http://journals.tubitak.gov.tr/math/

Research Article

Turk J Math
(2021) 45: $360-386$
© TÜBİTAK
doi:10.3906/mat-1912-75

Peiffer pairings in multisimplicial groups and crossed n-cubes and applications for bisimplicial groups

Özgün GÜRMEN ALANSAL* ${ }^{\text {(1) }}$, Erdal ULUALAN©
Department of Mathematics, Faculty of Arts and Sciences, Kütahya Dumlupınar University, Kütahya, Turkey

| Received: 19.12 .2019 | Accepted/Published Online: 08.12 .2020 | Final Version: 21.01 .2021 |
| :--- | :--- | :--- | :--- | :--- |

Abstract

We explore the Peiffer pairings within the Moore complex of multisimplicial groups, and as an application, we give a detailed construction of a crossed n - cube from an n-simplicial group in terms of these pairings. We also give explicit calculations of Peiffer pairings in the Moore bicomplex of a bisimplicial group to see the role of these pairings in the relationship between bisimplicial groups and crossed squares.

Key words: Bisimplicial groups, crossed modules, crossed squares, crossed complexes

1. Introduction

As algebraic models for homotopy 2-types, the notion of crossed module was introduced by Whitehead in [21]. Crossed squares as introduced by Guin-Walery and Loday [12], model connected 3 -types. Crossed n-cubes (cf. [11]) model connected $(n+1)$-types, and they will be most interest to us in this paper. The observation that simplicial groups whose Moore complex is of length 1 are equivalent to Whitehead's crossed modules is well known. Conduché in [9] also proved that a 1-truncated bisimplicial group gives a crossed square.

The original motivation of Peiffer elements comes from the observation of Brown and Loday [5], about the normalisation of simplical groups. Let $\mathbf{G}=\left\{G_{n}\right\}$ be a simplicial group and let $\mathbf{N}=\left\{N_{n}\right\}$ be its Moore complex. Brown and Loday observed that if the group of 2 -simplices G_{2} is generated by degenerate elements, then $\partial_{2}\left(N_{2}\right)=\left[\operatorname{ker} d_{0}\right.$, ker $\left.d_{1}\right]$. In this construction, N_{0} acts on N_{1} via congugation using so, namely ${ }^{x} y=s_{0} x y s_{0} x^{-1}$ for $x \in N_{0}$ and $y \in N_{1}$. One gets easily that $\partial_{1}: N_{1} \rightarrow N_{0}$ is a precrossed module. In such a context the element ${ }^{\partial_{1} x} y x y^{-1} x^{-1}$ is called the Peiffer commutator of x, y or more briefly a Peiffer element. An easy argument shows that the subgroup $\left[\operatorname{Kerd} d_{0}, \operatorname{Kerd}_{1}\right]$ of N_{1} is generated by elements of this form and it is thus entirely the Peiffer subgroup of N_{1}. If the length of Moore complex of the simplicial group \mathbf{G} is 2, then $\partial_{2}\left(N_{2}\right)=\left[\operatorname{ker} d_{0}, \operatorname{ker} d_{1}\right]=\{1\}$ and then ${ }^{\partial_{1} x} y x y^{-1} x^{-1}=1$ for all $x, y \in N_{1}$, and this is equivalent to $\partial_{1}: N_{1} \rightarrow N_{0}$ being a crossed module. In [18], Mutlu and Porter developed a variant of the Carrasco and Cegarra [6] pairing operators, that they called Peiffer pairings by denoting $F_{\alpha, \beta}$ and showed that these pairings give product of operators.

Mutlu and Porter [16, 17], using the ideas based on the works of Conduché [8], and Carrasco and Cegarra, [6], generalized Peiffer elements to higher dimensions by giving systematic maps of generating them and have

[^0]investigated the images of the functions $F_{\alpha, \beta}$ in the Moore complex of a simplicial group. For further accounts of these functions in simplicial Lie algebras and simplicial commutative algebras see [1] and [3, 4], respectively.

The main aim of this paper is to define the functions $F_{\alpha, \beta}$ introduced by Mutlu and Porter in [16] for the Moore n-complex of an n-simplicial group, and as an application of these maps, to give the relationship between crossed n-cubes and n-simplicial groups. Porter in [19] has proven the relationship between n-types of simplicial groups and crossed n-cubes. Our result is closely related to the results of Porter. We prove in Theorem 3.3 that a 1-truncated n-simplicial group gives a crossed n-cube. In this relationship, it has been seen that the h-maps of a crossed n-cube are obtained by the images of the functions $F_{\alpha, \beta}$.

Subsequently, another interest of this paper is to give detailed calculations of the functions $F_{\alpha, \beta}$ in dimension 2, that is, in the Moore bicomplex of a bisimplicial group. Particularly, for dimension 2, in Proposition 4.4 of this work, we obtain the Conduché's result given in Proposition 3.2 of [9] between crossed squares and bisimplicial groups in terms of $F_{\alpha, \beta}$ functions. That is, we obtain that the h-map of a crossed square can be given by an image of the functions $F_{\alpha, \beta}$ in the Moore complex of a bisimplicial group. Furthermore, Carrasco and Cegarra gave the relation between simplicial groups and crossed complexes as a non-Abelian version of Dold-Kan theorem. Using the functions $F_{\alpha, \beta}$ in the Moore bicomplex of a bisimplicial group, in Theorem 4.15, we obtain a double crossed complex from a Moore bicomplex of a bisimplical group as a 2dimensional version of Carrasco and Cegarra's result.

2. Simplicial groups

We refer the reader to Loday's and May's books (cf. [14, 15]), and Artin's and Mazur's [2] article and Duskin [10] for the basic properties of simplicial groups, bisimplicial groups, etc.

Let Δ be the category of finite ordinals $[n]=\{0<1<\cdots<n\}$. A simplicial group is a functor from the opposite category $\Delta^{o p}$ to the category of groups Grp. That is, a simplicial group \mathbf{G} consists of a family of groups G_{n} together with homomorphisms $d_{i}^{n}: G_{n} \rightarrow G_{n-1}, 0 \leqslant i \leqslant n,(n \neq 0)$ and $s_{j}^{n}: G_{n} \rightarrow G_{n+1}$, $0 \leqslant j \leqslant n$, called face and degeneracy maps, satisfying the usual simplicial identities given in [15]. We will denote the category of simplicial groups by SimpGrp.

A chain complex of groups is a sequence of any length of groups and homomorphisms of groups;

$$
\cdots \longrightarrow C_{n} \xrightarrow{\partial_{n}} C_{n-1} \xrightarrow{\partial_{n-1}} C_{n-2} \longrightarrow \cdots
$$

in which each composite $\partial_{n-1} \circ \partial_{n}$ is trivial. The chain complex is normal if each image $\partial_{n}\left(C_{n}\right)$ is a normal subgroup of C_{n-1}.

Given a simplicial group \mathbf{G}, the Moore complex $(\mathbf{N G}, \partial)$ of \mathbf{G} is defined by

$$
(N G)_{n}=\operatorname{ker} d_{0}^{n} \cap \operatorname{ker} d_{1}^{n} \cap \cdots \cap \operatorname{ker} d_{n-1}^{n}
$$

with boundaries $\partial_{n}: N G_{n} \rightarrow N G_{n-1}$ induced from d_{n}^{n} by restriction. If \mathbf{G} is a simplicial group then its Moore complex NG is a normal chain complex of groups.

We say that the Moore complex NG of a simplicial group \mathbf{G} is of length k if $N G_{n}=\{1\}$ for all $n \geqslant k+1$.

GÜRMEN ALANSAL and ULUALAN/Turk J Math

2.1. Poset of surjective maps

In this section, we give the definition of the ordered set $S(n)$ from Mutlu and Porter [16, 18]. In the following we give from [16] hypercrossed complex pairings which are adapted by Carrasco and Cegarra's study (cf. [6]).

For the ordered set $[n]=\{0<1<\ldots<n\}$, let $\alpha_{i}^{n}:[n+1] \rightarrow[n]$ be the increasing surjective map given by

$$
\alpha_{i}^{n}(j)= \begin{cases}j & \text { if } j \leq i \\ j-1 & \text { if } j>i\end{cases}
$$

Let $S(n, n-l)$ be the set of all monotone increasing surjective maps form $[n]$ to $[n-l]$. This can be generated from the various α_{i}^{n} by composition. The composition of these generating maps satisfies the rule $\alpha_{j} \alpha_{i}=\alpha_{i-1} \alpha_{j}$ with $j<i$. This implies that every element $\alpha \in S(n, n-l)$ has a unique expression as $\alpha=\alpha_{i_{1}} \alpha_{i_{2}} \ldots \alpha_{i_{l}}$ with $0 \leq i_{1}<i_{2}<\ldots<i_{l} \leq n$, where the indices i_{k} are the elements of [n] at which $\left\{i_{1}, \ldots, i_{l}\right\}=\{i: \alpha(i)=\alpha(i+1)\}$. Thus, Mutlu and Porter (cf. [16]) have identified $S(n, n-l)$ with the set $\left\{\left(i_{l}, \ldots, i_{1}\right): 0 \leq i_{1}<i_{2}<\ldots<i_{l} \leq n-1\right\}$. In particular the single element of $S(n, n)$, defined by the identity map on $[n]$, corresponds to the empty 0 -tuple () denoted by \emptyset_{n}. Similarly the only element of $S(n, 0)$ is $(n-1, n-2, \ldots, 0)$. For all $n \geq 0$, let

$$
S(n)=\bigcup_{0 \leq l \leq n} S(n, n-l)
$$

It has been defined in [16] that $\alpha=\left(i_{l}, \ldots, i_{1}\right)>\beta=\left(j_{m}, \ldots, j_{1}\right)$ in $S(n)$ if $i_{1}=j_{1}, \ldots i_{k}=j_{k}$ but $i_{k+1}<j_{k+1},(k \geq 0)$ or if $i_{1}=j_{1}, \ldots i_{m}=j_{m}$ and $l>m$.

This makes $S(n)$ an ordered set. For instance, the orders of $S(2)$ and $S(3)$ and $S(4)$ are respectively:

$$
\begin{aligned}
S(2)= & \left\{\emptyset_{2}<(1)<(0)<(1,0)\right\} \\
S(3)= & \left\{\emptyset_{3}<(2)<(1)<(2,1)<(0)<(2,0)<(1,0)<(2,1,0)\right\} \\
S(4)= & \left\{\emptyset_{4}<(3)<(2)<(3,2)<(1)<(3,1)<(2,1)<(3,2,1)<(0)\right. \\
& <(3,0)<(2,0)<(3,2,0)<(1,0)<(3,1,0)<(2,1,0)<(3,2,1,0)\} .
\end{aligned}
$$

If $\alpha, \beta \in S(n)$, Mutlu and Porter have defined $\alpha \cap \beta$ to be the set of indices which belong to both α and β. If $\alpha=\left(i_{l}, \ldots, i_{1}\right)$, then, it is called that α has length l and written $\# \alpha=l$.

2.2. Peiffer pairings in simplicial groups

From [16], we give the definition of the set $P(n)$ consisting of pairs of elements (α, β) from $S(n)$ with $\alpha \cap \beta=\emptyset$ and $\beta<\alpha$, with respect to lexicographic ordering in $S(n)$ where $\alpha=\left(i_{r}, \ldots, i_{1}\right), \beta=\left(j_{s}, \ldots, j_{1}\right) \in S(n)$. The pairings

$$
\left\{F_{\alpha, \beta}: N G_{n-\# \alpha} \times N G_{n-\# \beta} \rightarrow N G_{n}:(\alpha, \beta) \in P(n), n \geqslant 0\right\}
$$

are given as composites by the diagram

where $s_{\alpha}=s_{i_{r}} \ldots s_{i_{1}}: N G_{n-\# \alpha} \rightarrow G_{n}, \quad s_{\beta}=s_{j_{s}} \ldots s_{j_{1}}: N G_{n-\# \beta} \rightarrow G_{n}, p: G_{n} \rightarrow N G_{n}$ is defined by composite projections $p(x)=p_{n-1} \ldots p_{0}(x)$, where $p_{j}(z)=z s_{j} d_{j}(z)^{-1}$ with $j=0,1, \ldots, n-1$. The map $[-,-]: G_{n} \times G_{n} \rightarrow G_{n}$ is given by the commutator map. Thus,

$$
F_{\alpha, \beta}\left(x_{\alpha}, y_{\beta}\right)=p\left[s_{\alpha}\left(x_{\alpha}\right), s_{\beta}\left(x_{\beta}\right)\right]
$$

Definition 2.1 ([16]) Let N_{n} or more exactly N_{n}^{G} be the normal subgroup of G_{n} generated by elements of the form $F_{\alpha, \beta}\left(x_{\alpha}, y_{\beta}\right)$ where $x_{\alpha} \in N G_{n-\# \alpha}$ and $y_{\beta} \in N G_{n-\# \beta}$.

This normal subgroup N_{n}^{G} depends functorially on G, but it is usually abbreviated N_{n}^{G} to N_{n}, when no change of group is involved. Mutlu and Porter in [16] illustrate this normal subgroup for $n=2,3,4$. As a corollary they obtained the following equality

$$
\partial_{n}\left(N G_{n} \cap D_{n}\right)=\partial_{n}\left(N_{n}^{G} \cap D_{n}\right)
$$

where D_{n} is subgroup generated by the degenerate elements in dimension n.

Proposition 2.2 ([16]) Let \mathbf{G} be a simplicial group. Then for $n \geqslant 2$ and $I, J \subseteq[n-1]$ with $I \cup J=[n-1]$,

$$
\left[\bigcap_{i \in I} \operatorname{ker} d_{i}, \bigcap_{j \in J} \operatorname{ker} d_{j}\right] \subseteq \partial_{n}\left(N G_{n} \cap D_{n}\right)
$$

Castiglioni and Ladra [7] gave a general proof over operads for these inclusions given by Mutlu and Porter in [16].

3. Multisimplicial groups

An n-simplicial group $\mathbf{G}_{\bullet_{1} \cdot \bullet_{2} \ldots \bullet_{n}}$ is a functor from the product category

$$
\Delta^{o p} \times \Delta^{o p} \times \cdots \times \Delta^{o p}=\left(\Delta^{o p}\right)^{n}
$$

to the category of groups Grp, with the face and degeneracy maps denoted by respectively

$$
d_{i_{j}}^{j}: G_{k_{1}, \ldots, k_{j}, \ldots, k_{n}} \longrightarrow G_{k_{1}, \ldots, k_{j}-1, \ldots, k_{n}}, \quad\left(0 \leqslant i_{j} \leqslant k_{j}, 1 \leqslant j \leqslant n,\right)
$$

and

$$
s_{i_{j}}^{j}: G_{k_{1}, \ldots, k_{j}, \ldots, k_{n}} \longrightarrow G_{k_{1}, \ldots, k_{j}+1, \ldots, k_{n}}, \quad\left(0 \leqslant i_{j}<k_{j}, 1 \leqslant j \leqslant n,\right)
$$

where each j indicates the directions of n-simplicial group. The Moore n-complex (cf. [9]) of an n-simplicial group can be given by

$$
N G_{k_{1}, k_{2}, \ldots, k_{n}}=\bigcap_{\left(i_{1}, i_{2}, \ldots, i_{n}\right)=(0,0, \ldots, 0)}^{\left(k_{1}-1, k_{2}-1, \ldots, k_{n}-1\right)} \operatorname{Ker} d_{i_{1}}^{1} \cap \operatorname{Ker} d_{i_{2}}^{2} \cap \cdots \cap \operatorname{Ker} d_{i_{n}}^{n}
$$

with the boundary homomorphism

$$
\partial_{i_{j}}^{j}: N G_{k_{1}, \ldots, k_{j}, \ldots, k_{n}} \longrightarrow N G_{k_{1}, \ldots, k_{j}-1, \ldots, k_{n}}
$$

induced by $d_{i_{j}}^{j}$. We denote the category of n-simplicial groups by $\operatorname{SimpGrp}{ }^{n}$.

GÜRMEN ALANSAL and ULUALAN/Turk J Math

3.1. Peiffer pairings in n-simplicial groups

In this section, we define the functions $F_{\alpha, \beta}$ given in [16] for multisimplicial groups.
For $n, q \in \mathbb{N}$ with $q \leqslant n$ and for $\alpha \in S(n, q)$, the target of α is called $b(\alpha): q=b(\alpha)$. Recall that the set $S(n)$ is partially ordered by the following relation $\alpha \leqslant \beta$ if, for $i \in[n]$, one has $\alpha(i) \geqslant \beta(i)$ where $[b(\alpha)]$ and $[b(\beta)]$ are considered as subsets of \mathbb{N}.

Given $n \neq 0, n \in \mathbb{N}$ and $\mathbf{n}=\left(k_{1}, k_{2}, \ldots, k_{n}\right) \in \mathbb{N} \times \mathbb{N} \times \ldots \times \mathbb{N}=\mathbb{N}^{n}$, let $S(\mathbf{n})=S\left(k_{1}\right) \times S\left(k_{2}\right) \times \ldots \times S\left(k_{n}\right)$ with the product (partial) order.

Let $\alpha, \beta \in S(\mathbf{n})$ and $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) ; \beta=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{n}\right)$ where $\alpha_{i} \in S\left(k_{i}\right)$ and $\beta_{j} \in S\left(k_{j}\right), 1 \leqslant$ $i, j \leqslant n$.

The n-dimensional case of the functions $F_{\alpha, \beta}$ can be given as follows. The pairings that we will need

$$
\left\{F_{\alpha, \beta}: N G_{\mathbf{n}-\# \alpha} \times N G_{\mathbf{n}-\# \beta} \longrightarrow N G_{\mathbf{n}} \quad ; \alpha, \beta \in S(\mathbf{n})\right\}
$$

are given as composites by the diagram

where $s_{\alpha}: s_{\alpha_{1}} s_{\alpha_{2}} \ldots s_{\alpha_{n}}$, for $1 \leqslant i \leqslant n ; s_{\alpha_{i}}: s_{i_{r}} \cdots s_{i_{1}}$ for $\alpha_{i}=\left(i_{r}, \ldots, i_{1}\right) \in S\left(k_{i}\right)$ and similarly $s_{\beta_{i}}$, and p is defined by the composite projection

$$
p=\left(p_{k_{1}-1} \ldots p_{0}\right)\left(p_{k_{2}-1} \ldots p_{0}\right) \ldots\left(p_{k_{n}-1} \ldots p_{0}\right)
$$

where $p_{j}(x)=x^{-1} s_{j} d_{j}(x)$ in each simplicial directions, for any j, and $[-,-]$ is given by the commutator map.

3.2. Crossed n-cubes and n-simplicial groups

Crossed n-cubes were defined by Ellis and Steiner [11] for homotopy connected ($n+1$)-types. The following definition is equivalent to that given in [11]. In this section by use of the functions $F_{\alpha, \beta}$ for n-simplicial groups, we will construct a crossed n-cube structure from as n-simplicial groups.

Definition 3.1 We denote by $\langle n\rangle$ the set $\{1,2, \ldots, n\}$. A crossed n-cube, \mathbf{M}, is a family of groups, $\left\{M_{A}: A \subseteq\langle n\rangle\right\}$, together with homomorphisms, $\mu_{i}: M_{A} \rightarrow M_{A \backslash\{i\}}$, for $i \in\langle n\rangle, A \subseteq\langle n\rangle$, and functions, $h: M_{A} \times M_{B} \rightarrow M_{A \cup B}$, for all $A, B \subseteq\langle n\rangle$, such that if ${ }^{a} b$ denotes $h(a, b) b$ for $a \in M_{A}$ and $b \in M_{B}$ with $A \subseteq B$, then for $a, a^{\prime} \in M_{A}, b, b^{\prime} \in M_{B}, c \in M_{C}$ and $i, j \in\langle n\rangle$, the following axioms hold:

1. $\mu_{i} a=a$ if $i \notin A$
2. $\mu_{i} \mu_{j} a=\mu_{j} \mu_{i} a$
3. $\mu_{i} h(a, b)=h\left(\mu_{i} a, \mu_{i} b\right)$
4. $h(a, b)=h\left(\mu_{i} a, b\right)=h\left(a, \mu_{i} b\right)$ if $i \in A \cap B$
5. $h\left(a, a^{\prime}\right)=\left[a, a^{\prime}\right]$
6. $h(a, b)=h(b, a)^{-1}$
7. $h(a, b)=1$ if $a=1$ or $b=1$
8. $h\left(a a^{\prime}, b\right)={ }^{a} h\left(a^{\prime}, b\right) h(a, b)$
9. $h\left(a, b b^{\prime}\right)=h(a, b)^{b} h\left(a, b^{\prime}\right)$
10. ${ }^{a} h\left(h\left(a^{-1}, b\right), c\right)^{c} h\left(h\left(c^{-1}, a\right), b\right)^{b} h\left(h\left(b^{-1}, c\right), a\right)=1$
11. ${ }^{a} h(b, c)=h\left({ }^{a} b,{ }^{a} c\right)$ if $A \subseteq B \cap C$.

A morphism of crossed n-cubes

$$
\mathbf{f}:\left\{\mathbf{M}_{A}\right\} \longrightarrow\left\{\mathbf{M}_{A}^{\prime}\right\}
$$

is a family of homomorphisms, $\left\{f_{A}: M_{A} \rightarrow M_{A}^{\prime} \mid A \subseteq\langle n\rangle\right\}$, which commute with the maps, $\mu_{k_{i}}$, and the h maps. We denote the category of crossed n-cubes by $\mathbf{C r s}^{n}$.

Example $3.2(a)$ For $n=1$, a crossed 1 -cube is the same as a crossed module $M_{1} \rightarrow M_{\emptyset}$.
(b) For $n=2$, one has a crossed square

where each μ_{i} is a crossed module. The h-maps give actions and a pairing

$$
h: M_{1} \times M_{2} \rightarrow M_{\{1,2\}} .
$$

(c) For $n=3$, one has a crossed 3-cube

GÜRMEN ALANSAL and ULUALAN/Turk J Math

where each μ_{i} is a crossed module, and the h-maps give actions and the following pairings

$$
\begin{array}{lll}
h: M_{1} \times M_{2} \rightarrow M_{\{1,2\}} & , & h: M_{1} \times M_{3} \rightarrow M_{\{1,3\}} \\
h: M_{2} \times M_{3} \rightarrow M_{\{2,3\}} & , & h: M_{\{1,2\}} \times M_{3} \rightarrow M_{\{1,2,3\}} \\
h: M_{1} \times M_{\{2,3\}} \rightarrow M_{\{1,2,3\}} & , & h: M_{\{1,3\}} \times M_{2} \rightarrow M_{\{1,2,3\}} \\
h: M_{\{2,3\}} \times M_{\{1,2\}} \rightarrow M_{\{1,2,3\}} & , & h: M_{\{1,2\}} \times M_{\{1,3\}} \rightarrow M_{\{1,2,3\}} \\
h: M_{\{2,3\}} \times M_{\{1,3\}} \rightarrow M_{\{1,2,3\}} & . &
\end{array}
$$

We can give the main result of this section.
Theorem 3.3 Let $\mathbf{G}_{\bullet_{1} \cdot \bullet_{2} \cdots \bullet_{n}}$ be an n-simplicial group with Moore n-complex $\mathbf{N G}_{\bullet_{1} \bullet_{2} \cdots \bullet_{n}}$, such that $N G_{\bullet_{1}} \bullet_{2} \cdots \bullet_{n}=$ $\{1\}$ for any $\bullet_{j} \geqslant 2,(1 \leqslant j \leqslant n)$. Then this Moore n-complex has a crossed n-cube structure.

Proof First, we define M_{A} for any subset $A \subset\langle n\rangle=\{1,2, \ldots, n\}$ by

$$
M_{A}=N G_{\underline{\epsilon}}
$$

where $\underline{\epsilon}=\left(\epsilon_{i} \mid 1 \leq i \leq n\right)$ with $\epsilon_{i}=1$ if $i \in A$ and 0 otherwise.
The map

$$
\mu_{i}: M_{A} \longrightarrow M_{A-\{i\}}
$$

is given by the face operator $d_{1}^{x_{i}}: N G_{\underline{\epsilon}\left(: \epsilon_{i}=1\right)} \longrightarrow N G_{\underline{\epsilon}\left(: \epsilon_{i}=0\right)}$, where x_{i} indicates the simplicial directions. For the subsets $B \subseteq A \subseteq<n>$, the structure morphism $\mu: M_{A} \rightarrow M_{B}$ is given by the simplicial structure, namely the operator $\prod_{i \in A \backslash B} d_{1}^{i}$.

For $A=\{i, i+1, \ldots j\}$ and $B=\{l, l+1, \ldots m\}$ where $1 \leq i, j, l, m \leq n$, we have

$$
M_{A}=N G_{\underline{\epsilon}}
$$

where $\underline{\epsilon}=\left(\epsilon_{k}: 1 \leq k \leq n\right)$ and for $i \leq k \leq j, \epsilon_{k}=1$ and 0 otherwise and

$$
M_{B}=N G_{\underline{\epsilon}}
$$

where $\underline{\epsilon}=\left(\epsilon_{k}: 1 \leq k \leq n\right)$ and for $l \leq k \leq m, \epsilon_{k}=1$ and 0 otherwise.
Let

The h maps $h: M_{A} \times M_{B} \rightarrow M_{A \cup B}$ are obtained from the commutative diagram

by composing of the maps $p,[-,-],\left(s_{\alpha}, s_{\beta}\right)$, for M_{A}, M_{B} as follows:

$$
\begin{aligned}
F_{\alpha, \beta}(x, y) & =p[-,-]\left(s_{\alpha}, s_{\beta}\right)(x, y) \\
& =p\left[s_{\alpha}(x), s_{\beta}(y)\right] \\
& =\left[s_{0}^{x_{i}} s_{0}^{x_{i+1}} \cdots s_{0}^{x_{j}}(x), s_{0}^{x_{l}} s_{0}^{x_{l+1}} \cdots s_{0}^{x_{m}}(y)\right]
\end{aligned}
$$

where x_{i} and x_{l} indicate the simplicial directions and

$$
\begin{aligned}
\alpha & =(\underbrace{\emptyset, \emptyset, \ldots, \emptyset}_{(i-1) \text {-times }}, \underbrace{(0),(0), \ldots,(0)}_{(j-i)-\text { times }}, \underbrace{\emptyset, \emptyset, \ldots, \emptyset}_{(n-j)-\text { times }}) \\
\beta & =\underbrace{(\emptyset, \emptyset, \ldots, \emptyset}_{(l-1)-\text { times }}, \underbrace{(0),(0), \ldots,(0)}_{(m-l)-\text { times }}, \underbrace{\emptyset, \emptyset, \ldots, \emptyset}_{(n-l)-\text { times }}) .
\end{aligned}
$$

For any subsets $A, B \subseteq<n>=\{1,2, \ldots, n\}$ and $M_{A}=N_{\underline{\varepsilon}}$ where $\underline{\varepsilon}=\left(\varepsilon_{i} \mid 1 \leq i \leq n\right)$ with $\varepsilon_{i}=1$ if $i \in A$ and $\varepsilon_{i}=0$ otherwise, and $M_{B}=N_{\underline{\underline{\varepsilon}}}$ where $\underline{\underline{\varepsilon}}=\left(\varepsilon_{j} \mid 1 \leq j \leq n\right)$ with $\varepsilon_{j}=1$ if $j \in A$ and $\varepsilon_{j}=0$ otherwise.

The structure morphism $h: M_{A} \times M_{B} \rightarrow M_{A \cup B}$ is induced by the commutator on $G_{A \cup B}$ via the morphisms

$$
\begin{aligned}
s_{B \backslash(A \cap B)} & :=\prod_{i \in B \backslash(A \cap B)} s_{0}^{i}: G_{A} \rightarrow G_{A \cup B} \\
s_{A \backslash(A \cap B)} & :=\prod_{j \in A \backslash(A \cap B)} s_{0}^{j}: G_{B} \rightarrow G_{A \cup B} .
\end{aligned}
$$

Thus for $x \in M_{A}, y \in M_{B}$ the h-map is induced by the commutator

$$
\left[s_{B \backslash(A \cap B)}(x), s_{A \backslash(A \cap B)}(y)\right] \in G_{A \cup B}
$$

Using the projection map $p: G_{X} \rightarrow N G_{X}$ given above, we obtain the h-map as follows: for $x \in M_{A}, y \in M_{B}$

$$
h(x, y)=\left[p_{0}^{x_{k}} \ldots p_{0}^{x_{i}}\left(s_{0}^{x_{i}} \ldots s_{0}^{x_{k}}\right)(x), p_{0}^{x_{m}} \ldots p_{0}^{x_{j}}\left(s_{0}^{x_{j}} \ldots s_{0}^{x_{m}}\right)(y)\right] \in M_{A \cup B}
$$

where for any $j, p_{0}^{x_{j}}(a)=a s_{0}^{x_{j}} d_{0}^{x_{j}}(a)^{-1}$ for all $1 \leq i \leq k \leq n ; i, \ldots, k \in A \backslash(A \cap B), 1 \leq j \leq m \leq n ; j, \ldots, m \in$ $B \backslash(A \cap B)$ and where $x_{i}, \ldots x_{k}, x_{j} \ldots x_{n}$ indicate the simplicial directions.

The action of $a \in M_{A}$ and $b \in M_{B}$ for $A \subseteq B \subseteq<n>$, can be given by

$$
{ }^{a} b=\left(s_{0}^{x_{i}} \ldots s_{0}^{x_{k}}\right)(a) b\left(s_{0}^{x_{i}} \ldots s_{0}^{x_{k}}\right)(a)^{-1}
$$

where $i, \ldots, k \in A \backslash B$.
From the definition of $\mu: M_{A} \rightarrow M_{B}$ given by the operator $\prod_{i \in A \backslash B} d_{1}^{i}$, the axioms (1),(2) are immediate.
We show for this h-map the following equalities.
If $i \notin A, a \in M_{A}$ then $\mu_{i}=d_{1}^{x_{i}} s_{0}^{x_{i}}$. We obtain $\mu_{i}(a)=d_{1}^{x_{i}} s_{0}^{x_{i}}(a)=i d(a)=a$ from the simplicial identities.

By the commutativity of the face and degeneracy maps in the simplicial directions, we obtain $\mu_{i} \mu_{j}=\mu_{j} \mu_{i}$.

For $M_{A}=N G_{\underline{\varepsilon}}$ where $\underline{\varepsilon}:=\left(\varepsilon_{i} \mid 1 \leq i \leq n\right), \varepsilon_{i}=1$ if $i \in A$ and 0 otherwise, we obtain for the simplicial directions x_{i}, and for $\alpha=\left(\emptyset, \emptyset, \ldots,(0)_{i}, \emptyset, \ldots, \emptyset\right)$ and $\beta=\left(\emptyset, \emptyset, \ldots,(1)_{i}, \emptyset, \ldots, \emptyset\right)$

$$
F_{\alpha, \beta}(x, y)=\left[s_{0}^{x_{i}}(x), s_{1}^{x_{i}}(y)\right]\left[s_{1}^{x_{i}}(y), s_{1}^{x_{i}}(x)\right] \in N G_{\underline{\varepsilon}}
$$

where $\underline{\underline{\varepsilon}}:=\left(\varepsilon_{i} \mid \varepsilon_{i}=2\right.$, for $i \neq j, \varepsilon_{j}=1$ if $j \in A$ and 0 otherwise $)$ and since $N G_{\bullet_{1} \bullet_{2} \ldots \bullet_{n}}=\{1\}$ for $j \geq 2$, we obtain

$$
d_{2}^{x_{i}}\left(F_{\alpha, \beta}(x, y)\right)=\left[s_{0}^{x_{i}} d_{1}^{x_{i}}(x), y\right][y, x]=1
$$

and then

$$
h\left(\mu_{i}(x), y\right)=\left[s_{0}^{x_{i}} d_{1}^{x_{i}}(x), y\right]=[x, y]=h(x, y)
$$

Let $\alpha=(\emptyset, \emptyset, \ldots, \emptyset), \beta=(\emptyset, \emptyset, \ldots, \emptyset)$ and for $x, x^{\prime} \in M_{A}$, we have $h\left(x, x^{\prime}\right): M_{A} \times M_{A} \rightarrow M_{A}$,

$$
h\left(x, x^{\prime}\right)=\left[x, x^{\prime}\right] .
$$

For $x \in M_{A}, y \in M_{B}$, we have

$$
\begin{aligned}
h(x, y) & =\left[s_{0}^{x_{i}} s_{0}^{x_{i+1}} \cdots s_{0}^{x_{j}}(x), s_{0}^{x_{l}} s_{0}^{x_{l+1}} \cdots s_{0}^{x_{m}}(y)\right] \\
& =\left[s_{0}^{x_{l}} s_{0}^{x_{l+1}} \cdots s_{0}^{x_{m}}(y), s_{0}^{x_{i}} s_{0}^{x_{i+1}} \cdots s_{0}^{x_{j}}(x)\right]^{-1} \\
& =h(y, x)^{-1}
\end{aligned}
$$

Similarly, if $x=1$ or $y=1$, we obtain

$$
h(x, y)=\left[s_{0}^{x_{i}} s_{0}^{x_{i+1}} \cdots s_{0}^{x_{j}}(x), s_{0}^{x_{l} l} s_{0}^{x_{l+1}} \cdots s_{0}^{x_{m}}(y)\right]=1
$$

Furthermore we have for $x, x^{\prime} \in M_{A}, y, y^{\prime} \in M_{B}$

$$
\begin{aligned}
h\left(x x^{\prime}, y\right)= & {\left[s_{0}^{x_{i}} s_{0}^{x_{i+1}} \cdots s_{0}^{x_{j}}\left(x x^{\prime}\right), s_{0}^{x_{l}} s_{0}^{x_{l+1}} \cdots s_{0}^{x_{m}}(y)\right] } \\
= & {\left[s_{0}^{x_{i}} s_{0}^{x_{i+1}} \cdots s_{0}^{x_{j}}(x) s_{0}^{x_{i}} s_{0}^{x_{i+1}} \cdots s_{0}^{x_{j}}\left(x^{\prime}\right), s_{0}^{x_{l}} s_{0}^{x_{l+1}} \cdots s_{0}^{x_{m}}(y)\right] } \\
= & s_{0}^{x_{i}} s_{0}^{x_{i+1}} \cdots s_{0}^{x_{j}}(x) s_{0}^{x_{i}} s_{0}^{x_{i+1}} \cdots s_{0}^{x_{j}}\left(x^{\prime}\right) s_{0}^{x_{l}} s_{0}^{x_{l+1}} \cdots s_{0}^{x_{m}}(y) s_{0}^{x_{i}} s_{0}^{x_{i+1}} \cdots s_{0}^{x_{j}}\left(x^{\prime}-1\right) \\
& \left(s_{0}^{x_{l}} s_{0}^{x_{l+1}} \cdots s_{0}^{x_{m}}\left(y^{-1}\right) s_{0}^{x_{i}} s_{0}^{x_{i+1}} \cdots s_{0}^{x_{j}}\left(x^{-1}\right) s_{0}^{x_{i}} s_{0}^{x_{i+1}} \cdots s_{0}^{j}(x) s_{0}^{x_{l}} s_{0}^{x_{l+1}} \cdots s_{0}^{x_{m}}(y)\right) \\
& s_{0}^{x_{i}} s_{0}^{x_{i+1}} \cdots s_{0}^{x_{j}}\left(x^{-1}\right) s_{0}^{x_{l}} s_{0}^{x_{l+1}} \cdots s_{0}^{x_{m}}\left(y^{-1}\right) \\
= & { }^{x} h\left(x^{\prime}, y\right) h(x, y) \\
h\left(x, y y^{\prime}\right)= & {\left[s_{0}^{x_{i}} s_{0}^{x_{i+1}} \cdots s_{0}^{x_{j}}(x), s_{0}^{x_{l}} s_{0}^{x_{l+1}} \cdots s_{0}^{x_{m}}\left(y y^{\prime}\right)\right] } \\
= & {\left[s_{0}^{x_{i}} s_{0}^{x_{i+1}} \cdots s_{0}^{x_{j}}(x), s_{0}^{x_{l}} s_{0}^{x_{l+1}} \cdots s_{0}^{x_{m}}(y) s_{0}^{x_{l}} s_{0}^{x_{l+1}} \cdots s_{0}^{x_{m}}\left(y^{\prime}\right)\right] } \\
= & s_{0}^{x_{i}} s_{0}^{x_{i+1}} \cdots s_{0}^{x_{j}}(x) s_{0}^{x_{l}} s_{0}^{x_{l+1}} \cdots s_{0}^{x_{m}}(y)\left(s_{0}^{x_{i}} s_{0}^{x_{i+1}} \cdots s_{0}^{x_{j}}\left(x^{-1}\right) s_{0}^{x_{l}} s_{0}^{x_{l+1}} \cdots s_{0}^{x_{m}}(y)^{-1}\right) \\
& \left.s_{0}^{x_{l}} s_{0}^{x_{l+1}} \cdots s_{0}^{x_{i-1}}(y) s_{0}^{x_{i}} s_{0}^{x_{i+1}} \cdots s_{0}^{x_{j}}(x)\right) s_{0}^{x_{l}} s_{0}^{x_{l+1}} \cdots s_{0}^{x_{m}}\left(y^{\prime}\right) s_{0}^{x_{i}} s_{0}^{x_{i+1}} \cdots s_{0}^{x_{j}}\left(x^{-1}\right) \\
& \left.s_{0}^{x_{l}} s_{0}^{x_{l+1}} \cdots s_{0}^{x_{m}}\left(y^{\prime}\right)\right)^{-1} s_{0}^{x_{l}} s_{0}^{x_{l+1}} \cdots s_{0}^{x_{m}}(y)^{-1} \\
= & h(x, y)^{y} h\left(x, y^{\prime}\right) .
\end{aligned}
$$

The remaining axioms can be shown similarly.
We can illustrate this result for $n=3$. A crossed 3 -cube can be obtained from a 3 -simplicial group as follows:

For $\langle n\rangle=\{1,2,3\}$ we have the following diagrams

we show the simplicial directions by

The sets M_{A} can be given by

$$
\begin{array}{lll}
M_{\emptyset}=N G_{000}=G_{000} & , M_{\{1\}}=N G_{100}=\operatorname{Kerd}_{0}^{x_{1}} \\
M_{\{2\}}=N G_{010}=\operatorname{Kerd}_{0}^{x_{2}} & , & M_{\{3\}}=N G_{001}=\operatorname{Kerd}_{0}^{x_{3}} \\
M_{\{1,2\}}=N G_{110}=\operatorname{Kerd}_{0}^{x_{1}} \cap \operatorname{Kerd}_{0}^{x_{2}} & , & M_{\{2,3\}}=N G_{011}=\operatorname{Kerd}_{0}^{x_{2}} \cap \operatorname{Kerd}_{0}^{x_{3}} \\
M_{\{1,3\}}=N G_{101}=\operatorname{Kerd}_{0}^{x_{1}} \cap \operatorname{Kerd}_{0}^{x_{3}} & , & M_{\{1,2,3\}}=N G_{111}=\operatorname{Kerd}_{0}^{x_{1}} \cap \operatorname{Kerd}_{0}^{x_{2}} \cap \operatorname{Kerd}_{0}^{x_{3}} .
\end{array}
$$

The maps $\mu_{i}: M_{A} \rightarrow M_{A-\{i\}}$ are given in the above diagram.
The h-maps can be defined as follows:

$$
\begin{aligned}
& h: N G_{100} \times N G_{010} \longrightarrow N G_{110} \quad h: N G_{100} \times N G_{001} \quad \longrightarrow N G_{101} \\
& (x, y) \longmapsto\left[s_{0}^{x_{2}}(x), s_{0}^{x_{1}}(y)\right], \quad(x, y) \longmapsto\left[s_{0}^{x_{3}}(x), s_{0}^{x_{1}}(y)\right], \\
& h: N G_{010} \times N G_{001} \longrightarrow N G_{011} \quad h: N G_{110} \times N G_{001} \longrightarrow N G_{111} \\
& (x, y) \longmapsto\left[s_{0}^{x_{3}}(x), s_{0}^{x_{2}}(y)\right], \quad(x, y) \longmapsto\left[s_{0}^{x_{3}}(x), s_{0}^{x_{1}} s_{0}^{x_{2}}(y)\right], \\
& h: N G_{100} \times N G_{011} \longrightarrow N G_{111} \quad h: N G_{101} \times N G_{010} \quad \longrightarrow N G_{111} \\
& (x, y) \longmapsto\left[s_{0}^{x_{2}} s_{0}^{x_{3}}(x), s_{0}^{x_{1}}(y)\right], \quad(x, y) \longmapsto\left[s_{0}^{x_{2}}(x), s_{0}^{x_{1}} s_{0}^{x_{3}}(y)\right],
\end{aligned}
$$

$$
\begin{aligned}
h: \quad N G_{011} \times N G_{101} & \longrightarrow N G_{111} \\
(x, y) & \longmapsto\left[s_{0}^{x_{1}}(x), s_{0}^{x_{2}}(y)\right]
\end{aligned} \begin{aligned}
h: N G_{110} \times N G_{101} & \longrightarrow N G_{111} \\
(x, y) & \longmapsto\left[s_{0}^{x_{3}}(x), s_{0}^{x_{2}}(y)\right], \\
h: N G_{1,1,0} \times N G_{0,1,1} & \longrightarrow N G_{1,1,1} \\
(a, b) & \longmapsto\left[s_{0}^{x_{3}}(a), s_{0}^{x_{1}}(b)\right] .
\end{aligned}
$$

We can show the crossed 3 -cubes axioms as follows:

1. Let $A=\{2,3\}$. Then if we have $i=1 \notin A, \mu_{i}: M_{A} \rightarrow M_{A}$ is given by

$$
\mu_{i}=\mu_{1}=d_{1}^{x_{1}} s_{0}^{x_{1}}
$$

From the simplicial identities, we have $d_{1}^{x_{1}} s_{0}^{x_{1}}=i d$. Therefore, for $i=1 \notin A=\{2,3\}$ we obtain $\mu_{i}(a)=a$.
3. For the h-map given by

$$
\begin{aligned}
h: \quad N G_{1,1,0} \times N G_{0,1,1} & \longrightarrow N G_{1,1,1} \\
(a, b) & \longmapsto\left[s_{0}^{x_{3}}(a), s_{0}^{x_{1}}(b)\right]
\end{aligned}
$$

we can write,

$$
\begin{aligned}
\mu_{2} h(a, b) & =d_{1}^{x_{2}}\left[s_{0}^{x_{3}}(a), s_{0}^{x_{1}}(b)\right] \\
& =\left[s_{0}^{x_{3}} d_{1}^{x_{2}}(a), s_{0}^{x_{1}} d_{1}^{x_{2}}(b)\right](\because \text { commutativity of simplicial directions }) \\
& =h\left(\mu_{2} a, \mu_{2} b\right)
\end{aligned}
$$

Similarly

$$
\begin{aligned}
\mu_{3} h(a, b) & =d_{1}^{x_{3}}\left[s_{0}^{x_{3}}(a), s_{0}^{x_{1}}(b)\right] \\
& =\left[s_{0}^{x_{3}} d_{1}^{x_{3}}(a), s_{0}^{x_{1}} d_{1}^{x_{3}}(b)\right](\because \text { commutativity of simplicial directions }) \\
& =h\left(\mu_{3} a, \mu_{3} b\right)
\end{aligned}
$$

By using similar calculations, this result for the other μ_{i} maps can be proven.
4. For example, for $x, y \in N G_{110}$, we obtain

$$
F_{((0), \emptyset, \emptyset)((1), \emptyset, \emptyset)}(x, y)=\left[s_{0}^{x_{1}}(x), s_{1}^{x_{1}}(y)\right]\left[s_{1}^{x_{1}}(y), s_{1}^{x_{1}}(x)\right] \in N G_{110}
$$

Since $N G_{210}=\{1\}$, we obtain

$$
d_{2}^{x_{1}}\left(F_{\alpha, \beta}(x, y)\right)=\left[s_{0}^{x_{1}} d_{1}^{x_{1}}(x), y\right][y, x]=1 \in N G_{110}
$$

Thus we obtain

$$
h\left(\mu_{1}(x), y\right)=\left[s_{0}^{x_{1}} d_{1}^{x_{1}}(x), y\right]=[x, y] \in N G_{110}
$$

and for $x, y \in N G_{111}$,

$$
F_{(\emptyset, \emptyset,(0))(\emptyset, \emptyset,(1))}(x, y)=\left[s_{0}^{x_{3}}(x), s_{1}^{x_{3}}(y)\right]\left[s_{1}^{x_{3}}(y), s_{1}^{x_{3}}(x)\right] \in N G_{112}
$$

Since $N G_{112}=\{1\}$, we obtain

$$
d_{2}^{x_{3}}\left(F_{\alpha, \beta}(x, y)\right)=\left[s_{0}^{x_{3}} d_{1}^{x_{3}}(x), y\right][y, x]=1 \in N G_{111}
$$

Thus we obtain

$$
h\left(\mu_{1}(x), y\right)=\left[s_{0}^{x_{3}} d_{1}^{x_{3}}(x), y\right]=[x, y]=h(x, y) .
$$

5. Let $\alpha=(\emptyset, \emptyset, \emptyset), \beta=(\emptyset, \emptyset, \emptyset)$ and for $a, a^{\prime} \in M_{A}$, we have $h: M_{A} \times M_{A} \rightarrow M_{A}$,

$$
h\left(a, a^{\prime}\right)=\left[a, a^{\prime}\right] .
$$

6. For the map $h: N G_{1,1,0} \times N G_{0,1,1} \rightarrow N G_{1,1,1}$, we have

$$
h(a, b)=\left[s_{0}^{x_{3}}(a), s_{0}^{x_{1}}(b)\right]=\left[s_{0}^{x_{1}}(b), s_{0}^{x_{3}}(a)\right]^{-1}=h(b, a)^{-1}
$$

7. For example for $h: N G_{1,1,0} \times N G_{0,1,1} \rightarrow N G_{1,1,1}$ if $a=1$, we obtain

$$
h(1, b)=\left[s_{0}^{x_{3}}(1), s_{0}^{x_{1}}(b)\right]=\left[1, s_{0}^{x_{1}}(b)\right]=1
$$

8. For the map $h: N G_{1,1,0} \times N G_{0,1,1} \rightarrow N G_{1,1,1}$, we obtain

$$
\begin{aligned}
h\left(a a^{\prime}, b\right) & =\left[s_{0}^{x_{3}}\left(a a^{\prime}\right), s_{0}^{x_{1}}(b)\right] \\
& =s_{0}^{x_{3}}(a) s_{0}^{x_{3}}\left(a^{\prime}\right) s_{0}^{x_{1}}(b) s_{0}^{x_{3}}\left(a^{\prime}\right)^{-1} s_{0}^{x_{3}}(a)^{-1} s_{0}^{x_{1}}(b)^{-1} \\
& =s_{0}^{x_{3}}(a) s_{0}^{x_{3}}\left(a^{\prime}\right) s_{0}^{x_{1}}(b) s_{0}^{x_{3}}\left(a^{\prime}\right)^{-1}\left(s_{0}^{x_{1}}(b)^{-1} s_{0}^{x_{1}}(b)\right) s_{0}^{x_{3}}(a)^{-1} s_{0}^{x_{1}}(b)^{-1} \\
& =s_{0}^{x_{3}}(a)\left[s_{0}^{x_{3}}\left(a^{\prime}\right), s_{0}^{x_{1}}(b)\right] s_{0}^{x_{3}}(a)^{-1}\left[s_{0}^{x_{3}}(a), s_{0}^{x_{1}}(b)\right] \\
& ={ }^{a} h\left(a^{\prime}, b\right) h(a, b) .
\end{aligned}
$$

9. For the map $h: N G_{1,1,0} \times N G_{0,1,1} \rightarrow N G_{1,1,1}$, we obtain

$$
\begin{aligned}
h\left(a, b b^{\prime}\right)= & {\left[s_{0}^{x_{3}}(a), s_{0}^{x_{1}}\left(b b^{\prime}\right)\right] } \\
= & s_{0}^{x_{3}}(a) s_{0}^{x_{1}}(b) s_{0}^{x_{1}}\left(b^{\prime}\right) s_{0}^{x_{3}}(a)^{-1} s_{0}^{x_{1}}\left(b^{\prime}\right)^{-1} s_{0}^{x_{1}}(b)^{-1} \\
= & s_{0}^{x_{3}}(a) s_{0}^{x_{1}}(b) s_{0}^{x_{3}}(a)^{-1} s_{0}^{x_{1}}(b)^{-1} s_{0}^{x_{1}}(b) s_{0}^{x_{3}}(a) s_{0}^{x_{1}}\left(b^{\prime}\right) \\
& s_{0}^{x_{3}}(a)^{-1} s_{0}^{x_{1}}(b)^{-1} s_{0}^{x_{1}}\left(b^{\prime}\right)^{-1} \\
= & h(a, b) s_{0}^{x_{1}}(b) s_{0}^{x_{3}}(a) s_{0}^{x_{1}}\left(b^{\prime}\right) s_{0}^{x_{3}}(a)^{-1} s_{0}^{x_{1}}\left(b^{\prime}\right)^{-1} s_{0}^{x_{1}}(b)^{-1} \\
= & h(a, b) s_{0}^{x_{1}}(b) h\left(a, b^{\prime}\right) s_{0}^{x_{1}}(b)^{-1} \\
= & h(a, b)^{b} h\left(a, b^{\prime}\right) .
\end{aligned}
$$

10. We must show that

$$
{ }^{a} h\left(h\left(a^{-1}, b\right), c\right)^{c} h\left(h\left(c^{-1}, a\right), b\right)^{b} h\left(h\left(b^{-1}, c\right), a\right)=1
$$

We calculate that for $a \in N G_{1,0,0}, b \in N G_{0,1,0}, c \in N G_{0,1,1}$,

$$
\begin{aligned}
{ }^{a} h\left(h\left(a^{-1}, b\right), c\right)= & s_{0}^{x_{3}} s_{0}^{x_{2}}(a) h\left(h\left(a^{-1}, b\right), c\right) s_{0}^{x_{3}} s_{0}^{x_{2}}(a)^{-1} \\
= & s_{0}^{x_{3}} s_{0}^{x_{2}}(a)\left[s_{0}^{x_{3}}\left[s_{0}^{x_{2}}(a)^{-1}, s_{0}^{x_{1}}(b)\right] s_{0}^{x_{1}}(c)\right] s_{0}^{x_{3}} s_{0}^{x_{2}}(a)^{-1} \\
= & s_{0}^{x_{3}} s_{0}^{x_{1}}(b) s_{0}^{x_{3}} s_{0}^{x_{2}}(a) s_{0}^{x_{3}} s_{0}^{x_{1}}(b)^{-1} s_{0}^{x_{1}}(c) s_{0}^{x_{3}} s_{0}^{x_{1}}(b) \\
& s_{0}^{x_{3}} s_{0}^{x_{2}}(a)^{-1} s_{0}^{x_{3}} s_{0}^{x_{1}}(b)^{-1} s_{0}^{x_{3}} s_{0}^{x_{2}}(a) s_{0}^{x_{1}}(c) s_{0}^{x_{3}} s_{0}^{x_{2}}(a)^{-1}
\end{aligned}
$$

and,

$$
\begin{aligned}
{ }^{c} h\left(h\left(c^{-1}, a\right), b\right)= & s_{0}^{x_{3}} s_{0}^{x_{2}}(a) s_{0}^{x_{1}}(c)^{-1} s_{0}^{x_{3}} s_{0}^{x_{2}}(a)^{-1} s_{0}^{x_{3}} s_{0}^{x_{1}}(b) s_{0}^{x_{3}} s_{0}^{x_{2}}(a) \\
& s_{0}^{x_{1}}(c)^{-1} s_{0}^{x_{3}} s_{0}^{x_{2}}(a)^{-1} s_{0}^{x_{1}}(c) s_{0}^{x_{3}} s_{0}^{x_{1}}(b)^{-1} s_{0}^{x_{1}}(c)^{-1}
\end{aligned}
$$

and,

$$
\begin{aligned}
{ }^{b} h\left(h\left(b^{-1}, c\right), a\right)= & s_{0}^{x_{1}}(c) s_{0}^{x_{3}} s_{0}^{x_{1}}(b) s_{0}^{x_{1}}(c)^{-1} s_{0}^{x_{3}} s_{0}^{x_{2}}(a) s_{0}^{x_{1}}(c) s_{0}^{x_{3}} s_{0}^{x_{1}}(b)^{-1} \\
& s_{0}^{x_{1}}(c)^{-1} s_{0}^{x_{3}} s_{0}^{x_{1}}(b) s_{0}^{x_{3}} s_{0}^{x_{2}}(a)^{-1} s_{0}^{x_{3}} s_{0}^{x_{1}}(b)^{-1}
\end{aligned}
$$

thus we obtain

$$
{ }^{a} h\left(h\left(a^{-1}, b\right), c\right)^{c} h\left(h\left(c^{-1}, a\right), b\right)^{b} h\left(h\left(b^{-1}, c\right), a\right)=1
$$

11. For $A=\{1\}, B=\{1,2\}, C=\{2,3\}$ and $A \subseteq B \cap C$ then,

$$
\begin{aligned}
{ }^{a} h(b, c) & =s_{0}^{x_{3}} s_{0}^{x_{1}}(a) h(b, c) s_{0}^{x_{3}} s_{0}^{x_{1}}(a)^{-1} \\
& =s_{0}^{x_{3}} s_{0}^{x_{1}}(a)\left[s_{0}^{x_{3}}(b), s_{0}^{x_{1}}(c)\right] s_{0}^{x_{3}} s_{0}^{x_{1}}(a)^{-1} \\
& =\left[s_{0}^{x_{3}}\left(s_{0}^{x_{1}}(a) b s_{0}^{x_{1}}(a)^{-1}\right), s_{0}^{x_{1}}(a)\left(s_{0}^{x_{3}}(a) c s_{0}^{x_{3}}(a)^{-1}\right)\right](\because \text { simplicial directions }) \\
& =\left[s_{0}^{x_{3}}\left({ }^{a} b\right), s_{0}^{x_{1}}\left({ }^{a} c\right)\right] \\
& =h\left({ }^{a} b,{ }^{a} c\right)
\end{aligned}
$$

4. Applications in low dimensions of $F_{\alpha, \beta}$ functions

In the following subsections, we give applications of the functions $F_{\alpha, \beta}$ in dimensions 1 and 2. In particular, in dimension 1, we obtain Mutlu and Porter's result about the relation between crossed modules and simplicial groups with Moore complex of length 1 and in dimension 2, we obtain Conduché's result about the relation between crossed squares and bisimplicial groups with Moore bicomplex of length 1.

4.1. 1-dimensional case

In Theorem 3.3, if we take $n=1$, then we obtain a simplicial group, G• and we obtain the following well-known result (cf. $[8,9,16])$.

Proposition 4.1 ([16]) Let G. be a simplicial group and NG. its Moore complex. Suppose $N(G)_{n}=\{1\}$ for $n \geqslant 2$. Then the morphism $\partial_{1}: N(G)_{1} \rightarrow N(G)_{0}$ is a crossed module where $N(G)_{0}$ acts on $N(G)_{1}$ by conjugacy via the degeneracy map s_{0}.

In the proof of this proposition, the role of $F_{\alpha, \beta}$ functions in the simplicial group whose Moore complex of length 1 can be summarised as follows. We know from [16] that for $x, y \in N G_{1}=\operatorname{ker} d_{0}, F_{(0)(1)}(x, y)=$ $\left[s_{0} x, s_{1} y\right]\left[s_{1} y, s_{1} x\right] \in N G_{2} \cap D_{2}=N_{2} \cap D_{2}$. Now we explain how we are using the hypothesis that $N G$ vanishes if the simplicial degree is >1. Since the Moore complex of the simplicial group G is of length 1 , we have $N G_{2} \cap D_{2}=\{1\}$ and then we obtain $\partial_{2}\left(N G_{2} \cap D_{2}\right)=\{1\}$, thus

$$
\begin{aligned}
d_{2} F_{(0)(1)}(x, y) & =d_{2}\left(\left[s_{0} x, s_{1} y\right]\left[s_{1} y, s_{1} x\right]\right) \\
& =\left[s_{0} d_{1} x, y\right][y, x] \\
& =1
\end{aligned}
$$

and

$$
\begin{aligned}
\partial_{1}(x) y & =s_{0} d_{1} x y s_{0} d_{1} x^{-1} \\
& =x y x^{-1}
\end{aligned}
$$

for $x, y \in N G_{1}$.

4.2. 2-dimensional case

A 2-simplicial group or a bisimplicial group $\mathbf{G}_{\bullet}, \bullet$ is a functor from the product category $\Delta^{o p} \times \Delta^{o p}$ to the category of groups Grp, with the face and degeneracy maps given by

$$
\begin{aligned}
& d_{i}^{h}: G_{p, q} \rightarrow G_{p-1, q} \\
& s_{i}^{h}: G_{p, q} \rightarrow G_{p+1, q} \quad 0 \leq i \leq p \\
& d_{j}^{v}: G_{p, q} \rightarrow G_{p, q-1} \\
& s_{j}^{v}: G_{p, q} \rightarrow G_{p, q+1} \quad 0 \leq j \leq q
\end{aligned}
$$

such that the maps d_{i}^{h}, s_{i}^{h} commute with d_{j}^{v}, s_{j}^{v} and that d_{i}^{h}, s_{i}^{h} (resp. d_{j}^{v}, s_{j}^{v}) satisfy the usual simplicial identities.

We think of d_{j}^{v}, s_{j}^{v} as the vertical operators and d_{i}^{h}, s_{i}^{h} as the horizontal operators. If $\mathbf{G}_{\bullet, \bullet}$ is a bisimplicial group, it is convenient to think of an element of $G_{p, q}$ as a product of a p-simplex and a q-simplex.

The Moore bicomplex of a bisimplicial group $\mathbf{G}_{\bullet, \bullet}$ is defined by

$$
N G_{n, m}=\bigcap_{(i, j)=(0,0)}^{(n-1, m-1)} \operatorname{Ker} d_{i}^{h} \cap \operatorname{Ker} d_{j}^{v}
$$

with the boundary homomorphisms

$$
\partial_{i}^{h}: N G_{n, m} \longrightarrow N G_{n-1, m}
$$

and

$$
\partial_{j}^{v}: N G_{n, m} \longrightarrow N G_{n, m-1}
$$

induced by the face maps d_{i}^{h} and d_{j}^{v}.
This Moore bicomplex is illustrated by the following diagram.

GÜRMEN ALANSAL and ULUALAN/Turk J Math

Now we can give the functions $F_{\underline{\alpha}, \underline{\beta}}$ in the Moore (bi)complex of a bisimplicial group.
Given $\underline{n}=\left(k_{1}, k_{2}\right) \in \mathbb{N} \times \mathbb{N}$, let $S(\underline{n})=S\left(k_{1}\right) \times S\left(k_{2}\right)$ with the product (partial) order. Let $\underline{\alpha}, \underline{\beta} \in S(\underline{n})$ and $\underline{\alpha}=\left(\alpha_{1}, \alpha_{2}\right) ; \underline{\beta}=\left(\beta_{1}, \beta_{2}\right)$ where $\alpha_{i}, \beta_{i} \in S\left(k_{i}\right)$ for $1 \leqslant i \leqslant 2$. The pairings that we will need

$$
\left\{F_{\underline{\alpha}, \underline{\beta}}: N G_{\underline{n}-\# \underline{\alpha}} \times N G_{\underline{n}-\# \underline{\beta}} \longrightarrow N G_{\underline{n}} ; \underline{\alpha}, \underline{\beta} \in S(\underline{n}), \underline{\alpha} \neq \underline{\beta}\right\}
$$

are given by composing of the maps in the following diagram

where $s_{\underline{\alpha}}: s_{\alpha_{1}}^{h} s_{\alpha_{2}}^{v}$, and where $s_{\alpha_{1}}^{h}=s_{i_{r}}^{h} \ldots s_{i_{1}}^{h}$ for $\alpha_{1}=\left(i_{r}, \ldots, i_{1}\right) \in S\left(k_{1}\right)$ and similarly $s_{\underline{\beta}}=s_{\beta_{1}}^{h} s_{\beta_{2}}^{v}$, $s_{\beta_{2}}^{v}=s_{j_{m}}^{v} \ldots s_{j_{1}}^{v}$ for $\beta_{1}=\left(j_{m}, \ldots, j_{1}\right) \in S\left(k_{2}\right)$ and where

$$
p: G_{k_{1}, k_{2}} \rightarrow N G_{k_{1}, k_{2}}
$$

is defined by the composite projection

$$
p=\left(p_{k_{1}-1}^{h} \ldots p_{0}^{h}\right)\left(p_{k_{2}-1}^{v} \ldots p_{0}^{v}\right)
$$

where $p_{j}(x)=x^{-1} s_{j} d_{j}(x)$ in both horizontal and vertical directions and μ is given by the commutator map.
For $\underline{\alpha}=\left(\alpha_{1}, \alpha_{2}\right), \underline{\beta}=\left(\beta_{1}, \beta_{2}\right) \in S\left(k_{1}\right) \times S\left(k_{2}\right)$, we obtain

$$
\begin{aligned}
F_{\underline{\alpha}, \underline{\beta}}(x, y) & =p[-,-]\left(s_{\underline{\alpha}}, s_{\underline{\beta}}\right)(x, y) \\
& =p[-,-]\left(s_{\alpha_{1}}^{h} s_{\alpha_{2}}^{v}(x), s_{\beta_{1}}^{h} s_{\beta_{2}}^{v}(y)\right) \\
& =p\left[s_{\alpha_{1}}^{h} s_{\alpha_{2}}^{v}(x), s_{\beta_{1}}^{h} s_{\beta_{2}}^{v}(y)\right]
\end{aligned}
$$

where $x \in N G_{k_{1}-\# \alpha_{1}, k_{2}-\# \alpha_{2}}$ and $y \in N G_{k_{1}-\# \beta_{1}, k_{2}-\# \beta_{2}}$.

4.3. Calculations of the functions $F_{\alpha, \beta}$ in low dimensions for bisimplical groups

For $0 \leqslant k_{1}, k_{2} \leqslant 2$, we consider the sets $S\left(k_{1}\right) \times S\left(k_{2}\right)$. We shall calculate the images of the functions $F_{\underline{\alpha}, \underline{\beta}}$ for all $\underline{\alpha}, \underline{\beta} \in S\left(k_{1}\right) \times S\left(k_{2}\right)$.

First, consider $(n, m)=(0,1)$ or $(n, m)=(1,0)$. We get the $F_{\underline{\alpha}, \underline{\beta}}$ functions whose codomain is $N G_{0,1}$ or $N G_{1,0}$ respectively. Let $(n, m)=(0,1)$. We get

$$
S(n, m)=S(0) \times S(1)=\{(\emptyset, \emptyset),(\emptyset,(0))\}
$$

For $\underline{\alpha}=(\emptyset, \emptyset)$ and $\underline{\beta}=(\emptyset,(0))$, the function

$$
F_{(\emptyset, \emptyset),(\emptyset,(0))}: N G_{0,1} \times N G_{0,0} \longrightarrow N G_{0,1}
$$

GÜRMEN ALANSAL and ULUALAN/Turk J Math

can be given as follows:

$$
\begin{aligned}
F_{(\emptyset, \emptyset),(\emptyset,(0))}(x, y) & =p[-,-]\left(s_{\emptyset}^{h} s_{\emptyset}^{v}(x), s_{\emptyset}^{h} s_{(0)}^{v}(y)\right) \\
& =p_{0}^{v}\left[i d(x), s_{0}^{v}(y)\right]\left(\because s_{\emptyset}^{h}=s_{\emptyset}^{v}=i d\right) \\
& =\left[x, s_{0}^{v} y\right] s_{0}^{v} d_{0}^{v}\left[s_{0}^{v} y, x\right] \\
& =\left[x, s_{0}^{v} y\right]\left[s_{0}^{v} y, s_{0}^{v} d_{0}^{v}(x)\right] \\
& =\left[x, s_{0}^{v} y\right]\left[s_{0}^{v} y, 1\right]\left(\left(\because x \in \operatorname{ker} d_{0}^{v}=N G_{0,1}\right)\right. \\
& =\left[x, s_{0}^{v} y\right]
\end{aligned}
$$

for $x \in N G_{0,1}$ and $y \in N G_{0,0}$.
Suppose now that $(n, m)=(1,0)$. We have $S(1) \times S(0)=\{(\emptyset, \emptyset),((0), \emptyset)\}$. For $\underline{\alpha}=(\emptyset, \emptyset)$ and $\underline{\beta}=((0), \emptyset)$, the function

$$
F_{(\emptyset, \emptyset),((0), \emptyset)}: N G_{1,0} \times N G_{0,0} \longrightarrow N G_{1,0}
$$

is defined by

$$
\begin{aligned}
F_{(\emptyset, \emptyset),((0), \emptyset)}(x, y) & =p[-,-]\left(s_{\emptyset}^{h} s_{\emptyset}^{v}(x), s_{0}^{h} s_{\emptyset}^{v}(y)\right) \\
& =p_{0}^{h}\left[i d(x), s_{0}^{h}(y)\right] \\
& =\left[x, s_{0}^{h} y\right] s_{0}^{h} d_{0}^{h}\left[s_{0}^{h} y, x\right] \\
& =\left[x, s_{0}^{h} y\right]\left[s_{0}^{h} y, s_{0}^{h} d_{0}^{h}(x)\right] \\
& =\left[x, s_{0}^{h} y\right]\left[s_{0}^{h} y, 1\right]\left(\left(\because x \in \operatorname{ker} d_{0}^{h}=N G_{1,0}\right)\right. \\
& =\left[x, s_{0}^{h} y\right]
\end{aligned}
$$

for all $x \in N G_{1,0}$ and $y \in N G_{00}$.
We give the calculations of other functions in Appendix.

Definition 4.2 Let $\mathbf{G}_{\bullet, \bullet}$ be a bisimplicial group and $n, m>1$, and $D_{n, m}$ the subgroup in $G_{n, m}$ generated by degenerate elements. Let $N_{n, m}^{G}$ be the normal subgroup of $G_{n, m}$ generated by elements of the form

$$
F_{\underline{\alpha}, \underline{\beta}}(x, y) \text { with } \underline{\alpha}=\left(\alpha_{1}, \alpha_{2}\right), \underline{\beta}=\left(\beta_{1}, \beta_{2}\right) \in S(n) \times S(m)
$$

where $x \in N G_{n-\# \alpha_{1}, m-\# \alpha_{2}}$ and $y \in N G_{n-\# \beta_{1}, m-\# \beta_{2}}$.
Considering the equalities given in Definition 2.1 of Section 2, for bisimplicial groups, we can write the following equalities

$$
\partial_{n}^{h}\left(N G_{n, m} \cap D_{n, m}\right)=\partial_{n}^{h}\left(N_{n, m}^{G} \cap D_{n, m}\right)
$$

and

$$
\partial_{m}^{v}\left(N G_{n, m} \cap D_{n, m}\right)=\partial_{m}^{v}\left(N_{n, m}^{G} \cap D_{n, m}\right)
$$

in each direction.

GÜRMEN ALANSAL and ULUALAN/Turk J Math

As we stated in Proposition 2.2. that Mutlu and Porter obtained the following inclusion

$$
\left[\bigcap_{i \in I} \operatorname{ker} d_{i}, \bigcap_{j \in J} \operatorname{ker} d_{j}\right] \subseteq \partial_{n}\left(N G_{n} \cap D_{n}\right)
$$

for $n \geqslant 2$ and $I, J \subseteq[n-1]$ with $I \cup J=[n-1]$, in the Moore complex of a simplicial group \mathbf{G}.
The following result is corresponding to 2-dimensional version of this result given in [16].

Theorem 4.3 Let $\mathbf{G}_{\bullet, \bullet}$ be a bisimplicial group. Then for $n \geqslant 1, m \geqslant 2$ and $I, J \subseteq[m-1]$ with $I \cup J=[m-1]$, there is the inclusion

$$
\left[K_{I} \cap K_{H}, K_{J} \cap K_{H}\right] \subseteq \partial_{m}^{v}\left(N G_{n, m} \cap D_{n, m}\right)
$$

where

$$
K_{H}=\bigcap_{i=0}^{n-1} \operatorname{ker} d_{i}^{h}
$$

and

$$
K_{I}=\bigcap_{i \in I} \operatorname{ker} d_{i}^{v} \quad \text { and } \quad K_{J}=\bigcap_{j \in J} \operatorname{ker} d_{j}^{v}
$$

Similarly, for $n \geqslant 2, m \geqslant 1$ and $I^{\prime}, J^{\prime} \subseteq[n-1]$ with $I^{\prime} \cup J^{\prime}=[n-1]$, there is the inclusion

$$
\left[K_{I^{\prime}} \cap K_{V}, K_{J^{\prime}} \cap K_{V}\right] \subseteq \partial_{n}^{h}\left(N G_{n, m} \cap D_{n, m}\right)
$$

where

$$
K_{V}=\bigcap_{i=0}^{m-1} \operatorname{ker} d_{i}^{v}
$$

and

$$
K_{I^{\prime}}=\bigcap_{i \in I^{\prime}} \operatorname{ker} d_{i}^{h} \quad \text { and } \quad K_{J^{\prime}}=\bigcap_{j \in J^{\prime}} \operatorname{ker} d_{j}^{h}
$$

Proof We know that from the results of [16], there are already the following inclusions in both horizontal and vertical directions: if m is constant in the horizontal direction, for $n \geqslant 2$, we have

$$
\left[K_{I^{\prime}}, K_{J^{\prime}}\right] \subseteq \partial_{n}^{h}\left(N G_{n, m} \cap D_{n, m}\right)
$$

and if n is constant in the vertical direction, then for $m \geqslant 2$, we have

$$
\left[K_{I}, K_{J}\right] \subseteq \partial_{m}^{v}\left(N G_{n, m} \cap D_{n, m}\right)
$$

The result can be seen easily by using these inclusions.
Mutlu and Porter for a simplicial group \mathbf{G} investigated the images of the functions $F_{\alpha, \beta}$ for $n=2,3,4$. Thus they obtained the following equalities for $n=2$ and $n=3$:

$$
\partial_{2}\left(N G_{2} \cap D_{2}\right)=\left[\operatorname{ker} d_{0}, \operatorname{ker} d_{1}\right]
$$

GÜRMEN ALANSAL and ULUALAN/Turk J Math

and

$$
\begin{aligned}
\partial_{3}\left(N G_{3} \cap D_{3}\right)= & {\left[\operatorname{ker} d_{2}, \operatorname{ker} d_{0} \cap \operatorname{ker} d_{1}\right]\left[\operatorname{ker} d_{1}, \operatorname{ker} d_{0} \cap \operatorname{ker} d_{2}\right]\left[\operatorname{ker} d_{0}, \operatorname{ker} d_{1} \cap \operatorname{ker} d_{2}\right] } \\
& {\left[\operatorname{ker} d_{0} \cap \operatorname{ker} d_{2}, \operatorname{ker} d_{0} \cap \operatorname{ker} d_{1}\right]\left[\operatorname{ker} d_{1} \cap \operatorname{ker} d_{2}, \operatorname{ker} d_{0} \cap \operatorname{ker} d_{1}\right] } \\
& {\left[\operatorname{ker} d_{1} \cap \operatorname{ker} d_{2}, \operatorname{ker} d_{0} \cap \operatorname{ker} d_{2}\right] . }
\end{aligned}
$$

For bisimplical groups, we now investigate the images of these functions in the Moore bicomplex in low dimensions. The images of these functions under the boundary homomorphisms ∂_{n}^{h} and ∂_{m}^{v} are as follows:

For $N G_{1,2}$, take $x, y \in N G_{1,1}=\operatorname{ker} d_{0}^{h} \cap \operatorname{ker} d_{0}^{v}$, we obtain

$$
\begin{aligned}
\partial_{2}^{v}\left(F_{(\emptyset,(0)),(\emptyset,(1))}\right)(x, y) & =d_{2}^{v}\left(\left[s_{0}^{v}(x), s_{1}^{v}(y)\right]\left[s_{1}^{v} y, s_{1}^{v} x\right]\right) \\
& =\left[s_{0}^{v} d_{1}^{v} x, y\right][y, x]
\end{aligned}
$$

where $\left[s_{0}^{v} d_{1}^{v} x, y\right][y, x] \in\left[\operatorname{ker} d_{0}^{v}\right.$, $\left.\operatorname{ker} d_{1}^{v}\right]$ from [16]. Further we obtain

$$
d_{0}^{h}\left(\left[s_{0}^{v} d_{1}^{v} x, y\right][y, x]\right)=1,
$$

hence $\left[s_{0}^{v} d_{1}^{v} x, y\right][y, x] \in\left[\operatorname{ker} d_{0}^{v} \cap \operatorname{ker} d_{0}^{h}, \operatorname{ker} d_{1}^{v} \cap \operatorname{ker} d_{0}^{h}\right]$.
Similarly for $y \in N G_{0,2}$ and $x \in N G_{1,1}$, from $N G_{1,1} \times N G_{0,2}$ to $N G_{1,2}$ we obtain

$$
\begin{aligned}
\partial_{2}^{v}\left(F_{(\emptyset,(1)),((0), \emptyset)}\right)(x, y) & =d_{2}^{v}\left[s_{1}^{v}(x), s_{0}^{h}(y)\right] \\
& =\left[x, d_{2}^{v} s_{0}^{h}(y)\right]
\end{aligned}
$$

Since $d_{0}^{h}\left[x, d_{2}^{v} s_{0}^{h}(y)\right]=1$ we have $\left[x, d_{2}^{v} s_{0}^{h}(y)\right] \in \operatorname{ker} d_{0}^{h}$. Furthermore, $\left[x, d_{2}^{v} s_{0}^{h}(y)\right] \in\left[\operatorname{ker} d_{0}^{v}\right.$, $\left.\operatorname{ker} d_{1}^{v}\right]$.
By a similar way one can show that the images of other generating elements are in

$$
\left[\operatorname{ker} d_{0}^{v} \cap \operatorname{ker} d_{0}^{h}, \operatorname{ker} d_{1}^{v} \cap \operatorname{ker} d_{0}^{h}\right] .
$$

We have the following equality

$$
\partial_{2}^{v}\left(N G_{1,2} \cap D_{1,2}\right)=\left[\operatorname{ker} d_{0}^{v} \cap \operatorname{ker} d_{0}^{h}, \operatorname{ker} d_{1}^{v} \cap \operatorname{ker} d_{0}^{h}\right] .
$$

For $N G_{2,1}$ take $x, y \in N G_{1,1}$. We obtain

$$
\partial_{2}^{h}\left(F_{(((0), \emptyset),((1), \emptyset))}\right)(x, y)=\left[s_{0}^{h} d_{1}^{h}(x), y\right][y, x]
$$

where $\left[s_{0}^{h} d_{1}^{h}(x), y\right][y, x] \in\left[\operatorname{ker} d_{0}^{h}, \operatorname{ker} d_{1}^{h}\right]$ and

$$
d_{0}^{v}\left(\left[s_{0}^{h} d_{1}^{h}(x), y\right][y, x]\right)=1
$$

hence

$$
\left[s_{0}^{h} d_{1}^{h}(x), y\right][y, x] \in \operatorname{ker} d_{0}^{v} \cap\left[\operatorname{ker} d_{0}^{h}, \operatorname{ker} d_{1}^{h}\right]
$$

We obtain the following equality

$$
\partial_{2}^{h}\left(N G_{2,1} \cap D_{2,1}\right)=\left[\operatorname{ker} d_{0}^{h} \cap \operatorname{ker} d_{0}^{v}, \operatorname{ker} d_{1}^{h} \cap \operatorname{ker} d_{0}^{v}\right]
$$

GÜRMEN ALANSAL and ULUALAN/Turk J Math

For $(n, m)=(2,1)$ and $(n, m)=(1,2)$, we can summarize these situations in the following diagram.

$\underline{\alpha}$	$\underline{\beta}$	I^{\prime}	J^{\prime}	V
$((0), \emptyset)$	$((1), \emptyset)$	$\{0\}$	$\{1\}$	$\{0\}$
$\underline{\alpha}$	$\underline{\beta}$	I	J	H
$(\emptyset,(0))$	$(\emptyset, \overline{(1))}$	$\{0\}$	$\{1\}$	$\{0\}$

For $N G_{2,2}$ take $x, y \in N G_{2,1}=\operatorname{ker} d_{0}^{h} \cap \operatorname{ker} d_{1}^{h} \cap \operatorname{ker} d_{0}^{v}$, we obtain

$$
\begin{aligned}
\partial_{2}^{v}\left(F_{((\emptyset,(0)),(\emptyset,(1))}\right)(x, y) & \left.=d_{2}^{v}\left(\left[s_{0}^{v}(x), s_{1}^{v}(y)\right]\left[s_{1}^{v}(y), s_{1}^{v}(x)\right]\right]\right) \\
& =\left[s_{0}^{v} d_{1}^{v} x, y\right][y, x]
\end{aligned}
$$

where $\left[s_{0}^{v} d_{1}^{v} x, y\right][y, x] \in\left[\operatorname{ker} d_{0}^{v}, \operatorname{ker} d_{1}^{v}\right]$ from [16]. Further we obtain

$$
d_{0}^{h}\left(\left[s_{0}^{v} d_{1}^{v} x, y\right][y, x]\right)=1
$$

hence $\left[s_{0}^{v} d_{1}^{v} x, y\right][y, x] \in\left[\operatorname{ker} d_{0}^{v} \cap \operatorname{ker} d_{0}^{h}, \operatorname{ker} d_{1}^{v} \cap \operatorname{ker} d_{0}^{h}\right]$.
Similarly for $x \in N G_{1,2}$ and $y \in N G_{2,1}$, from $N G_{1,2} \times N G_{2,1}$ to $N G_{2,2}$ we obtain

$$
\begin{aligned}
\partial_{2}^{v}\left(F_{((1), \emptyset),(\emptyset,(0))}(x, y)\right) & =d_{2}^{v}\left[s_{1}^{h}(x), s_{0}^{v}(y)\right] \\
& =\left[d_{2}^{v} s_{1}^{h}(x), d_{2}^{v} s_{0}^{v}(y)\right] .
\end{aligned}
$$

For $d_{0}^{h}\left[x, d_{2}^{v} s_{0}^{h}(y)\right]=1$ we have $\left[x, d_{2}^{v} s_{0}^{h}(y)\right] \in \operatorname{ker} d_{0}^{h}$. Furthermore, $\left[x, d_{2}^{v} s_{0}^{h}(y)\right] \in\left[\operatorname{ker} d_{0}^{v}\right.$, $\left.\operatorname{ker} d_{1}^{v}\right]$.
By a similar way, one can show that the images of other generating elements are in

$$
\left[\operatorname{ker} d_{0}^{v} \cap \operatorname{ker} d_{0}^{h}, \operatorname{ker} d_{1}^{v} \cap \operatorname{ker} d_{0}^{h}\right] .
$$

We have the following equality

$$
\partial_{2}^{v}\left(N G_{2,2} \cap D_{2,2}\right)=\left[\operatorname{ker} d_{0}^{v} \cap \operatorname{ker} d_{0}^{h}, \operatorname{ker} d_{1}^{v} \cap \operatorname{ker} d_{0}^{h}\right]
$$

We can summarize this in the following diagram for $(n, m)=(2,2)$.

$\underline{\alpha}$	$\underline{\beta}$	I^{\prime}	J^{\prime}	V
$((0), \emptyset)$	$((1), \emptyset)$	$\{0\}$	$\{1\}$	$\{0,1\}$
$\underline{\alpha}$	$\underline{\beta}$	I	J	H
$(\emptyset,(0))$	$(\emptyset, \overline{(1))}$	$\{0\}$	$\{1\}$	$\{0,1\}$

Using the calculation method given above, we obtained the following equalities in low dimensions for bisimplicial groups.

$$
\begin{aligned}
\partial_{2}^{v}\left(N G_{0,2} \cap D_{0,2}\right) & =\left[\operatorname{ker} d_{0}^{v}, \operatorname{ker} d_{1}^{v}\right], \\
\partial_{2}^{v}\left(N G_{1,2} \cap D_{1,2}\right) & =\left[\operatorname{ker} d_{0}^{v} \cap \operatorname{ker} d_{0}^{h}, \operatorname{ker} d_{1}^{v} \cap \operatorname{ker} d_{0}^{h}\right], \\
\partial_{2}^{v}\left(N G_{2,2} \cap D_{2,2}\right) & =\left[\operatorname{ker} d_{0}^{v} \cap \operatorname{ker} d_{0}^{h} \cap \operatorname{ker} d_{1}^{h}, \operatorname{ker} d_{1}^{v} \cap \operatorname{ker} d_{0}^{h} \cap \operatorname{ker} d_{1}^{h}\right], \\
\partial_{2}^{h}\left(N G_{2,0} \cap D_{2,0}\right) & =\left[\operatorname{ker} d_{0}^{h}, \operatorname{ker} d_{1}^{h}\right], \\
\partial_{2}^{h}\left(N G_{2,1} \cap D_{2,1}\right) & =\left[\operatorname{ker} d_{0}^{h} \cap \operatorname{ker} d_{0}^{v}, \operatorname{ker} d_{1}^{h} \cap \operatorname{ker} d_{0}^{v}\right], \\
\partial_{2}^{h}\left(N G_{2,2} \cap D_{2,2}\right) & =\left[\operatorname{ker} d_{0}^{h} \cap \operatorname{ker} d_{0}^{v} \cap \operatorname{ker} d_{1}^{v}, \operatorname{ker} d_{1}^{h} \cap \operatorname{ker} d_{0}^{v} \cap \operatorname{ker} d_{1}^{v}\right] .
\end{aligned}
$$

GÜRMEN ALANSAL and ULUALAN/Turk J Math

4.4. Crossed squares and bisimplicial groups

In Theorem 3.3, we give the general relationship between crossed n-cubes and n-simplicial groups by using the $F_{\alpha, \beta}$ functions in the Moore complex of an n-simplicial group. In this section, to see the role of these functions in dimension 2, we give the following proposition as an application of these functions. This result was initially proven by Conduché in [9] without using $F_{\alpha, \beta}$ functions. In this result, to see the role of these functions in the structure, we reprove this result and we see that the h-map of the crossed square given by Conduché (cf. [9]) can be given by the function $F_{(\emptyset,(0)),((0), \emptyset)}: N G_{01} \times N G_{10} \rightarrow N G_{11}$ in the Moore bicomplex of a bisimplicial group.

First, we recall the definition of a crossed square from [13].
A crossed square of groups is a commutative square of group morphisms

with an action of P on every other group and a map $h: M \times N \rightarrow L$ such that

1. The maps λ and λ^{\prime} are P-equivariant and $\nu, \mu, \mu \circ \lambda$ and $\nu \circ \lambda^{\prime}$ are crossed modules,
2. $\lambda \circ h(x, y)=x^{\nu(y)} x^{-1}, \lambda^{\prime} \circ h(x, y)=\left({ }^{\mu(x)} y\right) y^{-1}$,
3. $h(\lambda(z), y)=z^{\nu(y)} z^{-1}, h\left(x, \lambda^{\prime}(z)\right)=\left({ }^{\mu(x)} z\right) z^{-1}$,
4. $h\left(x x^{\prime}, y\right)=^{\mu(x)} h\left(x^{\prime}, y\right) h(x, y), \quad h\left(x, y y^{\prime}\right)=h(x, y)^{\nu(y)} h\left(x, y^{\prime}\right)$,
5. $h\left({ }^{t} x,{ }^{t} y\right)={ }^{t} h(x, y)$
for $x, x^{\prime} \in M, y, y^{\prime} \in N, z \in L$ and $t \in P$.
Proposition 4.4 Let $\mathbf{G}_{\bullet \bullet \bullet}$ be a bisimplicial group and $\mathbf{N G}_{\bullet, \bullet}$ its Moore bicomplex. Suppose $N G_{k_{1}, k_{2}}=\{1\}$ for any $k_{1} \geqslant 2$ or $k_{2} \geqslant 2$. Then the diagram

is a crossed square. $N G_{0,0}$ acts on other groups via the degeneracies s_{0}^{h} and s_{0}^{v}.
The h-map is given by the map $F_{(\emptyset,(0)),((0), \emptyset)}(x, y)$, namely,

$$
\begin{aligned}
h: N G_{0,1} \times N G_{1,0} & \rightarrow N G_{1,1} \\
(x, y) & \mapsto \quad h(x, y)=F_{(\emptyset,(0)),((0), \emptyset)}(x, y)
\end{aligned}
$$

for $x \in N G_{0,1}, y \in N G_{1,0}$ where $(\emptyset,(0)),((0), \emptyset) \in S(1) \times S(1)$ and

$$
F_{(\emptyset,(0)),((0), \emptyset)}(x, y)=\left[s_{0}^{h}(x), s_{0}^{v}(y)\right] .
$$

Proof It is straightforward from the direct calculations of $F_{\alpha, \beta}$.

4.5. Double crossed complexes and bisimplicial groups

Carrasco and Cegarra [6] have defined hypercrossed complexes and proved the non-Abelian version of the DoldKan theorem. They gave a functor from the category of simplicial groups to that of crossed complexes. Arvasi, using the image of the $F_{\alpha, \beta}$ function in the Moore complex of a simplicial group have reconstructed this functor from simplicial groups to crossed complex. The following result can be found in [6].

Recall that a crossed complex is a sequence of groups

$$
C: \quad \cdots \longrightarrow C_{n} \xrightarrow{\partial_{n}} C_{n-1} \xrightarrow{\partial_{n-1}} \cdots \longrightarrow C_{2} \xrightarrow{\partial_{2}} C_{1} \xrightarrow{\partial_{1}} C_{0}
$$

(i) $\left(C_{1}, C_{0}, \partial_{1}\right)$ is a crossed module, i.e. if $x, y \in C_{1}$, then ${ }^{\partial_{1} x} y=x y x^{-1}$;
(ii) for $i>1, C_{i}$ is an C_{0}-module (Abelian) on which $\partial_{1} C_{1}$ operates trivially and each ∂_{i} is an operator morphism; and
(iii) for $i \geq 1, \partial_{i+1} \partial_{i}=0$.

Morphisms of crossed complexes are defined in the obvious way.

Theorem 4.5 Let G be a simplicial group. Then defining

$$
C_{n}=\frac{N G_{n}}{\left(N G_{n} \cap D_{n}\right) d_{n+1}\left(N G_{n+1} \cap D_{n+1}\right)}
$$

with $\partial_{n}(\bar{z})=\overline{d_{n}(z)}$ gives a crossed complex $C(\mathbf{G})$ of groups.
In this section, we obtain a double crossed complex of groups from the Moore bicomplex of a bisimplicial group via the $F_{\alpha, \beta}$ functions. By considering crossed complexes of group(oid)s internal to the category of crossed complexes of group(oid)s, Tonks [20], introduced the notion of double crossed complexes of group(oid)s. By the same way, the notion of a double crossed complex of groups has been given by considering it internal to the category of crossed complexes of groups.

Definition 4.6 ([20])A double crossed complex of groups consists of
(i) a collection of groups $L_{i, j}$ for $i, j \geq 0$,
(ii) the actions

$$
L_{0, j} \times L_{k, j} \xrightarrow{\alpha^{h}} L_{k, j} \quad L_{i, 0} \times L_{i, k} \xrightarrow{\alpha^{v}} L_{i, k}
$$

for $i, j \geq 0, k \geq 1$,
(iii) horizontal and vertical boundary maps

$$
L_{i, j} \xrightarrow{\delta_{i}^{h}} L_{i-1, j} \quad L_{j, i} \xrightarrow{\delta_{i}^{v}} L_{j, i-1}
$$

for $i \geq 1, j \geq 0$.

GÜRMEN ALANSAL and ULUALAN/Turk J Math

These data are such that
(i) for each $j \geq 0$ the horizontal structure $\left(\left(L_{i, j}\right)_{i \geq 0}, \alpha^{h},\left(\delta_{i}^{h}\right)_{i \geq 1}\right)$ defines a crossed complex of groups,
(ii) for each $i \geq 0$ the vertical structure $\left(\left(L_{i, j}\right)_{j \geq 0}, \alpha^{v},\left(\delta_{j}^{v}\right)_{j \geq 1}\right)$ defines a crossed complex of groups,
(iii) the horizontal structure maps commute with the vertical structure maps. That is,
(a) the function δ^{h} defines complex morphisms between the vertical crossed complex, and similarly δ^{v} between the horizontal ones,
(b) the horizontal and vertical actions satisfy an interchange law. That is, if the expressions $\alpha^{v}\left(\alpha^{h}(a, b), \alpha^{h}(c, d)\right)$ and $\alpha^{h}\left(\alpha^{v}(a, c), \alpha^{v}(b, d)\right)$ are both defined, then they are equal.

A double crossed complex of groups may be represented diagrammatically as follows:

Now, we can give the relationship between the Moore bicomplex of a bisimplicial group and a double crossed complex by using the $F_{\alpha, \beta}$ functions.

Lemma 4.7 The subgroup $\left(N G_{n, m} \cap D_{n, m}\right) d_{n+1}^{v}\left(N G_{n+1, m} \cap D_{n+1, m}\right) d_{n+1}^{h}\left(N G_{n, m+1} \cap D_{n, m+1}\right)$ is a normal subgroup in $N G_{n, m}$.

Let $G_{\bullet, \bullet}$ be a bisimplicial group. Using the following lemmas, we will obtain a double crossed complex from $\mathbf{G}_{\bullet, \bullet}$. Define

$$
L_{n, m}\left(\mathbf{G}_{\bullet, \bullet}\right)=\frac{N G_{n, m}}{\left(N G_{n, m} \cap D_{n, m}\right) d_{n+1}^{v}\left(N G_{n+1, m} \cap D_{n+1, m}\right) d_{n+1}^{h}\left(N G_{n, m+1} \cap D_{n, m+1}\right)}
$$

Lemma 4.8 Let $x, y \in N G_{n, m}$ for $n \geq 2$, then $[x, y]=a^{-1} d_{n+1}^{v} w$, where
$a=F_{(\emptyset, n-2),(\emptyset, n-1)}^{n}\left(d_{n}^{v} x, d_{n}^{v} y\right)=\left[s_{n-2}^{v} d_{n}^{v} x, s_{n-1}^{v} d_{n}^{v} y\right]\left[s_{n-1}^{v} d_{n}^{v} y, s_{n-1}^{v} d_{n}^{v} x\right]$ and
$w=F_{(\emptyset, n-2),(\emptyset, n-1)}^{n+1}(x, y)=\left[s_{n-2}^{v} x, s_{n-1}^{v} y\right]\left[s_{n-1}^{v} y, s_{n-1}^{v} x\right]\left[s_{n}^{v} x, s_{n}^{v} y\right]$.
Similarly, $x, y \in N G_{n, m}$ for $m \geq 2$, then $[x, y]=b^{-1} d_{m+1}^{h} v$, where
$b=F_{(m-2, \emptyset),(m-1, \emptyset)}^{m}\left(d_{m}^{h} x, d_{m}^{h} y\right)=\left[s_{m-2}^{h} d_{m}^{h} x, s_{m-1}^{h} d_{m}^{h} y\right]\left[s_{m-1}^{h} d_{m}^{h} y, s_{m-1}^{h} d_{m}^{h} x\right]$ and
$v=F_{(m-2, \emptyset),(m-1, \emptyset)}^{m+1}(x, y)=\left[s_{m-2}^{h} x, s_{m-1}^{h} y\right]\left[s_{m-1}^{h} y, s_{m-1}^{h} x\right]\left[s_{m}^{h} x, s_{m}^{h} y\right]$.
Corollary 4.9 For $n \geq 2$ and $m \geq 2, L_{n, m}\left(\mathbf{G}_{\bullet, \bullet}\right)$ is abelian.

GÜRMEN ALANSAL and ULUALAN/Turk J Math

Lemma 4.10 For $n \geq 2, x \in N G_{n-1, m}$ and $y \in N G_{n, m}$,

$$
\left[s_{n-1}^{v} x, y\right] \in\left(N G_{n, m} \cap D_{n, m}\right) d_{n+1}^{v}\left(N G_{n+1, m} \cap D_{n+1, m}\right)
$$

Similarly, if for $m \geq 2, x \in N G_{n, m-1}$ and $y \in N G_{n, m}$, then

$$
\left[s_{m-1}^{h} x, y\right] \in\left(N G_{n, m} \cap D_{n, m}\right) d_{m+1}^{h}\left(N G_{n, m+1} \cap D_{n, m+1}\right)
$$

The importance of this result is that the natural actions of $N G_{l, m}$ on $N G_{n, m}$ are by conjugations via degeneracies. In particular we choose the action

$$
\bar{x}_{\bar{y}}=\overline{s_{l}^{(n-l)}(x) y s_{l}^{(n-l)}(x)^{-1}}
$$

where the $(n-l)$ superfix denotes an iterated application of the map. Thus if $n \geq 2$ then $N G_{n-1, m}$ acts trivially on $N G_{n, m} \overline{\left[s_{n-1}^{v} x, y\right]}=1$.

Lemma 4.11 For each n, m the maps $\partial_{n}^{v}: L_{n, m}\left(\mathbf{G}_{\bullet \bullet \bullet}\right) \rightarrow L_{n-1, m}\left(\mathbf{G}_{\bullet, \bullet}\right)$ and $\partial_{m}^{h}: L_{n, m}\left(\mathbf{G}_{\bullet, \bullet}\right) \rightarrow L_{n, m-1}\left(\mathbf{G}_{\bullet \bullet \bullet}\right)$ are crossed modules.

Lemma 4.12 For $x \in N G_{n-i+1, m}, y \in N G_{n, m}$ and $1 \leq k<i$,

$$
\begin{gathered}
s_{n}^{v(k)} s_{n-i}^{v(i-k-1)} x y s_{n}^{v(k)} s_{n-i}^{v(i-k-1)} x^{-1} \equiv s_{n}^{v(k-1)} s_{n-i}^{v(i-k)} x y s_{n}^{v(k-1)} s_{n-i}^{v(i-k)} x^{-1} \\
\bmod \left(N G_{n, m} \cap D_{n, m}\right) d_{n+1}^{v}\left(N G_{n+1, m} \cap D_{n+1, m}\right) .
\end{gathered}
$$

Proof Writing $s_{n}^{v(k)}$ for $\left(s_{n+k-1}^{v}, s_{n+k-2}^{v}, \ldots, s_{n}^{v}\right)$ and $s_{n-i}^{v(i-k)}$ for $\left(s_{n-k-1}^{v}, s_{n-k-2}^{v}, \ldots, s_{n-i}^{v}\right)$, we consider the element $\left[s_{n}^{v(k)} s_{n-i}^{v(i-k)} x, s_{k}^{v} y\right] \in G_{n+1, m}$ the mapping

$$
p_{l}: G_{n+1, m} \rightarrow N G_{n+1, m} \subset G_{n+1, m} \subset \text { with } 0 \leq l \leq n
$$

given by

$$
p_{l}(z)=z s_{l}^{v} d_{l}^{v} z^{-1}
$$

We also note that the particular case of $F_{\alpha, \beta}$ for $\alpha=(n, n-i ; m), \beta=(k, m)$ is

$$
\begin{aligned}
F_{\alpha, \beta}(x, y)= & F_{(n, n-i ; m),(k, m)}(x, y) \\
& p_{n} p_{n-1} \ldots p_{0}\left[s_{n}^{v(k)} s_{n-i}^{v(i-k)} x, s_{k}^{v} y\right] \in N G_{n+1, m} \cap D_{n+1, m}
\end{aligned}
$$

We will prove that $d_{n+1}^{v}\left(F_{(n, n-i ; m),(k, m)}(x, y)\right)$ is basically the difference between the two elements of this lemma.

Indeed by putting

$$
F_{(n, n-i ; m),(k, m)}(x, y)=z_{(k)(i)}(x, y)=\left[s_{n}^{v(k)} s_{n-i}^{v(i-k)} x, s_{k}^{v} y\right]
$$

GÜRMEN ALANSAL and ULUALAN/Turk J Math

and for $\alpha=(n, n-i ; m)$ and $\beta=(k, m)$ with any $j, 0 \leq j \leq n+1$, we obtain

$$
d_{j}^{v} z_{(k)(i)}(x, y)=\left\{\begin{array}{lll}
1 & \text { if } k>j \\
{\left[s_{n-1}^{v(k)} s_{n-i}^{v(i-k-1)} x, y\right]} & \text { if } k=j \\
{\left[s_{n}^{v(k-1)} s_{n-i}^{v(i-k)} x, y\right]} & \text { if } k=j-1 \\
1 & \text { if } 1<j-i-k+1 \\
1 & \text { if } j>i+1
\end{array}\right.
$$

and $d_{n+1}^{v} z_{(k)(i)}(x, y)=z_{(k-1),(i-1)}\left(x, d_{n+1}^{v} y\right)$.
This gives

$$
p_{n} p_{n-1} \ldots p_{0}\left(z_{(k)(i)}(x, y)\right)=p_{n} \ldots p_{i+k}\left(z_{(k)(i)}(x, y)\right)
$$

since the operators p_{l} for $l>i+1$ are trivial. We also note that

$$
p_{n} \ldots p_{i+k}\left(z_{(k)(i)}(x, y)\right)=p_{n} \ldots p_{k+1}\left(z_{(k)(i)}(x, y)\right)
$$

Now if $w \in G_{n+1,, m}$, then

$$
\begin{align*}
d_{n+1}^{v} p_{n}(w) & =d_{n+1}^{v} w d_{n}^{v} w^{-1} \\
d_{n+1}^{v} p_{n} p_{n-1}(w) & =d_{n+1}^{v} p_{n-1} w\left(d_{n}^{v} p_{n-1} w\right)^{-1} \tag{4.1}
\end{align*}
$$

and so on. It follows that

$$
d_{n+1}^{v} p_{n} \ldots p_{k+1}\left(z_{(k)(i)}(x, y)\right)=p_{n} \ldots p_{k}\left(z_{(k-1)(i-1)}\left(x, d_{n}^{v} y\right)\right)\left(d_{n}^{v} p_{n-1} \ldots p_{k+1}\left(z_{(k)(i)}(x, y)\right)\right)^{-1}
$$

The first of these two terms is in $N G_{n, m} \cap D_{n, m}$ and hence we only check the second one. From (4.1), we get

$$
d_{n+1}^{v} p_{n-1} \ldots p_{k+1}\left(z_{(k)(i)}(x, y)\right)=d_{n}^{v} p_{n-2} \ldots p_{k+1}(w)\left(d_{n-1}^{v} p_{n-2} \ldots p_{k+1}(w)\right)^{-1}
$$

and this implies

$$
d_{l}^{v} p_{l+1} \ldots p_{k+1}\left(z_{(k)(i)}(x, y)\right)
$$

and others of form

$$
d_{l-1}^{v} p_{l+1} \ldots p_{k+1}\left(z_{(k)(i)}(x, y)\right)
$$

If $j<k-1, a \in G_{n, m}$

$$
d_{j}^{v} p_{k}(a)=d_{j}^{v}(a)\left(s_{k-1}^{v} d_{k-1}^{v} d_{j}^{v}(a)^{-1}\right)=p_{k-1} d_{j}^{v}(a)
$$

so any term of the form $d_{l-1}^{v} p_{l+1} \ldots p_{k+1}\left(z_{(k)(i)}(x, y)\right)$ can be written as

$$
p_{l-1} \cdots p_{k}\left(d_{l-1}^{v}\left(z_{(k)(i)}(x, y)\right)\right)
$$

and so is trivial if $l>1$. Hence the only term is $d_{k}^{v} p_{k}\left(z_{(k)(i)}(x, y)\right)$ and so

$$
\begin{aligned}
d_{k}^{v} p_{k}\left(z_{(k)(i)}(x, y)\right) & =d_{k}^{v}\left[s_{n}^{v(k)} s_{n-i}^{v(i-k)} x, s_{k}^{v} y\right] d_{k}^{v} s_{k}^{v} d_{k}^{v}\left[s_{k}^{v} y, s_{n}^{v(k)} s_{n-i}^{v(i-k)} x\right] \\
& =s_{n}^{v(k)} s_{n-i}^{v(i-k-1)} x y s_{n}^{v(k)} s_{n-i}^{v(i-k-1)} x^{-1} s_{n}^{v(k-1)} s_{n-i}^{v(i-k)} x y^{-1} s_{n}^{v(k-1)} s_{n-i}^{v(i-k)} x^{-1}
\end{aligned}
$$

i.e. the difference of the two terms in the statement of the lemma. Putting

$$
b=s_{n}^{v(k)} s_{n-i}^{v(i-k-1)} x y s_{n}^{v(k)} s_{n-i}^{v(i-k-1)} x^{-1} s_{n}^{v(k-1)} s_{n-i}^{v(i-k)} x y^{-1} s_{n}^{v(k-1)} s_{n-i}^{v(i-k)} x^{-1}
$$

GÜRMEN ALANSAL and ULUALAN/Turk J Math

It then follows that

$$
d_{n+1}^{v}\left(F_{(n, n-i ; m),(k, m)}(x, y)\right)=p_{n} \ldots p_{k}\left(z_{(k-1)(i-1)}\left(x, d_{n}^{v} y\right)\right) b^{-1}
$$

Having $p_{n} \ldots p_{k}\left(z_{(k-1)(i-1)}\left(x, d_{n}^{v} y\right)\right) \in N G_{n, m} \cap D_{n, m}$ and $w \in N G_{n+1, m} \cap D_{n+1, m}$ implies that

$$
\begin{aligned}
s_{n}^{v(k-1)} s_{n-i}^{v(i-k)} x y s_{n}^{v(k-1)} s_{n-i}^{v(i-k)} x^{-1} \equiv & s_{n}^{v(k)} s_{n-i}^{v(i-k-1)} x y s_{n}^{v(k)} s_{n-i}^{v(i-k-1)} x^{-1} \\
& \bmod \left(N G_{n, m} \cap D_{n, m}\right) d_{n+1}^{v}\left(N G_{n+1, m} \cap D_{n+1, m}\right) .
\end{aligned}
$$

Lemma 4.13 If $n \geq 1, x \in N G_{n-i, m}$ and $y \in N G_{n, m}$ then

$$
s_{n}^{v(i+1)} d_{n-i}^{v} x y s_{n}^{v(i+1)} d_{n-i}^{v} x^{-1} \equiv s_{n-i}^{v(i)} x y s_{n-1}^{v(i)} x^{-1} \bmod \left(N G_{n, m} \cap D_{n, m}\right) d_{n+1}^{v}\left(N G_{n+1, m} \cap D_{n+1, m}\right)
$$

Proof Take the element

$$
t=s_{n-i}^{v(i+1)} x s_{n}^{v} y s_{n}^{v} s_{n-i}^{v(i+1)} x^{-1} s_{n}^{v} y s_{n}^{v} s_{n-i}^{v(i)} x s_{n}^{v} y s_{n}^{v} s_{n-i}^{v(i)} x^{-1}
$$

This is $F_{(\alpha ; m),(n, m)}(x, y)=p_{n} \ldots p_{0}\left[s_{\alpha}^{v(i+1)} x, s_{n}^{v} y\right]$ i.e. where $s_{\alpha}^{v(i+1)}=s_{n}^{v} s_{n-1}^{v} \cdots s_{n-i}^{v}$. It is readily checked that $0 \leq i \leq n-1$, for $d_{i}^{v}(t)=1$ for $i \geq 0$ and $d_{n+1}^{v}(t)$ is the difference between the elements mentioned in the statement of the lemma.

Lemma 4.14 If $n \geq 2, x \in N G_{1, m}$ and $y \in N G_{n, m}$ then

$$
\left[s_{n-1}^{v} \cdots s_{1}^{v} x, y\right] \equiv 1 \bmod \left(N G_{n, m} \cap D_{n, m}\right) d_{n+1}^{v}\left(N G_{n+1, m} \cap D_{n+1, m}\right)
$$

Proof Consider

$$
\begin{aligned}
u= & {\left[s_{n}^{v} y, s_{n}^{v} \cdots s_{1}^{v} x\right]\left[s_{n-1}^{v} y, s_{n-1}^{v} y s_{n}^{v} \cdots s_{1}^{v} x\right]^{-1} } \\
& \prod_{i=2}^{n}\left[s_{n-i}^{v} y, s_{n}^{v} \cdots s_{1}^{v} x\right]^{(-1)^{i}}
\end{aligned}
$$

u is easily checked to be in $N G_{n+1, m} \cap D_{n+1, m}$.

$$
\begin{aligned}
d_{n+1}^{v}(u)= & {\left[y, s_{n-1}^{v} \cdots s_{1}^{v} x\right]\left[s_{n-1}^{v} d_{n}^{v} y, s_{n-1}^{v} \cdots s_{1}^{v} x\right]^{-1} } \\
& {\left[s_{n-2}^{v} d_{n}^{v} y, s_{n-1}^{v} \cdots s_{1}^{v} x\right] \prod_{i=3}^{n}\left[s_{n-i}^{v} d_{n}^{v} y, s_{n-1}^{v} \cdots s_{1}^{v} x\right]^{(-1)^{i}} }
\end{aligned}
$$

Writing

$$
\begin{aligned}
t= & {\left[s_{n-1}^{v} d_{n}^{v} y, s_{n-1}^{v} \cdots s_{1}^{v} x\right]^{-1}\left[s_{n-2}^{v} d_{n}^{v} y, s_{n-1}^{v} \cdots s_{1}^{v} x\right] } \\
& \prod_{i=3}^{n}\left[s_{n-i}^{v} d_{n}^{v} y, s_{n-1}^{v} \cdots s_{1}^{v} x\right]^{(-1)^{i}}
\end{aligned}
$$

it is readily checked that $t \in N G_{n, m}$ and is as required.
Thus, we can give the main result of this section as follows.

Theorem 4.15 Let ($\mathbf{G}_{\bullet, \bullet}$) be a bisimplicial group. Then the construction

$$
L_{n, m}\left(\mathbf{G}_{\bullet, \bullet}\right)=\frac{N G_{n, m}}{\left(N G_{n, m} \cap D_{n, m}\right) d_{n+1}^{v}\left(N G_{n+1, m} \cap D_{n+1, m}\right) d_{n+1}^{h}\left(N G_{n, m+1} \cap D_{n, m+1}\right)}
$$

with $\partial^{v}(\bar{x})=\overline{d_{n}^{v}(x)}, \partial^{h}(\bar{x})=\overline{d_{n}^{h}(x)}$ gives a double crossed complex.
Proof It is straightforward from the lemmas given above.

5. Acknowledgments

The authors would like to thank the anonymous referee for a very detailed and helpful reading of the paper.

References

[1] Akça I, Arvasï Z. Simplicial and Crossed Lie Agebras. Homology, Homotopy and Applications 2002; 4 (1): 43-57.
[2] Artin M, Mazur B. On the van Kampen theorem. Topology 1966; 5: 179-189.
[3] Arvasi Z, Porter T. Higher dimensional Peiffer elements in simplicial commutative algebras. Theory and Applications of Categories 1997; 3 (1): 1-23.
[4] Arvasi Z, Porter T. Freeness conditions for 2-crossed module of commutative algebras. Applied Categorical Structures 1998; 6: 455-477.
[5] Brown R, Loday JL. Van Kampen theorems for diagrams of spaces. Topology 1987; 26 (3): 311-335.
[6] Carrasco P, Cegarra AM. Group-theoretic algebraic models for homotopy types. Journal of Pure and Applied Algebra 1991; 75: 195-235.
[7] Castiglioni JL, Ladra M. Peiffer elements in simplicial groups and algebras. Journal of Pure and Applied Algebra 2008; 212 (9): 2115-2128.
[8] Conduché D. Modules croisés généraliés de longueur 2. Journal of Pure and Applied Algebra 1984; 34: 155-178.
[9] Conduché D. Simplicial crossed modules and mapping cones. Georgian Mathematical Journal 2003; 10 (4): 623-636.
[10] Duskin J. Simplicial methods and the interpretation of triple cohomology. Memoirs of the American Mathematical Society 1975; 3: 163.
[11] Ellis GJ, Steiner R. Higher dimensional crossed modules and the homotopy groups of ($\mathrm{n}+1$)-ads'. Journal of Pure and Applied Algebra 1987; 46: 117-136.
[12] Guin-Walery D, Loday JL. Obstructions à l'excision en K-théorie algèbrique, in evanston conference on algebraic K-theory. In: Friedlander EM, Stein MR (editors). Algebraic K-Theory Evanston. Lecture Notes in Mathematics, Vol. 854. Berlin, Germany: Springer, 1981, pp. 179-216.
[13] Loday JL. Spaces with finitely many non-trivial homotopy groups. Journal of Pure and Applied Algebra 1982; 24: 179-202.
[14] Loday JL. Cyclic homology. Grundlehren der mathematischen Wissenschaften (301). Berlin, Germany: SpringerVerlag, 1998.
[15] May JP. Simplicial Objects in Algebraic Topology. Mathematical Studies 11. New York, NY, USA: Van Nostrand, 1967.
[16] Mutlu A, Porter T. Applications of Peiffer pairings in the Moore complex of a simplicial group. Theory and Applications of Categories 1998; 4 (7): 148-173.
[17] Mutlu A, Porter T. Freeness conditions for 2-crossed modules and complexes. Theory and Applications of Categories 1998; 4 (8): 174-194.
[18] Mutlu A, Porter T. Iterated Peiffer Pairings in the Moore Complex of a Simplicial Group. Applied Categorical Structures 2001; 9: 111-130.
[19] Porter T. N-types of simplicial groups and crossed N-cubes. Topology 1993; 32: 5-24.
[20] Tonks A. Theory and applications of crossed complexes: the Eilenberg-Zilber theorem and homotopy colimits. PhD, University of Wales, Cardiff, UK, 1994.
[21] Whitehead JHC. Combinatorial homotopy II. Bulletin of the American Mathematical Society 1949; 55: 453-496.

GÜRMEN ALANSAL and ULUALAN/Turk J Math

1. Appendix

For $(n, m)=(1,1)$, consider the set

$$
S(1) \times S(1)=\{(\emptyset, \emptyset),(\emptyset,(0)),((0), \emptyset),((0),(0))\}
$$

1. Take $\underline{\alpha}=(\emptyset, \emptyset)$ and $\underline{\beta}=(\emptyset,(0))$. In this case, the function $F_{\underline{\alpha}, \underline{\beta}}$ becomes from $N G_{1,1} \times N G_{1,0}$ to $N G_{1,1}$. This map can be defined for any $x \in N G_{1,1}$ and $y \in N G_{1,0}$ by

$$
F_{(\emptyset, \emptyset),(\emptyset,(0))}(x, y)=\left[x, s_{0}^{v}(y)\right]
$$

2. Take $\underline{\alpha}=(\emptyset, \emptyset)$ and $\underline{\beta}=((0), \emptyset)$. In this case, the function $F_{\underline{\alpha}, \underline{\beta}}$ becomes from $N G_{1,1} \times N G_{0,1}$ to $N G_{1,1}$. This map can be defined by

$$
F_{(\emptyset, \emptyset),((0), \emptyset)}(x, y)=\left[x, s_{0}^{h}(y)\right]
$$

for any $x \in N G_{1,1}$ and $y \in N G_{0,1}$.
3. For $\underline{\alpha}=(\emptyset, \emptyset)$ and $\underline{\beta}=((0),(0))$. The map

$$
F_{(\emptyset, \emptyset),((0),(0))}: N G_{1,1} \times N G_{0,0} \rightarrow N G_{1,1}
$$

is defined by

$$
F_{(\emptyset, \emptyset),((0),(0))}(x, y)=\left[x,\left(s_{0}^{v} s_{0}^{h}(y)\right)\right]
$$

for all $x \in N G_{1,1}$ and $y \in N G_{00}$.
4. For $\underline{\alpha}=((0), \emptyset)$ and $\underline{\beta}=(\emptyset,(0))$. The map

$$
F_{((0), \emptyset),(\emptyset,(0))}: N G_{0,1} \times N G_{1,0} \rightarrow N G_{1,1}
$$

can be calculated for any $x \in N G_{0,1}$ and $y \in N G_{1,0}$ by

$$
\begin{aligned}
F_{((0), \emptyset),(\emptyset,(0))}(x, y)= & p[-,-]\left(s_{0}^{h}(x), s_{0}^{v}(y)\right) \\
= & p_{0}^{h} p_{0}^{v}\left(s_{0}^{h}(x) s_{0}^{v}(y) s_{0}^{h}(x)^{-1} s_{0}^{v}(y)^{-1}\right) \\
= & p_{0}^{h}\left(\left(s_{0}^{v}(y) s_{0}^{h}(x) s_{0}^{v}(y)^{-1} s_{0}^{h}(x)^{-1}\right)\right. \\
& \left.s_{0}^{v} d_{0}^{v}\left(s_{0}^{h}(x) s_{0}^{v}(y) s_{0}^{h}(x)^{-1} s_{0}^{v}(y)^{-1}\right)\right) \\
= & p_{0}^{h}\left(s_{0}^{v}(y) s_{0}^{h}(x) s_{0}^{v}(y)^{-1} s_{0}^{h}(x)^{-1}\right)\left(s_{0}^{v} d_{0}^{v}\right. \\
& \left.s_{0}^{h}(x) s_{0}^{v} d_{0}^{v} s_{0}^{v}(y) s_{0}^{v} d_{0}^{v} s_{0}^{h}(x)^{-1} s_{0}^{v} d_{0}^{v} s_{0}^{v}(y)^{-1}\right) \\
= & p_{0}^{h}\left(s_{0}^{v}(y) s_{0}^{h}(x) s_{0}^{v}(y)^{-1} s_{0}^{h}(x)^{-1}\right) \\
= & \left(s_{0}^{h}(x) s_{0}^{v}(y) s_{0}^{h}(x)^{-1} s_{0}^{v}(y)^{-1}\right) \\
= & {\left[s_{0}^{h}(x), s_{0}^{v}(y)\right] . }
\end{aligned}
$$

5. For $\underline{\alpha}=((0), \emptyset)$ and $\underline{\beta}=((0),(0))$. The map

$$
F_{((0), \emptyset),((0),(0))}: N G_{0,1} \times N G_{0,0} \rightarrow N G_{1,1}
$$

can be calculated for any $x \in N G_{0,1}$ and $y \in N G_{0,0}$ by

$$
\begin{aligned}
F_{((0), \emptyset),((0),(0)))}(x, y) & =p[-,-]\left(s_{\underline{\alpha}}, s_{\underline{\underline{\beta}}}\right)(x, y) \\
& =p_{0}^{h} p_{0}^{v}\left[s_{0}^{h}(x), s_{0}^{h} s_{0}^{v}(y)\right] \\
& =1
\end{aligned}
$$

6. Similarly for $\underline{\alpha}=(\emptyset,(0))$ and $\underline{\beta}=((0),(0))$, the map

$$
F_{(\emptyset,(0)),((0),(0))}: N G_{1,0} \times N G_{0,0} \rightarrow N G_{1,1}
$$

is the identity as given in the previous step.
By taking $(n, m)=(0,2)$ and $(2,0)$, we calculate the possible non identity maps with codomain $N G_{0,2}$ and $N G_{2,0}$ respectively.

First $(n, m)=(0,2)$. Consider the set

$$
S(0) \times S(2)=\{(\emptyset, \emptyset),(\emptyset,(0)),(\emptyset,(1)),(\emptyset,(1,0))\} .
$$

We try to find the functions $F_{\underline{\alpha}, \underline{\beta}}$ with codomain $N G_{0,2}$. In this case the only nonidentity map $F_{\underline{\alpha}, \underline{\beta}}$ can be defined by choosing $\underline{\alpha}=(\emptyset,(0))$ and $\underline{\beta}=(\emptyset,(1))$. This is a map from $N G_{0,1} \times N G_{0,1}$ to $N G_{0,2}$. This map is calculated as follows. For $x, y \in N G_{0,1}$, we obtain

$$
\begin{aligned}
F_{(\emptyset,(0)),(\emptyset,(1))}(x, y) & =p[-,-]\left(s_{\underline{\alpha}}, s_{\underline{\beta}}\right)(x, y) \\
& =p_{1}^{v} p_{0}^{v}\left[s_{0}^{v}(x), s_{1}^{v}(y)\right] \\
& =\left[s_{0}^{v} x, s_{1}^{v} y\right]\left[s_{1}^{v} y, s_{1}^{h} x\right] \in N G_{0,2} .
\end{aligned}
$$

Now suppose $(n, m)=(2,0)$. From the set

$$
S(2) \times S(0)=\{(\emptyset, \emptyset),((0), \emptyset),((1), \emptyset),((1,0), \emptyset)\}
$$

we can choose $\underline{\alpha}=((0), \emptyset)$ and $\underline{\beta}=((1), \emptyset)$. This map is from $N G_{1,0} \times N G_{1,0}$ to $N G_{2,0}$. This map can be given by for $x, y \in N G_{1,0}$

$$
\begin{aligned}
F_{((0), \emptyset),((1), \emptyset)}(x, y) & =p[-,-]\left(s_{\underline{\alpha}}, s_{\underline{s}}\right)(x, y) \\
& =p_{1}^{h} p_{0}^{h}\left[s_{0}^{h}(x), s_{1}^{h}(y)\right] \\
& =\left[s_{0}^{h}(x), s_{1}^{h}(y)\right]\left[s_{1}^{h}(y), s_{1}^{h}(x)\right] \in N G_{2,0} .
\end{aligned}
$$

Now, by taking $(n, m)=(1,2)$ and $(2,1)$, we shall define the possible nonidentity maps $F_{\underline{\alpha}, \underline{\beta}}$ whose codomain $N G_{1,2}$ and $N G_{2,1}$ respectively.

GÜRMEN ALANSAL and ULUALAN/Turk J Math

First suppose that $(n, m)=(1,2)$. We set

$$
S(1) \times S(2)=\{(\emptyset, \emptyset),(\emptyset,(1)),(\emptyset,(0)),(\emptyset,(1,0)),((0), \emptyset),((0),(1)),((0),(0)),((0),(1,0))\}
$$

In the following calculations, by taking appropriate $\underline{\alpha}, \underline{\beta}$ from the set $S(1) \times S(2)$, we shall give all the non identity maps whose codomain $N G_{1,2}$. To obtain these maps, we can choose the possible $\underline{\alpha}, \underline{\beta}$ from the set $S(1) \times S(2)$ as follows:

$$
\begin{array}{ll}
\text { 1. }(\underline{\alpha}, \underline{\beta})=((\emptyset,(0)),(\emptyset,(1))) & \text { 2. }(\underline{\alpha}, \underline{\beta})=((\emptyset,(1)),((0), \emptyset)) \\
\text { 3. }(\underline{\alpha}, \underline{\beta})=((\emptyset,(0)),((0), \emptyset)) & \text { 4. }(\underline{\alpha}, \underline{\beta})=(((0),(1)),(\emptyset,(0))) \\
\text { 5. }(\underline{\alpha}, \underline{\beta})=(((0),(0)),(\emptyset,(1))) . &
\end{array}
$$

Now we give the functions $F_{\underline{\alpha}, \underline{\beta}}$ for these pairings $(\underline{\alpha}, \underline{\beta})$.

1. $F_{(\emptyset,(0)),(\emptyset,(1))}: N G_{1,1} \times N G_{1,1} \longrightarrow N G_{1,2}$ can be given by

$$
\begin{aligned}
F_{(\emptyset,(0)),(\emptyset,(1))}(x, y) & =p[-,-]\left(s_{\underline{\alpha}}, s_{\underline{\beta}}\right)(x, y) \\
& =p_{1}^{v} p_{0}^{v} p_{0}^{h}\left[s_{0}^{v} x, s_{1}^{v} y\right] \\
& =\left[s_{0}^{v}(x), s_{1}^{v}(y)\right]\left[s_{1}^{v}(y), s_{1}^{v}(x)\right] \in N G_{1,2}
\end{aligned}
$$

for $x, y \in N G_{1,1}$.
2. The map $F_{(\emptyset,(1)),((0), \emptyset)}: N G_{1,1} \times N G_{0,2} \longrightarrow N G_{1,2}$ is given by

$$
F_{(\emptyset,(1)),((0), \emptyset)}(x, a)=\left[s_{1}^{v}(x), s_{0}^{h}(a)\right] \in N G_{1,2}
$$

for $x \in N G_{1,1}$ and $a \in N G_{0,2}$.
3. For $\underline{\alpha}=(\emptyset,(0)), \underline{\beta}=((0), \emptyset), x \in N G_{1,1}$ and $a \in N G_{0,2}$, we have the following map

$$
\begin{aligned}
F_{(\emptyset,(0)),((0), \emptyset)}: \quad N G_{1,1} \times N G_{0,2} & \longrightarrow N G_{1,2} \\
(x, a) & \longmapsto\left[s_{0}^{v}(x), s_{0}^{h}(a)\right] \in N G_{1,2} .
\end{aligned}
$$

4. For $\underline{\alpha}=((0),(1)), \underline{\beta}=(\emptyset,(0)), x \in N G_{0,1}$ and $y \in N G_{1,1}$, we get the following map

$$
\begin{aligned}
F_{(0),(1)),(\emptyset,(0))}: \quad N G_{0,1} \times N G_{1,1} & \longrightarrow N G_{1,2} \\
(x, y) & \longmapsto\left[s_{0}^{h} s_{1}^{v}(x), s_{0}^{v}(y)\right] \in N G_{1,2}
\end{aligned}
$$

5. For $\underline{\alpha}=((0),(0)), \underline{\beta}=(\emptyset,(1)), x \in N G_{0,1}$ and $y \in N G_{1,1}$, we get the following map

$$
\begin{aligned}
F_{(0),(0)),(\emptyset,(1))}: \quad N G_{0,1} \times N G_{1,1} & \longrightarrow N G_{1,2} \\
(x, y) & \longmapsto\left[s_{0}^{h} s_{0}^{v}(x), s_{1}^{v}(y)\right] \in N G_{1,2}
\end{aligned}
$$

Now suppose that $(n, m)=(2,1)$. We consider the set $S(2) \times S(1)$. By choosing appropriate $\underline{\alpha}, \underline{\beta}$ from the set $S(2) \times S(1)$, we can calculate similarly all the nonidentity maps with codomain $N G_{2,1}$. To obtain these maps, we take the possible $\underline{\alpha}, \underline{\beta}$ as follows:

1. $(\underline{\alpha}, \underline{\beta})=(((0), \emptyset),((1), \emptyset)$,
2. $(\underline{\alpha}, \beta)=(((1), \emptyset),(\emptyset,(0)))$
3. $(\underline{\alpha}, \underline{\beta})=(((0), \emptyset),(\emptyset,(0)))$
4. $(\underline{\alpha}, \underline{\beta})=(((1),(0)),((0), \emptyset))$
5. $(\underline{\alpha}, \underline{\bar{\beta}})=(((0),(0)),((1), \emptyset))$.

For these $(\underline{\alpha}, \underline{\beta})$, the corresponding $F_{\underline{\alpha}, \underline{\beta}}$ functions can be calculated as follows.

1. For $\underline{\alpha}=((0), \emptyset)$ and $\underline{\beta}=((1), \emptyset)$, we obtain the map

$$
\begin{aligned}
F_{((0), \emptyset),((1), \emptyset)}: \quad N G_{1,1} \times N G_{1,1} & \longrightarrow N G_{2,1} \\
(x, y) & \longmapsto\left[s_{0}^{h}(x), s_{1}^{h}(y)\right]\left[s_{1}^{h}(y), s_{1}^{h}(x)\right] \in N G_{2,1} .
\end{aligned}
$$

2. For $\underline{\alpha}=((1), \emptyset), \underline{\beta}=(\emptyset,(0))$, we get the map

$$
\begin{aligned}
F_{((1), \emptyset),(\emptyset,(0))}: \quad N G_{1,1} \times N G_{2,0} & \longrightarrow N G_{2,1} \\
(x, a) & \longmapsto\left[s_{1}^{h}(x), s_{0}^{v}(a)\right] \in N G_{2,1}
\end{aligned}
$$

3. For $\underline{\alpha}=((0), \emptyset), \underline{\beta}=(\emptyset,(0))$, we get the map

$$
\begin{aligned}
F_{((0), \emptyset),(\emptyset,(0))}: \quad N G_{1,1} \times N G_{2,0} & \longrightarrow N G_{2,1} \\
(x, a) & \longmapsto\left[s_{0}^{h}(x), s_{0}^{v}(a)\right] \in N G_{2,1}
\end{aligned}
$$

4. For $\underline{\alpha}=((1),(0)), \underline{\beta}=((0), \emptyset)$, we get the following map

$$
\begin{aligned}
F_{((1),(0)),((0), \emptyset)}: \quad N G_{1,0} \times N G_{1,1} & \longrightarrow N G_{2,1} \\
(x, y) & \longmapsto\left[s_{1}^{h} s_{0}^{v}(x), s_{0}^{h}(y)\right] \in N G_{2,1} .
\end{aligned}
$$

5. For $\underline{\alpha}=((0),(0)), \underline{\beta}=((1), \emptyset)$, we get the following map

$$
\begin{aligned}
F_{((0),(0)),((1), \emptyset)}: \quad N G_{1,0} \times N G_{1,1} & \longrightarrow N G_{2,1} \\
(x, y) & \longmapsto\left[s_{0}^{h} s_{0}^{v}(x), s_{1}^{h}(y)\right] \in N G_{2,1} .
\end{aligned}
$$

Let $(n, m)=(2,2)$. By choosing appropriate $\underline{\alpha}, \underline{\beta}$ from the set $S(2) \times S(2)$, we can calculate the nonidentity maps with codomain $N G_{2,2}$. The possible $\underline{\alpha}, \underline{\beta}$ are given as follows:

$$
\begin{array}{ll}
\text { 1. }(\underline{\alpha}, \underline{\beta})=(((0), \emptyset),((1), \emptyset)) & \text { 2. }(\underline{\alpha}, \underline{\beta})=(((1), \emptyset),(\emptyset,(0))) \\
\text { 3. }(\underline{\alpha}, \underline{\beta})=(((0), \emptyset),(\emptyset,(0))) & \text { 4. }(\underline{\alpha}, \bar{\beta})=(((1),(0)),((0), \emptyset)) \\
\text { 5. }(\underline{\alpha}, \underline{\beta})=(((0),(0)),((1), \emptyset)), & \text { 6. }(\underline{\alpha}, \underline{\bar{\beta}})=((\emptyset,(0)),(\emptyset,(1)))
\end{array}
$$

For these $(\underline{\alpha}, \underline{\beta})$, the corresponding $F_{\underline{\alpha}, \underline{\beta}}$ functions can be calculated similarly. These functions are $F_{((0), \emptyset),((1), \emptyset)}(x, y)=\left[s_{0}^{h} x, s_{1}^{h} y\right]\left[s_{1}^{h} y, s_{1}^{h} x\right]$,
$F_{(\emptyset,(0)),(\emptyset,(1))}(x, y)=\left[s_{0}^{v}(x), s_{1}^{v}(y)\right]\left[s_{1}^{v}(y), s_{1}^{v}(x)\right]$,
$F_{((1), \emptyset),(\emptyset,(0))}(x, y)=\left[s_{1}^{h}(x), s_{0}^{v}(y)\right]$,
$F_{((0), \emptyset),(\emptyset,(0))}(x, y)=\left[s_{0}^{h}(x), s_{0}^{v}(y)\right]$,
$F_{((0),(1)),(\emptyset,(0))}(x, y)=\left[s_{0}^{v} s_{1}^{h}(x), s_{0}^{v}(y)\right]$,
$F_{((0),(0)),(\emptyset,(1))}(x, y)=\left[s_{1}^{v} s_{0}^{h}(x), s_{1}^{v}(y)\right]$.

[^0]: *Correspondence: ozgun.gurmen@dpu.edu.tr
 2010 AMS Mathematics Subject Classification: 13D25, 18G30, 18G55.

