## Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/
Research Article

Turk J Math
(2021) 45: 387 - 409
© TÜBİTAK
doi:10.3906/mat-2003-121

# On $f$-Kenmotsu 3-manifolds with respect to the Schouten-van Kampen connection 

Selcen YÜKSEL PERKTAŞ ${ }^{1, *}{ }^{(1)}$, Ahmet YILDIZ ${ }^{2}$ (ㄹ)<br>${ }^{1}$ Department of Mathematics, Faculty of Arts and Science, Adıyaman University, Adıyaman, Turkey<br>${ }^{2}$ Department of Mathematics, Education Faculty, İnönü University, Malatya, Turkey

| Received: 27.03 .2020 | Accepted/Published Online: 08.12 .2020 | Final Version: 21.01 .2021 |
| :--- | :--- | :--- | :--- | :--- |


#### Abstract

In this paper we study some semisymmetry conditions and some soliton types on $f$-Kenmotsu 3 -manifolds with respect to the Schouten-van Kampen connection.


Key words: Schouten-van Kampen connection, $f$-Kenmotsu manifolds, projective semisymmetric, conharmonical semisymmetric, Einstein manifold, $\eta$-Einstein manifold, solitons

## 1. Introduction

Connected almost contact metric manifolds whose automorphism groups have the maximum dimension were classified in [29] by considering the constant sectional curvature $c$ of plane section containing the characteristic vector field. In case of $c$ being a negative constant, it is well known that the manifold is a warped product space $\mathbb{R} \times{ }_{f} \mathbb{C}^{n}$. Kenmotsu studied such type of manifolds and introduced an important class of almost contact Riemannian manifolds, namely Kenmotsu manifolds [15].

A $(2 n+1)$-dimensional differentiable almost contact Riemannian manifold $(\psi, \xi, \eta, g)$ is called $[3,10,15$, 16, 23]:
i) normal, if the almost complex structure defined on the product manifold $M \times \mathbb{R}$ is integrable (equivalently, $[\psi, \psi]+2 d \eta \otimes \xi=0)$,
ii) almost cosymplectic, if $d \eta=0$ and $d \Phi=0$,
iii) cosymplectic, if it is normal and almost cosymplectic (equivalently, $\nabla \psi=0, \nabla$ being covariant differentiation with respect to the Levi-Civita connection),
iv) almost Kenmotsu, if $\eta$ is closed and $d \Phi=2 \eta \wedge \Phi$,
iv) Kenmotsu, if it is normal and almost Kenmotsu,
where $\Phi$ denotes the fundamental 2-form of the manifold defined by $\Phi(X, Y)=g(X, \psi Y)$, for all $X, Y \in \chi(M)$. Here $\chi(M)$ is the Lie algebra of differentiable vector fields on $M$.

[^0]Normal locally conformal almost cosymplectic manifolds were studied by Olszak and Rosca [20] and they gave an differential geometric interpretation of such manifolds which are called $f$-Kenmotsu manifolds by investigating some curvature properties. Among others they proved that a Ricci symmetric $f$-Kenmotsu manifold is an Einstein manifold.

The Schouten-van Kampen connection, which is one of the most natural connections adapted to a pair of complementary distributions on a differentiable manifold endowed with an affine connection [2, 12, 24], was used by Solov'ev to investigate hyperdistributions in Riemannian manifolds [25-28]. Then, Olszak studied an almost contact metric structure with respect to the Schouten-van Kampen connection and characterized some classes of almost contact metric manifolds admitting such connection by obtaining certain curvature properties of the Schouten-van Kampen connection on these manifolds [19]. Also, Yıldız studied projectively flat and conharmonically flat $f$-Kenmotsu 3 -manifolds with respect to the Schouten-van Kampen connection [30].

As well known, an almost Ricci soliton is a generalization of an Einstein metric. In a Riemannian manifold $(M, g), g$ is called an almost Ricci soliton if [11]

$$
\begin{equation*}
L_{V} g+2 R i c+2 \mu g=0 \tag{1.1}
\end{equation*}
$$

where $L$ is the Lie derivative, Ric is the Ricci tensor, $V$ is a complete vector field on $M$, and $\mu$ is a smooth function. Compact Ricci solitons are the fixed points of the Ricci flow $\frac{\partial}{\partial t} g=-2$ Ric projected from the space of metrics onto its quotient modulo diffeomorphisms and scalings, and often arise as blow-up limits for the Ricci flow on compact manifolds. An almost Ricci soliton is said to be shrinking, steady, and expanding if $\mu$ is negative, zero, and positive, respectively. Also, Cho and Kimura introduced the notion of $\eta$-Ricci soliton [6]. A Riemannian manifold $(M, g)$ is called an almost $\eta$-Ricci soliton if there exists a smooth vector field $V$ such that the Ricci tensor satisfies the following equation

$$
\begin{equation*}
L_{V} g+2 R i c+2 \mu g+2 \delta \eta \otimes \eta=0 \tag{1.2}
\end{equation*}
$$

where $\mu$ and $\delta$ are some smooth functions. If the vector field $V$ is the gradient of a potential function $-k$, then $g$ is called an almost gradient Ricci soliton and equation (1.1) assumes the form

$$
\begin{equation*}
\nabla \nabla k=R i c+\mu g \tag{1.3}
\end{equation*}
$$

In dimension 2 and in dimension 3, a Ricci soliton on a compact manifold has constant curvature [11, 13]. For details we refer to Chow and Knopf [7] and Derdzinski [8].

We also recall that a Ricci soliton on a compact manifold is a gradient Ricci soliton [21]. Then Sharma studied Ricci solitons in $K$-contact manifolds [22]. In a $K$-contact manifold, the structure vector field $\xi$ is Killing, that is, $L_{\xi} g=0$, which is not, in general, true for $f$-Kenmotsu manifolds.

The concept of Yamabe flow was defined by Hamilton in [11] to solve the Yamabe problem. Yamabe solitons are self-similar solutions for Yamabe flows and they seem to be as singularity models. More clearly, the Yamabe soliton comes from the blow-up procedure along the Yamabe flow, so such solitons have been studied intensively. For further reading we refer the reader to $[1,4,5,9,17]$.

Almost Yamabe solitons can be viewed as a generalization of Yamabe solitons. If there exists a vector field $V$ on a Riemannian manifold $(M, g)$ satisfying [1]

$$
\begin{equation*}
\frac{1}{2}\left(L_{V} g\right)=(s c a l-\gamma) g \tag{1.4}
\end{equation*}
$$

where scal is the scalar curvature of $M, \gamma$ is a smooth function, $V$ is a soliton field, and $L$ is the Lie-derivative, then $M$ is said to be an almost Yamabe soliton. We denote an almost Yamabe soliton by $(M, V, \gamma)$. Also, an almost Yamabe soliton is said to be steady, expanding, or shrinking, if $\gamma=0, \gamma<0$, or $\gamma>0$, respectively. If $\gamma$ is a constant, then an almost Yamabe soliton becomes a Yamabe soliton. Moreover, it is easy to see that Einstein manifolds are always almost Yamabe solitons. Note that if $(M, g)$ is of constant scalar curvature scal, then the Riemannian metric $g$ is called a Yamabe metric.

In the present paper we study some semisymmetry properties and some soliton types of $f$-Kenmotsu 3 -manifolds with the Schouten-van Kampen connection. The paper is organized as follows. After introduction, in the preliminaries, we give $f$-Kenmotsu manifolds and the Schouten-van Kampen connection. Then we adapt the Schouten-van Kampen connection on $f$-Kenmotsu 3 -manifolds. Section 4 is devoted to projectively semisymmetric $f$-Kenmotsu 3 -manifolds with respect to the Schouten-van Kampen connection. In Section 5, we study conharmonical semisymmetric $f$-Kenmotsu 3-manifolds with respect to the Schouten-van Kampen connection. In the last section, we focus on some soliton types, namely, almost Ricci solitons, almost $\eta$-Ricci solitons, and almost Yamabe solitons on $f$-Kenmotsu 3-manifolds with respect to the Schouten-van Kampen connection and we give an example.

## 2. Preliminaries

Let $M$ be a real $(2 n+1)$-dimensional differentiable manifold endowed with an almost contact structure $(\psi, \xi, \eta, g)$ satisfying

$$
\begin{align*}
\psi^{2} & =-I+\eta \otimes \xi, \quad \eta(\xi)=1 \\
\psi \xi & =0, \quad \eta \circ \psi=0, \quad \eta(U)=g(U, \xi)  \tag{2.1}\\
g(\psi U, \psi W) & =g(U, W)-\eta(U) \eta(W)
\end{align*}
$$

for any vector fields $U, W \in \chi(M)$, where $I$ is the identity of the tangent bundle $T M, \psi$ is a tensor field of $(1,1)$-type, $\eta$ is a 1 -form, $\xi$ is a vector field, and $g$ is a metric tensor field. We say that $(M, \psi, \xi, \eta, g)$ is an $f$-Kenmotsu manifold if the Levi-Civita connection of $g$ satisfies [18]:

$$
\begin{equation*}
\left(\nabla_{U} \psi\right)(W)=f\{g(\psi U, W) \xi-\eta(W) \psi U\} \tag{2.2}
\end{equation*}
$$

where $f \in C^{\infty}(M)$ such that $d f \wedge \eta=0$. If $f=\alpha=$ constant $\neq 0$, then the manifold is an $\alpha$-Kenmotsu manifold [14]. 1-Kenmotsu manifold is a Kenmotsu manifold [15]. If $f=0$, then the manifold is cosymplectic [14]. An $f$-Kenmotsu manifold is said to be regular if $f^{2}+f^{\prime} \neq 0$, where $f^{\prime}=\xi(f)$. For an $f$-Kenmotsu manifold from (2.1) and (2.2) it follows that

$$
\begin{equation*}
\nabla_{U} \xi=f\{U-\eta(U) \xi\} \tag{2.3}
\end{equation*}
$$

Then using (2.3), we have

$$
\begin{equation*}
\left(\nabla_{U} \eta\right)(W)=f\{g(U, W)-\eta(U) \eta(W)\} \tag{2.4}
\end{equation*}
$$

The condition $d f \wedge \eta=0$ holds if $\operatorname{dim} M \geq 5$. This does not hold in general if $\operatorname{dim} M=3$ [20].
On the other hand we have two naturally defined distributions in the tangent bundle $T M$ of $M$ as follows:

$$
H=\operatorname{ker} \eta, \quad V=\operatorname{span}\{\xi\}
$$

Then we have $T M=H \oplus V, H \cap V=\{0\}$, and $H \perp V$. This decomposition allows one to define the Schoutenvan Kampen connection $\stackrel{\star}{\nabla}$ over an almost contact metric structure. The Schouten-van Kampen connection $\stackrel{\star}{\nabla}$ on an almost contact metric manifold with respect to Levi-Civita connection $\nabla$ is defined by [25]

$$
\begin{equation*}
\stackrel{\star}{\nabla}_{U} W=\nabla_{U} W-\eta(W) \nabla_{U} \xi+\left(\nabla_{U} \eta\right)(W) \xi \tag{2.5}
\end{equation*}
$$

Thus, with the help of the Schouten-van Kampen connection (2.5), many properties of some geometric objects connected with the distributions $H, V$ can be characterized [25-27]. For example $g, \xi$, and $\eta$ are parallel with respect to $\stackrel{\star}{\nabla}$, that is, $\stackrel{\star}{\nabla} \xi=0, \stackrel{\star}{\nabla} g=0, \stackrel{\star}{\nabla} \eta=0$. Also, the torsion $\stackrel{\star}{T}$ of $\stackrel{\star}{\nabla}$ is defined by

$$
\stackrel{\star}{T}(U, W)=\eta(U) \nabla_{W} \xi-\eta(W) \nabla_{U} \xi+2 d \eta(U, W) \xi
$$

As it is well known on a 3-dimensional Riemannian manifold, we have

$$
\begin{align*}
R(U, W) Z= & g(W, Z) Q U-g(U, Z) Q W+\operatorname{Ric}(W, Z) U-\operatorname{Ric}(U, Z) W \\
& -\frac{s c a l}{2}\{g(W, Z) U-g(U, Z) W\} \tag{2.6}
\end{align*}
$$

Thus, for an $f$-Kenmotsu 3-manifold $M$, we write [20]

$$
\begin{align*}
& R(U, W) Z=\left(\frac{s c a l}{2}+2 f^{2}+2 f^{\prime}\right)\{g(W, Z) U-g(U, Z) W\} \\
&-\left(\frac{s c a l}{2}+3 f^{2}+3 f^{\prime}\right)\{g(W, Z) \eta(U) \xi-g(U, Z) \eta(W) \xi  \tag{2.7}\\
&+\eta(W) \eta(Z) U-\eta(U) \eta(Z) W\} \\
& \operatorname{Ric}(U, W)=\left(\frac{s c a l}{2}+f^{2}+f^{\prime}\right) g(U, W)-\left(\frac{s c a l}{2}+3 f^{2}+3 f^{\prime}\right) \eta(U) \eta(W),  \tag{2.8}\\
& Q U=\left(\frac{s c a l}{2}+f^{2}+f^{\prime}\right) U-\left(\frac{s c a l}{2}+3 f^{2}+3 f^{\prime}\right) \eta(U) \xi \tag{2.9}
\end{align*}
$$

where $R$ denotes the curvature tensor, Ric is the Ricci tensor, $Q$ is the Ricci operator, and scal is the scalar curvature of $M$. From (2.7) and (2.8), we have

$$
\begin{gather*}
R(U, W) \xi=-\left(f^{2}+f^{\prime}\right)\{\eta(W) U-\eta(U) W\}  \tag{2.10}\\
R(\xi, U) W=-\left(f^{2}+f^{\prime}\right)\{g(U, W) \xi-\eta(W) W\} \tag{2.11}
\end{gather*}
$$

and

$$
\begin{equation*}
\operatorname{Ric}(U, \xi)=-2\left(f^{2}+f^{\prime}\right) \eta(U) \tag{2.12}
\end{equation*}
$$

## YÜKSEL PERKTAŞ and YILDIZ/Turk J Math

## 3. $f$-Kenmotsu 3-manifolds with respect to the Schouten-van Kampen connection

Let $M$ be an $f$-Kenmotsu 3 -manifold with respect to the Schouten-van Kampen connection. Then using (2.3) and (2.4) in (2.5), we get

$$
\begin{equation*}
\stackrel{\star}{\nabla}_{U} W=\nabla_{U} W+f(g(U, W) \xi-\eta(W) U) \tag{3.1}
\end{equation*}
$$

Let $R$ and $\stackrel{\star}{R}$ be the curvature tensors of the Levi-Civita connection $\nabla$ and the Schouten-van Kampen connection $\stackrel{\star}{\nabla}$, respectively. Then since we have

$$
R(U, W)=\left[\nabla_{U}, \nabla_{W}\right]-\nabla_{[U, W]}, \quad \stackrel{\star}{R}(U, W)=\left[\stackrel{\star}{\nabla}_{U}, \stackrel{\star}{\nabla}_{W}\right]-\stackrel{\star}{\nabla}_{[U, W]}
$$

then by using (3.1), the following formula connecting $\stackrel{\star}{R}$ and $R$ on an $f$-Kenmotsu 3-manifold $M$ [30]:

$$
\begin{align*}
\stackrel{\star}{R}(U, W) Z= & R(U, W) Z \\
& +f^{2}\{g(W, Z) U-g(U, Z) W\}  \tag{3.2}\\
& +f^{\prime}\{g(W, Z) \eta(U) \xi-g(U, Z) \eta(W) \xi+\eta(W) \eta \star(Z) U-\eta(U) \eta(Z) W\}
\end{align*}
$$

If taking the inner product with $T$ in (2.2), then the relations between the Riemann-Christoffel curvature (0,4)-tensors $\stackrel{\star}{R}$ and $R$; the Ricci tensors $\stackrel{\star}{R i c}$ and Ric; the Ricci operators $\stackrel{\star}{Q}$ and $Q$; the scalar curvatures $\stackrel{\star}{\text { scal }}$ and scal of the connections $\stackrel{\star}{\nabla}$ and $\nabla$ are given by [30]

$$
\begin{align*}
\stackrel{\star}{R}(U, W, Z, T)= & R(U, W, Z, T) \\
& +f^{2}\{g(W, Z) g(U, T)-g(U, Z) g(W, T)\} \\
& +f^{\prime}\{g(W, Z) \eta(U) \eta(T)-g(U, Z) \eta(W) \eta(T)  \tag{3.3}\\
& +g(U, T) \eta(W) \eta(Z)-g(W, T) \eta(U) \eta(Z)\} \\
\stackrel{\star}{\operatorname{Ric}(W, Z)=} & \operatorname{Ric}(W, Z) \\
& +\left(2 f^{2}+f^{\prime}\right) g(W, Z)+f^{\prime} \eta(W) \eta(Z)  \tag{3.4}\\
\stackrel{\star}{Q} U= & Q U+\left(2 f^{2}+f^{\prime}\right) U+f^{\prime} \eta(U) \xi  \tag{3.5}\\
& \stackrel{\star}{ }  \tag{3.6}\\
& \text { scal }=s c a l+6 f^{2}+4 f^{\prime}
\end{align*}
$$

respectively, where $\stackrel{\star}{R}(U, W, Z, T)=g(\stackrel{\star}{R}(U, W) Z, T)$ and $R(U, W, Z, T)=g(R(U, W) Z, T)$.
An $f$-Kenmotsu 3 -manifold with respect to the Schouten-van Kampen connection is called $\eta$-Einstein if

$$
\stackrel{\star}{\operatorname{Ric}}(W, Z)=a g(W, Z)+b \eta(W) \eta(Z)
$$

for some real numbers $a$ and $b$.

## 4. Projectively semisymmetric $f$-Kenmotsu 3 -manifolds with the Schouten-van Kampen connection

In this section, we study projectively semisymmetric $f$-Kenmotsu 3 -manifolds with respect to the Schoutenvan Kampen connection. In an $f$-Kenmotsu 3-manifold, the projective curvature tensor with respect to the Schouten-van Kampen connection is given by

$$
\begin{align*}
\stackrel{\star}{P}(U, W) Z= & P(U, W) Z-\frac{1}{2} f^{\prime}\{g(W, Z) U-g(U, Z) W\} \\
& +\frac{1}{2} f^{\prime}\{\eta(W) \eta(Z) U-\eta(U) \eta(Z) W\}  \tag{4.1}\\
& +f^{\prime}\{g(W, Z) \eta(U) \xi-g(U, Z) \eta(W) \xi\}
\end{align*}
$$

where $P(U, W) Z$ is the projective curvature tensor with respect to the Levi-Civita connection and defined by

$$
\begin{equation*}
P(U, W) Z=R(U, W) Z-\frac{1}{2}\{\operatorname{Ric}(W, Z) U-\operatorname{Ric}(U, Z) W\} \tag{4.2}
\end{equation*}
$$

It is well known that if an $f$-Kenmotsu manifold with respect to the Schouten-van Kampen connection satisfies the condition

$$
\stackrel{\star}{R}(U, W) \cdot \stackrel{\star}{P}=L \hat{Q}(g, \stackrel{\star}{P})
$$

then the manifold is called projectively pseudosymmetric $f$-Kenmotsu manifold with respect to the Schoutenvan Kampen connection, where $L$ is a function and

$$
\begin{aligned}
\hat{Q}(g, \stackrel{\star}{P})(Z, E, T ; U, W)= & ((U \Lambda W) \stackrel{\star}{P})(Z, E) T \\
= & -\stackrel{\star}{P}((U \Lambda W) Z, E) T-\stackrel{\star}{P}(Z,(U \Lambda W) E) T \\
& -\stackrel{\star}{P}(Z, E)(U \Lambda W) T
\end{aligned}
$$

and

$$
(U \Lambda W) Z=g(W, Z) U-g(U, Z) W
$$

respectively. If $L=0$, then the manifold $M$ is called projectively semisymmetric manifold with respect to the Schouten-van Kampen connection.

Let $M$ be a projectively semisymmetric $f$-Kenmotsu 3 -manifold with respect to the Schouten-van Kampen connection. Then, we have

$$
\begin{equation*}
(\stackrel{\star}{R}(U, W) \cdot \stackrel{\star}{P})(Z, E) T=0 \tag{4.3}
\end{equation*}
$$

which satisfies

$$
\begin{align*}
& \stackrel{\star}{R}(U, W) \stackrel{\star}{P}(Z, E) T-\stackrel{\star}{P}(\stackrel{\star}{R}(U, W) Z, E) T  \tag{4.4}\\
& -\stackrel{\star}{P}(Z, \stackrel{\star}{R}(U, W) E) T-\stackrel{\star}{P}(Z, E) \stackrel{\star}{R}(U, W) T=0 .
\end{align*}
$$

Using (4.1) in (4.4), we have

$$
\begin{align*}
& \stackrel{\star}{R}(U, W) P(Z, E) T-P(\stackrel{\star}{R}(U, W) Z, E) T  \tag{4.5}\\
& -P(Z, \stackrel{\star}{R}(U, W) E) T-P(Z, E) \stackrel{\star}{R}(U, W) T=0 .
\end{align*}
$$

## YÜKSEL PERKTAŞ and YILDIZ/Turk J Math

Now using (3.2) in (4.5), we get

$$
\begin{align*}
& R(U, W) P(Z, E) T-P(R(U, W) Z, E) T-P(Z, R(U, W) E) T \\
& -P(Z, E) R(U, W) T+f^{2}\{g(W, P(Z, E) T) U-g(U, P(Z, E) T) W \\
& -g(W, Z) P(U, E) T+g(U, Z) P(W, E) T-g(W, E) P(Z, U) T \\
& +g(U, E) P(Z, W) T-g(W, T) P(Z, E) U+g(U, T) P(Z, E) W\} \\
& +f^{\prime}\{g(P(Z, E) T, W) \eta(U) \xi-g(P(Z, E) T, U) \eta(W) \xi \\
& +\eta(P(Z, E) T) \eta(W) U-\eta(P(Z, E) T) \eta(U) W  \tag{4.6}\\
& -g(W, Z) \eta(P(U, E) T) \xi+g(U, Z) \eta(P(W, E) T) \xi \\
& -\eta(W) \eta(Z) P(U, E) T+\eta(U) \eta(Z) P(W, E) T \\
& -g(W, E) \eta(P(Z, U) T) \xi+g(U, E) \eta(P(Z, W) T) \xi \\
& -\eta(W) \eta(E) P(Z, U) T+\eta(U) \eta(E) P(Z, W) T \\
& -g(W, T) \eta(P(Z, E) U) \xi+g(U, T) \eta(P(Z, E) W) \xi \\
& -\eta(W) \eta(T) P(Z, E) U+\eta(U) \eta(T) P(Z, E) W\}=0
\end{align*}
$$

Now from (4.6), we can say: If $0 \neq f=\mathrm{constant}$ ( say $f=\alpha$ ) then $f^{\prime}=0$. Hence, we get $R \cdot P=-\alpha^{2} Q(g, P)$. Therefore, the manifold $M$ is a projectively pseudosymmetric $\alpha$-Kenmotsu manifold. Using (2.7) and (4.2) in (4.6), we obtain

$$
\begin{align*}
& R(U, W) R(Z, E) T-R(R(U, W) Z, E) T-R(Z, R(U, W) E) T \\
& -R(Z, E) R(U, W) T \\
= & \frac{1}{2}\{\operatorname{Ric}(R(U, W) Z, T) E+\operatorname{Ric}(Z, R(U, W) T) E-\operatorname{Ric}(R(U, W) E, T) Z \\
& -\operatorname{Ric}(R(U, W) T, E) Z\}-f^{2}\{g(W, R(Z, E) T) U-g(U, R(Z, E) T) W \\
& -g(W, Z) R(U, E) T+g(U, Z) R(W, E) T  \tag{4.7}\\
& -g(W, E) R(Z, U) T+g(U, E) R(Z, W) T-g(W, T) R(Z, E) U \\
& +g(U, T) R(Z, E) W+\frac{f^{2}}{2}\{\operatorname{Ric}(W, T) g(U, E) Z-\operatorname{Ric}(U, E) g(W, T) Z \\
& +\operatorname{Ric}(W, E) g(U, T) Z-\operatorname{Ric}(W, Z) g(U, T) Z \\
& -\operatorname{Ric}(W, T) g(U, Z) E+\operatorname{Ric}(U, Z) g(W, T) E\} .
\end{align*}
$$

## YÜKSEL PERKTAŞ and YILDIZ/Turk J Math

Again using (2.8) in (4.7), we get

$$
\begin{align*}
& R(U, W) R(Z, E) T-R(R(U, W) Z, E) T-R(Z, R(U, W) E) T \\
& -R(Z, E) R(U, W) T \\
= & \frac{B}{2}\{\eta(R(U, W) E) \eta(T) Z-\eta(R(U, W) Z) \eta(T) E+\eta(R(U, W) T) \eta(E) Z \\
& -\eta(R(U, W) T) \eta(Z) E+\frac{A f^{2}}{2}\{g(W, E) g(U, T) Z-g(W, Z) g(U, T) E\} \\
& -f^{2}\{g(W, R(Z, E) T) U-g(U, R(Z, E) T) W-g(W, Z) R(U, E) T  \tag{4.8}\\
& +g(U, Z) R(W, E) T-g(W, E) R(Z, U) T+g(U, E) R(Z, W) T \\
& -g(W, T) R(Z, E) U+g(U, T) R(Z, E) W\} \\
& +\frac{B f^{2}}{2}\{g(U, Z) \eta(W) \eta(T) E-g(U, E) \eta(W) \eta(T) Z \\
& +g(W, T) \eta(U) \eta(E) Z-g(W, T) \eta(U) \eta(Z) E \\
& -g(U, T) \eta(W) \eta(E) Z+g(U, T) \eta(W) \eta(Z) E\},
\end{align*}
$$

where $A=\frac{s c a l}{2}+2 f^{2}$ and $B=\frac{s c a l}{2}+3 f^{2}$.
Also putting $U=\xi$ in (4.8), we have

$$
\begin{align*}
& R(\xi, W) R(Z, E) T-R(R(\xi, W) Z, E) T-R(Z, R(\xi, W) E) T \\
& -R(Z, E) R(\xi, W) T \\
= & \frac{B}{2}\{\eta(R(\xi, W) E) \eta(T) Z-\eta(R(\xi, W) Z) \eta(T) E+\eta(R(\xi, W) T) \eta(E) Z \\
& -\eta(R(\xi, W) T) \eta(Z) E\}-f^{2}\{g(W, R(Z, E) T) \xi-\eta(R(Z, E) T) W \\
& -g(W, Z) R(\xi, E) T+\eta(Z) R(W, E) T-g(W, E) R(Z, \xi) T+\eta(E) R(Z, W) T  \tag{4.9}\\
& -g(W, T) R(Z, E) \xi+\eta(T) R(Z, E) W\} \\
& +\frac{A f^{2}}{2}\{g(W, E) \eta(T) Z-g(W, Z) \eta(T) E\} \\
& +\frac{B f^{2}}{2}\{\eta(Z) \eta(W) \eta(T) E-\eta(E) \eta(W) \eta(T) Z+g(W, T) \eta(E) Z \\
& -g(W, T) \eta(Z) E-\eta(T) \eta(W) \eta(E) Z+\eta(T) \eta(W) \eta(Z) E\}
\end{align*}
$$

## YÜKSEL PERKTAŞ and YILDIZ/Turk J Math

Taking the inner product with $\xi$ in (4.9), we get

$$
\begin{align*}
& \eta(R(\xi, W) R(Z, E) T)-\eta(R(R(\xi, W) Z, E) T)-\eta(R(Z, R(\xi, W) E) T) \\
& -\eta(R(Z, E) R(\xi, W) T) \\
= & \frac{B}{2}\{\eta(R(\xi, W) E) \eta(T) \eta(Z)-\eta(R(\xi, W) Z) \eta(T) \eta(E)\} \\
& -f^{2}\{g(W, R(Z, E) T)-\eta(R(Z, E) T) \eta(W)-g(W, Z) \eta(R(\xi, E) T)  \tag{4.10}\\
& +\eta(Z) \eta(R(W, E) T)-g(W, E) \eta(R(Z, \xi) T)+\eta(E) \eta(R(Z, W) T) \\
& +\eta(T) \eta(R(Z, E) W)\}+\frac{A f^{2}}{2}\{g(W, E) \eta(T) \eta(Z)-g(W, Z) \eta(T) \eta(E)\}
\end{align*}
$$

Let $\left\{e_{i}\right\} \quad(1 \leq i \leq 3)$ be an orthonormal basis of the tangent space at any point of $M$. Then the sum for $1 \leq i \leq 3$ of the relation (4.10) for $W=Z=e_{i}$ gives

$$
\begin{align*}
& \eta\left(R\left(\xi, e_{i}\right) R\left(e_{i}, E\right) T\right)-\eta\left(R\left(R\left(\xi, e_{i}\right) e_{i}, E\right) T\right)-\eta\left(R\left(e_{i}, R\left(\xi, e_{i}\right) E\right) T\right) \\
& -\eta\left(R\left(e_{i}, E\right) R\left(\xi, e_{i}\right) T\right) \\
= & \frac{B}{2}\left\{\eta\left(R\left(\xi, e_{i}\right) E\right) \eta(T) \eta\left(e_{i}\right)-\eta\left(R\left(\xi, e_{i}\right) e_{i}\right) \eta(T) \eta(E)\right\}  \tag{4.11}\\
& -f^{2}\left\{g\left(e_{i}, R\left(e_{i}, E\right) T\right)-\eta\left(R\left(e_{i}, E\right) T\right) \eta\left(e_{i}\right)-g\left(e_{i}, e_{i}\right) \eta(R(\xi, E) T)\right. \\
& +\eta\left(e_{i}\right) \eta\left(R\left(e_{i}, E\right) T\right)-g\left(e_{i}, E\right) \eta\left(R\left(e_{i}, \xi\right) T\right)+\eta(E) \eta\left(R\left(e_{i}, e_{i}\right) T\right) \\
& \left.+\eta(T) \eta\left(R\left(e_{i}, E\right) e_{i}\right)\right\}+\frac{A f^{2}}{2}\left\{g\left(e_{i}, E\right) \eta(T) \eta\left(e_{i}\right)-g\left(e_{i}, e_{i}\right) \eta(T) \eta(E)\right\}
\end{align*}
$$

which is equal to

$$
\begin{align*}
& \eta\left(R\left(\xi, e_{i}\right) R\left(e_{i}, E\right) T\right)-\eta\left(R\left(R\left(\xi, e_{i}\right) e_{i}, E\right) T\right)-\eta\left(R\left(e_{i}, R\left(\xi, e_{i}\right) E\right) T\right) \\
& -\eta\left(R\left(e_{i}, E\right) R\left(\xi, e_{i}\right) T\right) \\
= & \frac{-B}{2} \eta\left(R\left(\xi, e_{i}\right) e_{i}\right) \eta(T) \eta(E)-f^{2}\left\{g\left(e_{i}, R\left(e_{i}, E\right) T\right)\right.  \tag{4.12}\\
& -3 \eta(R(\xi, E) T)-g\left(e_{i}, E\right) \eta\left(R\left(e_{i}, \xi\right) T\right) \\
& \left.+\eta(T) \eta\left(R\left(e_{i}, E\right) e_{i}\right)\right\}-A f^{2} \eta(T) \eta(E)
\end{align*}
$$

Using (2.10) and (2.11) in (4.12), we obtain

$$
\begin{equation*}
2 f^{2} \operatorname{Ric}(E, T)=\left(-2 f^{4}-3 f^{2}\right) g(E, T)+\left(-2 f^{4}+3 f^{2}\right) \eta(E) \eta(T) \tag{4.13}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
\operatorname{Ric}(E, T)=\left(-f^{2}-\frac{3}{2}\right) g(E, T)-\left(f^{2}-\frac{3}{2}\right) \eta(E) \eta(T) \tag{4.14}
\end{equation*}
$$

Thus, the manifold $M$ is an $\eta$-Einstein manifold with respect to the Levi-Civita connection. Also, using (4.14) in (3.4), we have

$$
\begin{equation*}
\stackrel{\star}{\operatorname{Ric}}(E, T)=\left(f^{2}-\frac{3}{2}\right) g(E, T)-\left(f^{2}-\frac{3}{2}\right) \eta(E) \eta(T) \tag{4.15}
\end{equation*}
$$

## YÜKSEL PERKTAŞ and YILDIZ/Turk J Math

Hence, the manifold $M$ is an $\eta$-Einstein manifold with respect to the Schouten-van Kampen connection.
If $f$ is not a constant, then using $U=\xi$ in (4.6), we get

$$
\begin{aligned}
& R(\xi, W) P(Z, E) T-P(R(\xi, W) Z, E) T-P(Z, R(\xi, W) E) T \\
& -P(Z, E) R(\xi, W) T+f^{2}\{g(W, P(Z, E) T) \xi-\eta(P(Z, E) T) W \\
& -g(W, Z) P(\xi, E) T+\eta(Z) P(W, E) T-g(W, E) P(Z, \xi) T \\
& +\eta(E) P(Z, W) T-g(W, T) P(Z, E) \xi+\eta(T) P(Z, E) W\} \\
& +f^{\prime}\{g(P(Z, E) T, W) \xi-\eta(P(Z, E) T) \eta(W) \xi \\
& +\eta(P(Z, E) T) \eta(W) \xi-\eta(P(Z, E) T) W \\
& -g(W, Z) \eta(P(\xi, E) T) \xi+\eta(Z) \eta(P(W, E) T) \xi \\
& -\eta(W) \eta(Z) P(\xi, E) T+\eta(Z) P(W, E) T \\
& -g(W, E) \eta(P(Z, \xi) T) \xi+\eta(E) \eta(P(Z, W) T) \xi \\
& -\eta(W) \eta(E) P(Z, \xi) T+\eta(E) P(Z, W) T \\
& -g(W, T) \eta(P(Z, E) \xi) \xi+\eta(T) \eta(P(Z, E) W) \xi \\
& -\eta(W) \eta(T) P(Z, E) \xi+\eta(T) P(Z, E) W\}=0
\end{aligned}
$$

which gives

$$
\begin{aligned}
& R(\xi, W) P(Z, E) T-P(R(\xi, W) Z, E) T-P(Z, R(\xi, W) E) T \\
& -P(Z, E) R(\xi, W) T \\
& +\left(f^{2}+f^{\prime}\right)\{g(W, P(Z, E) T) \xi-g(\xi, P(Z, E) T) W \\
& -g(W, Z) P(\xi, E) T+g(\xi, Z) P(W, E) T-g(W, E) P(Z, \xi) T \\
& +g(\xi, E) P(Z, W) T-g(W, T) P(Z, E) \xi+g(\xi, T) P(Z, E) W\}=0
\end{aligned}
$$

Combining the above results, we have the following:
Theorem 4.1 Let $M$ be a projectively semisymmetric $f$-Kenmotsu 3-manifold with respect to the Schoutenvan Kampen connection. Then we get the following: i) If $0 \neq f=$ constant (say $f=\alpha$ ), then $M$ is a projectively pseudosymmetric $\alpha$-Kenmotsu manifold. In this case, $M$ is an $\eta$-Einstein manifold both with respect to the Levi-Civita connection and the Schouten-van Kampen connection. ii) If $f$ is not a constant, then $M$ is projectively semisymmetric with respect to the Levi-Civita connection.

## 5. Conharmonically semisymmetric $f$-Kenmotsu 3 -manifolds with the Schouten-van Kampen connection

In this section, we study conharmonically semisymmetric $f$-Kenmotsu 3-manifolds with respect to the Schoutenvan Kampen connection. In an $f$-Kenmotsu 3-manifold, the conharmonic curvature tensor with respect to the Schouten-van Kampen connection is given by

$$
\begin{align*}
\stackrel{\star}{K}(U, W) Z= & \stackrel{\star}{R}(U, W) Z-\{\stackrel{\star}{\operatorname{Ric}(W, Z) U-\stackrel{\star}{R i c}(U, Z) W}  \tag{5.1}\\
& +g(W, Z) \stackrel{\star}{Q} U-g(U, Z) \stackrel{\star}{Q} W\}
\end{align*}
$$

Using (3.2), (3.4), and (3.5) in (5.1), we have

$$
\begin{align*}
\stackrel{\star}{K}(U, W) Z= & K(U, W) Z  \tag{5.2}\\
& -\left(3 f^{2}+2 f^{\prime}\right)\{g(W, Z) U-g(U, Z) W\}
\end{align*}
$$

Also, it is well known that if an $f$-Kenmotsu manifold with respect to the Schouten-van Kampen connection satisfies the condition

$$
\stackrel{\star}{R}(U, W) \cdot \stackrel{\star}{K}=L \hat{Q}(g, \stackrel{\star}{K})
$$

then the manifold is called conharmonically pseudosymmetric $f$-Kenmotsu manifold with respect to the Schouten-van Kampen connection, where $L$ is a function and

$$
\begin{aligned}
\hat{Q}(g, \stackrel{\star}{K})(Z, E, T ; U, W)= & ((U \Lambda W) \stackrel{\star}{K})(Z, E) T \\
= & -\stackrel{\star}{K}((U \Lambda W) Z, E) T-\stackrel{\star}{K}(Z,(U \Lambda W) E) T \\
& -\stackrel{\star}{K}(Z, E)(U \Lambda W) T
\end{aligned}
$$

If $L=0$, then the manifold $M$ is called conharmonically semisymmetric manifold with respect to the Schoutenvan Kampen connection.

Let $M$ be a conharmonically semisymmetric $f$-Kenmotsu 3-manifold with respect to the Schouten-van Kampen connection. Then, we have

$$
\begin{equation*}
(\stackrel{\star}{R}(U, W) \cdot \stackrel{\star}{K})(Z, E) T=0 \tag{5.3}
\end{equation*}
$$

which satisfies

$$
\begin{align*}
& \stackrel{\star}{R}(U, W) \stackrel{\star}{K}(Z, E) T-\stackrel{\star}{K}(\stackrel{\star}{R}(U, W) Z, E) T \\
& -\stackrel{\star}{K}(Z, \stackrel{\star}{R}(U, W) E) T-\stackrel{\star}{K}(Z, E) \stackrel{\star}{R}(U, W) T=0 . \tag{5.4}
\end{align*}
$$

Using (5.2) in (5.4), we get

$$
\begin{align*}
& \stackrel{\star}{R}(U, W) K(Z, E) T-K(\stackrel{\star}{R}(U, W) Z, E) T \\
& -K(Z, \stackrel{\star}{R}(U, W) E) T-K(Z, E) \stackrel{\star}{R}(U, W) T=0 \tag{5.5}
\end{align*}
$$

where

$$
\begin{align*}
K(U, W) Z= & R(U, W) Z \\
& -\{\operatorname{Ric}(W, Z) U-\operatorname{Ric}(U, Z) W  \tag{5.6}\\
& +g(W, Z) Q U-g(U, Z) Q W\}
\end{align*}
$$

## YÜKSEL PERKTAŞ and YILDIZ/Turk J Math

Now using (3.2) in (5.5), we have

$$
\begin{align*}
& R(U, W) K(Z, E) T-K(R(U, W) Z, E) T-K(Z, R(U, W) E) T \\
& -K(Z, E) R(U, W) T+f^{2}\{g(W, K(Z, E) T) U-g(U, K(Z, E) T) W \\
& -g(W, Z) K(U, E) T+g(U, Z) K(W, E) T-g(W, E) K(Z, U) T \\
& +g(U, E) K(Z, W) T-g(W, T) K(Z, E) U+g(U, T) K(Z, E) W\} \\
& +f^{\prime}\{g(K(Z, E) T, W) \eta(U) \xi-g(K(Z, E) T, U) \eta(W) \xi \\
& +\eta(K(Z, E) T) \eta(W) U-\eta(K(Z, E) T) \eta(U) W  \tag{5.7}\\
& -g(W, Z) \eta(K(U, E) T) \xi+g(U, Z) \eta(K(W, E) T) \xi \\
& -\eta(W) \eta(Z) K(U, E) T+\eta(U) \eta(Z) K(W, E) T \\
& -g(W, E) \eta(K(Z, U) T) \xi+g(U, E) \eta(K(Z, W) T) \xi \\
& -\eta(W) \eta(E) K(Z, U) T+\eta(U) \eta(E) K(Z, W) T \\
& -g(W, T) \eta(K(Z, E) U) \xi+g(U, T) \eta(K(Z, E) W) \xi \\
& -\eta(W) \eta(T) K(Z, E) U+\eta(U) \eta(T) K(Z, E) W\}=0
\end{align*}
$$

Now from (5.7), we can say: If $0 \neq f=\mathrm{constant}$ ( say $f=\alpha$ ) then $f^{\prime}=0$. Hence, we get $R \cdot K=-\alpha^{2} Q(g, K)$. Therefore, the manifold $M$ is a conharmonically pseudosymmetric $\alpha$-Kenmotsu manifold. Thus, using (5.6) in (5.7), we obtain

$$
\begin{align*}
& R(U, W) R(Z, E) T-R(R(U, W) Z, E) T-R(Z, R(U, W) E) T \\
& -R(Z, E) R(U, W) T \\
& -A\{2 g(E, T) R(U, W) Z-2 g(Z, T) R(U, W) E \\
& -g(R(U, W) Z, T) E+g(Z, R(U, W) T) E+g(R(U, W) E, T) Z \\
& -g(R(U, W) T, E) Z\}  \tag{5.8}\\
& +B\{g(E, T) \eta(Z) R(U, W) \xi-g(Z, T) \eta(E) R(U, W) \xi \\
& +g(E, T) \eta(R(U, W) Z) \xi-2 g(R(U, W) Z, T) \eta(E) \xi \\
& +2 g(R(U, W) E, T) \eta(Z) \xi-g(Z, T) \eta(R(U, W) E) \xi\} \\
& +\operatorname{Ric}(R(U, W) E, T) Z+\operatorname{Ric}(E, R(U, W) T) Z \\
& -\operatorname{Ric}(R(U, W) Z, T) E-\operatorname{Ric}(Z, R(U, W) T) E=0
\end{align*}
$$

which satisfies

$$
\begin{align*}
& R(U, W) R(Z, E) T-R(R(U, W) Z, E) T-R(Z, R(U, W) E) T \\
& -R(Z, E) R(U, W) T \\
& -2 A\{g(E, T) R(U, W) Z-g(Z, T) R(U, W) E \\
& -g(R(U, W) Z, T) E+g(R(U, W) E, T) Z\} \\
& +B\{g(E, T) \eta(Z) R(U, W) \xi-g(Z, T) \eta(E) R(U, W) \xi  \tag{5.9}\\
& +g(E, T) \eta(R(U, W) Z) \xi-g(Z, T) \eta(R(U, W) E) \xi \\
& +2 g(R(U, W) E, T) \eta(Z) \xi-2 g(R(U, W) Z, T) \eta(E) \xi\} \\
& +\eta(T) \eta(R(U, W) Z) E+\eta(Z) \eta(R(U, W) T) E \\
& -\eta(T) \eta(R(U, W) E) Z-\eta(E) \eta(R(U, W) T) Z=0
\end{align*}
$$

Now putting $U=\xi$ and using (2.11) in (5.9), we obtain

$$
\begin{align*}
& -f^{2}\{g(W, R(Z, E) T) \xi-\eta(R(Z, E) T) W-g(W, Z) R(\xi, E) T \\
& +\eta(Z) R(W, E) T-g(W, E) R(Z, \xi) T+\eta(E) R(Z, W) T \\
& -g(W, T) R(Z, E) \xi+\eta(T) R(Z, E) W\} \\
& +2 A f^{2}\{g(E, T) g(W, Z) \xi-g(E, T) \eta(Z) W-g(Z, T) g(W, E) \xi \\
& +g(Z, T) \eta(E) W-g(W, Z) \eta(T) E+g(W, T) \eta(Z) E \\
& +g(W, E) \eta(T) Z-g(W, T) \eta(E) Z\}  \tag{5.10}\\
& -B f^{2}\{g(E, T) \eta(Z) \eta(W) \xi-g(E, T) \eta(Z) W-g(Z, T) \eta(E) \eta(W) \xi \\
& +g(Z, T) \eta(E) W+g(E, T) g(W, Z) \xi-g(E, T) \eta(W) \eta(Z) \xi \\
& -g(Z, T) g(W, E) \xi+g(Z, T) \eta(W) \eta(E) \xi-g(W, E) \eta(T) Z \\
& +\eta(W) \eta(E) \eta(T) Z-g(W, T) \eta(E) Z+\eta(W) \eta(E) \eta(T) Z \\
& +g(W, Z) \eta(T) E-\eta(T) \eta(W) \eta(Z) E+g(W, T) \eta(Z) E \\
& -\eta(Z) \eta(W) \eta(T) E\}=0
\end{align*}
$$

Taking the inner product with $\xi$ in (5.10), we get

$$
\begin{align*}
& -f^{2}[\{g(W, R(Z, E) T)-\eta(R(Z, E) T) \eta(W)-g(W, Z) \eta(R(\xi, E) T) \\
& +\eta(Z) \eta(R(W, E) T)-g(W, E) \eta(R(Z, \xi) T)+\eta(E) \eta(R(Z, W) T) \\
& -g(W, T) \eta(R(Z, E) \xi)+\eta(T) \eta(R(Z, E) W)\} \\
& -2 A\{g(E, T) g(W, Z)-g(E, T) \eta(Z) \eta(W)-g(Z, T) g(W, E)  \tag{5.11}\\
& +g(Z, T) \eta(E) \eta(W)-g(W, Z) \eta(T) \eta(E)+g(W, E) \eta(T) \eta(Z)\} \\
& +B\{g(E, T) g(W, Z)-g(E, T) \eta(W) \eta(Z) \\
& -g(Z, T) g(W, E)+g(Z, T) \eta(W) \eta(E)-g(W, E) \eta(T) \eta(Z) \\
& +g(W, Z) \eta(T) \eta(E)\}]=0
\end{align*}
$$

Since $f^{2} \neq 0$, from (5.11) we have

$$
\begin{align*}
& g(W, R(Z, E) T)-\eta(R(Z, E) T) \eta(W)-g(W, Z) \eta(R(\xi, E) T) \\
& +\eta(Z) \eta(R(W, E) T)-g(W, E) \eta(R(Z, \xi) T)+\eta(E) \eta(R(Z, W) T) \\
& -g(W, T) \eta(R(Z, E) \xi)+\eta(T) \eta(R(Z, E) W) \\
& -2 A\{g(E, T) g(W, Z)-g(E, T) \eta(Z) \eta(W)-g(Z, T) g(W, E)  \tag{5.12}\\
& +g(Z, T) \eta(E) \eta(W)-g(W, Z) \eta(T) \eta(E)+g(W, E) \eta(T) \eta(Z)\} \\
& +B\{g(E, T) g(W, Z)-g(E, T) \eta(W) \eta(Z) \\
& -g(Z, T) g(W, E)+g(Z, T) \eta(W) \eta(E)-g(W, E) \eta(T) \eta(Z) \\
& +g(W, Z) \eta(T) \eta(E)\}=0
\end{align*}
$$

Let $\left\{e_{i}\right\},(1 \leq i \leq 3)$ be an orthonormal basis of the tangent space at any point of $M$. Then the sum for $1 \leq i \leq 3$ of the relation (5.12) for $W=Z=e_{i}$ gives

$$
\operatorname{Ric}(E, T)=\left(\frac{s c a l}{2}+3 f^{2}\right) g(E, T)-\left(\frac{s c a l}{2}+5 f^{2}\right) \eta(E) \eta(T)
$$

Thus, the manifold $M$ is an $\eta$-Einstein manifold with respect to the Levi-Civita connection. Also, using (3.4), we have

$$
\begin{equation*}
\stackrel{\star}{\operatorname{Ric}}(E, T)=\left(\frac{s c a l}{2}+5 f^{2}\right) g(E, T)-\left(\frac{s c a l}{2}+5 f^{2}\right) \eta(E) \eta(T), \tag{5.13}
\end{equation*}
$$

which implies that $M$ is an $\eta$-Einstein manifold with respect to the Schouten-van Kampen connection.
If $f$ is not a constant, then using $U=\xi$ in (5.7), we get

$$
\begin{aligned}
& R(\xi, W) K(Z, E) T-K(R(\xi, W) Z, E) T-K(Z, R(\xi, W) E) T \\
& -K(Z, E) R(\xi, W) T+f^{2}\{g(W, K(Z, E) T) \xi-g(\xi, K(Z, E) T) W \\
& -g(W, Z) K(\xi, E) T+g(\xi, Z) K(W, E) T-g(W, E) K(Z, \xi) T \\
& +g(\xi, E) K(Z, W) T-g(W, T) K(Z, E) \xi+g(\xi, T) K(Z, E) W\} \\
& +f^{\prime}\{g(K(Z, E) T, W) \xi-g(K(Z, E) T, \xi) \eta(W) \xi \\
& +\eta(K(Z, E) T) \eta(W) \xi-\eta(K(Z, E) T) W \\
& -g(W, Z) \eta(K(\xi, E) T) \xi+g(\xi, Z) \eta(K(W, E) T) \xi \\
& -\eta(W) \eta(Z) K(\xi, E) T+\eta(Z) K(W, E) T \\
& -g(W, E) \eta(K(Z, \xi) T) \xi+g(\xi, E) \eta(K(Z, W) T) \xi \\
& -\eta(W) \eta(E) K(Z, \xi) T+\eta(E) K(Z, W) T \\
& +g(U, T) \eta(K(Z, E) W) \xi \\
& -\eta(W) \eta(T) K(Z, E) \xi+\eta(T) K(Z, E) W\}=0
\end{aligned}
$$

Combining the above results, we have the following:
Theorem 5.1 Let $M$ be a conharmonically semisymmetric $f$-Kenmotsu 3 -manifold with respect to the Schouten-van Kampen connection. Then we get the following: i) If $0 \neq f=$ constant (say $f=\alpha$ ), then

## YÜKSEL PERKTAŞ and YILDIZ/Turk J Math

$M$ is a conharmonically pseudosymmetric $\alpha$-Kenmotsu manifold. In this case, $M$ is an $\eta$-Einstein manifold both with respect to the Levi-Civita connection and the Schouten-van Kampen connection. ii) If $f$ is not a constant, then $M$ is conharmonically semisymmetric with respect to the Levi-Civita connection.

## 6. Some soliton types on $f$-Kenmotsu 3 -manifolds with respect to the Schouten-van Kampen connection

In this section we study some soliton types on $f$-Kenmotsu 3 -manifolds with respect to the Schouten-van Kampen connection.

In an $f$-Kenmotsu 3 -manifold with the Schouten-van Kampen connection, since $\stackrel{\star}{\nabla} g=0$ and $\stackrel{\star}{T} \neq 0$, by using (3.1), we get

$$
\begin{equation*}
\left(\stackrel{\star}{L}_{V} g\right)(U, W)=g\left(\nabla_{U} V, W\right)+g\left(U, \nabla_{W} V\right)=\left(L_{V} g\right)(U, W) \tag{6.1}
\end{equation*}
$$

where $\stackrel{\star}{L}$ denotes the Lie derivative on the manifold with respect to the Schouten-van Kampen connection.
Now we consider an almost Ricci soliton on an $f$-Kenmotsu 3-manifold with respect to the Schouten-van Kampen connection. From (1.1), we can write

$$
\begin{equation*}
\left(\stackrel{\star}{L}_{V} g+2 \stackrel{\star}{R i c}^{\star}+2 \mu g\right)(U, W)=0 \tag{6.2}
\end{equation*}
$$

that is

$$
\begin{equation*}
g\left(\nabla_{U} V, W\right)+g\left(U, \nabla_{W} V\right)+2 \stackrel{\star}{R_{i c}}(U, W)+2 \mu g(U, W)=0 \tag{6.3}
\end{equation*}
$$

via (6.1). Putting $V=\xi$ in (6.3) and using (2.3), we obtain

$$
\begin{equation*}
\stackrel{\star}{\operatorname{Ric}}(U, W)=-(\mu+f) g(U, W)+f \eta(U) \eta(W) . \tag{6.4}
\end{equation*}
$$

Also, using (3.4) in (6.4), we have

$$
\begin{equation*}
\operatorname{Ric}(U, W)=-\left(f^{\prime}+2 f^{2}+f+\mu\right) g(U, W)+\left(-f^{\prime}+f\right) \eta(U) \eta(W) \tag{6.5}
\end{equation*}
$$

Hence, we have the following:
Theorem 6.1 Let $M$ be an $f$-Kenmotsu 3-manifold bearing an almost Ricci soliton $(\xi, \mu, g)$ with respect to the Schouten-van Kampen connection. Then $M$ is an $\eta$-Einstein manifold both with respect to the Schouten-van Kampen connection and the Levi-Civita connection.

Putting $U=\xi$ and using (3.4), we give the following:

Corollary 6.2 An almost Ricci soliton $(\xi, \mu, g)$ on an $f$-Kenmotsu 3-manifold with respect to the Schouten-van Kampen connection is always steady.

On the other hand, from (2.8) and (3.4), it is easy to see that an $f$-Kenmotsu 3-manifold is always $\eta$-Einstein with respect to the Schouten-van Kampen connection of the form $\stackrel{\star}{\star} i c=a g+b \eta \otimes \eta$, where $a=-b=\frac{s c a l}{2}+3 f^{2}+2 f^{\prime}$. Then, we write

$$
\left(\stackrel{\star}{L}_{\xi} g+2 \stackrel{\star}{k i}_{\star}^{\star}+2 \mu g\right)(U, W)=((2 f+2 a+2 \mu) g+(-2 f+2 b) \eta \otimes \eta)(U, W)
$$

for all $U, W \in \chi(M)$, which implies that the manifold $M$ admits an almost Ricci soliton $(\xi, \mu, g)$ if $f+a+\mu=0$ and $-f+b=0$. Thus, we give the following:

Theorem 6.3 An $f$-Kenmotsu 3 -manifold admits a steady almost Ricci soliton ( $\xi, \mu, g$ ) with respect to the Schouten-van Kampen connection provided $f=-\frac{\stackrel{\star}{*} a l}{2}$.

By using (2.1) in (6.4), we can also state the following:
Corollary 6.4 The scalar curvature of an $f$-Kenmotsu 3 -manifold bearing an almost Ricci soliton $(\xi, \mu, g)$ with respect to the Schouten-van Kampen connection is scal $=-3 \mu-2 f$.

From Theorem 4.1 and (4.15), we can say the following:

Corollary 6.5 A projectively semisymmetric 3 -dimensional $\alpha$-Kenmotsu manifold with respect to the Schoutenvan Kampen connection admits a steady almost Ricci soliton $(\xi, \mu, g)$ provided $f=-1 \pm \sqrt{7}$.

Also Theorem 5.1 and (5.13) give the following:
Corollary 6.6 A conharmonically semisymmetric 3 -dimensional $\alpha$-Kenmotsu manifold with respect to the Schouten-van Kampen connection cannot admit a steady almost Ricci soliton ( $\xi, \mu, g$ ).

Again let us consider equations (6.2) and (6.3). Using (3.4), we obtain

$$
g\left(\nabla_{U} V, W\right)+g\left(U, \nabla_{W} V\right)+2 \operatorname{Ric}(U, W)+2\left(2 f^{2}+f^{\prime}+\mu\right) g(U, W)+f^{\prime} \eta(U) \eta(W)=0
$$

Thus, we write

$$
\left(L_{V} g\right)(U, W)+2 \operatorname{Ric}(U, W)+2\left(2 f^{2}+f^{\prime}+\mu\right) g(U, W)+f^{\prime} \eta(U) \eta(W)=0
$$

This last equation shows that if $(V, \mu, g)$ is an almost Ricci soliton and $f$ is not a constant on an $f$-Kenmotsu 3 -manifold with respect to the Schouten-van Kampen connection, then the manifold admits an almost $\eta$-Ricci soliton $\left(V, 2 f^{2}+f^{\prime}+\mu, f^{\prime}, g\right)$ with respect to the Levi-Civita connection. If $0 \neq f=$ constant, then $f^{\prime}=0$. Thus, we have

$$
\left(L_{V} g\right)(U, W)+2 \operatorname{Ric}(U, W)+2\left(2 f^{2}+\mu\right) g(U, W)=0
$$

Thus, we have the following:
Theorem 6.7 Let $M$ be an $f$-Kenmotsu 3 -manifold bearing an almost Ricci soliton ( $V, \mu, g$ ) with respect to the Schouten-van Kampen connection. Then we have
(i) If $0 \neq f=$ constant then $M$ admits an almost Ricci soliton $\left(V, 2 f^{2}+\mu, g\right)$ with respect to the Levi-Civita connection.
(ii) If $f \neq$ constant then $M$ admits an almost $\eta$-Ricci soliton $\left(V, f^{\prime}+2 f^{2}+\mu, f^{\prime}, g\right)$ with respect to the Levi-Civita connection.

## YÜKSEL PERKTAŞ and YILDIZ/Turk J Math

Now, let us consider an almost $\eta$-Ricci soliton $(V, \mu, \delta, g)$ on an $f$-Kenmotsu 3 -manifold with respect to the Levi-Civita connection. Using (6.1) and (3.4) in (1.2), we can write

$$
\left(\stackrel{\star}{L}_{V} g\right)(U, W)+2 \stackrel{\star}{R i c}(U, W)+2\left(-2 f^{2}-f^{\prime}+\mu\right) g(U, W)+2\left(\delta-f^{\prime}\right) \eta(U) \eta(W)=0 .
$$

Hence, we give the following:
Theorem 6.8 An $f$-Kenmotsu 3 -manifold bearing an almost $\eta$-Ricci soliton ( $V, \mu, \delta, g$ ) with respect to the Levi-Civita connection admits an almost $\eta$-Ricci soliton ( $V,-f^{\prime}-2 f^{2}+\mu,-f^{\prime}+\delta, g$ ) with respect to the Schouten-van Kampen connection.

Conversely, let us consider an almost $\eta$-Ricci soliton $(V, \mu, \delta, g)$ on an $f$-Kenmotsu 3-manifold with respect to the Schouten-van Kampen connection. Then, in view of (1.2) we get

$$
\left(L_{V} g\right)(U, W)+2 \operatorname{Ric}(U, W)+2\left(2 f^{2}+f^{\prime}+\mu\right) g(U, W)+2\left(\delta+f^{\prime}\right) \eta(U) \eta(W)=0
$$

Thus, we have the following:
Theorem 6.9 An $f$-Kenmotsu 3 -manifold bearing an almost $\eta$-Ricci soliton ( $V, \mu, \delta, g$ ) with respect to the Schouten-van Kampen connection admits an almost $\eta$-Ricci soliton ( $\left.V, 2 f^{2}+f^{\prime}+\mu, f^{\prime}+\delta, g\right)$ with respect to the Levi-Civita connection.

Assume that $M$ is a Ricci flat $f$-Kenmotsu 3 -manifold with respect to the Schouten-van Kampen connection. In this case, by using (2.4) and (6.1), we get

$$
\left(\stackrel{\star}{L}_{\xi} g+2 \stackrel{\star}{\star} i c^{\star} 2 \mu g+2 \delta \eta \otimes \eta\right)(U, W)=2(f+\mu) g(U, W)+2(-f+\delta) \eta(U) \eta(W)
$$

for all $U, W \in \chi(M)$. Hence, we give the following:
Theorem 6.10 A Ricci flat $f$-Kenmotsu 3-manifold with respect to the Schouten-van Kampen connection admits an almost $\eta$-Ricci soliton $(\xi, \mu, \delta, g)$ provided $-\mu=\delta=f$. Moreover, in this case the almost $\eta$-Ricci soliton $(\xi, \mu, \delta, g)$ is shrinking (resp. expanding) if $f>0$ (resp. $f<0$ ).

Example 6.11 Let $M=\left\{(u, v, t) \in R^{3}: t \neq 0\right\}$ be a 3-dimensional manifold endowed with the standard coordinate system in $R^{3}$. We define linearly independent vector fields at each point of $M$ by

$$
X_{1}=t^{2} \frac{\partial}{\partial u}, \quad X_{2}=t^{2} \frac{\partial}{\partial v}, \quad X_{3}=\frac{\partial}{\partial t}
$$

and a Riemannian metric by

$$
\begin{aligned}
g\left(X_{1}, X_{1}\right) & =g\left(X_{2}, X_{2}\right)=g\left(X_{3}, X_{3}\right)=1 \\
g\left(X_{1}, X_{2}\right) & =g\left(X_{1}, X_{3}\right)=g\left(X_{2}, X_{3}\right)=0
\end{aligned}
$$

Assume that $\eta$ is a 1-form given by $\eta(T)=g\left(T, X_{3}\right)$, for any $T \in \chi(M)$, and $\psi$ is a $(1,1)$ tensor field defined by

$$
\psi\left(X_{1}\right)=-X_{2}, \quad \psi\left(X_{2}\right)=X_{1}, \quad \psi\left(X_{3}\right)=0
$$

## YÜKSEL PERKTAŞ and YILDIZ/Turk J Math

Then one can easily show that the quadruple $(\psi, \xi, \eta, g)$ is an almost contact metric structure on $M$ by choosing $\xi=X_{3}$. By direct calculations, we see that the nonzero components of the Levi-Civita connection $\nabla$ on $M$ are

$$
\left\{\begin{array}{cc}
\nabla_{X_{1}} X_{1}=\frac{2}{t} X_{3}, & \nabla_{X_{1}} X_{3}=-\frac{2}{t} X_{1}  \tag{6.6}\\
\nabla_{X_{2}} X_{2}=\frac{2}{t} X_{3}, & \nabla_{X_{2}} X_{3}=-\frac{2}{t} X_{2}
\end{array}\right.
$$

which implies that (2.3) is satisfied for the function $f=-\frac{2}{t}$. Hence, $M$ is a 3 -dimensional regular $f$-Kenmotsu manifold [31]. Now we consider the Schouten-van Kampen connection $\stackrel{\star}{\nabla}$ on the $f$-Kenmotsu 3-manifold $M$ defined above. By using (2.5) and (6.6), we see that $\stackrel{\star}{\nabla}_{X_{i}} X_{j}=0$, for $1 \leq i, j \leq 3$. Thus, the manifold $M$ reduces to a Ricci-flat manifold with respect to the Schouten-van Kampen connection. For any $Z, T \in \chi(M)$, we write

$$
\begin{aligned}
U & =a_{1} X_{1}+a_{2} X_{2}+a_{3} X_{3} \\
W & =b_{1} X_{1}+b_{2} X_{2}+b_{3} X_{3}
\end{aligned}
$$

where $a_{i}$ and $b_{j},(1 \leq i, j \leq 3)$, are real functions. Then, from (6.1) and (6.6) we obtain

$$
\begin{aligned}
\left(\stackrel{\star}{L}_{\xi} g\right)(U, W) & =g\left(\nabla_{U} \xi, W\right)+g\left(U, \nabla_{W} \xi\right) \\
& =-\frac{4}{t}\left(a_{1} b_{1}+a_{2} b_{2}\right),
\end{aligned}
$$

which implies that

$$
\left\{\begin{array}{c}
\left.\stackrel{\star}{L_{\xi}} g\right)(U, W)+2 \stackrel{\star i}{R i c}^{\star}(U, W) \\
+2 \mu g(U, W)+2 \delta \eta(U) \eta(W)
\end{array}=\begin{array}{c}
-\frac{4}{t}\left(a_{1} b_{1}+a_{2} b_{2}\right) \\
+2 \mu\left(a_{1} b_{1}+a_{2} b_{2}\right)+2 \delta a_{3} b_{3}
\end{array}\right.
$$

If $\mu=\frac{2}{t}$ and $\delta=-\frac{2}{t}$, then $M$ admits an almost $\eta$-Ricci soliton $(\xi, \mu, \delta, g)$ with respect to the Schouten-van Kampen connection. Moreover, such an almost $\eta$-Ricci soliton is shrinking (resp. expanding) if $t<0$ (resp. $t>0$ ).

Furthermore, by using Theorems 4.1 and 5.1, we state the following:
Corollary 6.12 A Ricci flat projectively semisymmetric (resp. conharmonically semisymmetric) 3-dimensional $\alpha$-Kenmotsu manifold with respect to the Schouten-van Kampen connection admits an $\eta$-Ricci soliton $(\xi,-\alpha, \alpha, g)$.

If the vector field $V$ is the gradient of a potential function $-k$, then $g$ is called an almost gradient Ricci soliton that is $V=-g r a d k$. In this case equation (1.1) becomes

$$
\nabla \operatorname{grad} k=\operatorname{Ric}+\mu g
$$

where $\nabla$ is the Levi-Civita connection. Now assume that $M$ is an $f$-Kenmotsu 3 -manifold with respect to the Schouten-van Kampen connection. If we take $V=-\operatorname{grad} k$ in (6.1), we write

$$
\left(\stackrel{\star}{L}_{\text {grad } k} g\right)(U, W)=\left(L_{\text {grad } k} g\right)(U, W)=g\left(\nabla_{U} \operatorname{grad} k, W\right)+g\left(U, \nabla_{W} \operatorname{grad} k\right) .
$$

We can easily see that

$$
g\left(\nabla_{U} \operatorname{grad} k, W\right)=g\left(U, \nabla_{W} \operatorname{grad} k\right)
$$

## YÜKSEL PERKTAŞ and YILDIZ/Turk J Math

which implies that

$$
\stackrel{\star}{L}_{\text {grad } k} g-2 \stackrel{\star}{R i c}^{\star}-2 \mu g=0
$$

is equal to

$$
g\left(\nabla_{U} \operatorname{grad} k, W\right)=\stackrel{\star}{\operatorname{Ric}}(U, W)+\mu g(U, W)
$$

This reduces to

$$
\nabla_{U} \operatorname{grad} k=\stackrel{\star}{Q} U+\mu U
$$

Now we want to compute $R(U, W) \operatorname{grad} k=\left(\nabla_{U} Q\right) W-\left(\nabla_{W} Q\right) U$. For this, we can write

$$
\begin{aligned}
\nabla_{U} Q W= & \nabla_{U}\left\{\left(\frac{s c a l}{2}+f^{2}+f^{\prime}\right) W-\left(\frac{s c a l}{2}+3 f^{2}+3 f^{\prime}\right) \eta(W) \xi\right\} \\
= & \left(\frac{1}{2} U(s c a l)+2 f U(f)+U\left(f^{\prime}\right)\right) W+\left(\frac{s c a l}{2}+f^{2}+f^{\prime}\right) \nabla_{U} W \\
& -\left(\frac{1}{2} U(s c a l)+6 f U(f)+3 U\left(f^{\prime}\right)\right) \eta(W) \xi \\
& -\left(\frac{s c a l}{2}+3 f^{2}+3 f^{\prime}\right)\left(\eta\left(\nabla_{U} W\right)+g\left(W, \nabla_{U} \xi\right)\right) \xi \\
& -\left(\frac{s c a l}{2}+3 f^{2}+3 f^{\prime}\right) \eta(W) \nabla_{U} \xi
\end{aligned}
$$

and

$$
Q \nabla_{U} W=\left(\frac{s c a l}{2}+f^{2}+f^{\prime}\right) \nabla_{U} W-\left(\frac{s c a l}{2}+3 f^{2}+3 f^{\prime}\right) \eta\left(\nabla_{U} W\right) \xi
$$

Then we have

$$
\begin{aligned}
\left(\nabla_{U} Q\right) W= & \nabla_{U} Q W-Q \nabla_{U} W \\
= & \left(\frac{1}{2} U(\text { scal })+2 f U(f)+U\left(f^{\prime}\right)\right) W-\left(\frac{1}{2} U(s c a l)+6 f U(f)+3 U\left(f^{\prime}\right)\right) \eta(W) \xi \\
& -\left(\frac{s c a l}{2}+3 f^{2}+3 f^{\prime}\right) g\left(W, \nabla_{U} \xi\right) \xi-\left(\frac{s c a l}{2}+3 f^{2}+3 f^{\prime}\right) \eta(W) \nabla_{U} \xi
\end{aligned}
$$

which is equal to

$$
\begin{align*}
\left(\nabla_{U} Q\right) W= & \left(\frac{1}{2} U(\text { scal })+2 f U(f)+U\left(f^{\prime}\right)\right) W-\left(\frac{1}{2} U(s c a l)+6 f U(f)+3 U\left(f^{\prime}\right)\right) \eta(W) \xi \\
& -\left(\frac{s c a l}{2}+3 f^{2}+3 f^{\prime}\right)(f g(U, W)-f \eta(U) \eta(W)) \xi  \tag{6.7}\\
& -\left(\frac{s c a l}{2}+3 f^{2}+3 f^{\prime}\right)(f \eta(W) U-f \eta(U) \eta(W) \xi)
\end{align*}
$$

Putting $U=\xi$ in (6.7), we have

$$
\begin{equation*}
\left(\nabla_{\xi} Q\right) W=\left(\frac{1}{2} \xi(s c a l)+2 f f^{\prime}+f^{\prime \prime}\right) W-\left(\frac{1}{2} \xi(s c a l)+6 f f^{\prime}+3 f^{\prime \prime}\right) \eta(W) \xi \tag{6.8}
\end{equation*}
$$

## YÜKSEL PERKTAŞ and YILDIZ/Turk J Math

Similarly, if we take $W=\xi$ in (6.7), we also have

$$
\begin{equation*}
\left(\nabla_{U} Q\right) \xi=\left(-4 f U(f)-2 U\left(f^{\prime}\right)\right) \xi . \tag{6.9}
\end{equation*}
$$

Using (6.8) and (6.9), we obtain

$$
g\left(\left(\nabla_{U} Q\right) \xi-\left(\nabla_{\xi} Q\right) U, \xi\right)=\left(4 f f^{\prime}+2 f^{\prime \prime}\right) \eta(U)-4 f U(f)-2 U\left(f^{\prime}\right)
$$

Thus, we can write

$$
\begin{equation*}
g(R(\xi, U) \operatorname{grad} k, \xi)=\left(4 f f^{\prime}+2 f^{\prime \prime}\right) \eta(U)-4 f U(f)-2 U\left(f^{\prime}\right) \tag{6.10}
\end{equation*}
$$

On the other hand, we have

$$
\begin{aligned}
R(\xi, U) \operatorname{grad} k= & \left(\frac{s c a l}{2}+2 f^{2}+2 f^{\prime}\right)\{g(U, \operatorname{grad} k) \xi-g(\xi, \operatorname{grad} k) U\} \\
& -\left(\frac{s c a l}{2}+3 f^{2}+3 f^{\prime}\right)\{g(U, \operatorname{grad} k) \xi-g(\xi, \operatorname{grad} k) \eta(U) \xi \\
& +\eta(U) \eta(\operatorname{grad} k) \xi-\eta(\operatorname{grad} k) U\}
\end{aligned}
$$

which implies that

$$
\begin{equation*}
g(R(\xi, U) \operatorname{grad} k, \xi)=-\left(f^{2}+f^{\prime}\right)\{g(U, \operatorname{grad} k)-g(\xi, \operatorname{grad} k) \eta(U)\} \tag{6.11}
\end{equation*}
$$

From (6.10) and (6.11), we obtain

$$
\begin{equation*}
\left(4 f f^{\prime}+2 f^{\prime \prime}\right) \xi-4 f g r a d f-2 g r a d f^{\prime}=-\left(f^{2}+f^{\prime}\right) \operatorname{grad} k+\left(f^{2}+f^{\prime}\right) \xi(k) \xi \tag{6.12}
\end{equation*}
$$

If $f$ is a constant, then we have $\operatorname{grad} k=\xi(k) \xi$. Using $g\left(\nabla_{W} \operatorname{grad} k, U\right)=\stackrel{\star}{\operatorname{Ric}}(U, W)+\mu g(U, W)$, we get

$$
\begin{align*}
\stackrel{\star}{\operatorname{Ric}}(U, W)+\mu g(U, W) & =g\left(\nabla_{W} \xi(k) \xi, U\right) \\
& =W(\xi k) \eta(U)+(\xi k) g(U, W)-(\xi k) \eta(U) \eta(W) \tag{6.13}
\end{align*}
$$

Putting $U=\xi$ in (6.13) and using (2.12), we obtain

$$
\begin{equation*}
W(\xi k)=\mu \eta(W) \tag{6.14}
\end{equation*}
$$

Now using (6.14) in (6.13), we get

$$
\operatorname{Ric}(U, W)=\left(-2 f^{2}-\mu+(\xi k)\right) g(U, W)+(\mu-(\xi k)) \eta(U) \eta(W)
$$

Hence, we give the following:

Theorem 6.13 An $f$-Kenmotsu 3-manifold $M$ bearing a gradient Ricci soliton with respect to the Schoutenvan Kampen connection is an $\eta$-Einstein manifold provided $f$ is a constant. In particular, if $\xi k=\mu$ then the manifold is an Einstein manifold with respect to the Levi-Civita connection.

Finally, we study almost Yamabe solitons on an $f$-Kenmotsu 3-manifold with respect to the Schoutenvan Kampen connection. Assume that $(M, V, \gamma, g)$ is an almost Yamabe soliton on an $f$-Kenmotsu 3-manifold with respect to the Schouten-van Kampen connection. Then, from (1.4), we write

$$
\begin{equation*}
\frac{1}{2}\left(\stackrel{\star}{L}_{V} g\right)(U, W)=(\stackrel{\star}{c a l}-\gamma) g(U, W) \tag{6.15}
\end{equation*}
$$

From (6.1) and (3.6), we write

$$
\begin{equation*}
\frac{1}{2}\left(L_{V} g\right)(U, W)=\left(s c a l+6 f^{2}+4 f^{\prime}-\gamma\right) g(U, W) \tag{6.16}
\end{equation*}
$$

By virtue of (1.4) and (6.16), we state the following:
Theorem 6.14 An almost Yamabe soliton $(M, V, \gamma, g)$ on an $f$-Kenmotsu 3 -manifold is invariant under the Schouten-van Kampen connection if and only if $3 f^{2}+2 f^{\prime}=0$.

Since on an $\alpha$-Kenmotsu manifold, $f=\alpha=$ constant and an $\alpha$-Kenmotsu manifold is cosymplectic if $\alpha$ vanishes, then from the last theorem above we have the following:

Corollary 6.15 An almost Yamabe soliton $(M, V, \gamma, g)$ on a 3-dimensional $\alpha$-Kenmotsu manifold is invariant under the Schouten-van Kampen connection if and only if $M$ is a cosymplectic manifold.

Corollary 6.16 An almost Yamabe soliton $(M, V, \gamma, g)$ on a 3 -dimensional $\alpha$-Kenmotsu $(\alpha \neq 0)$ manifold cannot be invariant under the Schouten-van Kampen connection.

Let us consider that an $f$-Kenmotsu 3-manifold admits an almost Yamabe soliton $(M, \xi, \gamma, g)$. In this case, from (6.16) and (2.3), we have

$$
f(g(U, W)-\eta(U) \eta(W))=(\stackrel{\star}{c} a l-\gamma) g(U, W)
$$

which implies the following:

Theorem 6.17 The scalar curvature scal of an $f$-Kenmotsu 3 -manifold bearing an almost Yamabe soliton $(M, \xi, \gamma, g)$ with respect to the Schouten-van Kampen connection is equal to $\gamma$.

Thus, we give the following:

Corollary 6.18 An $f$-Kenmotsu 3 -manifold bearing a Yamabe soliton ( $M, \xi, \gamma, g$ ) with respect to the Schoutenvan Kampen connection is of constant scalar curvature with respect to the Schouten-van Kampen connection.

Corollary 6.19 If an $f$-Kenmotsu 3 -manifold bearing a Yamabe soliton $(M, \xi, \gamma, g)$ with respect to the Schouten-van Kampen connection, then the Riemannian metric $g$ is a Yamabe metric.

Corollary 6.20 There does not exist a steady almost Yamabe soliton with respect to the Schouten-van Kampen connection on a Ricci flat $f$-Kenmotsu 3 -manifold with respect to the Schouten-van Kampen connection.

## YÜKSEL PERKTAŞ and YILDIZ/Turk J Math

## Acknowledgement

We would like to thank the referee for his/her contributions and valuable comments to the article.

## References

[1] Barbosa E, Riberio E. On conformal solutions of the Yamabe flow. Archive der Mathematik 2013; 101: 79-89.
[2] Bejancu A, Faran H. Foliations and Geometric Structures. Mathematics and its Applications 580. Dordrecht, the Netherlands: Springer, 2006.
[3] Blair DE. Contact Manifolds in Riemannian Geometry. Lecture Notes in Mathematics 509. Berlin, Germany: Springer-Verlag, 1976.
[4] Cao HD, Sun X, Zhang Y. On the structure of gradient Yamabe solitons. Mathematical Research Letters 2012; 19: 767-774.
[5] Chen BY, Deshmukh S. Yamabe and quasi Yamabe solitons on Euclidean submanifolds. Mediterranean Journal of Mathematics 2018; 15 (5): 1-9.
[6] Cho JC, Kimura M. Ricci solitons and real hypersurfaces in a complex space form. Tohoku Mathematical Journal 2009; 61 (2): 205-212.
[7] Chow B, Knopf D. The Ricci flow: An introduction, Mathematical Surveys and Monographs 110. American Mathematical Society, 2004.
[8] Derdzinski A. A Myers-type theorem and compact Ricci solitons. Proceedings of American Mathematical Society 2006; 134 (12): 3645-3648.
[9] Deshmukh S, Chen BY. A note on Yamabe solitons. Balkan Journal of Geometry and Its Applications 2018; 23 (1): 37-43.
[10] Goldberg SI, Yano K. Integrability of almost cosymplectic structures. Pacific Journal of Mathematics 1969; 31: 373-382.
[11] Hamilton RS. The Ricci flow on surfaces. Mathematics and general relativity (Santa Cruz, CA, 1986). Contemporary Mathematics. American Mathematical Society 1988; 71: 237-262
[12] Ianuş S. Some almost product structures on manifolds with linear connection. Kodai Mathematical Seminar Reports 1971; 23: 305-310.
[13] Ivey T. Ricci solitons on compact 3-manifolds. Differential Geometry and its Applications 1993; 3: 301-307.
[14] Janssens D, Vanhecke L. Almost contact structures and curvature tensors. Kodai Mathematical Journal 1981; 4 (1): 1-27.
[15] Kenmotsu K. A class of almost contact Riemannian manifolds.Tohoku Mathematical Journal 1979; 24: 93-103.
[16] Kim TW, Pak HK. Canonical foliations of certain classes of almost contact metric structures. Acta Mathematica Sinica (English Series) 2005; 21 (4): 841-846.
[17] Neto BL. A note on (anti-)self dual quasi Yamabe gradient solitons. Results in Mathematics 2017; 71: 527-533.
[18] Olszak Z. Locally conformal almost cosymplectic manifolds. Colloquium Mathematicum 1989; 57: 73-87.
[19] Olszak Z. The Schouten-van Kampen affine connection adapted an almost (para) contact metric structure. Publications de l'Institut Mathématique 2013; 94: 31-42.
[20] Olszak Z, Rosca R. Normal locally conformal almost cosymplectic manifolds. Publicationes Mathematicae Debrecen 1991; 39: 315-323.
[21] Perelman G. The entopy formula for the Ricci flow and its geometric applications. http://arxiv.org/abs/math.DG/02111159.
[22] Sharma R. Certain results on K-contact and ( $k, \mu$ ) - contact manifolds. Journal of Geometry 2008; 89: 138-147.
[23] Sasaki S, Hatakeyama Y. On differentiable manifolds with certain structures which are closely related to almost contact structures II. Tohoku Mathematical Journal 1961; 13: 281-294.
[24] Schouten J, van Kampen E. Zur Einbettungs-und Krümmungsthorie nichtholonomer Gebilde. Mathematische Annalen 1930; 103: 752-783 (in German).
[25] Solov'ev AF. On the curvature of the connection induced on a hyperdistribution in a Riemannian space. Geometricheskii Sbornik 1978; 19: 12-23.
[26] Solov'ev AF. The bending of hyperdistributions. Geometricheskii Sbornik 1979; 20: 101-112, 1979.
[27] Solov'ev AF. Second fundamental form of a distribution. Matematicheskie Zametki 1982; 35: 139-146.
[28] Solov'ev AF. Curvature of a distribution. Matematicheskie Zametki 1984; 35: 111-124.
[29] Tanno S. The automorphism groups of almost contact Riemannian manifolds. Tohoku Mathematical Journal 1969; 21: 21-38.
[30] Yıldız A. f-Kenmotsu manifolds with the Schouten-van Kampen connection. Publications de l'Institut Mathématique 2017; 10 2(116): 93-105.
[31] Yıldız A, De UC, Turan M. On 3-dimensional f-Kenmotsu manifolds and Ricci solitons. Ukrainian Mathematical Journal 2013; 65 (5): 684-693.


[^0]:    *Correspondence: sperktas@adiyaman.edu.tr
    2010 AMS Mathematics Subject Classification: 53C15, 53C25, 53C50

