тӥвітак

# Turkish Journal of Mathematics 

http://journals.tubitak.gov.tr/math/
Research Article

Turk J Math
(2021) 45: $410-422$
© TÜBİTAK
doi:10.3906/mat-2007-9

# Crossed product of infinite groups and complete rewriting systems 

Esra KIRMIZI ÇETİNALP* ${ }^{*}$, Eylem GÜZEL KARPUZ©
Department of Mathematics, Kamil Özdağ Science Faculty, Karamanoğlu Mehmetbey University, Karaman, Turkey

Received: 07.07.2020 • Accepted/Published Online: 08.12.2020 • Final Version: 21.01.2021


#### Abstract

The aim of this paper is to obtain a presentation for crossed product of some infinite groups and then find its complete rewriting system. Hence, we present normal form structure of elements of crossed product of infinite groups which yield solvability of the word problem.


Key words: Crossed product, rewriting system, presentation

## 1. Introduction and preliminaries

Crossed product construction appears in different areas of algebra such as Lie algebras, $C^{*}$-algebras, and group theory. This product has also many applications in other fields of mathematics like group representation theory and topology. Here, we consider crossed product construction from view of Combinatorial Group Theory. This product is more important than known group constructions since it contains direct, semidirect [3, 6], twisted [12], and knit [4] products. Crossed product construction is an important structure from the point of the famous extension problem, which is one of the most interesting problems of algebra and was first stated by Hölder in 1895 [10]. This problem consists of describing and classifying all groups $E$ containing $H$ as a normal subgroup such that $E / H \cong G$. The extension problem has been the starting point of new subjects in mathematics such as cohomology of groups, homological algebra, crossed products of groups acting on algebras, crossed products of Hopf algebras acting on algebras, crossed products for von Neumann algebras etc. In $[1,2]$ the authors give some results on the crossed product about this extension problem. They also say that the set of these $(E,$. group structures is a one-to-one correspondence with the set of all normalized crossed systems $(H, G, \varphi, f)$. Let $H$ and $G$ be two groups. A crossed system of these groups is a quadruple $(H, G, \varphi, f)$, where $\varphi: G \rightarrow A u t(H)$, $g \mapsto \varphi_{g}(h)$ and $f: G \times G \rightarrow H$ are two maps such that the following compatibility conditions hold:

$$
\begin{gathered}
g_{1} \triangleleft_{\varphi}\left(g_{2} \triangleleft_{\varphi} h\right)=f\left(g_{1}, g_{2}\right)\left(\left(g_{1} g_{2}\right) \triangleleft_{\varphi} h\right) f\left(g_{1}, g_{2}\right)^{-1}, \\
f\left(g_{1}, g_{2}\right) f\left(g_{1} g_{2}, g_{3}\right)=\left(g_{1} \triangleleft_{\varphi} f\left(g_{2}, g_{3}\right)\right) f\left(g_{1}, g_{2} g_{3}\right),
\end{gathered}
$$

for all $g_{1}, g_{2}, g_{3} \in G$, and $h \in H$. The crossed $\operatorname{system}(H, G, \varphi, f)$ is called normalized if $f(1,1)=1$. Also $\varphi$ is called a weak action and $f$ is called an $\varphi$-cocycle. $(H, G, \varphi, f)$ is normalized crossed system then $f(1, g)=f(g, 1)=1$ and $1 \triangleleft_{\varphi} h=h$, for any $g \in G$ and $h \in H$. Here, the notation " $\triangleleft$ " is defined $g \triangleleft_{\varphi} h=\varphi_{g}(h)$ as semidirect product action.

[^0]Let $H$ and $G$ be two groups, $\varphi: G \rightarrow A u t(H)$ and $f: G \times G \rightarrow H$ be two maps. Let $H \not{ }_{\varphi}^{f} G:=H \times G$ as a set with a binary operation defined by the formula:

$$
\left(h_{1}, g_{1}\right)\left(h_{2}, g_{2}\right)=\left(h_{1}\left(g_{1} \triangleleft_{\varphi} h_{2}\right) f\left(g_{1}, g_{2}\right), g_{1} g_{2}\right)
$$

for all $h_{1}, h_{2} \in H$ and $g_{1}, g_{2} \in G$. Assume that $(H, G, \varphi, f)$ is a normalized crossed system. Then $\left(H \#{ }_{\varphi}^{f} G, \cdot\right)$ is a group with identity $1_{H \#{ }_{\varphi}^{f} G}=(1,1)$. Here we recall that we have $(h, g)^{-1}=\left(f\left(g^{-1}, g\right)^{-1}\left(g^{-1} \triangleleft_{\varphi} h^{-1}\right), g^{-1}\right)$ for $(h, g) \in H \#{ }_{\varphi}^{f} G$. The group $H \#_{\varphi}^{f} G$ is called the crossed product of $H$ and $G$ associated to the crossed system $(H, G, \varphi, f)[1]$.

- Let $\varphi$ and $f$ be trivial maps. i.e. $g \triangleleft_{\varphi} h=h$ and $f\left(g_{1}, g_{2}\right)=1$ for all $g_{1}, g_{2} \in G$ and $h \in H$. Then $(H, G, \varphi, f)$ is called trivial crossed system. The crossed product $H{ }_{\varphi}^{f} G:=H \times G$ is the direct product of $H$ and $G$.
- Let $f: G \times G \rightarrow H$ be a trivial map. Then $(H, G, \varphi, f)$ is a crossed system if and only if $\varphi: G \rightarrow A u t(H)$ is a homomorphism. In this case, the crossed product $H \#_{\varphi}^{f} G$ is the semidirect product of $H$ by $G$.
- Let $\varphi: G \rightarrow A u t(H)$ be a trivial map. Then $(H, G, \varphi, f)$ is a crossed system if and only if $\operatorname{Im}(f) \subseteq Z(H)$, where $Z(H)$ is the center of $H$, and $f\left(g_{1}, g_{2}\right) f\left(g_{1} g_{2}, g_{3}\right)=f\left(g_{2}, g_{3}\right) f\left(g_{1}, g_{2} g_{3}\right)$ for all $g_{1}, g_{2}, g_{3} \in G$, that is $f: G \times G \rightarrow Z(H)$ is a 2 -cocycle. The crossed product $H \not{ }_{\varphi}^{f} G$ associated to this crossed system is denoted by $H \times{ }^{f} G$ and called the twisted product of $H$ and $G$.

Now we give the following result as the main application of the crossed product construction on groups. The proof of this result can be found in $[1,2]$.

Theorem 1.1 Let $E$ be a group, $H$ be normal subgroup of $E$, and $G$ be the quotient of $E$ by $H$. Then there exist two maps $\varphi: G \rightarrow A u t(H)$ and $f: G \times G \rightarrow H$ such that $(H, G, \varphi, f)$ is a normalized crossed system and $E \cong H \#_{\varphi}^{f} G$.

The reader is referred to $[7-9,11]$ for recent studies on crossed product of groups and its derivations.

Let $X$ be a set and let $X^{*}$ be the free monoid consisting of all words obtained by the elements of $X$. A (string) rewriting system on $X^{*}$ is a subset $R \subseteq X^{*} \times X^{*}$ and an element $(u, v) \in R$, also can be written as $u \rightarrow v$, is called a rule of $R$. The idea for a rewriting system is an algorithm for substituting the right-hand side of a rule whenever the left-hand side appears in a word. In general, for a given rewriting system $R$, we write $x \rightarrow y$ for $x, y \in X^{*}$ if $x=u v_{1} w, y=u v_{2} w$ and $\left(v_{1}, v_{2}\right) \in R$. Also, we write $x \rightarrow^{*} y$ if $x=y$ or $x \rightarrow x_{1} \rightarrow x_{2} \rightarrow \cdots \rightarrow y$ for some finite chain of reductions and $\leftrightarrow^{*}$ is the reflexive, symmetric, and transitive closure of $\rightarrow$. Furthermore, an element $x \in X^{*}$ is called irreducible with respect to $R$ if there is no possible rewriting (or reduction) $x \rightarrow y$; otherwise, $x$ is called reducible. The rewriting system $R$ is called

- Noetherian if there is no infinite chain of rewritings $x \rightarrow x_{1} \rightarrow x_{2} \rightarrow \cdots$ for any word $x \in X^{*}$,
- Confluent if whenever $x \rightarrow^{*} y_{1}$ and $x \rightarrow^{*} y_{2}$, there is a $z \in X^{*}$ such that $y_{1} \rightarrow^{*} z$ and $y_{2} \rightarrow^{*} z$,
- Complete if $R$ is both Noetherian and confluent.

A critical pair of a rewriting system $R$ is a pair of overlapping rules if one of the $\left(r_{1} r_{2}, s\right),\left(r_{2} r_{3}, t\right) \in R$ with $r_{2} \neq 1$ or $\left(r_{1} r_{2} r_{3}, s\right),\left(r_{2}, t\right) \in R$ forms is satisfied. Also, a critical pair is resolved in $R$ if there is a word $z$ such that $s r_{3} \rightarrow^{*} z$ and $r_{1} t \rightarrow^{*} z$ in the first case or $s \rightarrow^{*} z$ and $r_{1} t r_{3} \rightarrow^{*} z$ in the second. A Noetherian rewriting system is complete if and only if every critical pair is resolved [5, 13].

One can ask a question of what the normal form of elements of a given algebraic structure is. Here, we work on this question focusing on crossed product of some infinite groups to obtain a presentation and its complete rewriting system. To do that, in Section 2, we obtain a presentation for crossed product of some infinite groups and in Section 3, by using the presentation given in Section 2, we get a complete rewriting system for that group. Thus, we present normal form structures of elements of crossed product of that group. Thus, these normal form structures yield solvability of the word problem.

## 2. A presentation for crossed product of infinite groups

In this section, we give one of the main results of this paper which gives a presentation of crossed product of two infinite groups. To do that, let $N$ be a group of infinite direct sum of copies of $\mathbb{Z}_{n}$ presented by $N=\left\langle a_{i}(i \in \mathbb{Z}) ; a_{i}^{n}=1, a_{i} a_{j}=a_{j} a_{i}\right\rangle$ and $\mathbb{Z}$ be infinite cyclic group generated by $t$. Let $\varphi: \mathbb{Z} \rightarrow \operatorname{Aut}(N)$, $t \mapsto \varphi_{t}\left(a_{i}\right)=a_{i+1}$ and $f: \mathbb{Z} \times \mathbb{Z} \rightarrow N$ be two maps. Then, we call $N \not{ }_{\varphi}^{f} \mathbb{Z}$ as crossed product of $N$ and $\mathbb{Z}$ associated to the crossed system $(N, \mathbb{Z}, \varphi, f)$.

Theorem 2.1 A group $G$ is isomorphic to crossed product $N \#_{\varphi}^{f} \mathbb{Z}$ if and only if $G$ is a group generated by generators $\alpha, t$ and satisfies the relations

$$
\alpha^{n}=1, \quad\left[t^{i} \alpha^{k} t^{-i}, t^{j} \alpha^{l} t^{-j}\right]=1
$$

for some $k, l \in \mathbb{Z}$ and $(k, n)=(l, n)=1$.
Proof Suppose that the group $G$ is isomorphic to crossed product $N \not{ }_{\varphi}^{f} \mathbb{Z}$. Thus, there exists a normal subgroup $N$ of $G$ such that $G / N \cong \mathbb{Z}$. It follows that $N=\left\langle a_{i}(i \in \mathbb{Z}) ; a_{i}^{n}=1, a_{i} a_{j}=a_{j} a_{i}\right\rangle$ and there exists $t \in G$ such that $G / N=\left\{t^{k} N ; k \in \mathbb{Z}\right\}$. Since $N \unlhd G$, we obtain that $t a_{i} t^{-1} \in N$ for $t \in G$. That is, there exist $0 \leq m_{i}<n$ such that we have

$$
\begin{equation*}
t a_{i} t^{-1}=a_{i+1}^{m_{i}} \tag{2.1}
\end{equation*}
$$

Thus, we get

$$
\begin{equation*}
G \cong\left\langle a_{i}(i \in \mathbb{Z}), t ; a_{i}^{n}=1, a_{i} a_{j}=a_{j} a_{i}, t a_{i} t^{-1}=a_{i+1}^{m_{i}}\left(\left(m_{i}, n\right)=1\right)\right\rangle \tag{2.2}
\end{equation*}
$$

Now, by using some indices defined on $a_{i}$, we write the relation $t a_{i} t^{-1}=a_{i+1}^{m_{i}} \quad\left(\left(m_{i}, n\right)=1\right)$ given in (2.2) more clearly. Thus, we get

$$
\begin{array}{cl}
a_{1}=t^{-1} a_{2}^{m_{1}} t\left(\left(m_{1}, n\right)=1\right), & a_{2}=t^{-1} a_{3}^{m_{2}} t\left(\left(m_{2}, n\right)=1\right) \\
a_{3}=t^{-1} a_{4}^{m_{3}} t\left(\left(m_{3}, n\right)=1\right), \quad \cdots, & a_{r}=t^{-1} a_{r+1}^{m_{r}} t\left(\left(m_{r}, n\right)=1\right)
\end{array}
$$

As seen above, each generator $a_{i}$ is obtained by using $a_{i+1}$. By using these equalities and the relation $a_{i} a_{j}=a_{j} a_{i}$ given in (2.2), we get
$\left[t^{i} a_{i+1}^{m_{i} \cdots m_{2} m_{1}} t^{-i}, t^{j} a_{j+1}^{m_{j} \cdots m_{2} m_{1}} t^{-j}\right]=1$, where $\left(\prod_{s=1}^{i} m_{s}, n\right)=1$. Thus, for each $m_{s}$, we have $\left(m_{s}, n\right)=1$. Let $\alpha=\left(\cdots, 1,1,1, a_{i}, 1,1,1, \cdots\right)$, by using the relation $a_{i}^{n}=1$ in (2.2), we get $\alpha^{n}=1$. By using the above relation $\left[t^{i} a_{i+1}^{m_{i} \cdots m_{2} m_{1}} t^{-i}, t^{j} a_{j+1}^{m_{j} \cdots m_{2} m_{1}} t^{-j}\right]=1$, we also obtain $\left[t^{i} \alpha^{k} t^{-i}, t^{j} \alpha^{l} t^{-j}\right]=1$, where $(k, n)=(l, n)=1$.

Conversely, now let $G \cong\left\langle\alpha, t ; \alpha^{n}=1,\left[t^{i} \alpha^{k} t^{-i}, t^{j} \alpha^{l} t^{-j}\right]=1\right\rangle$ for some $k, l \in \mathbb{Z}$ and $(k, n)=(l, n)=1$. By Theorem 1.1, we need to prove that $N \unlhd G$ and $G / N \cong \mathbb{Z}$. For any $g^{\prime} \in G$ we have $g^{\prime}=x_{1} x_{2} \cdots x_{k}$, for some $k \in \mathbb{N}$ and $x_{i} \in\left\{\alpha, \alpha^{-1}, t, t^{-1}\right\}(1 \leq i \leq k)$. That is, to prove that $N \unlhd G$ we only need to show that $t^{-1} \alpha^{x} t \in N$ and $t \alpha^{x} t^{-1} \in N$ for any $x \in \mathbb{Z}$. From (2.1), by obtaining a general form, we write that $t \alpha t^{-1}=\alpha^{m}$. By induction, we obtain that $t \alpha^{x} t^{-1}=\alpha^{m x} \in N$. Since $(m, n)=1$, there exist $\gamma, \beta \in \mathbb{Z}$ such that $\gamma m+\beta n=1$. We obtain from (2.1) that $\alpha=t^{-1} \alpha^{m} t$ and it follows from here that $\alpha^{\gamma}=t^{-1} \alpha^{\gamma m} t$. Since $t^{-1} \alpha^{\beta n} t=1$ we obtain that $t^{-1} \alpha^{\gamma m+\beta n} t=\alpha^{\gamma}$, that is $t^{-1} \alpha t=\alpha^{\gamma}$. It follows from here that $t^{-1} \alpha^{x} t=\alpha^{\gamma x}$ for any $x \in \mathbb{Z}$. Hence, $N \unlhd G$.

It follows by a simple calculation that every element $g^{\prime} \in G$ can be written as $t^{p} \alpha^{q}$ for some $p, q \in \mathbb{Z}$. That is $g^{\prime} N=t^{p} \alpha^{q} N=t^{p} N$. Hence, $G / N \subseteq \mathbb{Z}$. Now suppose that there exist $\gamma \neq \beta \in \mathbb{Z}$ such that $t^{\gamma} N=t^{\beta} N$, that is $t^{\gamma-\beta}=\alpha^{\tau}$ for some $0 \leq \tau \leq n-1$. It follows from here that $t^{(\gamma-\beta) n}=\alpha^{\tau n}=1$, which is contradiction with $\mathbb{Z}$ being an infinite cyclic group. Therefore, $G / N \cong \mathbb{Z}$.

Corollary 2.2 Let us consider the presentation of $N \not{ }_{\varphi}^{f} \mathbb{Z}$ given in Theorem 2.1

$$
\left\langle\alpha, t ; \alpha^{n}=1,\left[t^{i} \alpha^{k} t^{-i}, t^{j} \alpha^{l} t^{-j}\right]=1(k, l \in \mathbb{Z},(k, n)=(l, n)=1)\right\rangle
$$

If $k, l=1$, then $N \#_{\alpha}^{f} \mathbb{Z}$ becomes Lamplighter group $L=\mathbb{Z}_{n} \imath \mathbb{Z}=\oplus_{\mathbb{Z}} \mathbb{Z}_{n} \rtimes \mathbb{Z}$ presented by

$$
L_{n}=\left\langle\alpha, t ; \alpha^{n}=1,\left[t^{i} \alpha t^{-i}, t^{j} \alpha t^{-j}\right]=1\right\rangle
$$

for all $i, j \in \mathbb{Z}$ [14].

## 3. A complete rewriting system for $N \#{ }_{\varphi}^{f} \mathbb{Z}$

In this section, we obtain a complete rewriting system for the monoid presentation of $N \not{ }_{\varphi}^{f} \mathbb{Z}$. To obtain a complete rewriting system, we order words in given alphabet in the deg-lex way by comparing two words first with their degrees (lengths), and then lexicographically when the lengths are equal. Since our complete rewriting systems depend on the lengths of words, we have the following main results accordingly as $m=1, m=2$, and $m \geq 3$ in the relator $t a_{i} t^{-1}=a_{i+1}^{m}(i \in \mathbb{Z},(m, n)=1)$. The monoid presentation of $N \not \#_{\varphi}^{f} \mathbb{Z}$ is given as follows:

$$
\begin{equation*}
\left\langle a_{i}(i \in \mathbb{Z}), t, t^{-1} ; a_{i}^{n}=1, a_{i} a_{j}=a_{j} a_{i}, t a_{i} t^{-1}=a_{i+1}^{m}((m, n)=1), t t^{-1}=1, t^{-1} t=1\right\rangle \tag{3.1}
\end{equation*}
$$

We note that $\bar{W}$ will denote the word which does not have the first generator of the word $W$. For example, let $W=a_{1} a_{2} a_{3}$. Then $\bar{W}=a_{2} a_{3}$. Additionally, the notations $(i) \cap(j)$ and $(i) \cup(j)$ will denote the intersection and inclusion overlapping words of left-hand side of relations $(i)$ and $(j)$, respectively.

Now we order the generators given in (3.1) as $a_{i}>a_{j}>t>t^{-1}(i>j)$. This ordering will be acceptable for results given below. We have the following first result of this section.

Theorem 3.1 A complete rewriting system for $m=1$ given in presentation (3.1) consists of the following relations:
(1) $a_{i}^{n} \rightarrow 1$,
(2) $a_{i} a_{j} \rightarrow a_{j} a_{i}(i>j)$,
(3) $t t^{-1} \rightarrow 1$,
(4) $t^{-1} t \rightarrow 1$,
(5) $a_{i} t^{-1} \rightarrow t^{-1} a_{i+1}$,
(6) $a_{i+1} t \rightarrow t a_{i}$.

Proof Since we have the ordering $a_{i}>a_{j}>t>t^{-1}(i>j)$ between generators, there are no infinite reduction steps for all overlapping words. Hence, the rewriting system is Noetherian. Now, to catch up the aim, we need to show that the confluent property holds. Thus, we have the following overlapping words and corresponding critical pairs, respectively.
(1) $\cap(1): a_{i}^{n+1},\left(a_{i}, a_{i}\right)$,
(1) $\cap(2): a_{i}^{n} a_{j}(i>j),\left(a_{j}, a_{i}^{n-1} a_{j} a_{i}\right)$,
$(1) \cap(5): a_{i}^{n} t^{-1},\left(t^{-1}, a_{i}^{n-1} t^{-1} a_{i+1}\right)$,
(1) $\cap(6): a_{i+1}^{n} t,\left(t, a_{i+1}^{n-1} t a_{i}\right)$,
$(2) \cap(1): a_{i} a_{j}^{n}(i>j),\left(a_{j} a_{i} a_{j}^{n-1}, a_{i}\right)$,
$(2) \cap(2): a_{i} a_{j} a_{k}(i>j>k),\left(a_{j} a_{i} a_{k}, a_{i} a_{k} a_{j}\right)$,
(2) $\cap(5): a_{i} a_{j} t^{-1}(i>j),\left(a_{j} a_{i} t^{-1}, a_{i} t^{-1} a_{j+1}\right)$,
$(2) \cap(6): a_{i} a_{j+1} t(i>j+1),\left(a_{j+1} a_{i} t, a_{i} t a_{j}\right)$,
$(3) \cap(4): t t^{-1} t,(t, t)$,
(4) $\cap(3): t^{-1} t t^{-1},\left(t^{-1}, t^{-1}\right)$,
$(5) \cap(4): a_{i} t^{-1} t,\left(t^{-1} a_{i+1} t, a_{i}\right)$,
(6) $\cap(3): a_{i+1} t t^{-1},\left(t a_{i} t^{-1}, a_{i+1}\right)$.

In fact, all these above critical pairs are resolved by reduction steps. We show two of them as follows:

$$
\left.\begin{array}{rl}
(1) \cap(5): & a_{i}^{n} t^{-1}, \quad\left(t^{-1}, a_{i}^{n-1} t^{-1} a_{i+1}\right) \\
a_{i}^{n} t^{-1} \longrightarrow & \left\{\begin{array}{l}
t^{-1} \\
a_{i}^{n-1} t^{-1} a_{i+1} \rightarrow a_{i}^{n-2} t^{-1} a_{i+1}^{2} \rightarrow \cdots \rightarrow t^{-1} a_{i+1}^{n} \rightarrow t^{-1}
\end{array}\right. \\
& (6) \cap(3): a_{i+1} t t^{-1}, \quad\left(t a_{i} t^{-1}, a_{i+1}\right),
\end{array}\right\} \begin{aligned}
& t a_{i} t^{-1} \rightarrow t t^{-1} a_{i+1} \rightarrow a_{i+1} \\
& a_{i+1}
\end{aligned} .
$$

After all above processes, we see that all critical pairs can be resolved. Thus, the rewriting system is complete.

By Theorem 3.1, we have the following result.

Corollary 3.2 The normal form of a word $u$, representing an element of $N \not{ }_{\varphi}^{f} \mathbb{Z}$, is $t^{k} a_{i_{1}}^{\epsilon_{i_{1}}} a_{i_{2}}^{\epsilon_{i_{2}}} \cdots a_{i_{m}}^{\epsilon_{i_{m}}}$, where $k \in \mathbb{Z}, 0 \leq \epsilon_{i_{p}}<n(1 \leq p \leq m)$ and $i_{1}<i_{2}<\cdots<i_{m}$.

Theorem 3.3 A complete rewriting system for $m=2$ given in presentation (3.1) consists of the following
relations:
(1) $\quad a_{i}^{n} \rightarrow 1$,
(2) $a_{i} a_{j} \rightarrow a_{j} a_{i}(i>j)$,
(3) $t t^{-1} \rightarrow 1$,
(4) $t^{-1} t \rightarrow 1$,
(5) $a_{i+1}^{2} W t \rightarrow W t a_{i}$,
(6) $t^{-1} W a_{i+1}^{2} \rightarrow a_{i} t^{-1} W$,

$$
\begin{equation*}
a_{i} W_{1} t^{-1} a_{i+1}^{\frac{n-5}{2}} W_{2} t^{-1} W_{3} a_{i+2} \rightarrow W_{1} t^{-1} W_{2} t^{-1} W_{3} \tag{12}
\end{equation*}
$$

where $W_{1}, W_{2}$, and $W_{3}$ are reduced words containing $a_{i}(i \in \mathbb{Z})$ and $W$ is a reduced word generated by $a_{i}$ and $t$.

Proof Noetherian property of the rewriting system can be seen easily. Now, to catch up the aim, we need to show that the confluent property holds. Thus, we have the following overlapping words and corresponding critical pairs, respectively.

$$
\begin{aligned}
& (1) \cap(1): a_{i}^{n+1},\left(a_{i}, a_{i}\right), \quad(1) \cap(2): a_{i}^{n} a_{j}(i>j),\left(a_{j}, a_{i}^{n-1} a_{j} a_{i}\right), \quad(1) \cap(5): a_{i+1}^{n} W t,\left(W t, a_{i+1}^{n-2} W t a_{i}\right), \\
& (1) \cap(7): a_{i}^{n} \overline{W_{1}} t^{\epsilon} W_{2} t^{-\epsilon},\left(\overline{W_{1}} t^{\epsilon} W_{2} t^{-\epsilon}, a_{i}^{n-1} t^{\epsilon} W_{2} t^{-\epsilon} W_{1}\right), \\
& (1) \cup(8): a_{i}^{n},\left(1, a_{i}^{\frac{n-1}{2}} t^{-1} a_{i+1} t\right), \quad(1) \cap(10): a_{i+1}^{n} W_{1} t W_{2} a_{i}^{\frac{n-1}{2}},\left(W_{1} t W_{2} a_{i}^{\frac{n-1}{2}}, a_{i+1}^{n-1} W_{1} t W_{2}\right), \\
& (1) \cap(11): a_{i}^{n} W_{1} t^{-1} W_{2} a_{i+1}, \quad\left(W_{1} t^{-1} W_{2} a_{i+1}, a_{i}^{\frac{n-1}{2}} W_{1} t^{-1} W_{2}\right), \\
& (1) \cap(12): a_{i+1}^{n} W a_{j+1}^{2}(j>i),\left(W a_{j+1}^{2}, a_{i+1}^{n-2} t a_{i} a_{j} t^{-1} W\right), \\
& (1) \cap(13): a_{i+1}^{n} W_{1} t W_{2} a_{i}^{\frac{n-5}{2}} t W_{3} a_{i-1},\left(W_{1} t W_{2} a_{i}^{\frac{n-5}{2}} t W_{3} a_{i-1}, a_{i+1}^{n-1} W_{1} t W_{2} t W_{3}\right), \\
& (1) \cap(14): a_{i}^{n} W_{1} t^{-1} a_{i+1}^{\frac{n-5}{2}} W_{2} t^{-1} W_{3} a_{i+2},\left(W_{1} t^{-1} a_{i+1}^{\frac{n-5}{2}} W_{2} t^{-1} W_{3} a_{i+2}, a_{i}^{n-1} W_{1} t^{-1} W_{2} t^{-1} W_{3}\right), \\
& (2) \cap(1): a_{i} a_{j}^{n}(i>j),\left(a_{j} a_{i} a_{j}^{n-1}, a_{i}\right), \\
& (2) \cap(5): a_{i} a_{j+1}^{2} W t(i>j+1),\left(a_{j+1} a_{i} a_{j+1} W t, a_{i} W t a_{j}\right), \\
& (2) \cap(7): a_{i} a_{j} \overline{W_{1}} t^{\epsilon} W_{2} t_{k}(i>j>k),\left(a_{j} a_{i} a_{k}, a_{i} a_{k} a_{j}\right), \\
& (2) \cap(8): a_{i} a_{j}^{\frac{n+1}{2}}(i>j),\left(a_{j} a_{i} \overline{W_{1}} t^{\epsilon} W_{2} t^{-\epsilon}, a_{i} t^{\epsilon} W_{2} t^{-\epsilon} W_{1} a_{j}^{\frac{n-1}{2}}, a_{i} t^{-1} a_{j+1} t\right), \\
& (2) \cap(10): a_{i} a_{j+1} W_{1} t W_{2} a_{j}^{\frac{n-1}{2}}(i>j+1),\left(a_{j+1} a_{i} W_{1} t W_{2} a_{j}^{\frac{n-1}{2}}, a_{i} W_{1} t W_{2}\right), \\
& (2) \cap(11): a_{i} a_{j}^{\frac{n-1}{2}} W_{1} t^{-1} W_{2} a_{j+1}(i>j),\left(a_{j} a_{i} a_{j}^{\frac{n-3}{2}} W_{1} t^{-1} W_{2} a_{j+1}, a_{i} W_{1} t^{-1} W_{2}\right), \\
& (2) \cap(12): a_{i} a_{j+1}^{2} W a_{k+1}^{2}(i>j+1, k>j), \quad\left(a_{j+1} a_{i} a_{j+1} W a_{k+1}^{2}, a_{i} t a_{j} a_{k} t^{-1} W\right), \\
& (2) \cap(13): a_{i} a_{j+1} W_{1} t W_{2} a_{j}^{\frac{n-5}{2}} t W_{3} a_{j-1}(i>j+1),\left(a_{j+1} a_{i} W_{1} t W_{2} a_{j}^{\frac{n-5}{2}} t W_{3} a_{j-1}, a_{i} W_{1} t W_{2} t W_{3}\right),
\end{aligned}
$$

and
$(2) \cap(14): a_{i} a_{j} W_{1} t^{-1} a_{j+1}^{\frac{n-5}{2}} W_{2} t^{-1} W_{3} a_{j+2}(i>j),\left(a_{j} a_{i} W_{1} t^{-1} a_{j+1}^{\frac{n-5}{2}} W_{2} t^{-1} W_{3} a_{j+2}, a_{i} W_{1} t^{-1} W_{2} t^{-1} W_{3}\right)$,
$(3) \cap(4): t t^{-1} t,(t, t), \quad(3) \cap(6): t t^{-1} W a_{i+1}^{2},\left(W a_{i+1}^{2}, t a_{i} t^{-1} W\right)$,
$(4) \cap(3): t^{-1} t t^{-1},\left(t^{-1}, t^{-1}\right)$,
(4) $\cap(9): t^{-1} t a_{i} t^{-1},\left(a_{i} t^{-1}, t^{-1} a_{i+1}^{2}\right)$,
$(5) \cap(3): a_{i+1}^{2} W t t^{-1},\left(W t a_{i} t^{-1}, a_{i+1}^{2} W\right), \quad(5) \cap(7): a_{i+1}^{2} W t W_{2} t^{-1},\left(W t a_{i} W_{2} t^{-1}, a_{i+1}^{2} t W_{2} t^{-1} W\right)$,
$(5) \cap(9): a_{i+1}^{2} W t a_{j} t^{-1},\left(W t a_{i} a_{j} t^{-1}, a_{i+1}^{2} W a_{j+1}^{2}\right)$,
(6) $\cap(1): t^{-1} W a_{i+1}^{n},\left(a_{i} t^{-1} W a_{i+1}^{n-2}, t^{-1} W\right)$,
(6) $\cap(2): t^{-1} W a_{i+1}^{2} a_{j}(i+1>j),\left(a_{i} t^{-1} W a_{j}, t^{-1} W a_{i+1} a_{j} a_{i+1}\right)$,
(6) $\cap(5): t^{-1} W a_{i+1}^{2} W_{1} t,\left(a_{i} t^{-1} W W_{1} t, t^{-1} W W_{1} t a_{i}\right)$,
$(6) \cap(8): t^{-1} W a_{i+1}^{\frac{n+1}{2}},\left(a_{i} t^{-1} W a_{i+1}^{\frac{n-3}{2}}, t^{-1} W t^{-1} a_{i+1} t\right)$,
(6) $\cap(10): t^{-1} W a_{i+1}^{2} W_{1} t W_{2} a_{i}^{\frac{n-1}{2}},\left(a_{i} t^{-1} W W_{1} t W_{2} a_{i}^{\frac{n-1}{2}}, t^{-1} W a_{i+1} W_{1} t W_{2}\right)$,
(6) $\cap(11): t^{-1} W a_{i+1}^{\frac{n-1}{2}} W_{1} t^{-1} W_{2} a_{i+2},\left(a_{i} t^{-1} W a_{i}^{\frac{n-5}{2}} W_{1} t^{-1} W_{2} a_{i+2}, t^{-1} W W_{1} t^{-1} W_{2}\right)$,
(6) $\cap(12): t^{-1} W a_{i+1}^{2} W_{1} a_{j+1}^{2}(j>i),\left(a_{i} t^{-1} W W_{1} a_{j+1}^{2}, t^{-1} W t a_{i} a_{j} t^{-1} W_{1}\right)$,
(6) $\cap(13): t^{-1} W a_{i+1}^{2} W_{1} t W_{2} a_{i}^{\frac{n-5}{2}} t W_{3} a_{i-1},\left(a_{i} t^{-1} W W_{1} t W_{2} a_{i}^{\frac{n-5}{2}} t W_{3} a_{i-1}, t^{-1} W a_{i+1} W_{1} t W_{2} t W_{3}\right)$,
(6) $\cap(14): t^{-1} W a_{i}^{2} W_{1} t^{-1} a_{i+1}^{\frac{n-5}{2}} W_{2} t^{-1} W_{3} a_{i+2}$,

$$
\left(a_{i-1} t^{-1} W W_{1} t^{-1} a_{i+1}^{\frac{n-5}{2}} W_{2} t^{-1} W_{3} a_{i+2}, t^{-1} W a_{i} W_{1} t^{-1} W_{2} t^{-1} W_{3}\right)
$$

(7) $\cap(3): W_{1} t^{-1} W_{2} t t^{-1}, \quad\left(t^{-1} W_{2} t W_{1} t^{-1}, W_{1} t^{-1} W_{2}\right)$,
(7) $\cap(4): W_{1} t W_{2} t^{-1} t, \quad\left(t W_{2} t^{-1} W_{1} t, W_{1} t W_{2}\right)$,
$(7) \cap(6): W_{1} t W_{2} t^{-1} W a_{i+1}^{2}, \quad\left(t W_{2} t^{-1} W_{1} W a_{i+1}^{2}, W_{1} t W_{2} a_{i} t^{-1} W\right)$,
$(7) \cap(9): W_{1} t^{-1} W_{2} t a_{i} t^{-1}, \quad\left(t^{-1} W_{2} t W_{1} a_{i} t^{-1}, W_{1} t^{-1} W_{2} a_{i+1}^{2}\right)$,
$(8) \cap(1): a_{i}^{n},\left(1, a_{i}^{\frac{n-1}{2}} t^{-1} a_{i+1} t\right), \quad(8) \cap(2) a_{i}^{\frac{n+1}{2}} a_{j}(i>j), \quad\left(t^{-1} a_{i+1} t a_{j}, a_{i}^{\frac{n-1}{2}} a_{j} a_{i}\right)$,
$(8) \cap(5): a_{i}^{\frac{n+1}{2}} W t, \quad\left(t^{-1} a_{i+1} t W t, a_{i}^{\frac{n-3}{2}} W t a_{i-1}\right), \quad(8) \cap(8): a_{i}^{\frac{n+3}{2}}, \quad\left(t^{-1} a_{i+1} t a_{i}, a_{i} t^{-1} a_{i+1} t\right)$,
$(8) \cap(10): a_{i+1}^{\frac{n+1}{2}} W_{1} t W_{2} a_{i}^{\frac{n-1}{2}},\left(t^{-1} a_{i+1} t W_{1} t W_{2} a_{i}^{\frac{n-1}{2}}, a_{i+1}^{\frac{n-1}{2}} W_{1} t W_{2}\right)$,
$(8) \cap(11): a_{i}^{\frac{n+1}{2}} W_{1} t^{-1} W_{2} a_{i+1},\left(t^{-1} a_{i+1} t W_{1} t^{-1} W_{2} a_{i+1}, a_{i} W_{1} t^{-1} W_{2}\right)$,
(8) $\cap(12): a_{i+1}^{\frac{n+1}{2}} W a_{j+1}^{2}(j>i), \quad\left(t^{-1} a_{i+1} t W a_{j+1}^{2}, a_{i+1}^{\frac{n-1}{2}} t a_{i} a_{j} t^{-1} W\right)$,
(8) $\cap(13): a_{i+1}^{\frac{n+1}{2}} W_{1} t W_{2} a_{i}^{\frac{n-5}{2}} t W_{3} a_{i-1},\left(t^{-1} a_{i+1} t W_{1} t W_{2} a_{i}^{\frac{n-5}{2}} t W_{3} a_{i-1}, a_{i+1}^{\frac{n-1}{2}} W_{1} t W_{2} t W_{3}\right)$,
(8) $\cap(14): a_{i}^{\frac{n+1}{2}} W_{1} t^{-1} a_{i+1}^{\frac{n-5}{2}} W_{2} t^{-1} W_{3} a_{i+2},\left(t^{-1} a_{i+1} t W_{1} t^{-1} a_{i+1}^{\frac{n-5}{2}} W_{2} t^{-1} W_{3} a_{i+2}, a_{i}^{\frac{n-1}{2}} W_{1} t^{-1} W_{2} t^{-1} W_{3}\right)$,
$(9) \cap(4): t a_{i} t^{-1} t,\left(a_{i+1}^{2} t, t a_{i}\right), \quad(9) \cap(6): t a_{i} t^{-1} W a_{j+1}^{2},\left(a_{i+1}^{2} W a_{j+1}^{2}, t a_{i} a_{j} t^{-1} W\right)$,
(9) $\cap(7): t a_{i} t^{-1} W_{2} t,\left(a_{i+1}^{2} W_{2} t, t t^{-1} W_{2} t a_{i}\right)$,
and
(9) $\cap(14): t a_{i} t^{-1} a_{i+1}^{\frac{n-5}{2}} W_{2} t^{-1} W_{3} a_{i+2},\left(a_{i+1}^{\frac{n-1}{2}} W_{2} t^{-1} W_{3} a_{i+2}, t t^{-1} W_{2} t^{-1} W_{3}\right)$,
$(10) \cap(1): a_{i+1} W_{1} t W_{2} a_{i}^{n},\left(W_{1} t W_{2} a_{i}^{\frac{n+1}{2}}, a_{i+1} W_{1} t W_{2}\right)$,
$(10) \cap(2): a_{i+1} W_{1} t W_{2} a_{i}^{\frac{n-1}{2}} a_{j}(i>j),\left(W_{1} t W_{2} a_{j}, a_{i+1} W_{1} t W_{2} a_{i}^{\frac{n-1}{2}-1} a_{j} a_{i}\right)$,
$(10) \cap(5): a_{i+1} W_{1} t W_{2} a_{i}^{\frac{n-1}{2}} W t,\left(W_{1} t W_{2} W t, a_{i+1} W_{1} t W_{2} a_{i}^{\frac{n-5}{2}} W t a_{i-1}\right)$,
(10) $\cap(7): a_{i+1} W_{1} t W_{2} a_{i}^{\frac{n-1}{2}} \overline{W_{3}} t^{\epsilon} W_{4} t^{-\epsilon},\left(W_{1} t W_{2} \overline{W_{3}} t^{\epsilon} W_{4} t^{-\epsilon}, a_{i+1} W_{1} t W_{2} a_{i}^{\frac{n-3}{2}} t^{\epsilon} W_{4} t^{-\epsilon} a_{i} \overline{W_{3}}\right)$,
$(10) \cap(8): a_{i+1} W_{1} t W_{2} a_{i}^{\frac{n+1}{2}},\left(W_{1} t W_{2} a_{i}, a_{i+1} W_{1} t W_{2} t^{-1} a_{i+1} t\right)$,
$(10) \cap(10): a_{i+1} W_{1} t W_{2} a_{i}^{\frac{n-1}{2}} W_{3} t W_{4} a_{i-1}^{\frac{n-1}{2}},\left(W_{1} t W_{2} W_{3} t W_{4} a_{i-1}^{\frac{n-1}{2}}, a_{i+1} W_{1} t W_{2} a_{i}^{\frac{n-3}{2}} W_{3} t W_{4}\right)$,
$(10) \cap(11): a_{i+1} W_{1} t W_{2} a_{i}^{\frac{n-1}{2}} W_{3} t^{-1} W_{4} a_{i+1},\left(W_{1} t W_{2} W_{3} t^{-1} W_{4} a_{i+1}, a_{i+1} W_{1} t W_{2} W_{3} t^{-1} W_{4}\right)$,
$(10) \cap(12): a_{i+1} W_{1} t W_{2} a_{i}^{\frac{n-1}{2}} W a_{j+1}^{2}(j>i),\left(W_{1} t W_{2} W a_{j+1}^{2}, a_{i+1} W_{1} t W_{2} a_{i}^{\frac{n-5}{2}} t a_{i-1} a_{j} t^{-1} W\right)$,
$(10) \cap(13): a_{i+1} W_{1} t W_{2} a_{i}^{\frac{n-1}{2}} W_{3} t W_{4} a_{i-1}^{\frac{n-5}{2}} t W_{5} a_{i-2}$,

$$
\left(W_{1} t W_{2} W_{3} t W_{4} a_{i-1}^{\frac{n-5}{2}} t W_{5} a_{i-2}, a_{i+1} W_{1} t W_{2} a_{i}^{\frac{n-3}{2}} W_{3} t W_{4} t W_{5}\right)
$$

$(10) \cap(14): a_{i+1} W_{1} t W_{2} a_{i}^{\frac{n-1}{2}} W_{3} t^{-1} a_{i+1}^{\frac{n-5}{2}} W_{4} t^{-1} W_{5} a_{i+2}$,

$$
\left(W_{1} t W_{2} W_{3} t^{-1} W_{4} a_{i+1}^{\frac{n-5}{2}} W_{4} t^{-1} W_{5} a_{i+2}, a_{i+1} W_{1} t W_{2} a_{i}^{\frac{n-3}{2}} W_{3} t^{-1} W_{4} t^{-1} W_{5}\right)
$$

$(11) \cap(1): a_{i}^{\frac{n-1}{2}} W_{1} t^{-1} W_{2} a_{i+1}^{n},\left(W_{1} t^{-1} W_{2} a_{i+1}^{n-1}, a_{i}^{\frac{n-1}{2}} W_{1} t^{-1} W_{2}\right)$,
$(11) \cap(2): a_{i}^{\frac{n-1}{2}} W_{1} t^{-1} W_{2} a_{i+1} a_{j}(i+1>j),\left(W_{1} t^{-1} W_{2} a_{j}, a_{i}^{\frac{n-1}{2}} W_{1} t^{-1} W_{2} a_{j} a_{i+1}\right)$,
(11) $\cap(5): a_{i}^{\frac{n-1}{2}} W_{1} t^{-1} W_{2} a_{i+1}^{2} W t,\left(W_{1} t^{-1} W_{2} a_{i+1} W t, a_{i}^{\frac{n-1}{2}} W_{1} t^{-1} W_{2} W t a_{i}\right)$,
(11) $\cap(6): a_{i}^{\frac{n-1}{2}} W_{1} t^{-1} W_{2} a_{i+1}^{2},\left(W_{1} t^{-1} W_{2} a_{i+1}, a_{i}^{\frac{n-1}{2}} W_{1} a_{i} t^{-1} W_{2}\right)$,
$(11) \cap(7): a_{i}^{\frac{n-1}{2}} W_{1} t^{-1} W_{2} a_{i+1} t W_{3} t^{-1}\left(W_{1} t^{-1} W_{2} t W_{3} t^{-1}, a_{i}^{\frac{n-1}{2}} W_{1} t^{-1} t W_{3} t^{-1} W_{2} a_{i+1}\right)$,
(11) $\cap(8): a_{i}^{\frac{n-1}{2}} W_{1} t^{-1} W_{2} a_{i+1}^{\frac{n+1}{2}},\left(W_{1} t^{-1} W_{2} a_{i+1}^{\frac{n-1}{2}}, a_{i}^{\frac{n-1}{2}} W_{1} t^{-1} W_{2} t^{-1} a_{i+2} t\right)$,
(11) $\cap(10): a_{i}^{\frac{n-1}{2}} W_{1} t^{-1} W_{2} a_{i+1} W_{3} t W_{4} a_{i}^{\frac{n-1}{2}},\left(W_{1} t^{-1} W_{2} W_{3} t W_{4} a_{i}^{\frac{n-1}{2}}, a_{i}^{\frac{n-1}{2}} W_{1} t^{-1} W_{2} W_{3} t W_{4}\right)$,
$(11) \cap(11): a_{i}^{\frac{n-1}{2}} W_{1} t^{-1} W_{2} a_{i+1}^{\frac{n-1}{2}} W_{3} t^{-1} W_{4} a_{i+2},\left(W_{1} t^{-1} W_{2} a_{i+1}^{\frac{n-3}{2}} W_{3} t^{-1} W_{4} a_{i+2}, a_{i}^{\frac{n-1}{2}} W_{1} t^{-1} W_{2} W_{3} t^{-1} W_{4}\right)$,
$(11) \cap(12): a_{i}^{\frac{n-1}{2}} W_{1} t^{-1} W_{2} a_{i+1}^{2} W a_{j+1}^{2}(j>i),\left(W_{1} t^{-1} W_{2} a_{i+1} W a_{j+1}^{2}, a_{i}^{\frac{n-1}{2}} W_{1} t^{-1} W_{2} t a_{i} a_{j} t^{-1} W\right)$,
(11) $\cap(13): a_{i}^{\frac{n-1}{2}} W_{1} t^{-1} W_{2} a_{i+1} W_{3} t W_{4} a_{i}^{\frac{n-5}{2}} t W_{5} a_{i-1}$,

$$
\left(W_{1} t^{-1} W_{2} W_{3} t W_{4} a_{i}^{\frac{n-5}{2}} t W_{5} a_{i-1}, a_{i}^{\frac{n-1}{2}} W_{1} t^{-1} W_{2} W_{3} t W_{4} t W_{5}\right)
$$

(11) $\cap(14): a_{i}^{\frac{n-1}{2}} W_{1} t^{-1} W_{2} a_{i+1} W_{3} t^{-1} a_{i+2}^{\frac{n-5}{2}} W_{4} t^{-1} W_{5} a_{i+3}$,

$$
\left(W_{1} t^{-1} W_{2} W_{3} t^{-1} a_{i+2}^{\frac{n-5}{2}} W_{4} t^{-1} W_{5} a_{i+3}, a_{i}^{\frac{n-1}{2}} W_{1} t^{-1} W_{2} W_{3} t^{-1} W_{4} t^{-1} W_{5}\right)
$$

and
(12) $\cap(1): a_{i+1}^{2} W a_{j+1}^{n}(j>i),\left(t a_{i} a_{j} t^{-1} W a_{j+1}^{n-2}, a_{i+1}^{2} W\right)$,
$(12) \cap(2): a_{i+1}^{2} W a_{j+1}^{2} a_{k}(j>i, j+1>k),\left(t a_{i} a_{j} t^{-1} W a_{k}, a_{i+1}^{2} W a_{j+1} a_{k} a_{j+1}\right)$,
$(12) \cap(5): a_{i+1}^{2} W a_{j+1}^{2} W_{1} t(j>i),\left(t a_{i} a_{j} t^{-1} W W_{1} t, a_{i+1}^{2} W W_{1} t a_{j}\right)$,
$(12) \cap(7): a_{i+1}^{2} W a_{j+1}^{2} \overline{W_{1}} t W_{2} t^{-1}(j>i),\left(t a_{i} a_{j} t^{-1} W \overline{W_{1}} t W_{2} t^{-1}, a_{i+1}^{2} W a_{j+1} t W_{2} t^{-1} a_{j+1} \overline{W_{1}}\right)$,
(12) $\cap(7): a_{i+1}^{2} W a_{j+1}^{2} \overline{W_{1}} t^{-1} W_{2} t(j>i),\left(t a_{i} a_{j} t^{-1} W \overline{W_{1}} t^{-1} W_{2} t, a_{i+1}^{2} W a_{j+1} t^{-1} W_{2} t a_{j+1} \overline{W_{1}}\right)$,
$(12) \cap(8): a_{i+1}^{2} W a_{j+1}^{\frac{n+1}{2}}(j>i),\left(t a_{i} a_{j} t^{-1} W a_{j+1}^{\frac{n-3}{2}}, a_{i+1}^{2} W t^{-1} a_{j+2} t\right)$,
(12) $\cap(10): a_{i+1}^{2} W a_{j+1}^{2} W_{1} t W_{2} a_{j}^{\frac{n-1}{2}}(j>i),\left(t a_{i} a_{j} t^{-1} W W_{1} t W_{2} a_{j}^{\frac{n-1}{2}}, a_{i+1}^{2} W a_{j+1} W_{1} t W_{2}\right)$,
$(12) \cap(11): a_{i+1}^{2} W a_{j+1}^{\frac{n-1}{2}} W_{1} t^{-1} W_{2} a_{j+2}(j>i),\left(t a_{i} a_{j} t^{-1} W a_{j+1}^{\frac{n-5}{2}} W_{1} t^{-1} W_{2} a_{j+2}, a_{i+1}^{2} W W_{1} t^{-1} W_{2}\right)$,
$(12) \cap(12): a_{i+1}^{2} W_{1} a_{j+1}^{2} W_{2} a_{k+1}^{2}(k>j>i),\left(t a_{i} a_{j} t^{-1} W_{1} W_{2} a_{k+1}^{2}, a_{i+1}^{2} W_{1} t a_{j} a_{k} t^{-1} W_{2}\right)$,
$(12) \cap(13): a_{i+1}^{2} W a_{j+1}^{2} W_{1} t W_{2} a_{j}^{\frac{n-5}{2}} t W_{3} a_{j-1}(j>i)$,
$\left(t a_{i} a_{j} t^{-1} W W_{1} t W_{2} a_{j}^{\frac{n-5}{2}} t W_{3} a_{j-1}, a_{i+1}^{2} W a_{j+1} W_{1} t W_{2} t W_{3}\right)$,
$(12) \cap(14): a_{i+1}^{2} W a_{j+1}^{2} W_{1} t^{-1} a_{j+2}^{\frac{n-5}{2}} W_{2} t^{-1} W_{3} a_{j+3}(j>i)$,

$$
\left(t a_{i} a_{j} t^{-1} W W_{1} t^{-1} a_{j+2}^{\frac{n-5}{2}} W_{2} t^{-1} W_{3} a_{j+3}, a_{i+1}^{2} W a_{j+1} W_{1} t^{-1} W_{2} t^{-1} W_{3}\right)
$$

(13) $\cap(1): a_{i+1} W_{1} t W_{2} a_{i}^{\frac{n-5}{2}} t W_{3} a_{i-1}^{n},\left(W_{1} t W_{2} t W_{3} a_{i-1}^{n-1}, a_{i+1} W_{1} t W_{2} a_{i}^{\frac{n-5}{2}} t W_{3}\right)$,
$(13) \cap(2): a_{i+1} W_{1} t W_{2} a_{i}^{\frac{n-5}{2}} t W_{3} a_{i-1} a_{j}(i-1>j),\left(W_{1} t W_{2} t W_{3} a_{j}, a_{i+1} W_{1} t W_{2} a_{i}^{\frac{n-5}{2}} t W_{3} a_{j} a_{i-1}\right)$,
(13) $\cap(5): a_{i+1} W_{1} t W_{2} a_{i}^{\frac{n-5}{2}} t W_{3} a_{i-1}^{2} W t,\left(W_{1} t W_{2} t W_{3} a_{i-1} W t, a_{i+1} W_{1} t W_{2} a_{i}^{\frac{n-5}{2}} t W_{3} W t a_{i-2}\right)$,
(13) $\cap(7): a_{i+1} W_{1} t W_{2} a_{i}^{\frac{n-5}{2}} t W_{3} a_{i-1} \overline{W_{4}} t W_{5} t^{-1}$, $\left(W_{1} t W_{2} t W_{3} \overline{W_{4}} t W_{5} t^{-1}, a_{i+1} W_{1} t W_{2} a_{i}^{\frac{n-5}{2}} t W_{3} t W_{5} t^{-1} a_{i-1} \overline{W_{4}}\right)$,
(13) $\cap(7): a_{i+1} W_{1} t W_{2} a_{i}^{\frac{n-5}{2}} t W_{3} a_{i-1} \overline{W_{4}} t^{-1} W_{5} t$, $\left(W_{1} t W_{2} t W_{3} \overline{W_{4}} t^{-1} W_{5} t, a_{i+1} W_{1} t W_{2} a_{i}^{\frac{n-5}{2}} t W_{3} t^{-1} W_{5} t a_{i-1} \overline{W_{4}}\right)$,
(8) : $a_{i+1} W_{1} t W_{2} a_{i}^{\frac{n-5}{2}} t W_{3} a_{i-1}^{\frac{n+1}{2}},\left(W_{1} t W_{2} t W_{3} a_{i-1}^{\frac{n-1}{2}}, a_{i+1} W_{1} t W_{2} a_{i}^{\frac{n-5}{2}} t W_{3} t^{-1} a_{i} t\right)$,
(13) $\cap(10): a_{i+1} W_{1} t W_{2} a_{i}^{\frac{n-5}{2}} t W_{3} a_{i-1} W_{4} t W_{5} a_{i-2}^{\frac{n-1}{2}}$, $\left(W_{1} t W_{2} t W_{3} W_{4} t W_{5} a_{i-2}^{\frac{n-1}{2}}, a_{i+1} W_{1} t W_{2} a_{i}^{\frac{n-5}{2}} t W_{3} W_{4} t W_{5}\right)$,
$(13) \cap(11): a_{i+1} W_{1} t W_{2} a_{i}^{\frac{n-5}{2}} t W_{3} a_{i-1}^{\frac{n-1}{2}} W_{4} t^{-1} W_{5} a_{i}$, $\left(W_{1} t W_{2} t W_{3} a_{i-1}^{\frac{n-3}{2}} W_{4} t^{-1} W_{5} a_{i}, a_{i+1} W_{1} t W_{2} a_{i}^{\frac{n-5}{2}} t W_{3} W_{4} t^{-1} W_{5}\right)$,
(13) $\cap(12): a_{i+1} W_{1} t W_{2} a_{i}^{\frac{n-5}{2}} t W_{3} a_{i-1}^{2} W a_{j+1}^{2}(j>i)$, $\left(W_{1} t W_{2} t W_{3} a_{i-1} W a_{j+1}^{2}, a_{i+1} W_{1} t W_{2} a_{i}^{\frac{n-5}{2}} t W_{3} t a_{i-2} a_{j} t^{-1} W\right)$,
and
(13)
$\cap(14): a_{i+1} W_{1} t W_{2} a_{i}^{\frac{n-5}{2}} t W_{3} a_{i-1} W_{4} t^{-1} a_{i}^{\frac{n-5}{2}} W_{5} t^{-1} W_{6} a_{i+1}$,

$$
\begin{equation*}
\left(W_{1} t W_{2} t W_{3} W_{4} t^{-1} a_{i}^{\frac{n-5}{2}} W_{5} t^{-1} W_{6} a_{i+1}, a_{i+1} W_{1} t W_{2} a_{i}^{\frac{n-5}{2}} t W_{3} W_{4} t^{-1} W_{5} t^{-1} W_{6}\right) \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
\cap(1): a_{i} W_{1} t^{-1} a_{i+1}^{\frac{n-5}{2}} W_{2} t^{-1} W_{3} a_{i+2}^{n},\left(W_{1} t^{-1} W_{2} t^{-1} W_{3} a_{i+2}^{n-1}, a_{i} W_{1} t^{-1} a_{i+1}^{\frac{n-5}{2}} W_{2} t^{-1} W_{3}\right) \tag{14}
\end{equation*}
$$

$(14) \cap(2): a_{i} W_{1} t^{-1} a_{i+1}^{\frac{n-5}{2}} W_{2} t^{-1} W_{3} a_{i+2} a_{j}(i+2>j),\left(W_{1} t^{-1} W_{2} t^{-1} W_{3} a_{j}, a_{i} W_{1} t^{-1} a_{i+1}^{\frac{n-5}{2}} W_{2} t^{-1} W_{3} a_{j} a_{i+2}\right)$,
$(14) \cap(5): a_{i} W_{1} t^{-1} a_{i+1}^{\frac{n-5}{2}} W_{2} t^{-1} W_{3} a_{i+2}^{2} W t,\left(W_{1} t^{-1} W_{2} t^{-1} W_{3} a_{i+2} W t, a_{i} W_{1} t^{-1} a_{i+1}^{\frac{n-5}{2}} W_{2} t^{-1} W_{3} W t a_{i+1}\right)$,
$(14) \cap(7): a_{i} W_{1} t^{-1} a_{i+1}^{\frac{n-5}{2}} W_{2} t^{-1} W_{3} a_{i+2} \overline{W_{4}} t^{\epsilon} W_{5} t^{-\epsilon}$,

$$
\left(W_{1} t^{-1} W_{2} t^{-1} W_{3} \overline{W_{4}} t^{\epsilon} W_{5} t^{-\epsilon}, a_{i} W_{1} t^{-1} a_{i+1}^{\frac{n-5}{2}} W_{2} t^{-1} W_{3} t^{\epsilon} W_{5} t^{-\epsilon} a_{i+2} \overline{W_{4}}\right)
$$

$$
\begin{equation*}
\urcorner(8): a_{i} W_{1} t^{-1} a_{i+1}^{\frac{n-5}{2}} W_{2} t^{-1} W_{3} a_{i+2}^{\frac{n+1}{2}},\left(W_{1} t^{-1} W_{2} t^{-1} W_{3} a_{i+2}^{\frac{n-1}{2}}, a_{i} W_{1} t^{-1} a_{i+1}^{\frac{n-5}{2}} W_{2} t^{-1} W_{3} t^{-1} a_{i+3} t\right) \tag{14}
\end{equation*}
$$

$\cap(10): a_{i} W_{1} t^{-1} a_{i+1}^{\frac{n-5}{2}} W_{2} t^{-1} W_{3} a_{i+2} W_{4} t W_{5} a_{i+1}^{\frac{n-1}{2}}$,

$$
\begin{equation*}
\left(W_{1} t^{-1} W_{2} t^{-1} W_{3} W_{4} t W_{5} a_{i+1}^{\frac{n-1}{2}}, a_{i} W_{1} t^{-1} a_{i+1}^{\frac{n-5}{2}} W_{2} t^{-1} W_{3} W_{4} t W_{5}\right) \tag{14}
\end{equation*}
$$

$(14) \cap(11): a_{i} W_{1} t^{-1} a_{i+1}^{\frac{n-5}{2}} W_{2} t^{-1} W_{3} a_{i+2}^{\frac{n-1}{2}} W_{4} t^{-1} W_{5} a_{i+3}$,

$$
\left(W_{1} t^{-1} W_{2} t^{-1} W_{3} a_{i+2}^{\frac{n-3}{2}} W_{4} t^{-1} W_{5} a_{i+3}, a_{i} W_{1} t^{-1} a_{i+1}^{\frac{n-5}{2}} W_{2} t^{-1} W_{3} W_{4} t^{-1} W_{5}\right)
$$

$$
\begin{equation*}
(12): a_{i} W_{1} t^{-1} a_{i+1}^{\frac{n-5}{2}} W_{2} t^{-1} W_{3} a_{i+2}^{2} W a_{j+1}^{2}(j>i) \tag{14}
\end{equation*}
$$

$$
\left(W_{1} t^{-1} W_{2} t^{-1} W_{3} a_{i+2} W a_{j+1}^{2}, a_{i} W_{1} t^{-1} a_{i+1}^{\frac{n-5}{2}} W_{2} t^{-1} W_{3} t a_{i+1} a_{j} t^{-1} W\right)
$$

$$
\begin{equation*}
\cap(13): a_{i} W_{1} t^{-1} a_{i+1}^{\frac{n-5}{2}} W_{2} t^{-1} W_{3} a_{i+2} W_{4} t W_{5} a_{i+1}^{\frac{n-5}{2}} t W_{6} a_{i} \tag{14}
\end{equation*}
$$

$$
\left(W_{1} t^{-1} W_{2} t^{-1} W_{3} W_{4} t W_{5} a_{i+1}^{\frac{n-5}{2}} t W_{6} a_{i}, a_{i} W_{1} t^{-1} a_{i+1}^{\frac{n-5}{2}} W_{2} t^{-1} W_{3} W_{4} t W_{5} t W_{6}\right)
$$

$$
\begin{align*}
& \cap(14): a_{i} W_{1} t^{-1} a_{i+1}^{\frac{n-5}{2}} W_{2} t^{-1} W_{3} a_{i+2} W_{4} t^{-1} a_{i+3}^{\frac{n-5}{2}} W_{5} t^{-1} W_{6} a_{i+4}  \tag{14}\\
& \quad\left(W_{1} t^{-1} W_{2} t^{-1} W_{3} W_{4} t^{-1} a_{i+3}^{\frac{n-5}{2}} W_{5} t^{-1} W_{6} a_{i+4}, a_{i} W_{1} t^{-1} a_{i+1}^{\frac{n-5}{2}} W_{2} t^{-1} W_{3} W_{4} t^{-1} W_{5} t^{-1} W_{6}\right)
\end{align*}
$$

In fact, all these above critical pairs are resolved by reduction steps. We show some of them as follows.

$$
\begin{aligned}
& (5) \cap(9): a_{i+1}^{2} W t a_{j} t^{-1},\left(W t a_{i} a_{j} t^{-1}, a_{i+1}^{2} W a_{j+1}^{2}\right) \\
& a_{i+1}^{2} W t a_{j} t^{-1} \longrightarrow\left\{\begin{array}{l}
\bullet W t a_{i} a_{j} t^{-1} \rightarrow t a_{i} a_{j} t^{-1} W \\
\bullet a_{i+1}^{2} W a_{j+1}^{2} \rightarrow t a_{i} a_{j} t^{-1} W
\end{array}\right.
\end{aligned}
$$

$$
\begin{gathered}
(11) \cap(12): a_{i}^{\frac{n-1}{2}} W_{1} t^{-1} W_{2} a_{i+1}^{2} W a_{j+1}^{2}(j>i), \quad\left(W_{1} t^{-1} W_{2} a_{i+1} W a_{j+1}^{2}, a_{i}^{\frac{n-1}{2}} W_{1} t^{-1} W_{2} t a_{i} a_{j} t^{-1} W\right) \\
a_{i}^{\frac{n-1}{2}} W_{1} t^{-1} W_{2} a_{i+1}^{2} W a_{j+1}^{2} \longrightarrow\left\{\begin{aligned}
& \bullet W_{1} \underbrace{t^{-1} W_{2} a_{i+1} W a_{j+1}^{2}} \rightarrow W_{1} a_{j} t^{-1} W_{2} a_{i+1} W \\
& \bullet \underbrace{a_{i}^{\frac{n-1}{2}} W_{1} t^{-1} W_{2} t} a_{i} a_{j} t^{-1} W \rightarrow t^{-1} W_{2} t \underbrace{a_{i}^{\frac{n+1}{2}}} W_{1} a_{j} t^{-1} W \\
& \rightarrow t^{-1} W_{2} \underbrace{t t^{-1}} a_{i+1} t W_{1} a_{j} t^{-1} W \\
& \rightarrow t^{-1} \underbrace{W_{2} a_{i+1} t W_{1} a_{j} t^{-1}} W \\
& \rightarrow W_{1} a_{j} t^{-1} W_{2} a_{i+1} W
\end{aligned}\right.
\end{gathered}
$$

After all above processes, we see that all critical pairs can be resolved. Thus, the rewriting system is complete.

Theorem 3.4 A complete rewriting system for $m \geq 3$ given in presentation (3.1) consists of the following relations:
(1) $\quad a_{i}^{n} \rightarrow 1, \quad(2) a_{i} a_{j} \rightarrow a_{j} a_{i}(i>j)$,
(3) $t t^{-1} \rightarrow 1$,
(4) $t^{-1} t \rightarrow 1$,
(5) $a_{i+1}^{m} \rightarrow t a_{i} t^{-1}((m, n)=1)$,
(6) $a_{j} t^{-1} a_{i}^{k} W t \rightarrow t^{-1} a_{i}^{k} W t a_{j}$,
(7) $a_{i} t W a_{j}^{k} t^{-1} \rightarrow t W a_{j}^{k} t^{-1} a_{i}$,
(8) $\quad a_{r} t^{-1} a_{i}^{k} W_{1} t W_{2} a_{j} \rightarrow a_{j} a_{r} t^{-1} a_{i}^{k} W_{1} t W_{2} \quad(r>j)$,
where $0 \leq k<n(k \in \mathbb{Z})$, $W_{1}$, and $W_{2}$ are reduced words containing $a_{i}(i \in \mathbb{Z})$, and $W$ is reduced word generated by $a_{i}$ and $t$.

Proof Noetherian property of the rewriting system can be seen easily. Now, we need to show that the confluent property holds. To do that we have the following overlapping words and corresponding critical pairs, respectively.

$$
\begin{aligned}
& (1) \cap(1): a_{i}^{n+1},\left(a_{i}, a_{i}\right), \quad(1) \cap(2): a_{i}^{n} a_{j}(i>j),\left(a_{j}, a_{i}^{n-1} a_{j} a_{i}\right), \\
& (1) \cap(6): a_{j}^{n} t^{-1} a_{i}^{k} W t,\left(t^{-1} a_{i}^{k} W t, a_{j}^{n-1} t^{-1} a_{i}^{k} W t a_{j}\right), \\
& (1) \cap(7): a_{i}^{n} t W a_{j}^{k} t^{-1},\left(t W a_{j}^{k} t^{-1}, a_{i}^{n-1} t W a_{j}^{k} t^{-1} a_{i}\right), \\
& (1) \cap(8): a_{r}^{n} t^{-1} a_{i}^{k} W_{1} t W_{2} a_{j}(r>j),\left(t^{-1} a_{i}^{k} W_{1} t W_{2} a_{j}, a_{r}^{n-1} a_{j} a_{r} t^{-1} a_{i}^{k} W_{1} t W_{2}\right), \\
& (2) \cap(1): a_{i} a_{j}^{n}(i>j),\left(a_{j} a_{i} a_{j}^{n-1}, a_{i}\right), \quad(2) \cap(2): a_{i} a_{j} a_{k}(i>j>k),\left(a_{j} a_{i} a_{k}, a_{i} a_{k} a_{j}\right), \\
& (2) \cap(5): a_{i} a_{j+1}^{m}(i>j+1),\left(a_{j+1} a_{i} a_{j+1}^{m-1}, a_{i} t a_{j} t^{-1}\right), \\
& (2) \cap(6): a_{r} a_{j} t^{-1} a_{i}^{k} W t(r>j),\left(a_{j} a_{r} t^{-1} a_{i}^{k} W t, a_{r} t^{-1} a_{i}^{k} W t a_{j}\right), \\
& (2) \cap(7): a_{r} a_{i} t W a_{j}^{k} t^{-1}(r>i),\left(a_{i} a_{r} t W a_{j}^{k} t^{-1}, a_{r} t W a_{j}^{k} t^{-1} a_{i}\right), \\
& (2) \cap(8): a_{s} a_{r} t^{-1} a_{i}^{k} W_{1} t W_{2} a_{j}(s>r>j),\left(a_{r} a_{s} t^{-1} a_{i}^{k} W_{1} t W_{2} a_{j}, a_{s} a_{j} a_{r} t^{-1} a_{i}^{k} W_{1} t W_{2}\right), \\
& (3) \cap(4): t t^{-1} t,(t, t), \quad(4) \cap(3): t^{-1} t t^{-1},\left(t^{-1}, t^{-1}\right),
\end{aligned}
$$

## KIRMIZI ÇETİNALP and GÜZEL KARPUZ/Turk J Math

and
$(5) \cup(1): a_{i}^{n},\left(t a_{i-1} t^{-1} a_{i}^{n-m}, 1\right), \quad(5) \cap(2): a_{i}^{m} a_{j}(i>j),\left(t a_{i-1} t^{-1} a_{j}, a_{i}^{m-1} a_{j} a_{i}\right)$,
$(5) \cap(5): a_{i}^{m+1},\left(t a_{i-1} t^{-1} a_{i}, a_{i} t a_{i-1} t^{-1}\right)$,
(5) $\cap(6): a_{j}^{m} t^{-1} a_{i}^{k} W t,\left(t a_{j-1} t^{-1} t^{-1} a_{i}^{k} W t, a_{j}^{m-1} t^{-1} a_{i}^{k} W t a_{j}\right)$,
(5) $\cap(7): a_{i}^{m} t W a_{j}^{k} t^{-1},\left(t a_{i-1} t^{-1} t W a_{j}^{k} t^{-1}, a_{i}^{m-1} t W a_{j}^{k} t^{-1} a_{i}\right)$,
(5) $\cap(8): a_{r}^{m} t^{-1} a_{i}^{k} W_{1} t W_{2} a_{j}(r>j),\left(t a_{r-1} t^{-1} t^{-1} a_{i}^{k} W_{1} t W_{2} a_{j}, a_{r}^{m-1} a_{j} a_{r} t^{-1} a_{i}^{k} W_{1} t W_{2}\right)$,
(6) $\cap(3): a_{j} t^{-1} a_{i}^{k} W t t^{-1},\left(a_{j} t^{-1} a_{i}^{k} W, t^{-1} a_{i}^{k} W t a_{j} t^{-1}\right)$,
(6) $\cap(7): a_{j} t^{-1} a_{i}^{k_{1}} t W a_{r}^{k_{2}} t^{-1},\left(t^{-1} a_{i}^{k_{1}} t W a_{j} a_{r}^{k_{2}} t^{-1}, a_{j} t^{-1} t W a_{r}^{k_{2}} t^{-1} W a_{i}^{k_{1}}\right)$,
$(6) \cup(8): a_{r} t^{-1} a_{i}^{k} W_{1} t W_{2} a_{j}(r>j),\left(t^{-1} a_{i}^{k} W_{1} t a_{r} W_{2} a_{j}, a_{j} a_{r} t^{-1} a_{i}^{k} W_{1} t W_{2}\right)$,
(7) $\cap(4): a_{i} t W a_{j}^{k} t^{-1} t,\left(t W a_{j}^{k} t^{-1} t a_{i}, a_{i} t W a_{j}^{k}\right)$,
(7) $\cap(6): a_{i} t W_{1} a_{j}^{k_{1}} t^{-1} a_{r}^{k_{2}} W_{2} t,\left(t W_{1} a_{j}^{k_{1}} t^{-1} a_{i} a_{r}^{k_{2}} W_{2} t, a_{i} t W_{1} t^{-1} a_{r}^{k_{2}} W_{2} t a_{j}^{k_{1}}\right)$,
(7) $\cap(8): a_{i} t W a_{j}^{k_{1}} t^{-1} a_{r}^{k_{2}} W_{1} t W_{2} a_{s}(j>s, r>i), \quad\left(t W a_{j}^{k_{1}} t^{-1} a_{i} a_{r}^{k_{2}} W_{1} t W_{2} a_{s}, a_{i} t W a_{s} a_{j}^{k_{1}} t^{-1} a_{r}^{k_{2}} W_{1} t W_{2}\right)$,
(8) $\cap(1): a_{r} t^{-1} a_{i}^{k} W_{1} t W_{2} a_{j}^{n}(r>j),\left(a_{j} a_{r} t^{-1} a_{i}^{k} W_{1} t W_{2} a_{j}^{n-1}, a_{r} t^{-1} a_{i}^{k} W_{1} t W_{2}\right)$,
(8) $\cap(2): a_{r} t^{-1} a_{i}^{k} W_{1} t W_{2} a_{j} a_{s}(r>j>s),\left(a_{j} a_{r} t^{-1} a_{i}^{k} W_{1} t W_{2} a_{s}, a_{r} t^{-1} a_{i}^{k} W_{1} t W_{2} a_{s} a_{j}\right)$,
(8) $\cap(5): a_{r} t^{-1} a_{i}^{k} W_{1} t W_{2} a_{j}^{m}(r>j),\left(a_{j} a_{r} t^{-1} a_{i}^{k} W_{1} t W_{2} a_{j}^{m-1}, a_{r} t^{-1} a_{i}^{k} W_{1} t W_{2} t a_{j-1} t^{-1}\right)$,
(8) $\cap(6): a_{r} t^{-1} a_{i}^{k_{1}} W_{1} t W_{2} a_{j} t^{-1} a_{s}^{k_{2}} W_{3} t(r>j),\left(a_{j} a_{r} t^{-1} a_{i}^{k_{1}} W_{1} t W_{2} t^{-1} a_{s}^{k_{2}} W_{3} t, a_{r} t^{-1} a_{i}^{k_{1}} W_{1} t W_{2} t^{-1} a_{s}^{k_{2}} W_{3} t a_{j}\right)$,
$(8) \cap(7): a_{r} t^{-1} a_{i}^{k_{1}} W_{1} t W_{2} a_{j} t W_{3} a_{s}^{k_{2}} t^{-1}(r>j),\left(a_{j} a r t^{-1} a_{i}^{k_{1}} W_{1} t W_{2} t W_{3} a_{s}^{k_{2}} t^{-1}, a_{r} t^{-1} a_{i}^{k_{1}} W_{1} t W_{2} t W_{3} a_{s}^{k_{2}} t^{-1} a_{j}\right)$,
(8) $\cap(8): a_{r} t^{-1} a_{i}^{k_{1}} W_{1} t W_{2} a_{j} t^{-1} a_{l}^{k_{2}} W_{3} t W_{4} a_{s}(r>j>s)$,

$$
\left(a_{j} a_{r} t^{-1} a_{i}^{k_{1}} W_{1} t W_{2} t^{-1} a_{l}^{k_{2}} W_{3} t W_{4} a_{s}, a_{r} t^{-1} a_{i}^{k_{1}} W_{1} t W_{2} a_{s} a_{j} t^{-1} a_{l}^{k_{2}} W_{3} t W_{4}\right)
$$

In fact, all these above critical pairs are resolved by reduction steps. We show some of them.

$$
\begin{gathered}
(5) \cap(2): a_{i}^{m} a_{j}(i>j),\left(t a_{i-1} t^{-1} a_{j}, a_{i}^{m-1} a_{j} a_{i}\right), \\
a_{i}^{m} a_{j} \longrightarrow\left\{\begin{array}{l}
t a_{i-1} t^{-1} a_{j} \\
a_{i}^{m-1} a_{j} a_{i} \rightarrow a_{j} a_{i}^{m} \rightarrow a_{j} t a_{i-1} t^{-1} \rightarrow t a_{i-1} t^{-1} a_{j} .
\end{array}\right. \\
(7) \cap(6): a_{i} t W_{1} a_{j}^{k_{1}} t^{-1} a_{r}^{k_{2}} W_{2} t(r>i),\left(t W_{1} a_{j}^{k_{1}} t^{-1} a_{i} a_{r}^{k_{2}} W_{2} t, a_{i} t W_{1} t^{-1} a_{r}^{k_{2}} W_{2} t a_{j}^{k_{1}}\right), \\
a_{i} t W_{1} a_{j}^{k_{1}} t^{-1} a_{r}^{k_{2}} W_{2} t \longrightarrow\left\{\begin{array}{l}
t W_{1} a_{j}^{k_{1}} t^{-1} a_{i} a_{r}^{k_{2}} W_{2} t \rightarrow t W_{1} t^{-1} a_{i} a_{r}^{k_{2}} W_{2} t a_{j}^{k_{1}} \\
a_{i} t W_{1} t^{-1} a_{r}^{k_{2}} W_{2} t a_{j}^{k_{1}} \rightarrow t W_{1} t^{-1} a_{i} a_{r}^{k_{2}} W_{2} t a_{j}^{k_{1}}
\end{array}\right.
\end{gathered}
$$

After all above processes, we see that all critical pairs can be resolved. Thus, the rewriting system is complete.

By considering the right sides of the relations given in Theorems 3.3 and 3.4 , we have the following result for both theorems:

Corollary 3.5 The normal form of a word $u$, representing an element of $N \not{ }_{\varphi}^{f} \mathbb{Z}$, is $t^{k_{1}} W_{1} t^{k_{2}} W_{2} t^{k_{3}} W_{3} \cdots t^{k_{q}} W_{q}$, where $k_{i} \in \mathbb{Z}(1 \leq i \leq q)$ and $W_{i}:=a_{i_{1}} a_{i_{2}} \cdots a_{i_{m}}\left(1 \leq i \leq q, i_{1}<i_{2}<\cdots<i_{m}\right)$, $W_{i} t^{k_{i+1}} W_{i+1} t^{k_{i+2}}(1 \leq i \leq$ $q-2)$ and $W_{i} t^{k_{i+1}} W_{i+1} t^{k_{i+2}} W_{i+2}(1 \leq i \leq q-2)$ are irreducible words in $N \not{ }_{\varphi}^{f} \mathbb{Z}$.

By Corollaries 3.2 and 3.5, we have the following result.

Corollary 3.6 The word problem for the group $N \not{ }_{\varphi}^{f} \mathbb{Z}$ is solvable.

## Acknowledgment

This work is supported by the Scientific Research Fund of Karamanoğlu Mehmetbey University Project No: 01-D-19. This work is a part of the doctorate thesis of the first author. The authors would like to thank the referees for their useful comments.

## References

[1] Agore AL, Militaru G. Crossed product of groups, applications. Arabian Journal for Science and Engineering 2008; 33: 1-17.
[2] Agore AL, Fratila D. Crossed product of cyclic groups. Czechoslovak Mathematical Journal 2010; 60: 889-901.
[3] Ateş F. Some new monoid and group constructions under semidirect product. Ars Combinatoria 2009; 91: 203-218.
[4] Ateş F, Çevik AS. Knit products of some groups and their applications. Rendiconti del Seminario Matematico della Universita di Padova 2009; 2: 1-12.
[5] Book RV, Otto F. String-Rewriting Systems. New York, NY, USA: Springer-Verlag, 1993.
[6] Cangül İN, Çevik AS, Şimşek Y. A new approach to connect algebra with analysis: relationships and applications between presentations and generating functions. Boundary Value Problems 2013; 51: 1-17.
[7] Çetinalp EK, Karpuz EG, Ateş F, Çevik AS. Two-sided crossed product of groups. Filomat 2016; 30 (4): 1005-1012.
[8] Çetinalp EK, Karpuz EG, Iterated crossed product of cyclic groups. Bulletin of the Iranian Mathematical Society 2018; 44 (6): 1493-1508.
[9] Emin A, Ateş F, İkikardeş S, Cangül İN. A new monoid construction under crossed product. Journal of Inequalities and Applications 2013; 244.
[10] Hölder, O. Bildung zusammengesetzter gruppen. Mathematische Annalen 1895; 46: 321-422 (in German).
[11] Karpuz EG, Çetinalp EK. Growth series of crossed and two-sided crossed products of cyclic groups, Mathematica Slovaca 2018; 68 (3): 1-12.
[12] Rudkovskii MA. Twisted product of Lie groups. Siberian Mathematical Journal 1997; 38: 1120-1129.
[13] Sims CC. Computation for Finitely Presented Groups. Cambridge University Press, 1994.
[14] Taback J. An Introduction to Lamplighter Groups. Bowdoin University, 2011.


[^0]:    *Correspondence: esrakirmizicetinalp@gmail.com.tr
    2010 AMS Mathematics Subject Classification: 16S15, 20E22, 20M05.

