dvi

and
KI′ =

⋂
i∈I′

ker dhi and KJ′ =
⋂
j∈J′

ker dhj .

Proof We know that from the results of [16], there are already the following inclusions in both horizontal and
vertical directions: if m is constant in the horizontal direction, for n ⩾ 2 , we have

[KI′ ,KJ′ ] ⊆ ∂h
n (NGn,m ∩Dn,m)

and if n is constant in the vertical direction, then for m ⩾ 2 , we have

[KI ,KJ ] ⊆ ∂v
m (NGn,m ∩Dn,m) .

The result can be seen easily by using these inclusions. 2

Mutlu and Porter for a simplicial group G investigated the images of the functions Fα,β for n = 2, 3, 4 .
Thus they obtained the following equalities for n = 2 and n = 3 :

∂2(NG2 ∩D2) = [ker d0, ker d1]
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and

∂3(NG3 ∩D3) = [ker d2, ker d0 ∩ ker d1][ker d1, ker d0 ∩ ker d2][ker d0, ker d1 ∩ ker d2]

[ker d0 ∩ ker d2, ker d0 ∩ ker d1][ker d1 ∩ ker d2, ker d0 ∩ ker d1]

[ker d1 ∩ ker d2, ker d0 ∩ ker d2].

For bisimplical groups, we now investigate the images of these functions in the Moore bicomplex in low
dimensions. The images of these functions under the boundary homomorphisms ∂h

n and ∂v
m are as follows:

For NG1,2 , take x, y ∈ NG1,1 = ker dh0 ∩ ker dv0 , we obtain

∂v
2 (F(∅,(0)),(∅,(1)))(x, y) = dv2 ([s

v
0 (x) , s

v
1(y)][s

v
1y, s

v
1x])

= [sv0d
v
1x, y][y, x],

where [sv0d
v
1x, y][y, x] ∈ [ker dv0, ker d

v
1] from [16]. Further we obtain

dh0 ([s
v
0d

v
1x, y][y, x]) = 1,

hence [sv0d
v
1x, y][y, x] ∈ [ker dv0 ∩ ker dh0 , ker d

v
1 ∩ ker dh0 ].

Similarly for y ∈ NG0,2 and x ∈ NG1,1 , from NG1,1 ×NG0,2 to NG1,2 we obtain

∂v
2 (F(∅,(1)),((0),∅))(x, y) = dv2[s

v
1(x), s

h
0 (y)]

= [x, dv2s
h
0 (y)].

Since dh0 [x, d
v
2s

h
0 (y)] = 1 we have [x, dv2s

h
0 (y)] ∈ ker dh0 . Furthermore, [x, dv2s

h
0 (y)] ∈ [ker dv0, ker d

v
1].

By a similar way one can show that the images of other generating elements are in

[ker dv0 ∩ ker dh0 , ker d
v
1 ∩ ker dh0 ].

We have the following equality

∂
v

2 (NG1,2 ∩D1,2) = [ker dv0 ∩ ker dh0 , ker d
v
1 ∩ ker dh0 ].

For NG2,1 take x, y ∈ NG1,1 . We obtain

∂
h

2 (F(((0),∅),((1),∅)))(x, y) = [sh0d
h
1 (x), y][y, x]

where [sh0d
h
1 (x), y][y, x] ∈ [ker dh0 , ker d

h
1 ] and

dv0([s
h
0d

h
1 (x), y][y, x]) = 1,

hence
[sh0d

h
1 (x), y][y, x] ∈ ker dv0 ∩ [ker dh0 , ker d

h
1 ].

We obtain the following equality

∂h
2 (NG2,1 ∩D2,1) = [ker dh0 ∩ ker dv0, ker d

h
1 ∩ ker dv0].
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For (n,m) = (2, 1) and (n,m) = (1, 2) , we can summarize these situations in the following diagram.

α β I ′ J ′ V

((0), ∅) ((1), ∅) {0} {1} {0}
α β I J H

(∅, (0)) (∅, (1)) {0} {1} {0}

For NG2,2 take x, y ∈ NG2,1 = ker dh0 ∩ ker dh1 ∩ ker dv0 , we obtain

∂v
2 (F((∅,(0)),(∅,(1)))(x, y) = dv2 ([s

v
0(x), s

v
1(y)][s

v
1(y), s

v
1(x)]])

= [sv0d
v
1x, y][y, x]

where [sv0d
v
1x, y][y, x] ∈ [ker d

v

0, ker d
v

1] from [16]. Further we obtain

dh0 ([s
v
0d

v
1x, y][y, x]) = 1,

hence [sv0d
v
1x, y][y, x] ∈ [ker dv0 ∩ ker dh0 , ker d

v
1 ∩ ker dh0 ].

Similarly for x ∈ NG1,2 and y ∈ NG2,1 , from NG1,2 ×NG2,1 to NG2,2 we obtain

∂v
2 (F((1),∅),(∅,(0))(x, y)) = dv2[s

h
1 (x), s

v
0(y)]

= [dv2s
h
1 (x), d

v
2s

v
0(y)].

For dh0 [x, d
v
2s

h
0 (y)] = 1 we have [x, dv2s

h
0 (y)] ∈ ker dh0 . Furthermore, [x, dv2s

h
0 (y)] ∈ [ker dv0, ker d

v
1] .

By a similar way, one can show that the images of other generating elements are in

[ker dv0 ∩ ker dh0 , ker d
v
1 ∩ ker dh0 ].

We have the following equality

∂
v

2 (NG2,2 ∩D2,2) = [ker dv0 ∩ ker dh0 , ker d
v
1 ∩ ker dh0 ].

We can summarize this in the following diagram for (n,m) = (2, 2) .

α β I ′ J ′ V

((0), ∅) ((1), ∅) {0} {1} {0, 1}
α β I J H

(∅, (0)) (∅, (1)) {0} {1} {0, 1}

Using the calculation method given above, we obtained the following equalities in low dimensions for bisimplicial
groups.

∂v
2 (NG0,2 ∩D0,2) = [ker dv0, ker d

v
1],

∂v
2 (NG1,2 ∩D1,2) = [ker dv0 ∩ ker dh0 , ker d

v
1 ∩ ker dh0 ],

∂v
2 (NG2,2 ∩D2,2) = [ker dv0 ∩ ker dh0 ∩ ker dh1 , ker d

v
1 ∩ ker dh0 ∩ ker dh1 ],

∂
h

2 (NG2,0 ∩D2,0) = [ker dh0 , ker d
h
1 ],

∂h
2 (NG2,1 ∩D2,1) = [ker dh0 ∩ ker dv0, ker d

h
1 ∩ ker dv0] ,

∂h
2 (NG2,2 ∩D2,2) = [ker dh0 ∩ ker dv0 ∩ ker dv1, ker d

h
1 ∩ ker dv0 ∩ ker dv1].
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4.4. Crossed squares and bisimplicial groups
In Theorem 3.3, we give the general relationship between crossed n -cubes and n -simplicial groups by using the
Fα,β functions in the Moore complex of an n -simplicial group. In this section, to see the role of these functions
in dimension 2, we give the following proposition as an application of these functions. This result was initially
proven by Conduché in [9] without using Fα,β functions. In this result, to see the role of these functions in the
structure, we reprove this result and we see that the h -map of the crossed square given by Conduché (cf. [9])
can be given by the function F(∅,(0)),((0),∅) : NG01 ×NG10 → NG11 in the Moore bicomplex of a bisimplicial
group.

First, we recall the definition of a crossed square from [13].
A crossed square of groups is a commutative square of group morphisms

L

λ′

��

λ // M

µ

��
N

ν
// P

with an action of P on every other group and a map h : M ×N → L such that

1. The maps λ and λ′ are P -equivariant and ν ,µ , µ ◦ λ and ν ◦ λ′ are crossed modules,

2. λ ◦ h(x, y) = xν(y)x−1, λ′ ◦ h(x, y) = (µ(x)y)y−1,

3. h(λ(z), y) = zν(y)z−1, h(x, λ′(z)) = (µ(x)z)z−1 ,

4. h(xx′, y) =µ(x) h(x′, y)h(x, y) , h(x, yy′) = h(x, y)ν(y)h(x, y′) ,

5. h(tx,t y) =t h(x, y)

for x, x′ ∈ M , y, y′ ∈ N, z ∈ L and t ∈ P .

Proposition 4.4 Let G•,• be a bisimplicial group and NG•,• its Moore bicomplex. Suppose NGk1,k2
= {1}

for any k1 ⩾ 2 or k2 ⩾ 2 . Then the diagram

NG1,1

∂v
1

��

∂h
1 // NG0,1

∂v
1

��
NG1,0

∂h
1

// NG0,0

is a crossed square. NG0,0 acts on other groups via the degeneracies sh0 and sv0.

The h-map is given by the map F(∅,(0)),((0),∅)(x, y) , namely,

h : NG0,1 ×NG1,0 → NG1,1

(x, y) 7→ h(x, y) = F(∅,(0)),((0),∅)(x, y)

for x ∈ NG0,1, y ∈ NG1,0 where (∅, (0)), ((0), ∅) ∈ S(1)× S(1) and

F(∅,(0)),((0),∅)(x, y) = [sh0 (x), s
v
0(y)].
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Proof It is straightforward from the direct calculations of Fα,β . 2

4.5. Double crossed complexes and bisimplicial groups

Carrasco and Cegarra [6] have defined hypercrossed complexes and proved the non-Abelian version of the Dold–
Kan theorem. They gave a functor from the category of simplicial groups to that of crossed complexes. Arvasi,
using the image of the Fα,β function in the Moore complex of a simplicial group have reconstructed this functor
from simplicial groups to crossed complex. The following result can be found in [6].

Recall that a crossed complex is a sequence of groups

C : · · · // Cn
∂n // Cn−1

∂n−1 // · · · // C2
∂2 // C1

∂1 // C0

(i) (C1, C0, ∂1) is a crossed module, i.e. if x, y ∈ C1, then ∂1xy = xyx−1;

(ii) for i > 1, Ci is an C0 -module (Abelian) on which ∂1C1 operates trivially and each ∂i is an operator
morphism; and

(iii) for i ≥ 1, ∂i+1∂i = 0.

Morphisms of crossed complexes are defined in the obvious way.

Theorem 4.5 Let G be a simplicial group. Then defining

Cn =
NGn

(NGn ∩Dn)dn+1(NGn+1 ∩Dn+1)

with ∂n(z) = dn(z) gives a crossed complex C(G) of groups.

In this section, we obtain a double crossed complex of groups from the Moore bicomplex of a bisimplicial
group via the Fα,β functions. By considering crossed complexes of group(oid)s internal to the category of
crossed complexes of group(oid)s, Tonks [20], introduced the notion of double crossed complexes of group(oid)s.
By the same way, the notion of a double crossed complex of groups has been given by considering it internal to
the category of crossed complexes of groups.

Definition 4.6 ([20])A double crossed complex of groups consists of
(i) a collection of groups Li,j for i, j ≥ 0,

(ii) the actions

L0,j × Lk,j
αh

// Lk,j Li,0 × Li,k
αv

// Li,k

for i, j ≥ 0, k ≥ 1,

(iii) horizontal and vertical boundary maps

Li,j

δhi // Li−1,j Lj,i

δvi // Lj,i−1

for i ≥ 1, j ≥ 0.
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These data are such that
(i) for each j ≥ 0 the horizontal structure ((Li,j)i≥0, α

h, (δhi )i≥1) defines a crossed complex of groups,
(ii) for each i ≥ 0 the vertical structure ((Li,j)j≥0, α

v, (δvj )j≥1) defines a crossed complex of groups,

(iii) the horizontal structure maps commute with the vertical structure maps. That is,
(a) the function δh defines complex morphisms between the vertical crossed complex, and similarly δv

between the horizontal ones,
(b) the horizontal and vertical actions satisfy an interchange law. That is, if the expressions αv(αh(a, b), αh(c, d))

and αh(αv(a, c), αv(b, d)) are both defined, then they are equal.

A double crossed complex of groups may be represented diagrammatically as follows:

...

��

...

��

...

��
· · ·

δh3

// L2,2

��

// L1,2
δh1

//

δv2

��

L0,2

δv2

��
· · ·

δh3

// L2,1

��

// L1,1

δv1

��

δh1

// L0,1

δv1

��
· · ·

δh3

// L2,0
δh2

// L1,0
δh1

// L0,0.

Now, we can give the relationship between the Moore bicomplex of a bisimplicial group and a double
crossed complex by using the Fα,β functions.

Lemma 4.7 The subgroup (NGn,m ∩Dn,m)dvn+1(NGn+1,m ∩Dn+1,m)dhn+1(NGn,m+1 ∩Dn,m+1) is a normal
subgroup in NGn,m.

Let G•,• be a bisimplicial group. Using the following lemmas, we will obtain a double crossed complex from
G•,•. Define

Ln,m(G•,•) =
NGn,m

(NGn,m ∩Dn,m)dvn+1(NGn+1,m ∩Dn+1,m)dhn+1(NGn,m+1 ∩Dn,m+1)
.

Lemma 4.8 Let x, y ∈ NGn,m for n ≥ 2, then [x, y] = a−1dvn+1w, where
a = Fn

(∅,n−2),(∅,n−1)(d
v
nx, d

v
ny) = [svn−2d

v
nx, s

v
n−1d

v
ny][s

v
n−1d

v
ny, s

v
n−1d

v
nx] and

w = Fn+1
(∅,n−2),(∅,n−1)(x, y) = [svn−2x, s

v
n−1y][s

v
n−1y, s

v
n−1x][s

v
nx, s

v
ny].

Similarly, x, y ∈ NGn,m for m ≥ 2, then [x, y] = b−1dhm+1v, where

b = Fm
(m−2,∅),(m−1,∅)(d

h
mx, dhmy) = [shm−2d

h
mx, shm−1d

h
my][shm−1d

h
my, shm−1d

h
mx] and

v = Fm+1
(m−2,∅),(m−1,∅)(x, y) = [shm−2x, s

h
m−1y][s

h
m−1y, s

h
m−1x][s

h
mx, shmy].

Corollary 4.9 For n ≥ 2 and m ≥ 2, Ln,m(G•,•) is abelian.
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Lemma 4.10 For n ≥ 2, x ∈ NGn−1,m and y ∈ NGn,m,

[svn−1x, y] ∈ (NGn,m ∩Dn,m)dvn+1(NGn+1,m ∩Dn+1,m).

Similarly, if for m ≥ 2, x ∈ NGn,m−1 and y ∈ NGn,m, then

[shm−1x, y] ∈ (NGn,m ∩Dn,m)dhm+1(NGn,m+1 ∩Dn,m+1).

The importance of this result is that the natural actions of NGl,m on NGn,m are by conjugations via
degeneracies. In particular we choose the action

xy = s
(n−l)
l (x)ys

(n−l)
l (x)−1

where the (n − l) superfix denotes an iterated application of the map. Thus if n ≥ 2 then NGn−1,m acts

trivially on NGn,m [svn−1x, y] = 1.

Lemma 4.11 For each n,m the maps ∂v
n : Ln,m(G•,•) → Ln−1,m(G•,•) and ∂h

m : Ln,m(G•,•) → Ln,m−1(G•,•)

are crossed modules.

Lemma 4.12 For x ∈ NGn−i+1,m, y ∈ NGn,m and 1 ≤ k < i,

sv(k)n s
v(i−k−1)
n−i xysv(k)n s

v(i−k−1)
n−i x−1 ≡ sv(k−1)

n s
v(i−k)
n−i xysv(k−1)

n s
v(i−k)
n−i x−1

mod(NGn,m ∩Dn,m)dvn+1(NGn+1,m ∩Dn+1,m).

Proof Writing s
v(k)
n for (svn+k−1, s

v
n+k−2, ..., s

v
n) and s

v(i−k)
n−i for (svn−k−1, s

v
n−k−2, ..., s

v
n−i), we consider the

element [s
v(k)
n s

v(i−k)
n−i x, svky] ∈ Gn+1,m the mapping

pl : Gn+1,m → NGn+1,m ⊂ Gn+1,m ⊂ with 0 ≤ l ≤ n

given by

pl(z) = zsvl d
v
l z

−1.

We also note that the particular case of Fα,β for α = (n, n− i;m), β = (k,m) is

Fα,β(x, y) = F(n,n−i;m),(k,m)(x, y)

pnpn−1...p0[s
v(k)
n s

v(i−k)
n−i x, svky] ∈ NGn+1,m ∩Dn+1,m.

We will prove that dvn+1(F(n,n−i;m),(k,m)(x, y)) is basically the difference between the two elements of this
lemma.

Indeed by putting

F(n,n−i;m),(k,m)(x, y) = z(k)(i)(x, y) = [sv(k)n s
v(i−k)
n−i x, svky]
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and for α = (n, n− i;m) and β = (k,m) with any j, 0 ≤ j ≤ n+ 1, we obtain

dvj z(k)(i)(x, y) =


1 if k > j

[s
v(k)
n−1s

v(i−k−1)
n−i x, y] if k = j

[s
v(k−1)
n s

v(i−k)
n−i x, y] if k = j − 1

1 if 1 < j − i− k + 1
1 if j > i+ 1

and dvn+1z(k)(i)(x, y) = z(k−1),(i−1)(x, d
v
n+1y).

This gives
pnpn−1...p0(z(k)(i)(x, y)) = pn...pi+k(z(k)(i)(x, y))

since the operators pl for l > i+ 1 are trivial. We also note that

pn...pi+k(z(k)(i)(x, y)) = pn...pk+1(z(k)(i)(x, y)).

Now if w ∈ Gn+1,,m, then

dvn+1pn(w) = dvn+1wd
v
nw

−1

dvn+1pnpn−1(w) = dvn+1pn−1w (dvnpn−1w)
−1 (4.1)

and so on. It follows that

dvn+1pn...pk+1(z(k)(i)(x, y)) = pn . . . pk(z(k−1)(i−1)(x, d
v
ny))(d

v
npn−1 . . . pk+1(z(k)(i)(x, y)))

−1.

The first of these two terms is in NGn,m ∩Dn,m and hence we only check the second one. From (4.1), we get

dvn+1pn−1...pk+1(z(k)(i)(x, y)) = dvnpn−2...pk+1(w)(d
v
n−1pn−2...pk+1(w))

−1

and this implies
dvl pl+1...pk+1(z(k)(i)(x, y))

and others of form
dvl−1pl+1...pk+1(z(k)(i)(x, y)).

If j < k − 1, a ∈ Gn,m

dvjpk(a) = dvj (a)(s
v
k−1d

v
k−1d

v
j (a)

−1) = pk−1d
v
j (a),

so any term of the form dvl−1pl+1...pk+1(z(k)(i)(x, y)) can be written as

pl−1 · · · pk(dvl−1(z(k)(i)(x, y)))

and so is trivial if l > 1. Hence the only term is dvkpk(z(k)(i)(x, y)) and so

dvkpk(z(k)(i)(x, y)) = dvk[s
v(k)
n s

v(i−k)
n−i x, svky]d

v
ks

v
kd

v
k[s

v
ky, s

v(k)
n s

v(i−k)
n−i x]

= s
v(k)
n s

v(i−k−1)
n−i xys

v(k)
n s

v(i−k−1)
n−i x−1s

v(k−1)
n s

v(i−k)
n−i xy−1s

v(k−1)
n s

v(i−k)
n−i x−1

i.e. the difference of the two terms in the statement of the lemma. Putting

b = sv(k)n s
v(i−k−1)
n−i xysv(k)n s

v(i−k−1)
n−i x−1sv(k−1)

n s
v(i−k)
n−i xy−1sv(k−1)

n s
v(i−k)
n−i x−1
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It then follows that
dvn+1(F(n,n−i;m),(k,m)(x, y)) = pn...pk(z(k−1)(i−1)(x, d

v
ny))b

−1.

Having pn...pk(z(k−1)(i−1)(x, d
v
ny)) ∈ NGn,m ∩Dn,m and w ∈ NGn+1,m ∩Dn+1,m implies that

sv(k−1)
n s

v(i−k)
n−i xysv(k−1)

n s
v(i−k)
n−i x−1 ≡ sv(k)n s

v(i−k−1)
n−i xysv(k)n s

v(i−k−1)
n−i x−1

mod(NGn,m ∩Dn,m)dvn+1(NGn+1,m ∩Dn+1,m).

2

Lemma 4.13 If n ≥ 1, x ∈ NGn−i,m and y ∈ NGn,m then

sv(i+1)
n dvn−ixys

v(i+1)
n dvn−ix

−1 ≡ s
v(i)
n−ixys

v(i)
n−1x

−1 mod(NGn,m ∩Dn,m)dvn+1(NGn+1,m ∩Dn+1,m).

Proof Take the element

t = s
v(i+1)
n−i xsvnys

v
ns

v(i+1)
n−i x−1svnys

v
ns

v(i)
n−ixs

v
nys

v
ns

v(i)
n−ix

−1.

This is F(α;m),(n,m)(x, y) = pn...p0[s
v(i+1)
α x, svny] i.e. where s

v(i+1)
α = svns

v
n−1 · · · svn−i. It is readily checked that

0 ≤ i ≤ n − 1, for dvi (t) = 1 for i ≥ 0 and dvn+1(t) is the difference between the elements mentioned in the
statement of the lemma. 2

Lemma 4.14 If n ≥ 2, x ∈ NG1,m and y ∈ NGn,m then

[svn−1 · · · sv1x, y] ≡ 1 mod(NGn,m ∩Dn,m)dvn+1(NGn+1,m ∩Dn+1,m).

Proof Consider

u = [svny, s
v
n · · · sv1x][svn−1y, s

v
n−1ys

v
n · · · sv1x]−1

n∏
i=2

[svn−iy, s
v
n · · · sv1x](−1)i

u is easily checked to be in NGn+1,m ∩Dn+1,m.

dvn+1(u) = [y, svn−1 · · · sv1x][svn−1d
v
ny, s

v
n−1 · · · sv1x]−1

[svn−2d
v
ny, s

v
n−1 · · · sv1x]

n∏
i=3

[svn−id
v
ny, s

v
n−1 · · · sv1x](−1)i

Writing
t = [svn−1d

v
ny, s

v
n−1 · · · sv1x]−1[svn−2d

v
ny, s

v
n−1 · · · sv1x]

n∏
i=3

[svn−id
v
ny, s

v
n−1 · · · sv1x](−1)i

it is readily checked that t ∈ NGn,m and is as required. 2

Thus, we can give the main result of this section as follows.
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Theorem 4.15 Let (G•,•) be a bisimplicial group. Then the construction

Ln,m(G•,•) =
NGn,m

(NGn,m ∩Dn,m)dvn+1(NGn+1,m ∩Dn+1,m)dhn+1(NGn,m+1 ∩Dn,m+1)

with ∂v(x) = dvn(x) ,∂h(x) = dhn(x) gives a double crossed complex.

Proof It is straightforward from the lemmas given above. 2
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1. Appendix

For (n,m) = (1, 1) , consider the set

S(1)× S(1) = {(∅, ∅), (∅, (0)), ((0), ∅), ((0), (0))}.

1. Take α = (∅, ∅) and β = (∅, (0)) . In this case, the function Fα,β becomes from NG1,1×NG1,0 to NG1,1.

This map can be defined for any x ∈ NG1,1 and y ∈ NG1,0 by

F(∅,∅),(∅,(0))(x, y) = [x, sv0(y)].

2. Take α = (∅, ∅) and β = ((0), ∅) . In this case, the function Fα,β becomes from NG1,1×NG0,1 to NG1,1.

This map can be defined by

F(∅,∅),((0),∅)(x, y) = [x, sh0 (y)].

for any x ∈ NG1,1 and y ∈ NG0,1 .

3. For α = (∅, ∅) and β = ((0), (0)) . The map

F(∅,∅),((0),(0)) : NG1,1 ×NG0,0 → NG1,1

is defined by

F(∅,∅),((0),(0))(x, y) = [x, (sv0s
h
0 (y))]

for all x ∈ NG1,1 and y ∈ NG00 .

4. For α = ((0), ∅) and β = (∅, (0)) . The map

F((0),∅),(∅,(0)) : NG0,1 ×NG1,0 → NG1,1

can be calculated for any x ∈ NG0,1 and y ∈ NG1,0 by

F((0),∅),(∅,(0))(x, y) =p[−,−](sh0 (x), s
v
0(y))

=ph0p
v
0(s

h
0 (x)s

v
0(y)s

h
0 (x)

−1sv0(y)
−1)

=ph0 ((s
v
0(y)s

h
0 (x)s

v
0(y)

−1sh0 (x)
−1)

sv0d
v
0(s

h
0 (x)s

v
0(y)s

h
0 (x)

−1sv0(y)
−1))

=ph0 (s
v
0(y)s

h
0 (x)s

v
0(y)

−1sh0 (x)
−1)(sv0d

v
0

sh0 (x)s
v
0d

v
0s

v
0(y)s

v
0d

v
0s

h
0 (x)

−1sv0d
v
0s

v
0(y)

−1)

=ph0 (s
v
0(y)s

h
0 (x)s

v
0(y)

−1sh0 (x)
−1)

=(sh0 (x)s
v
0(y)s

h
0 (x)

−1sv0(y)
−1)

=[sh0 (x), s
v
0(y)].
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5. For α = ((0), ∅) and β = ((0), (0)) . The map

F((0),∅),((0),(0)) : NG0,1 ×NG0,0 → NG1,1

can be calculated for any x ∈ NG0,1 and y ∈ NG0,0 by

F((0),∅),((0),(0))(x, y) = p[−,−](sα, sβ)(x, y)

= ph0p
v
0[s

h
0 (x), s

h
0s

v
0(y)]

= 1

6. Similarly for α = (∅, (0)) and β = ((0), (0)) , the map

F(∅,(0)),((0),(0)) : NG1,0 ×NG0,0 → NG1,1

is the identity as given in the previous step.

By taking (n,m)= (0, 2) and (2, 0) , we calculate the possible non identity maps with codomain NG0,2 and
NG2,0 respectively.

First (n,m) = (0, 2) . Consider the set

S(0)× S(2) = {(∅, ∅), (∅, (0)), (∅, (1)), (∅, (1, 0))}.

We try to find the functions Fα,β with codomain NG0,2 . In this case the only nonidentity map Fα,β can be
defined by choosing α = (∅, (0)) and β = (∅, (1)) . This is a map from NG0,1 ×NG0,1 to NG0,2 . This map is
calculated as follows. For x, y ∈ NG0,1 , we obtain

F(∅,(0)),(∅,(1))(x, y) = p[−,−](sα, sβ)(x, y)

= pv1p
v
0[s

v
0(x), s

v
1(y)]

= [sv0x, s
v
1y][s

v
1y, s

h
1x] ∈ NG0,2.

Now suppose (n,m) = (2, 0) . From the set

S(2)× S(0) = {(∅, ∅), ((0), ∅), ((1), ∅), ((1, 0), ∅)}

we can choose α = ((0), ∅) and β = ((1), ∅) . This map is from NG1,0 × NG1,0 to NG2,0 . This map can be
given by for x, y ∈ NG1,0

F((0),∅),((1),∅)(x, y) = p[−,−](sα, sβ)(x, y)

= ph1p
h
0 [s

h
0 (x), s

h
1 (y)]

= [sh0 (x), s
h
1 (y)][s

h
1 (y), s

h
1 (x)] ∈ NG2,0.

Now, by taking (n,m)= (1, 2) and (2, 1) , we shall define the possible nonidentity maps Fα,β whose
codomain NG1,2 and NG2,1 respectively.

2
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First suppose that (n,m) = (1, 2) . We set

S(1)× S(2) = {(∅, ∅), (∅, (1)), (∅, (0)), (∅, (1, 0)), ((0), ∅), ((0), (1)), ((0), (0)), ((0), (1, 0))}.

In the following calculations, by taking appropriate α, β from the set S(1) × S(2) , we shall give all the non
identity maps whose codomain NG1,2 . To obtain these maps, we can choose the possible α, β from the set
S(1)× S(2) as follows:

1. (α, β) = ((∅, (0)), (∅, (1))) 2. (α, β) = ((∅, (1)), ((0), ∅))
3. (α, β) = ((∅, (0)), ((0), ∅)) 4. (α, β) = (((0), (1)), (∅, (0)))
5. (α, β) = (((0), (0)), (∅, (1))).

Now we give the functions Fα,β for these pairings (α, β) .

1. F(∅,(0)),(∅,(1)) : NG1,1 ×NG1,1 −→ NG1,2 can be given by

F(∅,(0)),(∅,(1))(x, y) =p[−,−](sα, sβ)(x, y)

=pv1p
v
0p

h
0 [s

v
0x, s

v
1y]

=[sv0(x), s
v
1(y)][s

v
1(y), s

v
1(x)] ∈ NG1,2

for x, y ∈ NG1,1 .

2. The map F(∅,(1)),((0),∅) : NG1,1 ×NG0,2 −→ NG1,2 is given by

F(∅,(1)),((0),∅)(x, a) = [sv1(x), s
h
0 (a)] ∈ NG1,2

for x ∈ NG1,1 and a ∈ NG0,2 .

3. For α = (∅, (0)), β = ((0), ∅), x ∈ NG1,1 and a ∈ NG0,2 , we have the following map

F(∅,(0)),((0),∅) : NG1,1 ×NG0,2 −→ NG1,2

(x, a) 7−→ [sv0(x), s
h
0 (a)] ∈ NG1,2.

4. For α = ((0), (1)), β = (∅, (0)), x ∈ NG0,1 and y ∈ NG1,1 , we get the following map

F(0),(1)),(∅,(0)) : NG0,1 ×NG1,1 −→ NG1,2

(x, y) 7−→ [sh0s
v
1(x), s

v
0(y)] ∈ NG1,2.

5. For α = ((0), (0)), β = (∅, (1)), x ∈ NG0,1 and y ∈ NG1,1 , we get the following map

F(0),(0)),(∅,(1)) : NG0,1 ×NG1,1 −→ NG1,2

(x, y) 7−→ [sh0s
v
0(x), s

v
1(y)] ∈ NG1,2.

Now suppose that (n,m) = (2, 1) . We consider the set S(2)× S(1) . By choosing appropriate α, β from
the set S(2)×S(1) , we can calculate similarly all the nonidentity maps with codomain NG2,1 . To obtain these
maps, we take the possible α, β as follows:

3
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1. (α, β) = (((0), ∅), ((1), ∅, )) 2. (α, β) = (((1), ∅), (∅, (0)))
3. (α, β) = (((0), ∅), (∅, (0))) 4. (α, β) = (((1), (0)), ((0), ∅))
5. (α, β) = (((0), (0)), ((1), ∅)).

For these (α, β) , the corresponding Fα,β functions can be calculated as follows.

1. For α = ((0), ∅) and β = ((1), ∅) , we obtain the map

F((0),∅),((1),∅) : NG1,1 ×NG1,1 −→ NG2,1

(x, y) 7−→ [sh0 (x), s
h
1 (y)][s

h
1 (y), s

h
1 (x)] ∈ NG2,1.

2. For α = ((1), ∅), β = (∅, (0)) , we get the map

F((1),∅),(∅,(0)) : NG1,1 ×NG2,0 −→ NG2,1

(x, a) 7−→ [sh1 (x), s
v
0(a)] ∈ NG2,1.

3. For α = ((0), ∅), β = (∅, (0)) , we get the map

F((0),∅),(∅,(0)) : NG1,1 ×NG2,0 −→ NG2,1

(x, a) 7−→ [sh0 (x), s
v
0(a)] ∈ NG2,1.

4. For α = ((1), (0)), β = ((0), ∅) , we get the following map

F((1),(0)),((0),∅) : NG1,0 ×NG1,1 −→ NG2,1

(x, y) 7−→ [sh1s
v
0(x), s

h
0 (y)] ∈ NG2,1.

5. For α = ((0), (0)), β = ((1), ∅) , we get the following map

F((0),(0)),((1),∅) : NG1,0 ×NG1,1 −→ NG2,1

(x, y) 7−→ [sh0s
v
0(x), s

h
1 (y)] ∈ NG2,1.

Let (n,m) = (2, 2) . By choosing appropriate α, β from the set S(2) × S(2) , we can calculate the nonidentity
maps with codomain NG2,2 . The possible α, β are given as follows:

1. (α, β) = (((0), ∅), ((1), ∅)) 2. (α, β) = (((1), ∅), (∅, (0)))
3. (α, β) = (((0), ∅), (∅, (0))) 4. (α, β) = (((1), (0)), ((0), ∅))
5. (α, β) = (((0), (0)), ((1), ∅)), 6. (α, β) = ((∅, (0)), (∅, (1))).

For these (α, β) , the corresponding Fα,β functions can be calculated similarly. These functions are

F((0),∅),((1),∅) (x, y) = [sh0x, s
h
1y][s

h
1y, s

h
1x] ,

F(∅,(0)),(∅,(1)) (x, y) = [sv0(x), s
v
1(y)][s

v
1(y), s

v
1(x)] ,

F((1),∅),(∅,(0)) (x, y) = [sh1 (x), s
v
0(y)] ,

F((0),∅),(∅,(0)) (x, y) = [sh0 (x), s
v
0(y)] ,

F((0),(1)),(∅,(0)) (x, y) = [sv0s
h
1 (x), s

v
0(y)] ,

F((0),(0)),(∅,(1)) (x, y) = [sv1s
h
0 (x), s

v
1(y)].
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