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Abstract: We explore the Peiffer pairings within the Moore complex of multisimplicial groups, and as an application,
we give a detailed construction of a crossed n- cube from an n-simplicial group in terms of these pairings. We also give
explicit calculations of Peiffer pairings in the Moore bicomplex of a bisimplicial group to see the role of these pairings in

the relationship between bisimplicial groups and crossed squares.
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1. Introduction

As algebraic models for homotopy 2-types, the notion of crossed module was introduced by Whitehead in [21].
Crossed squares as introduced by Guin-Walery and Loday [12], model connected 3-types. Crossed n-cubes (cf.
[11]) model connected (n + 1)-types, and they will be most interest to us in this paper. The observation that
simplicial groups whose Moore complex is of length 1 are equivalent to Whitehead’s crossed modules is well
known. Conduché in [9] also proved that a 1-truncated bisimplicial group gives a crossed square.

The original motivation of Peiffer elements comes from the observation of Brown and Loday [5], about
the normalisation of simplical groups. Let G = {G,} be a simplicial group and let N = {N,} be its
Moore complex. Brown and Loday observed that if the group of 2-simplices G5 is generated by degenerate
elements, then 02(N3) = [ker dg, ker dq]. In this construction, Ny acts on N; via congugation using so, namely
Ty = soarysor* for x € Ny and y € Ni. One gets easily that 9; : N — Ny is a precrossed module. In such

@y ry=lz~1 is called the Peiffer commutator of z, y or more briefly a Peiffer element.

a context the element
An easy argument shows that the subgroup [Kerdg, Kerd;] of Ny is generated by elements of this form and
it is thus entirely the Peiffer subgroup of N;. If the length of Moore complex of the simplicial group G is
2, then 0y(No) = [kerdy, kerd;] = {1} and then %@yxy~'z~! =1 for all x,y € Ny, and this is equivalent
to 01 : N1 = Ny being a crossed module. In [18], Mutlu and Porter developed a variant of the Carrasco and
Cegarra [6] pairing operators, that they called Peiffer pairings by denoting F, 3 and showed that these pairings
give product of operators.

Mutlu and Porter [16, 17], using the ideas based on the works of Conduché [8], and Carrasco and Cegarra,

[6], generalized Peiffer elements to higher dimensions by giving systematic maps of generating them and have
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investigated the images of the functions F, g in the Moore complex of a simplicial group. For further accounts
of these functions in simplicial Lie algebras and simplicial commutative algebras see [1] and [3, 4], respectively.

The main aim of this paper is to define the functions F, g introduced by Mutlu and Porter in [16] for
the Moore n-complex of an n-simplicial group, and as an application of these maps, to give the relationship
between crossed n-cubes and n-simplicial groups. Porter in [19] has proven the relationship between n-types
of simplicial groups and crossed n-cubes. Our result is closely related to the results of Porter. We prove in
Theorem 3.3 that a 1-truncated n-simplicial group gives a crossed n-cube. In this relationship, it has been seen
that the h-maps of a crossed n-cube are obtained by the images of the functions F, g.

Subsequently, another interest of this paper is to give detailed calculations of the functions Fi, g in
dimension 2, that is, in the Moore bicomplex of a bisimplicial group. Particularly, for dimension 2, in
Proposition 4.4 of this work, we obtain the Conduché’s result given in Proposition 3.2 of [9] between crossed
squares and bisimplicial groups in terms of F;, g functions. That is, we obtain that the h-map of a crossed square
can be given by an image of the functions Fi, g in the Moore complex of a bisimplicial group. Furthermore,
Carrasco and Cegarra gave the relation between simplicial groups and crossed complexes as a non-Abelian
version of Dold-Kan theorem. Using the functions F, g in the Moore bicomplex of a bisimplicial group, in
Theorem 4.15, we obtain a double crossed complex from a Moore bicomplex of a bisimplical group as a 2-

dimensional version of Carrasco and Cegarra’s result.

2. Simplicial groups

We refer the reader to Loday’s and May’s books (cf. [14, 15]), and Artin’s and Mazur’s [2] article and Duskin
[10] for the basic properties of simplicial groups, bisimplicial groups, etc.

Let A be the category of finite ordinals [n] = {0 <1 < --- < n}. A simplicial group is a functor from
the opposite category A°P to the category of groups Grp. That is, a simplicial group G consists of a family
of groups G,, together with homomorphisms d} : G,, = G,—1, 0 < i < n, (n # 0) and s}’ Gy — Gy,
0 < j < n, called face and degeneracy maps, satisfying the usual simplicial identities given in [15]. We will
denote the category of simplicial groups by SimpGrp.

A chain complex of groups is a sequence of any length of groups and homomorphisms of groups;

in which each composite 9,,_1 o 9, is trivial. The chain complex is normal if each image 9,(C,) is a normal
subgroup of Cp_1.
Given a simplicial group G, the Moore complex (NG ,9) of G is defined by

NG),, =kerd} Nkerd? N---Nkerd”
0 1

n—1

with boundaries 9, : NG,, =+ NG, _1 induced from d}} by restriction. If G is a simplicial group then its Moore
complex NG is a normal chain complex of groups.

We say that the Moore complex NG of a simplicial group G is of length k ift NG,, = {1} forall n > k+1.
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2.1. Poset of surjective maps
In this section, we give the definition of the ordered set S(n) from Mutlu and Porter [16, 18]. In the following
we give from [16] hypercrossed complex pairings which are adapted by Carrasco and Cegarra’s study (cf. [6]).

For the ordered set [n] = {0 <1 <...<n}, let o : [n+1] — [n] be the increasing surjective map given

ney ) if j <4
i<]>{j—1 ifj>i

by

«

Let S(n,n — 1) be the set of all monotone increasing surjective maps form [n] to [n — I]. This can be
generated from the various «f by composition. The composition of these generating maps satisfies the rule
ajoy = a;_1a; with j < 4. This implies that every element o € S(n,n —[) has a unique expression as
= @, ... q; with 0 < i < ip < ... < i < n, where the indices i, are the elements of [n] at which
{i1,...,i41} = {i : a(i) = a(i +1)}. Thus, Mutlu and Porter (cf. [16]) have identified S(n,n — ) with the
set {(i,...,71) : 0 <3 < ip2 < ... < i <n—1}. In particular the single element of S(n,n), defined by the
identity map on [n], corresponds to the empty 0-tuple ( ) denoted by {),,. Similarly the only element of S(n,0)
is (n—1,n—2,...,0). For all n >0, let

It has been defined in [16] that o = (if,...,41) > B = (Jm,...,J1) in S(n) if ¢4 = j1,...ix = jr but
Th+1 <jk+1,(k‘ > O) or if iy =1y %m = Jm and [ > m.

This makes S(n) an ordered set. For instance, the orders of S(2) and S(3) and S(4) are respectively:

52) = {b2<(@1)<(0) <(1,0)},
SB) = {03<(2) < (1)< (2,1) < (0)<(2,0) < (1,0) < (2,1,0)},
SM4) = {ls<B)<(2)<(3,2)< (1)< (3,1)<(2,1) < (3,2,1) < (0)
< (3,0) < (2,0) < (3,2,0) < (1,0) < (3,1,0) < (2,1,0) < (3,2,1,0)}.

If «, 8 € S(n), Mutlu and Porter have defined aN B to be the set of indices which belong to both « and 3. If
a = (i,...,i1), then, it is called that « has length [ and written #a = 1.

2.2. Peiffer pairings in simplicial groups

From [16], we give the definition of the set P(n) consisting of pairs of elements («, 3) from S(n) with anNg =0
and 8 < a , with respect to lexicographic ordering in S(n) where o = (ép,...,%1),8 = (js,...,J1) € S(n). The
pairings

{Faﬁ : NGn,#a X NGn,#ﬁ — NG, : (a,ﬁ) S P(n),n > 0}

are given as composites by the diagram

Fq
NGn_#a X NGn_#/g 4/; NGn

(sa785)l TP

GnXGn[iﬁ'Gn

i
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where sq = 85, ...8; : NGp_pa — Gn, 83 =585, ...5;, : NGp_upg — Gp, p: G, = NG, is defined by
composite projections p(z) = p,_1...po(z), where p;(z) = zs;d;j(z)~* with j = 0,1,...,n — 1. The map
[—,—]: Gn X Gy, = G, is given by the commutator map. Thus,

Foz,ﬁ(xomyﬁ) = p[sa(xa)7 Sﬁ(ifg)]

Definition 2.1 (/16]) Let N,, or more exactly N be the normal subgroup of G, generated by elements of the
form Fo g(xa,ys) where o € NGp_po and yg € NGp_pp.

This normal subgroup N depends functorially on G, but it is usually abbreviated N to N,,, when no change
of group is involved. Mutlu and Porter in [16] illustrate this normal subgroup for n = 2,3,4. As a corollary

they obtained the following equality
On(NG, N D,) = d,(NS N D,)

where D,, is subgroup generated by the degenerate elements in dimension n.
Proposition 2.2 ([16]) Let G be a simplicial group. Then for n > 2 and I,J C [n— 1] with TUJ = [n — 1],

[(kerd; , (] kerd,] € 9,(NG, N Dy).

i€l jeJ

Castiglioni and Ladra [7] gave a general proof over operads for these inclusions given by Mutlu and Porter in
[16].

3. Multisimplicial groups

An n-simplicial group Ge,e,...e, is a functor from the product category

AP x A% x - x AP = (AP
to the category of groups Grp, with the face and degeneracy maps denoted by respectively

A2 Ghyykn = Ghoby =1,k (000 <Ky, 1<G <)

G

and

j . . .
511 Ghypbyeekn = Gyt 1k (035 <k, 1<j<n,),

where each j indicates the directions of n-simplicial group. The Moore n-complex (cf. [9]) of an n-simplicial

group can be given by

(k1—1,ka—1,....kp,—1)
NGy bgokn = N Kerd;, NKerd? N---NKerd]"
(i1,i2,001in) =(0,0,...,0)

with the boundary homomorphism

3 NGry,.kyrkn — NGryky =1,k

i

induced by dgj. We denote the category of n-simplicial groups by SimpGrp”.
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3.1. Peiffer pairings in n-simplicial groups
In this section, we define the functions F, g given in [16] for multisimplicial groups.

For n,q € N with ¢ < n and for o € S(n,q), the target of « is called b(a) : ¢ = b(c). Recall that the
set S(n) is partially ordered by the following relation « < g if, for i € [n], one has « (i) > f (i) where [b(«)]
and [b(B)] are considered as subsets of N.

Given n #0,n € Nand n = (ky, kg, ..., k,) € NXNXx...XxN=N" let S(n) =5 (k1) xS (k2)X...xS (k)
with the product (partial) order.

Let a, f € S(n) and a = (a1, a2,...,00); 8 = (B1,P2,...,0n) where o € S (k;) and §; € S(k;), 1 <
1,7 < n.

The n-dimensional case of the functions F, g can be given as follows. The pairings that we will need
{Faﬁ : NGn,#a X Nan#g — NG, 3 a,B S S(Il)}

are given as composites by the diagram

Fa,ﬁ
NGy o ky—#az,..kn—ttan X NGy 81 ko —#B2,....kn—#Bn NGy ko, b
(SO‘ISQZ"‘S‘XH 7851852'“8571) p
Gy koo X Gy koo ko — Gy ko, kon
where Sq @ SaySa---Say,, for 1 < i< n; Sq, ¢ Sip. -+ 8, for a; = (ir,...,41) € S(k;) and similarly sg,, and p is
defined by the composite projection
P = (Pry—1---P0) (Phy—1---P0) - Pk, —1---P0)

where p; (z) = 27 's;d; (z) in each simplicial directions, for any j, and [—, —] is given by the commutator map.

3.2. Crossed n-cubes and n-simplicial groups

Crossed n-cubes were defined by Ellis and Steiner [11] for homotopy connected (n 4 1)-types. The following
definition is equivalent to that given in [11]. In this section by use of the functions F, g for n-simplicial groups,

we will construct a crossed n-cube structure from as n-simplicial groups.

Definition 3.1 We denote by (n) the set {1,2,..,n}. A crossed n-cube, M, is a family of groups,
{M4:AC(n)}, together with homomorphisms, ju; : Ma — Ma\(iy, for i € (n), A C (n), and functions,
h: My x Mg = Mayg, for all A,B C (n), such that if *b denotes h(a,b)b for a € My and b € Mp with
A C B, then for a, o’ € M4, b, V/ € Mp,c € Mc and i,j € (n), the following axioms hold:

1. pia=aifig¢ A
2. pipga = pjpia

3. pih(a,b) = h(psa, pib)
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4. n(a,b) = h(uia,b) = h(a, wb) if i € AN B

5. h(a,a’) = [a,d]

6. h(a,b) = h(b,a)~!

7. h(a,b)=1ifa=1orb=1

8. h(ad’,b) =* h(a’,b)h(a,b)

9. h(a,bt’) = h(a,b)’h(a,b’)
10. °h(h(a=t,b),c)h(h(c7 L, a),b)Ph(h(b~ 1, ¢),a) =1
11. “h(b,¢) = h(%b%¢) if AC BNC.

A morphism of crossed n-cubes
£ {Ma} — {M}}

is a family of homomorphisms, {fa : Ma — M/ | A C (n)}, which commute with the maps, ug,, and the h

maps. We denote the category of crossed n-cubes by Crs™.

Example 3.2 (a) For n =1, a crossed 1-cube is the same as a crossed module My — My .

(b) For n =2, one has a crossed square

My 2y 22 M,

My —— My,
where each p; is a crossed module. The h-maps give actions and a pairing
h: My x My — My 9y
(¢) For n=3, one has a crossed 3-cube

M3

M3y My

Mi1,2,3 2 M 23 #

é“l

v M3
M1 M{g} EESERREERERE o > M@

M2 7
M2

Mi2,3) e M2y
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where each p; is a crossed module, and the h-maps give actions and the following pairings

>SS

My X My — M{1,2}
s Mo x M3 — M{ng}
s My X M{273} — M{
: M{2’3} X M{LQ} —
: M{2’3} X M{1’3} —

1,2,3} )
Mg 23
Mi1,2,3)

>SS S

We can give the main result of this section.

Theorem 3.3 Let Go,e,...e, be an n-simplicial group with Moore n-compler NG, ey. .0, , Such that NG, ey. .0,

My x M3 — M{173}
: M{LQ} X M3 — M{1,273}
: M{Lg} X My — M{17273}
i M9y X My 3y — My 23y

{1} for any e; > 2, (1 <j < n). Then this Moore n-complex has a crossed n-cube structure.

Proof First, we define M, for any subset A C (n) ={1,2,..

My = NG,

.,n} by

where ¢ = (¢;]1 <i <n) with ¢, =1 if i € A and 0 otherwise.

The map

is given by the face operator di* : NG¢(.c,—1) — NGe(.c,—0), Where z; indicates the simplicial directions. For

the subsets B C A C< n >, the structure morphism p : M4 — Mp is given by the simplicial structure, namely

the operator

[T di.

i€A\B

pi s Ma — Ma_qy

For A={i,i+1,...5} and B={l,l+1,...m} where 1 <4i,j,l,m <n, we have

My = NG,

where e = (e, : 1 <k <n) and for i <k < j, ¢, =1 and 0 otherwise and

Mg = NG,

where e = (e, : 1 <k <n) and for I <k <m, ¢ =1 and 0 otherwise.

Let

() W (o W [ W [

Py

=(ex:1<k<
=(ex:1<k<
=(ep:1<k<
=(e:1<k<

n)), for i <k <m,e, =1, otherwise 0, if
n)), for i <k < j e, =1, otherwise 0, if
n)), for l <k <m, e, =1, otherwise 0, if
n)), for I <k <j e, =1, otherwise 0, if

1<, j<m
i<l j=zm
1210, 7<m

121, 5 >m.

The h maps h: Ma X Mg — Mayp are obtained from the commutative diagram
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by composing of the maps p, [—, —], (54, $3), for Ma, Mp as follows:

Fa,ﬁ(gjvy) = p[*v 7}(5047 SB)(‘I’ y)

Plsa(),s5(y)]

(5370 s (2 st 3 )]

where z; and x; indicate the simplicial directions and

a = (0,0,...,0,(0),(0),...,(0), 0,0,....0)
—_——— ——— — ) ——
(i—1)—times (j—i)—times (n—j)—times

g = (0,0,...,0,(0),(0),...,(0), 0,0,...,0).

N—_——
(I-1)—times  (m—I)—times (n—l)—times

For any subsets A, B C<n >={1,2,...,n} and M4 = N, where ¢ = (&;]1 <i<n) with g, =11if i € A and
i = 0 otherwise, and Mp = N, where ¢ = (¢;|1 < j <n) with ¢; =1 if j € A and ¢; = 0 otherwise.

The structure morphism h : M4 X Mp — Mayp is induced by the commutator on G 4yp via the

morphisms
SB\(ANB) ‘= H st Ga— Gaup
i€ B\(ANB)
SA\(ANB) = H S%:GB%GAUB.
jEA\(ANB)

Thus for x € M4, y € Mp the h-map is induced by the commutator

[sB\(AnB) (%), 54\ (anB)(¥)] € Gaus-

Using the projection map p: Gx — NGx given above, we obtain the h-map as follows: for x € My, y € Mp
h(z,y) = [pg* .. 08 (887 ... s5E) (@), po™ - .0y’ (sg” - - 557 )(y)] € Maup

where for any j,py’ (a) = asy’dy’ (a) "t forall 1 <i<k<n;i,....,.k€ A\(ANB), 1<j<m<mn;j,....,me
B\(AN B) and where x;,...2t,x; ...z, indicate the simplicial directions.

The action of a € M4 and b € Mg for A C B C<n >, can be given by

b= (sg"...55")(a)b(sy" ... sg’“)(a)*1

where i,...,k € A\B.

From the definition of p: M4 — Mp given by the operator [] d}, the axioms (1),(2) are immediate.
iCA\B

We show for this h-map the following equalities.

If i ¢ A, a € Mg then p, = dj'sy’. We obtain p;(a) = di'sy’(a) = id(a) = a from the simplicial
identities.

By the commutativity of the face and degeneracy maps in the simplicial directions, we obtain p;; = ;.
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For M4 = NG, where ¢ := (g;]1 <i<n), g, =1if i € A and 0 otherwise, we obtain for the simplicial

directions z;, and for o = (0,0,...,(0);,0,...

,0) and 8= (0,0,...,(1):,0,...,0)

Fop(e,y) = [sg'(2), s7' (W)][s7" (9), 57" ()] € NG,

where g := (g4le; =2, for i #j, 5 = 1if j € A and 0 otherwise) and since NGa,e,...e, = {1} for j > 2, we

obtain

and then

dy' (Fop(z,y)) = [s5'd7* (2), lly, 2] = 1

h(pi(z),y) = [s5'di (2),y] = [z,y] = h(z,y).

..,0) and for z,2’ € M4, we have h(z,a’): Mg x My — Ma,

For x € M4, y € Mp, we have

h(z,y) = [s57s™" 5o’ (2), 5550 55 (y)]
= [sg'so " sgm () sotsg e sg” (2)] 7

h(y, )t

Similarly , if z =1 or y = 1, we obtain

h(zy) = [s5'so™" g’ ()55 56" o sgm ()] = 1.

Furthermore we have for z, 2’ € M4, vy, y' € Mp

h(za',y)

h(z,yy'")

368

5515610 sl () 3ty s ()
(55186107 s )iy s (@) s s ()
S (@) s (@) S s (s s s (@)

(55 50" - sGm (™ )sgisg sy (a7 )sgisg s (@) sgtsg s (y))
s s e sg (2 )sgtsg s (y )

“h(z', y)h(z,y)

[so 50 "+ 5o’ (2), 55" 50" -+ 557 (yy')]

[sots0 "+ s0” (@), 55" s5" " - 557 (y)sg' s s (Y]

sg'sg syl ()8 s g (y) (s s syt (w T )sglsg s (y)
so'so e sg T (Y)sg s sy () s e sg (Y )sg s T sy (27
s s s (y') s s T sg (y) T

h(z,y)?h(z,y').
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The remaining axioms can be shown similarly. O

We can illustrate this result for n = 3. A crossed 3-cube can be obtained from a 3-simplicial group as
follows:
For < n >={1,2,3} we have the following diagrams

M3 de
My 3y My NGi01 NGioo
a3
M1 ,2,3 - My 9y I NGy - NGi10 dst
1 d7t
VM \i ' dgl”ii
H1 M{g} - M- £ My i’ § NGogp P [ > NGooo
ar2 7
pz 7 / v
M2 o dy?
N NGOll o~ NG010
Mia,3) s Myzy di®

we show the simplicial directions by

T2

a

e ——> 13

|

T
The sets M4 can be given by
My = NGooo = Gooo , Mgy = NGigo = Kerdg!
M{Q} = NGOlO = Kerdﬁz s M{S} = NGOOI = Kerdg?’

My 2y = NGiio = Kerdy' N Kerdy® , Mya 3y = NGoin = Kerdy* N Kerdg®
My 3y = NGior = Kerdy' N Kerdg® , My 23y = NG = Kerdy' N Kerdg® N Kerdy®.

The maps p; : Ma — M4_g;, are given in the above diagram.

The h-maps can be defined as follows:

h: NG100 X NG010 — NG110 h: NG100 X NG001 — NGlOl
(@,y) — [s°(@),s5" ()] (z,y) +— [s0°(2), 50" ()]

9

h: NGOIO X NGOOI — NG011 h : NGH() X NGOOl — NG111
(@,y) > [sp° (@), s5° ()]

1 T2

(z,y) = [s5°(z), 80" 557 (y)]

h: NG100 X NG011 — NG111 h: NG101 X NGOlO — NG111
(@,y) > [sg°s0° (2), 55" (w)] 7 (z,y) > [sg°(x), 55" s6° (W)] 7
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h: NG011 X NG101 — NG111 h: NG110 X NG101 — NG111
(z,y) > [sp' (@), 50°(y)] (,y) > [s5°(@), 55" (y)]

h: NGLLO X NG071,1 — NG171,1
(a,0) +— [s5°(a),sg" (b)]-

We can show the crossed 3-cubes axioms as follows:
1. Let A={2,3}. Then if we have i =1¢ A, u; : Mg — My is given by

T xT
pi = p1 =dy'sgt.

From the simplicial identities, we have di*sj' = id. Therefore, for i =1 ¢ A = {2,3} we obtain p;(a) = a.

3. For the h-map given by

h: NGLLO X NG07171 — NGl,l,l
(a,0) — [sp"(a), sg" (b)]

we can write,

:u2h(a7 b) = dfz [333 (a’)a Sgl (b)]
= [s52di?(a), sg*dy?(b)] (. commutativity of simplicial directions)
= h’(:uQav 2 b)
Similarly
psh(a,b) = di*[sy*(a), sp" (b)]

= [sg*di*(a), sgtdy?(D)] (. commutativity of simplicial directions)

= h(usa, psb).

By using similar calculations, this result for the other p; maps can be proven.

4. For example, for x,y € NG119, we obtain
Fl0,00)().0,0) (2, 9) = [s5" (), 57" (1)][s7" (1), 57" ()] € NG110
Since NGa19 = {1}, we obtain
dy' (Fop(z,y)) = [so"di* (2),ylly, 2] = 1 € NGio.

Thus we obtain
h(ul<x)ay) = [Sgldfl ($),y] = [x,y] € NGllO-

and for =,y € NGi11,
Flo,0,00) 0.0, (@, y) = [s5° (@), s7* (@)][s7° (), 57° (2)] € NG112
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Since NG112 = {1}, we obtain
dy?* (Fap(2,y)) = [s5°d7* (), ylly, ] =1 € NG111.

Thus we obtain
h(pa (), y) = [s5°dy* (x),y] = [x,y] = h(z,y).

5. Let o= (0,0,0), 8= (0,0,0) and for a,a’ € M4, we have h: Mg X Ma — Ma,

h(a,a’) = |[a,d].
6. For the map h: NG1,1,0 x NGo1,1 = NG1,1,1, we have

h(a,b) = [s5°(a), 55" (b)] = [sg* (b), 55° (@)] ™ = h(b,a)~".
7. For example for h: NG1,10 X NGo,1,1 = NGi,1,1 if a =1, we obtain
A(1,b) = [s57 (1), 53 (0)] = [1, 53 ()] = 1.
8. For the map h: NG1,1,0 x NGo,1,1 = NG1,1,1, we obtain
had,b) = [sg(ad’), 53 (b)

= sp°(a)sg®(a)sg" (b)sg® (') ™Hsg® (a) gt ()

= sp°(a)sg®(a)sg" (b)sg® (')~ (sg" (B) s (b))sg* (@) s (B) ™

= (@) (@), 53 (O)]s5 (a) Vst (), 551 (0)]
= “h(d’,b)h(a,b).
9. For the map h: NG1,1,0 x NGo,1,1 = NG1,1,1, we obtain
h(a,bb') = [sg°(a), s5* (b0')]
so°(@)sg" (b)sg* (b)sg° ()™ s () s (b) ™
= s5°(a)sg* (b)sg® (a) ™' s (b) ™' (b)sg° (a) s (V)
so°(a)"'sg" (b) T sgt (0)
55" (0)sg° (a)sg" (b)sg° (a) ™' sg* () ~'sg (B) ™

)
)" (b)h(a,b)sg* (0) ™"
)

10. We must show that
“h(h(a=t,b),c)h(h(cL,a),b)’h(R(b 1, ¢),a) = 1.
We calculate that for a € NG1,,0, b € NGo,1,0, c € NGo 1,1,
“h(h(a™",b)c) = sp°sg”(a)h(h(a™,b), )sg*sg” (a)
= s5°s0°(a)[s5°[s57 (@)™, 55" (B)]sg" ()]s s (@) ™
(
(

= 550" (b)sg°s0” (a)sg” s (b) ™' (c)sg° 55" ()

3 X2

56”507 (@) 71555 ()55 557 (@) s ()5 557 (a) !
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and
“h(h(c™,a),b) = s5°s5>(a)sg’ ()™ s5°s5” (a) " sp°sp" (b)sg* sg” (a)
s6'(€) 5% (a) " sg () sg°sg ! (B) gt ()
and,
"h(h(b™" c),a) = s5M(c)sg’ s (b)sg (€)' sp° (a)sg* (€)sg s (0) ™
S ) s )58 s3 (@) st ()

thus we obtain
“h(h(a=t,b),c)°h(h(ct, a),b)’h(R(b, ¢),a) = 1.

11. For A={1}, B={1,2}, C ={2,3} and A C BNC then,

“h(b,c)

53755 ()h(b, )55 55 (a)~!

= s5°s0' (a)lsg° (0), 55" (0))sg° 55" (a) ™!

(22 (@)bst (a) 1), 58 (@) (582 (a)est? (a) 1) (- simplicial directions)
= [s6°(“b), 55" (“0)]

= h(*b,"c).

4. Applications in low dimensions of F|, g functions

In the following subsections, we give applications of the functions F, g in dimensions 1 and 2. In particular,
in dimension 1, we obtain Mutlu and Porter’s result about the relation between crossed modules and simplicial
groups with Moore complex of length 1 and in dimension 2, we obtain Conduché’s result about the relation

between crossed squares and bisimplicial groups with Moore bicomplex of length 1.

4.1. 1-dimensional case
In Theorem 3.3, if we take n = 1, then we obtain a simplicial group, G, and we obtain the following well-known
result (cf. [8, 9, 16]).

Proposition 4.1 ([16]) Let Go be a simplicial group and NG, its Moore complex. Suppose N(G), = {1}
for n = 2. Then the morphism 01 : N(G)1 — N(G)o is a crossed module where N(G)o acts on N(G)1 by

conjugacy via the degeneracy map Sg .

In the proof of this proposition, the role of F, s functions in the simplicial group whose Moore complex of
length 1 can be summarised as follows. We know from [16] that for z,y € NG = kerdy, Foy1)(z,y) =
[sox, $1y][s1Yy, s12] € NG2N Dy = NoN Dy. Now we explain how we are using the hypothesis that NG vanishes
if the simplicial degree is > 1. Since the Moore complex of the simplicial group G is of length 1, we have
NGy N Dy = {1} and then we obtain 92(NGo N D) = {1}, thus

daFoyy(,y) = da([soz, 519][s19, s12])

= [80d1$7 y] [y7 .’E}
=1
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and

0@y = sodizysodiz!

= xyx71

for z,y € NG;.

4.2. 2-dimensional case

A 2-simplicial group or a bisimplicial group Ge . is a functor from the product category A x A to the
category of groups Grp, with the face and degeneracy maps given by

d? 1 Gpq = Gp-1,4

st Gpg = Gpyrg 0<i<p
dy: GP#I — prq_l

sY: prq — Gp7q+1 0 §j§ q

such that the maps d?,s? commute with di,s? and that dt, st (resp. dj,s?) satisfy the usual simplicial
identities.

We think of dj, s} as the vertical operators and dff, sf as the horizontal operators. If G, . is a bisimplicial
group, it is convenient to think of an element of G, , as a product of a p-simplex and a g-simplex.

The Moore bicomplex of a bisimplicial group G, . is defined by

(n—1,m—1)
ﬂ Kerd! N Kerd;
(4,5)=(0,0)

NGm

)

with the boundary homomorphisms
o NG — NGpim
and
8]1) : NGmm — NGn,m—l
induced by the face maps d and dj.
This Moore bicomplex is illustrated by the following diagram.

NGay ——> NG1, T’ NGy

oy 1 oy

NGy NG TNGOJ

oy 1 oy

NGayp NG9 —— NGy,
T oh 1
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Now we can give the functions Fy g in the Moore (bi)complex of a bisimplicial group.
Given n = (ki,k2) € NxN, let S (n) = S (k1) xS (ko) with the product (partial) order. Let o, 8 € S (n)
and a = (a1, a2); B = (B1,B2) where oy, B; € S (ki) for 1 <14 < 2. The pairings that we will need

{Fg,é i NGy o X NGpys — NGy ; 0, € S(n),a # g}

are given by composing of the maps in the following diagram

Fg,é
Nle*#al,sz#Oéz X Nle*#ﬁl-,kQ*#ﬁ‘z - NleJ%

(sa,58) P

Ghy by X Ghy ks m Gy ko
.ooh g h _ ch h — (5 ; CNRC _ oh v
where s @ 85,5q,, and where s5 = s} ...s, for a1 = (ir,...,i1) € S(k1) and similarly sz = sj sj,,
sh, = s .85 for B1 = (jm,...,j1) € S(kz2) and where

P Ghyky = NGy
is defined by the composite projection
h h )
p = (Pk,~1--06) (Py—1---P0)

where p; (z) = 27 's;d; (z) in both horizontal and vertical directions and g is given by the commutator map.
For a = (a1, a2), B = (B1, B2) € S(k1) x S(kz2), we obtain

Fa,ﬁ(xa y)

Il
=

- 7](‘9&’ Sﬁ)(x’ y)

= p[_7 _] (SZI 522 (m)v 521 SféQ (y))

h h
= Plsa,5a,(2), 55,55, (9)]

where x € Nle_#al,kQ_#QQ and y € Nle—#ﬁhk’z—#ﬁQ'

4.3. Calculations of the functions F, s in low dimensions for bisimplical groups
For 0 < k1, ko < 2, we consider the sets S(k1) x S(kz). We shall calculate the images of the functions F%é for
all o, B € S(k1) x S(kz).

First, consider (n,m) = (0,1) or (n,m) = (1,0). We get the F, 3 functions whose codomain is NGo
or NG1, respectively. Let (n,m) = (0,1). We get

S(n,m) = 5(0) x S(1) = {(®,0), (0, (0))}-
For o = (0,0) and = (0, (0)), the function

F(@7@)7(@7(0)) : NGOJ X NGO,O — NGOJ
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can be given as follows:

= [z, sqylsodolsoy, z]
= [z, sgylls0y, sodo ()]
= [z, sgyllsoy, 1] ((. @ € kerdy = NGo,1)
= [z, sgy]
for t € NGy and y € NGop.
Suppose now that (n,m) = (1,0). We have S(1) x S(0) = {(8,0),((0),0)}. For a = (0,0) and

B8 =1((0),0), the function
F0,.0),(0),0) : NG1,0 x NGog — NG

is defined by
Fo.0).(0).0) () = pl—, =1(s¢ s (x), 5556 (1))
= p[id(), 55 (y)]
= [&, s0y]s0dg [s¢y, 2]
= [z, 559][s6y, s0dg («)]
= [2,s09][s6y, 1] (( @ € kerdj = NG )
= [z, 55y]
for all z € NGLO and y € NGy

We give the calculations of other functions in Appendix.

Definition 4.2 Let G, be a bisimplicial group and n,m > 1, and D, ,, the subgroup in Gy ., generated by

degenerate elements. Let Ngm be the normal subgroup of Gy, ., generated by elements of the form
Fop(@,y) with a=(a1,az2),8 = (51,582) € S(n) x S(m)
where * € NGr— oy m—#as, 0nd Y € NGp_u8, m—#8,-

Considering the equalities given in Definition 2.1 of Section 2, for bisimplicial groups, we can write the

following equalities

OM(NGrm N D) = OF (NG, 0 Diym),

and
a:}n(NGn,m N Dn,m) = 8:}7L(NG N Dn,m)

n,m

in each direction.

375



GURMEN ALANSAL and ULUALAN/Turk J Math

As we stated in Proposition 2.2. that Mutlu and Porter obtained the following inclusion

[(kerd; , (] kerd,] € 9,(NG, N Dy).

iel jed

for n >2 and I,J C [n—1] with TUJ = [n — 1], in the Moore complex of a simplicial group G.

The following result is corresponding to 2-dimensional version of this result given in [16].

Theorem 4.3 Let Go o be a bisimplicial group. Then forn>1,m > 2 and I,J C [m—1] with IUJ = [m—1],
there is the inclusion
[K[ NKyg,Kjy ﬂKH] - 8;,’1 (NGn’m ﬁDnm)

s

where
n—1
Kp = () kerd}
i=0
and

Kr=(\kerd! and K;=()kerds.
iel jeJ

Similarly, for n > 2,m > 1 and I',J C[n—1] with I'UJ" = [n — 1], there is the inclusion

[Kp NKy, Ky N Ky] C0" (NGO Dy

where
m—1
Ky = () kerd!
i=0
and

Kp = (\kerd! and K, = ﬂ ker d”.

iel’ jeJ’

Proof We know that from the results of [16], there are already the following inclusions in both horizontal and

vertical directions: if m is constant in the horizontal direction, for n > 2, we have
[KI/v KJ’] g aﬁ (NGn,m N Dn,m)
and if n is constant in the vertical direction, then for m > 2, we have

[KI7K]] - 8}; (NGn’mﬁDnm).

)

The result can be seen easily by using these inclusions. O

Mutlu and Porter for a simplicial group G investigated the images of the functions F, g for n = 2,3,4.

Thus they obtained the following equalities for n =2 and n = 3:

02(NGo N Dg) = [ker dy, ker d;]
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and

035(NG3 N Ds) = [kerds, kerdy Nkerd;|[kerdy, ker dy N ker da][ker do, ker dy N ker d)
[ker dy N ker da, ker dg Nker d;][ker dy N ker dg, ker dy N ker d;
[ker dy N ker da, ker dg N ker da).

For bisimplical groups, we now investigate the images of these functions in the Moore bicomplex in low
dimensions. The images of these functions under the boundary homomorphisms 0" and 97, are as follows:

For NG, 2, take z,y € NG1,1 = ker d(’)‘ N kerdg, we obtain

95 (Fo,0),0,00)(w,y) = da([sq (z),s7(v)][s1y,s77])

= [sodiz, ylly, =],
where [s§dix,y][y, ] € [kerdf, ker d}] from [16]. Further we obtain
di ([sodie, ylly. a]) = 1,

hence [sydyz, y][y, ] € [ker dj Nker d?, ker d§ N ker d?].
Similarly for y € NG and x € NG 1, from NG x NGo2 to NG1» we obtain

03 (Flo,c1),(0).0) (@ y) = ds[si(x),sg(y)]
= [z, d250( )]

Since d[z,d3sk(y)] = 1 we have [z,dysh(y)] € ker d. Furthermore, [z,dysl(y)] € [ker dg, ker d¥].

By a similar way one can show that the images of other generating elements are in
[ker dy N ker dly, ker d N ker df].
We have the following equality
Dy (NG1 2N Dy o) = [kerdf Nker df, ker dY N ker dl].

For NGq, take x,y € NG1,1. We obtain

h
8a (F((0),0).((1,0))(,y) = [s5d1 (), y][y, 2]
where [stdl (z),y][y, z] € [ker d?, ker d?] and

dy([shd? (z), ylly, z]) = 1,

hence
[std(z),y][y, x] € kerdy N [ker dlt, ker d%].

We obtain the following equality

O (NGo1 N Dyy) = [kerdlt Nker dy, ker d? Nker dy].
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For (n,m)=(2,1) and (n,m) = (1,2), we can summarize these situations in the following diagram.

' T J TV
((0),0) | ((1),0) | {o} | {1} | {0}
I |7 H

©,(0) | @) | {0} | {1} | {0}

I
s

9]
sy

For NGa s take z,y € NGa 1 = ker d! Nker d} Nker dY, we obtain

95 (Fo.00p,0.0)(@,y) = ds ([sg(x), s1(y)][s7 (), s7(2)]])

= [sodiz,ylly, 7]
where [s§d}z, y][y, z] € [ker dy, ker d;] from [16]. Further we obtain
di ([sodiz, ylly, z]) = 1,

hence [sydVz, y][y, ] € [ker dy Nker d?, ker d¥ N ker d].
Similarly for £ € NG12 and y € NGz 1, from NGi 2 x NG21 to NG2 2 we obtain

I (F1y,0),0,0n (@) = dsst(z),sh(y)]

= [d3s)(2), dsst(y)].

For d}[z,dysl(y)] = 1 we have [z,dysk(y)] € ker df. Furthermore, [x,d3sf(y)] € [ker d3, ker d¥].

By a similar way, one can show that the images of other generating elements are in
[ker dy Nker d¥, ker d¥ N ker dl].
We have the following equality
Dy (NGaz N Das) = [kerdy Nkerdl, ker d? N ker df].

We can summarize this in the following diagram for (n,m) = (2,2).

a B 1 J7 Vv
((0),0) | ((1),0) | o} | {1} | {0,1}
o] B8 I J H
©,(0) | @, (1) | {0} | {1} | {01}

Using the calculation method given above, we obtained the following equalities in low dimensions for bisimplicial
groups.

(95 (NG(LQ n D072
0. (NGLQ n D172
85 (NGQ)Q n D272
(
(
(

) = [ker d§, ker dY],

)

)
NG2,0N Day)

)

)

[ker d§ N ker d2, ker d¥ N ker d],
[ker d§ N ker d N ker d}, ker dy N ker df N ker d?],
ker df, ker d7],

0y [
o8 (NGa1 N Do) = [ker di Nker dy, ker di Nkerdy] ,
o8 (NGa2 N Dy ) = [ker di Nker dy Nker dY, ker df N ker df N ker dY].
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4.4. Crossed squares and bisimplicial groups

In Theorem 3.3, we give the general relationship between crossed n-cubes and n-simplicial groups by using the
F, g functions in the Moore complex of an n-simplicial group. In this section, to see the role of these functions
in dimension 2, we give the following proposition as an application of these functions. This result was initially
proven by Conduché in [9] without using F, g functions. In this result, to see the role of these functions in the
structure, we reprove this result and we see that the h-map of the crossed square given by Conduché (cf. [9])
can be given by the function Fg (0)),((0),0) : NGo1 X NG19 — NG11 in the Moore bicomplex of a bisimplicial
group.

First, we recall the definition of a crossed square from [13].

A crossed square of groups is a commutative square of group morphisms

L—2s M
ST
N——P

with an action of P on every other group and a map h: M x N — L such that
1. The maps A and X are P-equivariant and v,u, po A and vo X are crossed modules,
2. Aoh(z,y) =2"Wz=1 Noh(z,y) = (*@y)y1,
3. h(A\(2),y) = 2"W 271 h(x, N (2)) = (M@ )71,
4. h(za',y) =) b, y)h(z,y), h(z,yy') = h(z,y)"Vh(z,y),
5. h(*z!y) =" h(z,y)
for x,2’ € M, y,y’ € N,z€ L and t € P.

Proposition 4.4 Let Geo be a bisimplicial group and NG e its Moore bicomplex. Suppose NG, r, = {1}
for any k1 > 2 or ko = 2. Then the diagram

h

2]
NG1,1 — NGO,l

| |o

NGL() 7) NGO’O
81
is a crossed square. NG acts on other groups via the degeneracies sf and sj.
The h-map is given by the map Fp (0),((0),0)(%,y), namely,
h: NGQJ X NGl,O — NGl,l
(@,y) = Wz,9) = Fo,0).(0).0)(%:9)

for x € NGo, y € NG1,o where (0,(0)),((0),0) € S(1) x S(1) and
Fo,00,(0).0) (2, y) =[5 (2), 55 (%)]-
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Proof It is straightforward from the direct calculations of Fi, g. O

4.5. Double crossed complexes and bisimplicial groups
Carrasco and Cegarra [6] have defined hypercrossed complexes and proved the non-Abelian version of the Dold—
Kan theorem. They gave a functor from the category of simplicial groups to that of crossed complexes. Arvasi,
using the image of the Fi, g function in the Moore complex of a simplicial group have reconstructed this functor
from simplicial groups to crossed complex. The following result can be found in [6].

Recall that a crossed complex is a sequence of groups

On On—1 02

Ch_y o Cs il

C: Cp Ch Co

(i) (C1,Cop,01) is a crossed module, i.e. if z,y € Cy, then %1%y = zyz~1;

(#) for ¢ > 1, C; is an Cp-module (Abelian) on which 9;C} operates trivially and each 9; is an operator
morphism; and

(ZZ’L) for i > 1, 8i+18i =0.

Morphisms of crossed complexes are defined in the obvious way.

Theorem 4.5 Let G be a simplicial group. Then defining

NG,

C,=
(NGn N Dn)dn+1(NGn+1 N D71,+1)

with 0, (Z) = dn(z) gives a crossed complex C(G) of groups.

In this section, we obtain a double crossed complex of groups from the Moore bicomplex of a bisimplicial
group via the Fy, g functions. By considering crossed complexes of group(oid)s internal to the category of
crossed complexes of group(oid)s, Tonks [20], introduced the notion of double crossed complexes of group(oid)s.
By the same way, the notion of a double crossed complex of groups has been given by considering it internal to

the category of crossed complexes of groups.

Definition 4.6 ([20])A double crossed complex of groups consists of
(1) a collection of groups L, ; for i,5 >0,

(ii) the actions

h v
(e} «
Loj X Lg,j — L, Liox Liy — Li

fori,7>0, k>1,

(iii) horizontal and vertical boundary maps

s 5Y
Lij ——Li—1,; Lji —Lji

fori>1, 5 >0.
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These data are such that
(i) for each j >0 the horizontal structure ((L; ;)i>o0,a", (01)i>1) defines a crossed complex of groups,

(i) for each i > 0 the vertical structure ((Li;)j>0,a",(67)j>1) defines a crossed complex of groups,

(iii) the horizontal structure maps commute with the vertical structure maps. That is,

(a) the function oM defines complex morphisms between the vertical crossed complex, and similarly §v
between the horizontal ones,

(b) the horizontal and vertical actions satisfy an interchange law. That is, if the expressions a®(a"(a,b), a"(c, d))

and o(a®(a,c),a’(b,d)) are both defined, then they are equal.

A double crossed complex of groups may be represented diagrammatically as follows:

— Lo Ly —— Lo,
s s

2 24

= Lo Lii——Loa
63 51

21 o7

Lyo Lig Loy.

sh ’ s ’ s ’

Now, we can give the relationship between the Moore bicomplex of a bisimplicial group and a double

crossed complex by using the Fi, g functions.
Lemma 4.7 The subgroup (NG m N Dym)dy 1 (NGry1,m N Dn+1,m)d}ﬁ+1(NGn,m+1 N Dym+1) is a normal
subgroup in NGy, p,.

Let G, be a bisimplicial group. Using the following lemmas, we will obtain a double crossed complex from

G, e. Define

NG m
(NGn,m N Dn,m)d’ly)l+1(NGn+1,m N Dn+1,m)d2+1(NGn,m+l N Dn,erl) .

Ln,m(Go,o) =

Lemma 4.8 Let z,y € NGy, for n > 2, then [z,y] = a~'d}, w, where
0= Fh s oy (@2 d29) = [85_odba, st dy][s_ 2y, st dia] and
w = F(%:tll_g),(q)m_l)(zv y) = [52—2117 S%,—ly] [SZ—L% S;)L—lx} [52% Sz ]
Similarly, x,y € NGy, for m > 2, then [z,y] = b_ldﬁlﬂv, where

b= F&_Zm),(m_w)(d%%d?ny) = [sh_adhx, st _1diyl[sh,_1diny, sh,_1dia] and

v= F(Tntlz,@),(mq’m) (x,y) = [sh_o, spy 1Yl [sm 19 51 2] 8T, 57y

Corollary 4.9 For n>2 and m > 2, Ly, (Gee) s abelian.
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Lemma 4.10 For n > 2, x € NGp_1,m and y € NGy,

[sp_12,y] € (NGpm N Dy )dpy 11 (NGrgt,m N Dyg1,m)-
Similarly, if for m > 2, v € NGy ;-1 and y € NGy, then

(5" 12,5] € (NGym O Dyyn)d" 1 (NGt O D1

The importance of this result is that the natural actions of NG;,, on NG, ,, are by conjugations via

degeneracies. In particular we choose the action

- n—I1 n—I
75 = s (@)ys" Y (@)

where the (n —[) superfix denotes an iterated application of the map. Thus if n > 2 then NG,_1 ., acts
trivially on NGy m [sh_q2,y] = 1.

Lemma 4.11 For each n,m the maps 0}, : Ly m(Gee) = Lpn—1,m(Ge,e) and ho Ly, m(Gee) = Ly m—1(Ge.e)

are crossed modules.

Lemma 4.12 For x € NGp—jt1,m, Y€ NGpm and 1 <k <,

Sz(k)sz(_ii—k_l)l,ysz(k)sz(ll k=1) .—1 = Z(kq)sz(_i;k)xysv(k 1) Z(zz k) =1
mod(NG i N Dy )dy 1 (NGrg1,m 0 D)
Proof Writing s5* for (Spik—175nik_2> - Sp) and sn( i ) for (S )13 50 k- Sh_;), We consider the
element [sy, vik) Z(Zl k)x,s};y] € Gy41,m the mapping
P Goyim = NGrgi,m C Grg1,m C with0< I <n
given by

piz) = zspdy=?

We also note that the particular case of F, g for a = (n,n —i;m), 8= (k,m) is

Fa,ﬁ(x,y) = F(nn ism),( km&g
PnPn—1- pO Sn Z(lz )JJ,SZZU] € NGn+1,m N Dn+1,m-

We will prove that dj ,(F(nn—im),km)(T,y)) is basically the difference between the two elements of this

lemma.
Indeed by putting

v _k v
F(n,n—i;m),(k,m) (.’t, y) = Z(k)(i)(xa y) = [Sn(k)sz(—zz )xv Sky}
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and for a« = (n,n —i;m) and B = (k,m) with any j, 0 <j <n+1, we obtain

1 if k>j
[sz(k)sfl(Z =Dy , Y] if k=y
a2y (,y) = [seF Ve Ry 0] i k=41
1 if 1<j—i—k+1
1 if j>i+1

and dy 1 2(6)(6) (T, Y) = Z(e—1),(i—1) (@, dyy 1Y)
This gives
PrPn—1---P0(2(k) (i) (T, Y)) = Pr--- Ptk (2(k) (1) (T, Y))

since the operators p; for [ > i+ 1 are trivial. We also note that
Pr-Ditk(206)(5) (T, Y)) = Pre-Prr1 (2 ) (2, ).

Now if w € Gpy1,,m, then
dpapn(w) = dyqwdhw™" (4.1)

dg+1pnpnfl(w) = dz+1pn71w (dzpnflw)il

and so on. It follows that

Ay 1 PnePea1 (200 @) (#,9) = Pr - Pr 21y (i1 (2, diy)) (dipn—1 - P (20 ) (2, 9)

The first of these two terms is in NG, N Dy, and hence we only check the second one. From (4.1), we get

A1 Pn—1-Drs1 (o) (@,9) = dipn—z.- g1 (w)(dY_ pr—z...prgr (w))
and this implies
d?pz+1---pk+1(z(k)(i)($7y))

and others of form
di_1P1 11 (20 (6) (2, 9))-

If j<k—-1a€eGynm
dipr(a) = d¥(a)(sp_1dj_1di(a)™") = pr—1d3(a),

so any term of the form d_ piy1...pr+1(2k) (i) (7, y)) can be written as
pi—1pr(di—1 2y ) (7, 9)))

and so is trivial if [ > 1. Hence the only term is d}py(z(x)@) (2, y)) and so
v(k) ’U(Z k)

dipzae(@y) = dilsn™ s e spyldisidy(spy. sit s, al
v(k) ’L)(’L k— 1) v(k) v(z k—1) 21 v(k 1) v(z k) 1 v(k 1) v(z k) 1
Sp—i Sp—i Sp—i LY Sp—i T

i.e. the difference of the two terms in the statement of the lemma. Putting

b*s (k) U(Z k—1)

v(k) o(i=k=1) 1 v(k 1) v(ifk)xyqsv(kq)sv(ifk)xﬂ

xys,, S

7l 7 n—
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It then follows that
A2y (Fpnn—ism), (esm) (2, 9)) = PreeDi (Z(e—1y i1y (T, dBy) )b~

Having pr...pk(2(k—1)(i—1) (@, dpy)) € NG N Dpm and w € NGpy1,m N Dyy1,m implies that

sz(k_l)sz(j;k)xysv(k 1) U(j ]f) E— Sv(k)S

v(i_f 1) v(k) ’U(’L krfl)x_l

TYSs,

m0d(NGhym N Dy )d2 1 (NGt O Dy 1.m)-

Lemma 4.13 Ifn>1, x € NGp_;m and y € NG, ,, then

s gy ayst gyt = 50D 2y a7l mod(NGym 0 Do )d2 1 (NG 1m0 Dy 1.m)-
Proof Take the element

v(i+1) v v(1+1) v (%) v (1)

t=s, ; 'TSpys,s sl ystsi Y aslystst T
.. o v(i+1) v . v(i+1) v
This is Fla:m),m,m)(T,Y) = Pn---Po[sa x, 8%y i.e. where sq =spsk_q---sk_,. It is readily checked that

0<i<n-—1,for df(t) =1 for i > 0 and d;, | (t) is the difference between the elements mentioned in the

statement of the lemma. O

Lemma 4.14 If n>2, x € NGy, and y € NG, ,, then

[5p_1- sz, y] =1 mod(NGpm N Dypm)dy o1 (NGr1,m 0 Dy ym)-

Proof Consider

u = [51% SZ' Sle n—1Y,Sp— 1y5 511}1']71
n .
[Tist iy st sya) V'
1=2

u is easily checked to be in NGpy1,m N Dypyim.

dppr(u) = [y,sh_q-stz]ls;_ 1dnya o1 sia]
[sn—2dny, sp_1 - sia] Hs[ iy, sh_y sy
i=
Writing
t = [ Sn— 1dny’ Z—l e 311}35]_1[52—26@% 5;)1—1 e Sqi)x]

n .

H[ dyy, sh_y - sjx] Y

i=3
it is readily checked that ¢t € NG, ,,, and is as required. O

Thus, we can give the main result of this section as follows.
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Theorem 4.15 Let (G.,e) be a bisimplicial group. Then the construction

NGn,m
(NGmm n DHM)d;)L-H(NGn-&-Lm N Dn+1,m)d2+1(NGn7m+l n Dn,m-H)

Ln,m(Go,o) -

with 9%(T) = d¥(z) ,0"(T) = di(z) gives a double crossed complex.

Proof It is straightforward from the lemmas given above. O
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1. Appendix

For (n,m) = (1,1), consider the set

S(1) x 5(1) ={(0,0), (@, (0)), ((0), ), ((0), (0))}-

1. Take o = (0,0) and B= (@, (0)). In this case, the function Fy 5 becomes from NG11x NGi to NGy 1.
This map can be defined for any x € NG1; and y € NG by

Fg,0),0,00) (%, 9) = [, 50(y)].

2. Take o = (,0) and 8 = ((0),0). In this case, the function Fy 5 becomes from NG1,1x NGo,1 to NG11.
This map can be defined by

Fo.0),0).0) (@ y) = [z, 8§ (1)].

for any £ € NGy and y € NGy 1.
3. For a = (0,0) and = ((0),(0)). The map

is defined by
F0.0),((0).(0)) (@, y) = [, (5556 (1))]

for all z € NGy, and y € NGoyo.
4. For a = ((0),0) and 8 = (0,(0)). The map
Fl(0),0),0,0)) : NGo1 x NG1o — NG11
can be calculated for any x € NGy, and y € NG by

F((0),0),0,00) (€, y) =p[—, =)(s6 (), 55 (y))
=papt (56 ()56 (y)sg ()~ s5(y) ")
=pg ((s5(y)s6 ()50 (y) s (2) ™)
sod (56 ()55 (y)s6 ()~ s5(y) ™)
=pg (st (y)so ()55 (y) s (2) ) (s5ds
so ()sgdo st (y)sodysg (2) ™ sidy sy (y) ™)
=pg (s5(y)s6 (2)s5(y) "5 () ™)
=(s5(2)s5(y)sp (@) "'sp(y) ™)

=[s6 (), 55 (y)].
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5. For a = ((0),0) and 8 = ((0),(0)). The map
can be calculated for any x € NGy and y € NGy by

F((0).0).0).0)) (%, y) = pl=, =(50; 55) (2, y)
= pepolss («), 5656 ()]

=1

6. Similarly for o = (0, (0)) and 8 = ((0),(0)), the map
is the identity as given in the previous step.

By taking (n,m)= (0,2) and (2,0), we calculate the possible non identity maps with codomain NGy o and
NGy, respectively.
First (n,m) = (0,2). Consider the set

5(0) x 5(2) = {(0,0), (0, (0)), @, (1)), (@, (1,0))}.

We try to find the functions Fy g with codomain NGo,2. In this case the only nonidentity map F, g can be
defined by choosing a = (0, (0)) and 8 = (), (1)). This is a map from NG 1 x NGo 1 to NGg2. This map is

calculated as follows. For z,y € NGy 1, we obtain
Flo,0),0,0)(@,9) = pl= —(sa, 55)(z,7)
= pipolso(x), s1(y)]

= [shz, s{y][sVy, sia] € NGoo.

Now suppose (n,m) = (2,0). From the set

5(2) x 5(0) = {(0,0), ((0),0), ((1),0), ((1,0),0)}

we can choose a = ((0),0) and 3 = ((1),0). This map is from NG9 x NG1 to NGzo. This map can be
given by for z,y € NG1

F(0).0).(0).0) (2, y) = pl—, —](5a, 58) (2, y)
= pipglsg (2), 51 ()]
= [s5(x), s" ()][s} (v), st (x)] € NGayp.

Now, by taking (n,m)= (1,2) and (2,1), we shall define the possible nonidentity maps Fy 5 whose
codomain NG 2 and NGa respectively.
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First suppose that (n,m) = (1,2). We set

S(1) x 5(2) = {(0,0), (0, (1)), (@, (0)), (@, (1,0)), ((0), 0), ((0), (1)), ((0), (0)), ((0), (1, 0))}.

In the following calculations, by taking appropriate a, 3 from the set S(1) x S(2), we shall give all the non
identity maps whose codomain NG1 2. To obtain these maps, we can choose the possible a, 3 from the set

S(1) x S(2) as follows:

L (a, ) = ((0,(0)), (@, (1)) 2. (a,8) = ((0,(1)),((0),0))
3. (. p) = ((0,(0)), ((0),0)) 4. (a, ) = (((0), (1)), (9,(0)))
5. (@, B) = (((0),(0)), (8, (1)))-

Now we give the functions F, s for these pairings (a, 3).

1. F(@7(0))7(@7(1)) : NGl’l X NG1$1 — NGLQ can be given by
Fg.009),0,01) (@, y) =p[—, ~1(54,55) (2, )
=pipops [si, 57
=[s0(x), s1()][s1(y), s1(z)] € NG1,2
for z,y € NGy .

2. The map F(@,(l)),((O),(D) : NGl,l X NGQQ — NGLQ is given by
Fo,(),(0).0) (%, a) = [s1(2), 56 (a)] € NG1,2

for x € NGy, and a € NGy 2.

3. For a = (0,(0)),8=((0),0),z € NGy, and a € NGy 2, we have the following map

F(@7(0))7((0)7@) : NGl_’l X NGOJ — NGLQ .
(z,a) +— [s§(x),s8(a)] € NGa.

4. For a = ((0),(1)),8=(0,(0)), z € NGo,1 and y € NG11, we get the following map

Foy,ay),0,0) : NGoix NGi1 — NGi

(z,y) — [sG57(2), s§(y)] € NG1a.

5. For a = ((0),(0)),8=(0,(1)),z € NGo,1 and y € NG1,1, we get the following map

Foy, 0.0,y : NGoi1x NGii — NhGLQ
(z,y) > [sgsg(x),s{(y)] € NGz

Now suppose that (n,m) = (2,1). We consider the set S(2) x S(1). By choosing appropriate a, 3 from
the set S(2) x S(1), we can calculate similarly all the nonidentity maps with codomain NGs ;. To obtain these

maps, we take the possible a, 3 as follows:
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L (a, ) = (((0),0),((1),9,)) 2. (a,8) = (((1),0),(®,(0)))
3. (a,8) = (((0),0),(0,(0) 4 (a,8) = (((1),(0)), ((0),0))
5. (a, B) = (((0),(0)), ((1), 0)).

For these (o, ), the corresponding Fap functions can be calculated as follows.
1. For a = ((0),0) and 8 = ((1),0), we obtain the map

F).0,.0: NGiix NG — NGay
(z,y) > [s5(), st ()]st (y), 51 (2)] € NGa1.

2. For a = ((1),0),5 = (0,(0)), we get the map

F((1)7@)7(@7(0)) : NGl_’l X NGZ,O — NhG2’1
(z,a) — [s(2),sh(a)] € NGa,.

3. For a = ((0),0),3 = (0,(0)), we get the map

F((O)ﬂ)),(@,(o)) : NGl,l X NG270 — NG271
(z,a) > [sh(z),s4(a)] € NGap.

4. For a = ((1),(0)),8 = ((0),0), we get the following map

Fy,o,0,0 0 NGiox NGii — NhGg .
(w>y) — [8158( ) (y)} S NGQJ.

5. For a = ((0),(0)), 8= ((1),0), we get the following map

Foy,0),1),0 ¢ NGiox NGi1p — Nth 1
(z,y) +— [sfst(x), st (y)] € NGa1.

Let (n,m) = (2,2). By choosing appropriate o, from the set S(2) x S(2), we can calculate the nonidentity

maps with codomain NG3 2. The possible a, 8 are given as follows:

L (a,8) = (((0),0),((1),0)) 2. (a,8) = (((1),0), (@, (0)))
3. (a, ) = (((0),0),(©,(0))) 4. (e, 8) = (((1),(0)), ((0),0))
5. (e, 8) = (((0),(0)), ((1),0)), 6. (2, 8) = ((9,(0)), (D, (1))).
For these (o, ), the corresponding F, s functions can be calculated similarly. These functions are
F(0),0).(0).0) (@.y) = [s§z, styl[sty, sta],
Flo,o).0.0)) (@,9) = [s5(x), s1()][s7(y), 51 ()],
Fl1y,0),0,0)) (,y) = [s}(2), s§(y)],
F(0),0),0,00)) (2,y) = [s6(2), s§(y)]
Fio), ), 0.0) (@ 9) = [s§s1 (2), 55 ()],
Eio).0.0.0) () = [s756 (), 51 (1)].
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