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Abstract: For all integers n, d, g such that n ≥ 4 , d ≥ n + 1 , and (n + 2)(d − n − 1) ≥ n(g − 1) , we define a good
(i.e. generically smooth of dimension (n + 1)d + (3 − n)(g − 1) and with the expected number of moduli) irreducible
component A(d, g;n) of the Hilbert scheme of smooth and nondegenerate curves in Pn with degree d and genus g . For
most of these (d, g) , we prove that a general X ∈ A(d, g;n) has maximal rank. We cover, in this way, a range of (d, g, n)

outside the Brill–Noether range.
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1. Introduction
Let X ⊂ Pn be any closed subscheme. We recall that X is said to have maximal rank if for all t ∈ N the
restriction map H0(OPn(t)) → H0(OX(t)) has maximal rank, i.e. it is either injective or surjective. Note that
X has maximal rank if and only if for each t ∈ N either h0(IX(t)) = 0 or h1(IX(t)) = 0 . Assume that X

has maximal rank. We know that h0(OPn(t)) =
(
n+t
n

)
. Hence, h0(IX(t)) = max{0,

(
n+t
n

)
− h0(OX(t))} and

h1(IX(t)) = max{0, h0(OX(t)) −
(
n+t
n

)
} . If X is a curve of degree d and genus g with maximal rank and if

h1(OX(t)) = 0 , then h0(IX(t)) = max{0,
(
n+t
n

)
− td− 1 + g} and h1(IX(t)) = max{0, td+ 1− g −

(
n+t
n

)
} . In

this paper we always consider nondegenerate curves X ⊂ Pn (hence with h0(IX(1)) = 0) with h1(OX(2)) = 0

(and so with h1(OX(t)) = 0 for all t ≥ 2). For these curves, if we know that X has maximal rank then we
know its Hilbert function. In the range d < g + n , i.e. in the range of degrees and genera not covered by [4–6],
we always consider linearly normal curves, i.e. curves X with h1(IX(1)) = 0 .

The problem of the existence of curves in projective space with maximal rank and the related problem of
the existence of good components of the Hilbert scheme of curves in Pn have been considered in a huge number
of papers ([1, 2, 4–15, 17, 18, 20–26, 28, 29, 31]). From these papers, it became clear that there is a fundamental
difference between the case n = 3 and the case n > 3 .

In this paper for all integers d, g, n such that n ≥ 4 , d ≥ n+1 , g > 0 and (n+2)(d− n− 1) ≥ n(g− 1)

we construct an irreducible component A(d, g;n) of the Hilbert scheme Hilb(Pn) of Pn whose general element
is a smooth and nondegenerate curve X ⊂ Pn with deg(X) = d and pa(X) = g . We prove that A(d, g;n)

is generically smooth and with the expected dimension (n + 1)d + (n − 3)(1 − g) and that (if g ≥ 2) it has
the expected number of moduli in the sense of Sernesi ([30]), i.e. the natural map A(d, g;n) → Mg is either
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dominant or its generic fiber has dimension n2 + 2n = dimAut(Pn) (Proposition 3.1). For d ≥ g + n we just
take as A(d, g;n) the irreducible component of Hilb(Pn) with as general elements the nonspecial nondegenerate
smooth curves of degree d and genus g . In the next theorem, NX denotes the normal bundle of the smooth
curve X ⊂ Pn .

Theorem 1.1 Fix an integer n ≥ 4 and a real number ε > 0 . Then there exists an integer d(n, ε) such that for
all integers d, g with d ≥ d(n, ε) and 0 ≤ g ≤ (n+2

n − ε)d there is a smooth, connected, and nondegenerate curve
X ⊂ Pn with deg(X) = d , pa(X) = g , h1(NX) = 0 , h1(OX(2)) = 0 , X ∈ A(d, g;n) and X has maximal
rank.

The fact that we get a nice curve with maximal rank in a specific component of Hilb(Pn) is (in our opinion)
interesting, but it is also useful to prove the corresponding statement without the mention of the component.
Indeed, to prove the existence of some X ⊂ Pn with degree d , genus g , h1(OX(2)) = 0 we will need (for a
certain integer k , the critical value of the triple (d, g, n)) to prove the existence of some X ′, X ′′ ∈ A(n, d; g) with
degree d , genus g , h1(OX′(2)) = h1(OX′′(2)) = 0 , h0(IX′(k− 1)) = 0 and h1(IX′′(t)) = 0 for all t ≥ k . Since
dimX ′′ = 1 , a standard exact sequence gives hi(IX′′(t)) = 0 for all t ≥ 0 and all i ≥ 2 . Since in all cases we
need k ≥ 3 , the Castelnuovo–Mumford Lemma shows that to prove h1(IX′′(t)) = 0 for all t ≥ k it is sufficient
to prove h1(IX′′(k)) = 0 . Thus, if we know that X , X ′ , and X ′′ are in the same irreducible component of the
Hilbert scheme of Pn , then by the semicontinuity theorem for cohomology we have h0(IX(t)) = 0 for all t < k

and h1(IX(t)) = 0 for all t ≥ k ; hence, X has maximal rank.

Question 1.2 Describe the triples (d, g, n) , n ≥ 4 , such that there is a smooth, connected, and nondegenerate
curve X ⊂ Pn such that deg(X) = d , pa(X) = g and h1(NX) = 0 .

Question 1.3 Do we obtain the same triples as in Question 1.2 if we allow integral and nondegenerate curves
with mild singularities (e.g., locally complete intersection singularities or nodal singularities)?

Question 1.4 Are there (for many of the triples (d, g, n) as in Theorem 1.1) other irreducible components of
Hilb(Pn) whose general element is a smooth curve X with maximal rank? And with the additional restriction
that h1(OX(2)) = 0? Or with the restriction that X is linearly normal?

In section 2 we define the component A(d, g;n) and prove its existence. In Section 3 we prove many
properties of A(d, g;n) . We prove that it has the expected number of moduli in the sense of Sernesi [30]
(Proposition 3.1). We also prove some statements on the intersection of some elements of A(d, g;n) with a
hyperplane (in the spirit of [2, 4, 8, 10, 23, 26]) (see Section 4). The last 5 sections are devoted to the proof of
Theorem 1.1, the last one containing the numerical lemmas used in the proof.

2. The definition and existence of the component A(d, g;n)

For any nodal curve X ⊂ Pn , let NX denote its normal sheaf in Pn . The sheaf NX is locally free, rank(NX) =

n− 1 and deg(NX) = (n+ 1) deg(X) + (n− 3)χ(OX) .
Let A ⊂ Pn be a reduced curve. A line L ⊂ Pn is said to be k -secant to A if |A∩L| = k , Sing(A)∩L = ∅ ,

and L is not tangent to A . We give the definition of the component A(d, g;n) of the Hilbert scheme Hilb(Pn)

of Pn quoting inside the definition the lemmas used to prove that A(d, g;n) is well-defined.
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Definition 2.1 Fix an integer n ≥ 3 .
(a) For all integers g ≥ 0 and d ≥ g+n , let A(d, g;n) be the irreducible component of Hilb(Pn) whose

general element is a smooth, connected, and nondegenerate curve X ⊂ Pn such that deg(X) = d , pa(X) = g ,
and h1(OX(1)) = 0 .

(b) Fix an integer g ≥ n + 1 . Let A(g + n − 1, g;n) denote the irreducible component of Hilb(Pn)

whose general element is a smooth, connected, and nondegenerate curve X ⊂ Pn such that deg(X) = g+ n− 1

and pa(X) = g , i.e. whose general element is a linear projection of a general canonically embedded smooth
curve C ⊂ Pg−1 from g − n general points of C .

(c) Assume g ≥ n+ 3 and fix an integer d such that d ≤ g + n− 2 and

(n+ 2)(d− n− 1) ≥ n(g − 1). (2.1)

There are uniquely determined integers t, y, x such that g = 1+t(n+2)+y , d = n+1+tn+x and 0 ≤ y ≤ n+1 .
By the inequality g ≥ n + 3 and (2.1) t > 0 and x ≥ y . Let A(d − x, g − y;n) be the only component of
Hilb(Pn) containing the nodal curve K ∪D1 ∪ · · · ∪Dt , where K ⊂ Pn is a linearly normal elliptic curve and
D1, . . . , Dt are t general rational normal curves with #(Di ∩K) = n+3 for all i (Lemma 2.6). Let A(d, g;n)

be the irreducible component of Hilb(Pn) containing the nodal curve Y ∪ L1 ∪ · · · ∪ Ly ∪ Ry+1 ∪ · · · ∪ Rx−y ,
where Y is a general element of A(d− x, g− y;n) , each Li is a general 2-secant line of Y and, if x > y , each
Ri is a general 1-secant line of Y (Lemma 2.7).

Remark 2.2 Fix (d, g, n) for which Definition 2.1 defines A(d, g;n) . In case (a) A(d, g;n) is the component
of the Hilbert scheme of Pn containing the nonspecial and nondegenerate smooth curves of degree d and genus
g . In case (b) a general element of A(d, g;n) is a linear projection of a canonically embedded smooth curve
C ⊂ Pg−1 from g − 1 − n general points of C . These are the triples (d, g, n) such that h1(OX(1)) = 1 for a
general X ∈ A(d, g;n) . Case (c) covers all cases with h1(OX(1)) ≥ 2 for a general X ∈ A(d, g;n) for which
we are able to prove that A(d, g;n) has good properties. Its definition using a linearly normal elliptic curve
K ⊂ Pn is given for its use in Remark 4.4.

Notation 2.3 For any hyperplane H ⊂ Pn , n ≥ 4 , we write A(d, g;H) instead of A(d, g;n− 1) to emphasize
that all elements of A(d, g;H) are contained in H .

A general element of A(d, g;H) is smooth. When n = 4 for A(d, g;H) we may take the irreducible component
of Hilb(P3) defined in [6]. We only need A(d, g;H) when d ≥ g + n − 1 and in this case A(d, g;H) is the
irreducible component of Hilb(Pn−1) whose general element is a nonspecial smooth curve spanning H .

Among the extremal components A(d, g;n) (i.e. the ones for which A(d− 1, g;n) and A(d, g + 1;n) are
not defined) there are the ones with d = 1 + n + tn and g = 1 + t(n + 2) , t > 0 , (resp. d = n + 1 + tn and
g = t(n+2) , resp. d = 2n+ tn and g = n+1+ t(n+2)) obtained from a smooth degree n+1 curve of genus
1 (resp. a smooth rational curve of degree n+1 , resp. a canonically embedded smooth curve of degree 2n and
genus n+ 1) adding t times an (n+ 3) -secant rational normal curve and applying each time Lemma 2.5.

Remark 2.4 Fix a finite set S ⊂ Pn , n ≥ 3 , such that |S| = n+3 and S is in linear general position, i.e. any
S′ ⊂ S with |S′| = n+1 spans Pn . Let D be the unique rational normal curve of Pn containing S . Since ND
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is a direct sum of n − 1 line bundles of degree n + 2 , we have h1(ND) = 0 and h1(ND(−S)) = 0 ; hence, the
restriction map H0(ND) → H0(ND|S) is surjective. Thus, for each rank n− 1 vector bundle E on D with an
injective map ND ↪→ E we have h1(E(−S)) = 0 ; hence, the restriction map H0(E) → H0(E|S) is surjective.

Lemma 2.5 Let Y ⊂ Pn be an integral and nondegenerate curve with deg(Y ) ̸= n . Fix S ⊂ Yreg such that
|S| = n+ 3 and S in linear general position. Let D be the only rational normal curve containing S . Assume
Y ∩ D = S and that X := Y ∪ D is nodal. Then X is a connected nodal curve, deg(X) = deg(Y ) + n ,
pa(X) = pa(Y ) + n+ 2 , h1(NX) = 0 and X is smoothable.

Proof By assumption the curve X is connected, nodal and pa(X) = pa(Y ) + n + 2 . Thus, NX is a rank
n− 1 vector bundle on X with degree (n+1) deg(X) + 2− 2pa(X) . By [16, §2] the vector bundle NX|Y on Y

is obtained from NY making n+ 3 positive elementary transformations. Thus, h1(NX|Y ) ≤ h1(NY ) = 0 . By
[16, §2] the vector bundle NX|D on D is obtained from ND making n+3 positive elementary transformations.
By Remark 2.4 we have h1(NX|Y ) = 0 and the restriction map H0(NX|D) → H0(NX|S) is surjective. Thus,
the Mayer–Vietoris exact sequence

0 → NX → NX|Y ⊕NX|D → NX|S → 0 (2.2)

gives h1(NX) = 0 . Since h1(NY ) = 0 , we have h1(F ) = 0 for each vector bundle F on Y obtained from NY

making n+ 2 positive elementary transformations. Since h1(ND(−S)) = 0 (Remark 2.4), we have h1(A) = 0

for each vector bundle A on D obtained from NX|D making #S negative elementary transformation, one
for each q ∈ S (with the language of [2] for each q ∈ S take pq ∈ TqY \ {q} ; the relevant vector bundle is
ND[q1 → pq1 ] · · · [qn+3 → pqn+3

] , where S = {q1, . . . , qn+3}). Thus, X is smoothable. 2

Lemma 2.6 Take a smooth Y ∈ A(d, g;n) with h1(NY ) = 0 and a rational normal curve D ⊂ Pn such that
Y ∪D is nodal and 1 ≤ |Y ∩D| ≤ n+ 3 . Then Y ∪D ∈ A(d+ n, g + |D ∩ Y | − 1;n) .

Proof As in the proof of Lemma 2.5 we get h1(NY ∪D) = 0 . Thus, we may assume that Y is a general element
of A(d, g;n) . Set x := |D ∩ Y | .

(a) Assume for the moment d ≤ g + n− 2 . It is easy to check that h1(NY ∪D) = 0 and so Y ∪D is a
smooth point of the Hilbert scheme. Thus, it is sufficient to do it for one D to get it for a general D intersecting
Y with the prescribed cardinality. We degenerate Y to a defining curve Y1∪D1∪· · ·∪Dt∪R1∪· · ·∪Ra∪L1∪
· · ·∪Lb of A(d, g;n) with Y1 a linearly normal elliptic curve. The case |D∩Y | = n+3 is done taking a rational
normal curve Dt+1 with |Dt+1 ∩ Y1| = n+ 3 . Thus, it is sufficient to do the cases with 1 ≤ |D ∩ Y | ≤ n+ 2 .
By the case just done it is sufficient to do it for the curve Y1 ∪R1 ∪ · · · ∪Ra ∪L1 ∪ · · · ∪Lb . If either x ≤ n+1

or b > 0 , then we see with another degeneration that we land in a nonspecial case. Now assume b = 0 and
x = n + 2 . It is sufficient to show that Y1 ∪ D ∈ A(2n, n + 2;n) . This is obvious, because h1(NY1∪D) = 0 ,
Y1 ∪D is smoothable and in this range the Hilbert scheme of smooth and nondegenerate curves is irreducible.

(b) Now assume d = g + n− 1 and d ≥ 2n .
(b1) If x ≤ n+ 1 we land again in a smoothable curve with h1(OY ∪D(1)) = 1 .
(b2) Assume x = n+2 . We degenerate Y ∪D to a nodal curve Y2 ∪L1 ∪ · · · ∪Lg−n−1 ∪D1 with Y2 a

canonically embedded curve of degree 2n and genus n+1 , D1 a rational normal curve, #(Y2∩D1) = n+3 and
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L1, . . . , Lg−n−1 general secant lines of Y2 . By step (b1) it is sufficient to prove that Y1 ∪D1 ∈ A(3n, 2n+2;n) .
The nodal curve Y1 ∪D1 is smoothable and h1(NY1∪D1

) = 0 (Lemma 2.5). In this range of degrees and genera
the Hilbert scheme of smooth and nondegenerate curves is irreducible.

(b3) Assume x = n+3 . We degenerate Y ∪D to a nodal curve Y2 ∪L1 ∪ · · · ∪Lg−n−1 ∪D1 with Y2 a
canonically embedded curve of degree 2n and genus n+1 , D1 a rational normal curve, #(Y2∩D1) = n+3 and
L1, . . . , Lg−n−1 general secant lines of Y2 . By step (a) it is sufficient to prove that Y1 ∪D1 ∈ A(3n, 2n+ 3;n) .
The nodal curve Y1 ∪D1 is smoothable and h1(NY1∪D1

) = 0 (Lemma 2.5). In this range of degrees and genera
the Hilbert scheme of smooth and nondegenerate curves is irreducible

(c) Now assume d ≥ g + n . If #(Y ∩ D) ≤ n + 1 , then h1(OY ∪D(1)) = 0 , because h1(OY (1)) = 0

by the generality of Y . Now assume #(Y ∩D) = n + 2 . We get h1(OY ∪D(1)) ≤ 1 . Since any n + 3 points
in linear general position in Pn are contained in a unique rational normal curve, we may degenerate Y ∪ D

to the nodal curve E := Y1 ∪D1 ∪ L1 ∪ · · · ∪ Lg ∪ R1 ∪ · · · ∪ Rd−g−n , where Y1 and D1 are rational normal
curves, #(Y1 ∩ D1) = n + 2 , each Li is a 2 -secant line of Y1 and each Ri is a 1 -secant line of Y1 . Since
Y1 ∪D1 is a limit of canonically embedded curves, we reduce to a case (d′, g′) with d′ = g′ + n− 1 and d ≥ 2n

done in step (b). Now assume #(Y ∩D) = n + 3 . Assume g > 0 . We degenerate Y ∪D to the nodal curve
K ∪D1 ∪L1 ∪ · · · ∪Lg−1 ∪R1 ∪ · · · ∪Rd−g , where K is a linearly normal elliptic curve, D1 is a rational normal
curve, #(K ∩Y1) = n+3 , each Li is a general 2 -secant line of K and each Ri is a general 1 -secant line of K .
We apply the case t = 1 part (c) of Definition 2.1 and then we add the 2 -secant and 1 -secant lines (a case fully
proved). Now assume g = 0 . Since #(Y ∩D) = n+3 and D is a rational normal curve, deg(Y ) > n . As above
it is sufficient to do the case d = n + 1 . We degenerate Y ∪D to the nodal curve C ∪D1 ∪ L , where C and
D rational normal curves, #(C ∩D1) = n+ 2 and L is a line intersecting both C and D1 at a unique point,
which are not in C ∩D1 . In this range of degrees and genera the Hilbert scheme of smooth and nondegenerate
curves is irreducible. 2

Lemma 2.7 Fix integers d, g, n such that A(d, g;n) is defined. Fix integers a > 0 and 1 ≤ b ≤ a+ 1 . Take a
smooth Y ∈ A(d, g;n) such that h1(NY ) = 0 and a smooth rational curve D with Y ∪D nodal, deg(D) = a

and |Y ∩D| = b . Then h1(NY ∪D) = 0 and Y ∪D ∈ A(d+ a, g + b− 1;n) .

Proof The assertions that h1(NY ∪D) = 0 and that Y ∪D is smoothable are well-known ([2], [16, Theorem
4.1, Remark 4.1.1]) and easier than the proof of Lemma 2.5. To prove that Y ∪D ∈ A(d+ a, g + b− 1;n) we
may assume (moving if necessary D ) that Y is general in A(d, g;n) and that D is a general rational curve
of degree a intersecting Y at b points and quasitransversally (the set of all such D ’s is an irreducible variety,
because a ≥ b− 1). We distinguish the following cases.

First assume d ≥ g+n . We have h1(OY (1)) = 0 . A Mayer–Vietoris exact sequence gives h1(OY ∪D(1)) =

0 ; hence (since Y ∪D is smoothable), Y ∪D ∈ A(d+ a, g + b− 1;n) .
Now assume d = g + n − 1 . Let C ⊂ Pg−1 be a general canonically embedded curve and T ⊂ Pg−1 a

general degree a smooth rational curve such that C ∪ T is nodal and |C ∩ T | = b . Since h1(NC) = 0 and T is
a rational normal curve in its linear span, it is easy to check that h1(NC∪T ) = 0 and that C ∪ T is smoothable
(to a nonspecial curve if b ≤ a , to a curve E with h1(OE(1)) = 1 if b = a+ 1). Then we use a family of inner
projections in the fiber of this smoothing to get that Y ∪D ∈ A(d+ a, g + b− 1;n) .

Now assume d ≤ g + n − 2 . Take a general Y1 ∈ A(d − n, g − n − 2;n) . Let D2 be a general rational
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normal curve such that Y1 ∪ D2 is nodal and |D2 ∩ Y1| = n + 3 . By the definition of A(d, g;n) we may
deform Y1 ∪ D2 to the general Y . By induction on g we have Y1 ∪ D1 ∈ A(d − n + a, g − n + b;n) , where
D1 is a general rational curve with Y1 ∪ D1 nodal and |Y1 ∩ D1| = b . In the deformation β : X → ∆ of
Y1 ∪D2 to Y (i.e. with ∆ irreducible and Y and Y1 ∪D2 fibers of β , say Y1 ∪D2 = β−1(o)) as we may find
(up to a covering of ∆) b sections s1, . . . , sb of β such that {s1(o), . . . , sb(o)} = Y1 ∩D1 . In this way in the
deformation of Y1∪D2 to Y we get a deformation of Y1∪D1∪D2 to Y ∪D1 . We have h1(NY1∪D1∪D2

) = 0 . Since
Y1∪D1 ∈ A(d−n+a, g−n−2+b−1;n) by the inductive assumption, we get Y1∪D1∪D2 ∈ A(d+a, g+b−1;n) .

2

Lemma 2.8 Fix integers d, g, n such that A(d, g;n) is defined. Fix an integer b ∈ {n+2, n+3} . If b = n+3

assume d > n . Fix a smooth Y ∈ A(d, g;n) such that h1(NY ) = 0 . Let D ⊂ Pn be a rational normal curve
such that Y ∪D is nodal and |Y ∩D| = b . Then h1(NY ∪D) = 0 and Y ∪D ∈ A(d+ n, g + b− 1;n) .

Proof As in Lemma 2.5 we see that h1(NY ∪D) = 0 and that Y ∪ D is smoothable. We use induction on
the integer d , the starting point of the induction being the case (d, g) = (n, 0) when b = n + 2 and the cases
(d, g) = (n+1, 0) and (d, g) = (n+1, 1) when b = n+3 . When b = n+3 to start the induction it is sufficient
to use the definition of the varieties A(x, y;n) when x ≤ y − 2 . If (d, g) = (n, 0) and b = n + 2 we use that
a general union of 2 rational normal curves with n+ 2 common points is a flat limit of canonically embedded
smooth curves of Pn .

(a) Assume d > g + n . If b = n + 3 , we may assume (d, g) ̸= (n + 1, 0) , since we did the case
(d, g, b) = (n + 1, 0, n + 3) as an initial case. We degenerate Y to Y1 ∪ L with Y1 a general element of
A(d− 1, g;n) and L a general 1 -secant line of Y1 . We add to Y1 a general rational normal curve containing b

points of Y1 and then we apply the case a = b = 1 of Lemma 2.7 to A(d+ n− 1, g + b− 1;n) .
(b) Assume d = g+n . The case b = n+3 follows from the definition of the varieties A(x, y;n) ; hence,

we may assume b = n + 2 . If g = 0 , i.e. if (d, g) = (n, 0) we use again the starting case of the induction. If
g > 0 we degenerate Y to Y1 ∪ L with Y1 a general element of A(d − 1, g − 1;n) , L a general 2 -secant line
of Y1 , then we add a general rational normal curve containing b points of Y1 and then apply Lemma 2.7 with
a = 1 and b = 2 .

(c) Assume d = g + n − 1 ; hence, g ≥ n + 1 . Since the case b = n + 3 follows from the definition of
A(g + 2n− 1, g + n+ 2;n) , it is sufficient to do the case b = n+ 2 .

First assume g = n+1 , i.e. assume that Y is canonically embedded. We have h1(NY ∪D) = 0 and Y ∪D

is smoothable ([10, Lemma 2.3]; these facts are easier than the proof of Lemma 2.5.
If g ≥ n+2 , we degenerate Y to Y1 ∪L with Y1 of degree d− 1 and genus g− 1 and L a 2-secant line

of Y .
(d) Now assume d ≤ g+n−2 . By the definition of A(d+n, g+n+2;n) we conclude when b = n+3 .

Now assume b = n+ 2 . Take a general Y1 ∈ A(d− n, g − n− 2;n) . Let D2 be a general rational normal curve
such that Y1∪D2 is nodal and |D2∩Y1| = n+3 . By the definition of A(d, g;n) we may deform Y1∪D2 to the
general Y . By induction on g we have Y1∪D1 ∈ A(d, g−1) , where D1 is a general rational normal curve with
Y1∪D1 nodal and |Y1∩D1| = n+2 . In the deformation β : X → ∆ of Y1∪D2 to Y (with β−1(o) = Y1∪D1 for
some o ∈ ∆) we may find (up to a covering) b sections s1, . . . , sb of β such that {s1(o), . . . , sb(o)} = Y1 ∩D1 .
In this way in the deformation of Y1 ∪D2 to Y we get (after a finite covering of the base of the deformation) a
deformation of Y1 ∪D1 ∪D2 to Y ∪D1 . We have h1(NY1∪D1∪D2

) = 0 . Since Y1 ∪D1 ∈ A(d, g − 1;n) by the
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inductive assumption, we get Y1 ∪D1 ∪D2 ∈ A(d+ n, g + n+ 1;n) . 2

Lemma 2.9 Take Y ∈ A(x, y;n) and a nonspecial curve D ⊂ H meeting quasitransversally and at a unique
point. Set z := deg(D) and w := pa(D) . Then Y ∪D ∈ A(x+ z, y + w;n) .

Proof We degenerate D to a union D1∪· · ·∪Dk ⊂ H of smooth rational curves such that from D1∪· · ·∪Di

to D1 ∪ · · · ∪Di ∪Di+1 we may use either Lemma 2.7 or Lemma 2.8 in H . Then we apply k times Lemmas
2.7 or 2.8 first to Y ∪D1 and then adding each time a curve Di . 2

3. The right number of moduli in the sense of Sernesi

We adapt the proof of [10, Proposition 3.1] to prove the following result.

Proposition 3.1 The irreducible component A(d, g;n) , g ≥ 2 , of Hilb(Pn) has the expected number of moduli.

Proof If d ≥ g + n− 1 we use that in these cases there is a unique irreducible component of Hilb(Pn) which
dominates Mg . Now assume d ≤ g + n− 2 . Set r := ρ(g, n, d) := (n+ 1)d− ng − n(n+ 1) (the Brill–Noether
number). Set A′(d, g;n) := {X ∈ A(d, g;n) | X is nodal and semistable} and let pd,g : A(d, g;n) → Mg be
the moduli map.

(a) First assume r ≥ 0 . Let x be the only integer such that d = n + r + xn and g = r + x(n + 1) .
Since d < g + n , we have x > 0 . We have ρ(g, d, n) = ρ(g − n − 1, d − n, n) . By induction on x starting
with the case x = 0 we may assume that pd−n,g−n−1 is dominant. We want to prove that the general fibers of
pd−n,g−n−1 have the same dimension. Take a general C ∈ A(d−n, g−n−1;n) . In particular C is smooth and
h1(NC) = 0 . Take a general B ⊂ C with |B| = n+ 2 and let D be a general rational normal curve containing
C . By Lemma 2.8 the curve C ∪D is nodal, pa(C ∪D) = g and C ∪D ∈ A(d, g;n) . It is sufficient to prove
that the fiber F of pd−n,g−n−1 containing C has the same dimension as the fiber F ′ of pd,g containing C ∪D .
Let G be the set of all rational normal curves containing B . We have dimG = n− 1 and G is an irreducible
variety. Fix any ordering of the set B = {q1, . . . , qn+2} . To show that dim[C] F = dim[C∪D] F

′ it is sufficient
to check that there are only finitely many D′, D′′ ∈ G such that pd,g(C ∪D′) = pd,g(C ∪D′′) . It is sufficient
to show that if h : D → D′ is an isomorphism, then h is uniquely determined by the element of Sn+2 induced
by the permutation σ such that σ(i) is the only element of {1, . . . , n+2} such that qσ(i) = h(qi) . Since D,D′

are rational normal curves, h is induced by an element h′ of Aut(Pn) . The projective transformation h′ fixes
the set B in linear general position and with |B| = n+ 2 . Thus, h′ is uniquely determined.

(b) Now assume r < 0 . We need to prove that each irreducible component of a general fiber of
pd,g parametrizes projectively equivalent elements of A(d, g;n) , i.e. (since in this range a general element of
A(d, g;n) has finitely many automorphisms) it is sufficient to prove that a general fiber of pd,g has dimension
n2 + 2n . We use induction on the integer d . Since r < 0 , by the definition of A(d, g;n) there is an integer
t > 0 and a pair (d′, g′) such that d = d′ + tn , g = g′ + t(n + 2) and either d′ ≥ g′ + n or g′ ≥ n + 1 and
d′ ≥ g+n− 1 . Hence, A(d−n, g−n− 2;n) is defined. By the inductive assumption the irreducible component
Γ of the fiber of pd−n,g−n−2 over pd−n,g−n−2(Y ) has dimension max{n2 + 2n, r + 3n+ n2} . We fix a general
S ⊂ Y with |S| = n + 3 and let D ⊂ Pn be the only rational normal curve containing S . Moving Y among
the elements of A(d− n, g − n− 2) containing S we may assume that Y ∪D is nodal and Y ∩D = S . Thus,
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Y ∪D ∈ A(d, g;n) . Since |S| ≥ 3 , Y ∪D is stable. Take a general element W of an irreducible component Γ

of p−1
d,g(pd,g(Y ∪ D)) containing Y ∪ D . W is a 2 -component nodal curve, say W = W1 ∪ W2 with W1,W2

smooth, W1 of genus g − n− 2 , W2 of genus 0 and |W1 ∩W2| = n+ 3 . Assume dimΓ > 0 . Since Y ∪D is a
limit of a family of curves like W1 ∪W2 , we get deg(W1) = d−n , deg(W2) = n and W1 ∩W2 in linear general
position, there is a nonempty open subset Γ′ of Γ such that all W ′ ∈ Γ′ are nodal 2 -component curves, say
W ′ = A∪B with A,B smooth, A of genus g−n−2 and isomorphic to Y as an abstract curve, B rational and
|A∩B| = n+3 . Since h1(NY ) = 0 , Y is a smooth point of Hilb(Pn) . Hence, all A appearing as a nonrational
normal curve of an element of Γ′ are in A(d − n, g − n − 2;n) . Since S is in linear general position A ∩ B is
in linear general position for a general A ∪B ∈ Γ′ . If r ≤ −n we get that dimΓ′ = n2 + 2n .

From now on we assume r ≥ −n+ 1 .
Assume for the moment g − n − 2 ≥ 2 . For a fixed (but general) [Y ] ∈ Mg−n−2 (seen as an abstract

curve) there are ∞r+n degree d − n nondegenerate embeddings of Y in Pn , we have deg(W2) ≥ n . Call
{ut} , t ∈ Λ , this family of embeddings and for each t ∈ Λ call Bt the unique rational normal curve containing
ut(S) . Note that Bt is uniquely determined by the set Bt ∩ ut(Y ) with cardinality n + 3 . We need to prove
that for each t ∈ Λ the set of all s ∈ Λ such that us(Y ) ∪ Bs

∼= ut(Y ) ∪ Bt (as abstract curves) have finitely
many orbits for the action of Aut(Pn) . Since g − n − 2 ≥ 2 , Aut(Y ) is finite and there are only finitely
many S′ ⊂ Y , such that (Y, S) and (Y, S′) give the same element of Mg−n−2,n+3 . Consider the forgetful map
ϕ : Mg−n−2,n+3 → Mg−n−2 and set ∆ := ϕ−1([Y ]) . For a general S ⊂ Y we get an (n + r) -dimensional
family {ut(S)}t∈Λ of subsets of Pn and, taking a Zariski dense open subset Λ′ of Λ instead of Λ , we may
assume that each set {ut(S)} , t ∈ Λ′ , has cardinality n+ 3 and it is in linear general position in Pn .

Now assume g− n− 2 ≤ 1 . Since ρ(d− n, g− n− 2, n) ≤ n− 1 and d > n , we have either g− n− 2 ≥ 2

or (d−n, g−n− 2) = (n+1, 1) . Ordering the points q1, . . . , qn+3 we may see (Y, S) as an element of M1,n+3 .
We may use (Y, q1) as an element of the moduli space M1,1 . 2

4. Intersection with a hyperplane

Lemma 4.1 There is a smooth linearly normal elliptic curve Y ⊂ Pn , n ≥ 3 , and a rational normal curve
D ⊂ Pn such that |D ∩ Y | = n+ 3 and Y ∪D is nodal.

Proof First assume n is odd. Set e := (n − 1)/2 . The line bundle OP1×P1(1, e) is very ample and
h0(OP1×P1(1, e)) = 2e+2 = n+1 . Let j : P1 × P1 → Pn denote the linearly normal embedding induced by the
complete linear system |OP1×P1(1, e)| . Fix a general A ∈ |OP1×P1(1, e + 1)| and a general B ∈ |OP1×P1(2, 2)| .
A is a smooth rational curve and B is a smooth elliptic curve. For a general (A,B) the curve A ∪B is nodal
and |A ∩B| = OP1×P1(1, e+ 1) · OP1×P1(2, 2) = 2 + 2e+ 2 = n+ 3 . Take Y := j(B) and D := j(A) .

Now assume n ≥ 4 even and set a = n/2 ≥ 2 . Let F1 be the Hirzebruch surface with a minimal
self-intersection curve h with h2 = −1 . Take as a Z -basis of Pic(F1) the curve h and a fiber f of the ruling
of F1 . The line bundle OF1

(h+ af) is very ample and h0(OF1
(h+ af)) = 2a+1 = n+1 . Let u : F1 → Pn be

the linearly normal embedding induced by the complete linear system |OF1
(h+ af)| . The adjunction formula

gives ωF1
∼= OF1

(−2h − 3f) . Fix a general E ∈ |OF1
(h + (a + 1)f)| and a general F ∈ |OF1

(2h + 3f)| . The
adjunction formula gives that E is a smooth rational curve and that F is an elliptic curve. For a general
(E,F ) , the curve E ∪ F is nodal and |E ∩ F | = OF1(h+ (a+ 1)f) · OF1(2h+ 3f) = −2 + 2a+ 2 + 3 = n+ 3 .
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Take Y := u(F ) and D := u(E) . 2

Lemma 4.2 For every positive integer t > 0 there are a smooth linearly normal elliptic curve Y ⊂ Pn , n ≥ 3 ,
and rational normal curves D1, . . . , Dt ⊂ Pn such that Di ∩Dj = ∅ for all i ̸= j , |Y ∩Di| = n + 3 for all i

and Y ∪D1 ∪ · · · ∪Dt is nodal.

Proof The case t = 1 is true by Lemma 4.1, which gives the existence of a linear normal elliptic curve Y

such that for a general S ⊂ Y with |S| = n + 3 the only smooth rational normal curve DS containing S

is quasitransversal to Y and Y ∩ DS = S . We only need to prove that for a general (A,B) ⊂ Y × Y with
|A| = |B| = n + 3 we have DA ∩ DB = ∅ . Call S the set of all rational normal curves D ⊂ Pn intersecting
quasitransversally Y and with |Y ∩ D| = n + 3 . We just observed that S ̸= ∅ . Since dimY = 1 , Y is
irreducible, a general A ⊂ Y with |A| = n+3 is in linear general position and any n+3 points of Pn in linear
general position are contained in a unique rational normal curve, S is an irreducible variety of dimension n+3 .
Thus, we only need to prove that D ∩D′ = ∅ for a general (D,D′) ∈ S × S .

Claim 1: ∪D∈SD is dense in Pn .
Proof of Claim 1: We use induction on n starting the induction with the case n = 2 in which the

result is obvious. Assume n > 2 . Fix a general (a, b) ∈ Y × Pn and call `a : Pn \ {a} → Pn−1 the linear
projection from a . Let Ya be the closure of `a(Y \{a}) in Pn−1 . The curve Ya is a linearly normal elliptic curve
of Pn−1 . Fix an open neighborhood U of b in Pn such that a /∈ U and call V ⊂ Pn−1 an open neighborhood
of `a(b) contained in the dense set `a(U) . Restricting if necessary U we may assume U = `−1

a (V) . By the
inductive assumption there is a rational normal curve D′ ⊂ Pn−1 such that |D′ ∩ Ya| = n + 2 , D′ intersects
transversally Ya and V ∩D′ ̸= ∅ . Let T be the cone of Pn with vertex a and base D′ . For a general (b,D′)

we may assume that T is quasitransversal to Y outside a . Thus, it is sufficient to find a rational normal curve
D ⊂ Pn such that a ∈ D and `a(D \ {a}) ⊆ D′ . Let π : W → T denote minimal desingularization of T .
The surface W is isomorphic to the Hirzebruch surface Fn−1 and π is induced by the complete linear system
|OFn−1

(h+(n−1)f)| , where h = π−1(a) and f is a fiber of the ruling of Fn−1 . A general K ∈ |OFn−1
(h+nf)|

is smooth and rational and π(K) is a rational normal curve. Take D := π(K) .
Fix a large integer k ≫ 0 . Since Y is a curve, its Hilbert polynomial has degree 1 . Thus, for large

k we have h0(IY (k)) ≥
(
n+k
n

)
− k2 > (kn − n − 1)(kn − n − 2)/2 . Set x := kn − n − 2 and take a general

(D1, . . . , Dx) ∈ Sx . Since (D1,∪Dx) is general, we have |(Y ∪D1∪· · ·∪Di)∩Di+1| ≥ n+3+i for i = 1, . . . , x−1 .
Since h0(OP1(t)(−Z)) = max{0, t + 1 − deg(Z)} for any finite set Z ⊂ P1 and deg(ODi+1

(k)) = kn + 1 ,
we have h0(IY ∪···∪Di+1(k)) ≥ h0(IY ∪···∪Di

(k)) − kn − n − 3 − i for all i = 1, . . . , x − 1 . We get that a
general D ∈ S is in the base locus of |IY ∪D1∪Dx

(k)| . Claim 1 implies h0(IY ∪D1∪···∪Dx
(k)) = 0 . Thus,

h0(IY (k)) ≤ (kn− n− 1)(kn− n− 2)/2 , a contradiction. 2

Remark 4.3 Let S ⊂ Pn , n ≥ 2 , be a subset in linear general position and with |S| = n+3 . It is well-known
that S is contained in a unique rational normal curve of Pn . This is obvious for n = 2 , while if n > 2 the
rational normal curve C and its uniqueness is obtained in the following way. Fix o ∈ S and a hyperplane
M ⊂ Pn such that o /∈ M . Set S′ := S \ {o} and B := `o(S

′) . Since S is in linear general position, the
set B is a finite subset of M with cardinality n + 2 and in linear general position in M . By the inductive
assumption there is a unique rational normal curve D of M containing B . Let T ⊂ Pn be the cone with

431



BALLICO/Turk J Math

vertex o and base D . It is obvious that if C exists, then C ⊂ T . The minimal desingularization of T is
isomorphic to the Hirzebruch surface Fn−1 , i.e. (calling h the section of the ruling of Fn−1 and f a fiber
of its ruling) the complete linear system |OFn−1

(h + (n − 1)f | has no base points and it induces a birational
morphism π : Fn−1 → T with π(h) = {o} and π inducing an isomorphism between Fn−1 \h and T \{o} . Since
S′ ⊂ T \ {o} , A := π−1(S′) has cardinality n + 2 . No two of the points of S′ are contained in a line of T ,
because S is in linearly normal position. The rational normal curves C ⊂ T are the images of the irreducible
elements of |OFn−1

(f)| and each such element contains o . Thus, it is sufficient to prove that |IA(h+ nf)| is
a singleton, {Y } , and that Y is irreducible. Since h0(OFn−1

(h+ nf)) = h0(OP1(n)) + h0(OP1(1)) = n+ 3 , we
have |IA(h + nf)| ̸= ∅ . Since S is in linear general position, no two of the points of A are contained in the
same element of |OFn−1

(f)| .
Claim: A general M ∈ |IA(h+ nf)| is irreducible.
Proof of the claim: Assume that a general M ∈ |IA(h+ nf)| is reducible. There is F ∈ |OFn−1(f)|

such that A = G+F for some G ∈ |OFn−1(h+(n− 1)f)| containing a subset A′ ⊆ A with |A′| ≥ n+1 and no
two of the points of A are contained in the same element of |OFn−1

(h+ (n− 1)f)| . Since |IA′(h+ nf))| = ∅ ,
we get a contradiction.

Remark 4.4 Let K ⊂ Pn , n ≥ 3 , be a linearly normal elliptic curve. Let S be the set of all S ⊂ K such that
|S| = n + 3 and S is in linear general position. For each S ∈ S let DS be the unique rational normal curve
containing S . For any q ∈ Pn \ K set A(q) := {S ∈ S | q ∈ DS} . Let B denote the set of all q ∈ Pn \ K

such that A(q) = ∅ . Let E denote the set of all q ∈ Pn \ K such that dimA(q) ≥ 5 . For any o ∈ Pn let
`o : Pn \ {o} → Pn−1 denote the linear projection from o . We identify Pn−1 with a hyperplane Mo ⊂ Pn such
that o /∈ Mo .

Claim 1: Assume n = 3 . The set B is formed by the 4 points {o1, o2, o3, o4} of P3 \K which are
the vertices of the quadric cones containing K and dimA(q) = 4 for all q ∈ P3 \ (K ∪ B) .

Proof of Claim 1: There are exactly 4 points q ∈ P3 \ K (call it o1, . . . , o4 ) such that the linear
projection from q induces a 2 : 1 map onto a smooth conic. Call T1, . . . , T4 the quadric cones containing K

and with vertex o1, . . . , o4 , respectively. Fix q ∈ P3 \ (T1 ∪ T2 ∪ T3 ∪ T4) . Since K is the complete intersection
of 2 quadrics and q /∈ K , there is a unique quadric, Q , containing K ∪ {q} . Since q /∈ T1 ∪ T2 ∪ T3 ∪ T4 , Q

is smooth. We have K ∈ |OQ(2, 2)| . Since Q is homogeneous and there is a smooth C ∈ |OQ(2, 1)| , a general
C ∈ |Iq(2, 1)| is smooth. By Bertini’s theorem and the assumption q /∈ K for a general C ∈ |Iq(2, 1)| the
scheme K ∩ C is smooth, i.e. it is formed by 6 points. Since C is a rational normal curve, K ∩ C is formed
by 6 points in linear general position. Thus, C ∈ A(q) . We get an irreducible subset of A(q) with dimension
4 and another one is obtained taking the elements of |Iq(1, 2)| . To prove that dimA(q) = 4 it is sufficient to
prove that each element of A(q) is contained in Q . Now take an arbitrary D ∈ A(q) . If deg(C ∩K) > 6 , then
C ⊂ Q by Bezout. Thus, we may assume deg(K ∩ C) = 6 , i.e. pa(K ∪ C) = 6 and K ∪ C is nodal. Since
ωK∪C|K ∼= OK(K∩C) and deg(ωK∪C|C) = 4 , duality gives h1(OK∪C(2)) = 0 . Since pa(C∪D) ≥ 1+6−1 = 6 ,
deg(D ∪ C) = 7 and h0(OP3(2)) = 10 , Riemann–Roch gives h0(IC∪K(2)) ̸= 0 . Since Q is the only quadric
containing K ∪ {q} , we get C ⊂ Q . Now assume q ∈ Ti for some i , but q ̸= oi . Ti is the only quadric
surface containing K ∪ {q} . We conclude using the desingularization F2 of Ti discussed in Remark 4.3; with
the notation of Remark 4.3 it is sufficient to observe that a general element of |Ip(h + 3f)| , p ∈ F2 \ h , is
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irreducible. First, use the inductive assumption and then use Lemma 4.3.
Claim 2: We have dim E ≤ n− 2 .
Proof of Claim 2: Assume dim E ≥ n − 1 . Since dimS = n + 3 and S is irreducible, we get

B = Pn \ (K ∪ E) contradicting the fact that dimB ≤ n− 1 proved as Claim 1 during the proof of Lemma 4.2.

This is the key lemma (an adaptation of [10, Lemma 5.2]) for the proof of Theorem 1.1.

Lemma 4.5 Fix an integer t ≥ 2 , a hyperplane H ⊂ Pn , a linearly normal elliptic curve K ⊂ Pn and a
reduced scheme Y ⊂ H such that dimY ≤ 1 and h0(H, IY,H(t− 1)) > n . Then there exists a rational normal
curve D ⊂ Pn such that D intersects transversally H and quasitransversally K , Y ∩D = ∅ , |K ∩D| = n+ 3

and h0(H, IY ∪(H∩D),H(t)) = h0(H, IY,H(t))− n .

Proof Fix a degree t− 1 hypersurface T of H . Let S be the set of all S ⊂ K such that |S| = n+ 3 and S

is in linear general position. The algebraic set S is irreducible and dimS = n+ 3 . For each S ∈ S let DS be
the only rational normal curve of Pn containing S . We know that K ∪DS is nodal and with arithmetic genus
n + 3 for a general S ∈ S . Thus, DS ∩ K = S for a general S ∈ S . Taking S not containing any point of
K ∩H we get D ∩H ∩K = ∅ .

Claim: For a general S ∈ S the curve DS is transversal to H .
Proof of the claim: We allow the case n = 2 and use induction on n to prove the claim. In the case

n = 2 Claim 1 is true, because the pencil of conics through 4 points of P2 , no 3 of them collinear, has the 4

points as scheme-theoretic base locus. Now assume n > 2 and that for a general S ⊂ K there is q ∈ S such
that DS and K are tangent at q . Since S is irreducible, a monodromy argument shows that K and DS are
tangent at all points of S . Since K is a linearly normal elliptic curve, the linear projection of K from q maps
K isomorphically onto a linearly normal elliptic curve. Apply the inductive assumption to get a contradiction.

By Claim 2 of Remark 4.4 the set of all S ∈ S containing at least one point of T \ T ∩ K ∩ H has
dimension at most n − 2 . Thus, for a general S ∈ S the set DS ∩ H is formed by n points (Claim 1), say
p1, . . . , pn , none of them contained in T . Since DS is a rational normal curve, the points p1, . . . , pn span H .
Call A the n -dimensional linear subspace of |IY (n)| formed by the hypersurfaces T ∪M with M a hyperplane
of H . It is sufficient to prove that p1, . . . , pn gives n independent conditions to A . This is true, because
p1, . . . , pn are linearly independent. 2

5. Preliminaries for the proof of Theorem 1.1

We recall the following result ([2, 25, 31]).

Lemma 5.1 Fix integers m, d, g, s such that m ≥ 3 , g ≥ 0 , d ≥ g +m and 0 ≤ s(m− 1) ≤ (m+ 1)d+ (m−
1)(1− g) . Exclude the following cases:

(d, g, s) ∈ {(5, 2, 3), (6, 2, 4), (7, 2, 5)}.

Let S ⊂ Pm be a general subset with cardinality s . Then there exists a smooth, connected, and nondegenerate
curve X ⊂ Pm such that S ⊂ X , deg(X) = d , pa(X) = g , and h1(OX(1)) = 0 .

For more in the Brill–Noether range (instead of just the nonspecial range), see [25].
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Lemma 5.2 Fix integers m, d, g, s such that s ≥ 0 and A(d−s, g;m) is defined. Let H ⊂ Pm be a hyperplane.
Fix a general S ⊂ H such that |S| = s . Then there exists X ∈ A(d, g;m) such that X is smooth, h1(NX) = 0 ,
X intersects transversally H and S ⊂ X .

Proof Fix Y ∈ A(d−s, g;m) such that Y is smooth and h1(NY ) = 0 . By Bertini’s theorem (or the definition
of A(d− s, g,m)) a general hyperplane section of Y is formed by d− s points. Instead of Y we take the curve
h(Y ) with h a general element of Aut(Pm) . Thus, we may assume that H is transversal to Y . Moving S to
another general subset of H with cardinality s we may assume S∩ (Y ∩H) = ∅ . We order the points p1, . . . , ps

of S . Let Di , 1 ≤ i ≤ s , be a general line containing pi and 1 -secant to Y . Set W := Y ∪ D1 ∪ · · · ∪ Ds .
Each Di meets H only at pi ; hence, deg(W ) = d . For general S and general D1, . . . , Ds we have pa(W ) = g .
Applying s times Lemma 2.7 we get W ∈ A(d, g;m) . Since W contains S and intersects transversally H , a
general element of A(d, g;m) contains s general points of H and intersects transversally H . 2

We often use the following lemma, called lemme d’Horace in the original source ([18]) and sometimes
called the Horace Lemma.

Lemma 5.3 Let H ⊂ Pn be a hyperplane. Fix reduced schemes Y,D ⊂ Pn such that D ⊂ H and no irreducible
component of Y is contained in H . Fix any k ∈ N . We have an exact sequence

0 → IY (k − 1) → IY ∪D(k) → I(Y ∩H)∪D,H(k) → 0

(called the residual exact sequence of H ). Thus,

h0(IY ∪D(k)) ≤ h0(IY (k − 1)) + h0(H, I(Y ∩H)∪D,H(k)),

h1(IY ∪D(k)) ≤ h1(IY (k − 1)) + h0(H, I(Y ∩H)∪D,H(k)).

Lemma 5.4 Fix nonnegative integers n, d, d′, g′, x, s, t, g, e, k, t, t′, δ, w satisfying the following conditions:

(i) n ≥ 4 , x > 0 , k ≥ 4 , 0 ≤ w ≤ δ , 0 ≤ s ≤ n− 2 ;

(ii) d′ ≥ g′ + n− 1 ;

(iii) 0 ≤ s ≤ ⌊(nd+ (n− 2)(1− g))/(n− 1)⌋ ;

(iv) (w + x)(n− 2) ≤ nd′ + (n− 1)(1− g′) ;

(v) g = 1 + t(n+ 2) + s .

Let H ⊂ Pn be a hyperplane. Fix T ⊂ H such that T = T ′ ∪ T ′′ , T ′ ∩ T ′′ = ∅ , T ′ is a union of t′ disjoint
lines T1, . . . Tt′ and T ′′ is a closed subscheme with dimT ′′ ≤ 1 . Assume the existence of D ∈ A(d′, g′;H) such
that D ∩ T = ∅ , h1(H, ID∪T,H(k − 2)) = 0 and h0(H, ID∪T,H(k − 2)) ≥ n + 1 + (t − 1)n . Then there exist
Y ∈ A(d, g;n) , δ disjoint lines D1, . . . Dδ , and D′ ∈ W (d′, g′;H) such that

1. Di ∩D′ ̸= ∅ if and only if 1 ≤ i ≤ w ;

2. |T ′
i ∩ Y | = 1 for all i = 1, . . . , t′ ;
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3. |Y ∩D′| = x ;

4. h0(H, I(D′∪T∪Y ∪D1∪···∪Dδ)∩H,H(k)) = max{0, h0(H, ID′∪T,H(k))− (d− x− t′)− (δ − w)) ;

5. Y ∪D′ ∪ T ′ ∈ A(d+ d′ + t′, g + g′ + x− 1;n) .

Proof Let P ⊂ H be a general subset with cardinality w + x . By (iv) and Lemma 5.1 there is a nonspecial
Y ′ ∈ A(d′, g′;H) such that P ⊂ Y ′ and h1(NY ′) = 0 . We may assume Y ′ ∩ T = ∅ (use h(T ) , with h a
general element of Aut(H) instead of T and apply Kleiman’s Bertini theorem [19]). By semicontinuity we may
assume h1(ID′∪T (a)) = 0 for all a ≥ k− 1 . Fix p ∈ P . Let C ⊂ Pn be a general linearly normal elliptic curve
such that p ∈ C and C intersects transversally H . Take s + 2 general 2-secant lines to C . Take t general
rational normal curves D1, . . . , Dt such that |Di ∩ C| = n+ 3 for all i and Di ∩Dj = ∅ for all i ̸= j (Lemma
4.2). We have E := C ∪D1 ∪ · · · ∪Dt ∈ A(n + 1 + tn, 1 + t(n + 2);n) . Applying t times Lemma 4.5 we get
h1(H, ID′∪T∪(Y ∪H),H(k)) = 0 . Then we add x − 1 lines 1-secant to C , each of them containing a different
point of P \ {p} . Then we add δ further 1-secants to C ; we add w lines D1, . . . , Dw through the remaining
points of P and δ − w general lines Dw+1, . . . , Dδ . Note that (5) follows from Lemmas 2.7 and 2.8. 2

Remark 5.5 In all quotations of Lemma 5.4 we will have

χ(IY ∪T,H(k)) + d+ δ − x+ I =

(
n+ k − 1

n− 1

)
(5.1)

with I = 0 , except in Section 9. Thus, to check that h0(H, IY ∪T,H(k)) ≥ 2n+ t(n− 1) to apply Lemma 5.4 it
is sufficient to check the following inequality:

d+ δ + 2n+ t(n− 1) ≤
(
n+ k − 1

n− 1

)
+ x− I (5.2)

6. The assertion B(k)

For all integers k ≥ 2 set
bk := n!kn−2 (6.1)

For all integer m ≥ 3 and k ≥ 2 define the integers gk,m and fk,m by the following relations

k(gk,m +m) + fk,m =

(
m+ k

m

)
, 0 ≤ fk,m ≤ k − 2 (6.2)

Note that

−1−m+

(
m+ k

m

)
/k ≤ gk,m ≤

(
m+ k

m

)
/(k − 2) (6.3)

Since fk,m ≤ k− 2 , (6.3) gives gk,m ≥ fk,m ; hence, A(gk,m +m, gk,m − fk,m;m) is well-defined and its general
element is nonspecial.

Remark 6.1 By [4, 5, 8] (respectively for m = 4 , m = 3 and m > 4) a general T ∈ A(gk,m+m, gk,m−fk,m;m)

satisfies hi(Pm, IT (k)) = 0 , i = 0, 1 .
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Fix an integer a ≥ 2n+ 6 (depending on n) such that for all k > a− 2 the following inequalities hold:

gk,n ≥ n(n+ 2 + k) + (n+ 2)bk (6.4)

(
n+ k − 1

n

)
/(k − 3) ≥ 1 +

(
n+ k − 1

n− 1

)
−
(
n+ k − 3

n− 1

)
+ bk (6.5)

nk(bk − bk−1 + 2k) ≤
(
n+ k − 1

n− 1

)
−
(
n+ k − 1

n

)
/(k − 2)− bk + bk−1 (6.6)

2

(
n+ a− 1

n

)
/(a− 2) ≥ n2 + n+ 1 + ba−1 (6.7)

The integer a exists because
(
t
m

)
(as a function of t) is a degree m polynomial with tm/m! as its

leading term. For instance, the left hand side of (6.5) is a degree n−1 polynomial in k with 1/n! as its leading
coefficient, while the right hand side is a degree n− 2 polynomial in k .

For all integers k ≥ 2 we define the integers dk and gk satisfying the following relation

kdk + 1− gk =

(
n+ k

n

)
(6.8)

in the following way. For k ≤ a− 1 set dk := gk,n + n and gk := gk,n − fk,n (we have gk,n ≥ fk,n by Lemma
9.1). Set ca−1 := (n + 2)(da−1 − n − 1) − n(ga−1 − 1) . We have ca−1 ≥ ba−1 (Lemma 9.2). For all integers
k ≥ a set ck := bk − ba−1 + ca−1 . Note that bk − bk−1 = ck − ck−1 for all k ≥ a . Fix an integer k ≥ a and
assume defined the pairs (di, gi) ∈ N2 for all i ≤ k − 1 . We also assume that for a− 1 ≤ i ≤ k − 1 (6.8) for i

instead of k is satisfied and that for a− 1 ≤ i ≤ k − 1 the following inequalities are satisfied

ci ≤ (n+ 2)(di − n− 1)− n(gi − 1) ≤ ci + (i− a+ 1)(i− a+ 2)n/2 (6.9)

By the definition of ca−1 for i = a− 1 the two inequalities in (6.9) are equalities for i = a− 1 .

Notation 6.2 Let z be the maximal integer such that:

(k − n+ 2

n
)z ≤

(
n+ k − 1

n− 1

)
− dk−1 − bk + bk−1 (6.10)

Set dk := dk−1 + z and gk := kdk + 1−
(
n+k
n

)
.

The maximality of the integer z in (6.10) gives

0 ≤
(
n+ k − 1

n− 1

)
− ck + ck−1 − (k − n+ 2

n
)z ≤ k (6.11)

By the definition of the integer gk (6.8) is satisfied. Taking the difference between (6.8) and the same equation
for the integer k − 1 we get

dk−1 + k(dk − dk−1) + gk−1 − gk =

(
n+ k − 1

n− 1

)
(6.12)
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Claim 1: The inequalities in (6.9) are satisfied for i = k .
Proof of Claim 1: Since the inequalities in (6.9) are satisfied for i = k − 1 , it is sufficient to prove

that

ck − ck−1 ≤ (n+ 2)(dk − dk−1)− n(gk − gk−1) ≤ ck − ck−1 + kn (6.13)

This is true by Lemma 9.3.
For i = k the first inequality in (6.9) shows that the variety A(dk, gk;n) is defined for all k ≥ 2 .
For each integer k > 0 we define the Assertion B(k) in the following way.

Assertion B(k) : We have hi(IX(k)) = 0 , i = 0, 1 , for a general X ∈ A(dk, gk;n) .

Lemma 6.3 Assertion B(k) is true for all positive integers k .

Proof If k < a , then use [4, 5] respectively for the case n = 4 and the case n ≥ 5 . Now assume k ≥ a and
that B(k − 1) is true. Fix a general Y ∈ A(dk−1, gk−1;n) . By B(k − 1) and the semicontinuity theorem for
cohomology we have hi(IY (k− 1)) = 0 . Take z , dk and gk as in Notation 6.2 and set s := n+ gk − gk−1 − z .

(a) Assume s > 0 , i.e. assume z < n + gk − gk−1 . Fix a general S ⊂ H such that |S| = s . Since
(n+2)(dk−1−s−n−1) ≥ n(gk−1−1) , A(dk−1−s, gk−1;n) is defined. We have dk−1−s = dk−1−n−gk+gk−1+z .
By Lemma 9.5 A(dk−1−s; gk−1;n) is well-defined. By Lemma 5.2 we may assume that Y intersects transversally
H and that S ⊂ Y ∩H . We have s(n−2) ≤ nz+(n−2)(1−z−1+n) = 2z+n2−2n by Lemma 9.6. Thus, by
Lemma 5.2, i.e. by [2], there is a nonspecial D ∈ A(z, z−n+1;H) containing S . For a general S we may also
assume that D is general in A(z, z − n+ 1;H) ; hence, by [4–6], respectively in the cases n− 1 = 4 , n− 1 = 3

and n−1 > 4 , the curve D has maximal rank. By Lemma 9.7 we have (k−2)z+1−z+n−1 ≤
(
n+k−3
n−1

)
. Thus,

h1(H, ID,H(k − 2))) = 0 . By Lemmas 2.7 and 2.8 we may degenerate Y to a curve K ∪ D1 · · · ∪ Ds , where
K = E∪T∪L1∪· · ·∪Ls−n−1 , E is a general element of A(dk−1−sn−s, gk−1−1−s(n+2);n) , T a linearly normal
elliptic curve meeting E quasitransversally at a unique point, L1, . . . , Ls−n−1 general lines intersecting T , each
Di a general rational normal curve of Pn intersecting T quasitransversally at exactly n+3 points. For a general
T we may assume that T intersects transversally H and that any n of the points of T ∩H span H . Since any
two sets of n+1 points of H are projectively equivalent, we may assume that T∩H are n+1 general points of H .
Thus, for general lines L1, . . . , Ls−n−1 intersecting H the s points (T ∪L1∪· · ·∪Ls−n−1)∩H is a general union
of s points of H . Thus, we may take (T ∪L1∪· · ·∪Ls−n−1)∩H = S . Thus, (T ∪L1∪· · ·∪Ls−n−1∪D)∩H = D

as schemes. Recall that h1(H, ID(k−2)) = 0 . Set W := T ∪L1∪· · ·∪Ls−n−1∪D1∪· · ·∪Ds . We may smooth
W ∪ E to a general Y ′ ∈ A(dk−1, gk−1;n) . Moving S (and the curve D ) along this smoothing we get that
Y ′ ∪D is a connected nodal curve of degree dk and arithmetic genus gk such that Y ′ = ResH(Y ′ ∪D) satisfies
hi(IY ′(k − 1)) = 0 , i = 0, 1 . We have hi(H, I(Y ′∪D)∩H,H(k)) = 0 , i = 0, 1 , by (6.5) and Lemma 5.4; to apply

Lemma 5.4 we need the inequality (k− 2)z+1− z+ n+ (n+1)+ n(t− 1) ≤
(
n+k−3
n−1

)
which is true by Lemma

9.7. The residual exact sequence of H gives hi(IY ′∪D(k)) = 0 , i = 0, 1 . Lemma 2.9 give Y ′∪D ∈ A(dk, gk;n) ,
concluding the inductive proof.

(b) Assume s ≤ 0 , i.e. assume z ≥ n + gk − gk−1 . We take one point, P , instead of S , and take as
D a general D ∈ A(z, gk − gk−1;H) containing P . 2
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7. Assertion A(k)

Fix a real number ε > 0 . To prove Theorem 1.1 we need to find an integer d0 (depending on ε and n) such
that for all (d, g) ∈ N2 with d ≥ d0 and g ≤ (n+2

n − ε)d the component A(d, g;n) is defined and a general
X ∈ A(d, g;n) has maximal rank.

Definition 7.1 For any (d, g) ∈ N2 such that d < g + n , 2d + 1 − g >
(
n+2
2

)
and A(d, g;n) is defined (i.e.

(n+2)(d−n−1) ≥ n(g−1)) the critical value of (d, g) is the minimal integer x ≥ 2 such that xd+1−g ≤
(
x+n
n

)
.

Definition 7.2 Fix an integer h ≥ a+2 (depending on n and ε) such that for all integers k ≥ h− 2 we have

dk <
(n+ ε/2)gk

n+ 2
, (7.1)

gk+5

(
k + 4− 1

n+ ε/2

)
≤ gk

(
k + 4− 1

n+ ε

)
, (7.2)

The existence of h is obvious, because limk→+∞
(
k
n

)
/kn = 1/n! and we have limk→+∞ dk/gk = n/(n+ 2) and

limk→+∞ gk+1/gk = 1 by Lemma 9.4.

Definition 7.3 Set k(ε) := h+ 6 .

Fix an integer v ≥ k(ε) and (d, g) ∈ A(d, n; g) such that d < g + n , (d, g) has critical value v and
(n + 2)(d − n − 1) ≥ (n + ε)(g − 1) . Since h ≥ a , we have ga−1 ≤ g . Let m be the maximal integer
k ≥ a − 1 such that gk ≤ g ; gk is well-defined, because g ≥ ga−1 and gi < gi+1 for all i (Lemma 9.3). By
Lemma 9.8 we have m ≤ v − 6 . If g − gm < m set u := m , d′u := du , vu := g − gu ; note that 0 ≤ vu < m .

Assume g − gu ≥ m . In this case we set u := m+ 1 and define the integers d′u and vu by the relations

ud′u + 1− g + vu =

(
n+ u

n

)
, 0 ≤ vu < u. (7.3)

Remark 7.4 Since gm+1 > g , when u = m+ 1 we have d′u ≤ du and

u(du − d′u) = gu − g + vu. (7.4)

Lemma 7.5 We have hi(IW (u)) = 0 , i = 0, 1 , for a general W ∈ A(d′u, g − vu;n) .

Proof If u = m , then the lemma is the case k = u of Lemma 6.3. Now assume u = m + 1 and set
z′ := d′u − dm , s := 1 + g − vu − gm − (z′ − n+ 1) . By [4, 5, 8] there is D ∈ A(z′, z′ − n+ 1;H) with maximal
rank.

(a) Assume s > 0 . By [4–6] (respectively for the case n = 5 , n = 4 and n > 5) a general
D ∈ A(z′, z′ − n + 1;H) has maximal rank. We apply Lemma 5.4 with d = dm , g = gm , d′ = z ,
g′ = z − n + 1 , k = u , e = t′ = δ = w = 0 , T = ∅ , x and t determined by the following inequalities:
0 ≤ x ≤ n + 1 , gm = n + 1 + x + t(n + 2) . We need to check the assumptions of Lemma 5.4, i.e. t ≥ 0 and
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h0(H, ID,H(u− 2)) ≥ n+ 1+ (t− 1)n . We explain the numerology behind Lemma 5.4. To compare the set-up
of the lemma we are proving with the one of Lemma 6.3 we write k := u , µk := g − vu and z′ := d′u − dk−1 .
In the set-up of Lemma 6.3 we set z := dk − dk−1 . Thus, we have the equality

dk−1 + kz + gk−1 − gk =

(
n+ k − 1

n− 1

)
(7.5)

We called Y a curve in Pn with deg(Y ) = dk−1 ,pa(Y ) = gk−1 and hi(IX(k − 1)) = 0 , i = 0, 1 . We had
](Y ∩D) = s and gk − gk−1 = z − n+ 1 + s− 1 . In the set-up of the lemma we need to prove that the curve
Y we have for the degree k − 1 is the same curve as the one in Lemma 6.3. We set s′ := ](Y ∩D) . We have
µk = gk−1 + z − n+ 1 + s′ − 1 . Thus,

dk−1 + kz′ + gk−1 − µk =

(
n+ k − 1

n− 1

)
(7.6)

Since µk ≤ gk , we have z′ ≤ z and s′ ≤ s . The inequality s′ ≥ 0 is true by the definition of u . Since s′ ≤ s ,
the check for Y is Lemma 9.5. Moreover, to check that h0(H, ID′(k−2)) ≥ 2n+n(t−1) we have the same t as
the one in Lemma 6.3. Both D′ and D have maximal rank with D′ ∈ A(z′, z−n+1;H) , D ∈ A(z, z−n+1;H)

and z′ ≤ z . Thus, h0(H, ID′(k−2)) ≥ h0(H, ID(k−2)) ≥ n+1+(t−1)n . Now we check that we may find D′

passing through s′ general points of H . Since µk = s′−1+ gk−1+ z′−n+1 and gk = s−1+ gk−1+ z−n+1 ,
subtracting (7.6) from (7.5) we get

(k − 1)(z − z′) = s− s′ (7.7)

Since k > n and z ≥ z′ ≥ n if (z, s) satisfies the assumptions of Lemma 5.2 for m = n−1 , then (z′, s) satisfies
the same assumption.

(b) Assume s ≤ 0 . In this case instead of D we add a nonspecial curve of degree z′ with lower genus
and/or meeting in a smaller number of points the curve Y . To quote Lemma 5.4 we only need to use that
(u− 2)z′ +1+ n+1+ (t− 1)n ≤

(
n+u−3
n−1

)
, which is true, because z′ ≤ dk − dk−1 and the integer t is the same

as the one appearing in the proof of Lemma 6.3. 2

Definition 7.6 For every integer j ≥ u define the integers aj and xj by the relations

jaj + 1− g + xj =

(
n+ j

n

)
, 0 ≤ xj < j. (7.8)

In particular au = d′u and xu = vu . Taking the difference between (7.8) and the same equation for the integer
j − 1 we get

aj + j(aj − aj−1) + xj − xj−1 =

(
n+ j − 1

n− 1

)
(7.9)

for all j > u .
Consider the following assertion A(j) defined for every integer j > u .

Assertion A(j) , j > u : There is Y = Z ∪ T with Z ∈ A(aj − xj , g;n) , T a union of xj disjoint
lines, Z ∩ T = ∅ and hi(IY (j)) = 0 , i = 0, 1 .
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Note that A(aj − xj , g;n) is defined, because aj − xj > aj−1 for all j > u by Lemma 9.9. Lemma 9.9,
induction on j and the definition of ca−1 give

(n+ 2)(aj − j − 1) ≥ n(g − 1) + cj (7.10)

Lemma 7.7 A(u+ 1) is true.

Proof Fix a hyperplane H ⊂ Pn . By Lemma 9.9 we have au+1 − xu+1 − au ≥ 0 . By Lemma 7.5 there is
Y ∈ A(d′u, g − vu;n) with hi(IY (u)) = 0 , i = 0, 1 . We add in H a curve A ∪ B ⊂ H with A smooth and
rational, deg(A) = au+1−xu+1−au , A containing exactly one point of Y ∩H , B a union of xu+1 disjoint lines
and A∩B = ∅ . By [17] (case n = 3) and [7] (case n > 3) we may assume that A∪B has maximal rank in H .
We take Y transversal to H , with ](A∩Y ) = 1 and with B∩Y = ∅ . Write pa(Y ) = g−vu = 1+(n+2)t+w ,
d′u = n+1+ nt+w+w′ with w′ ≥ 0 . To apply Lemma 5.4 (in the set-up of Remark 5.5) it is sufficient to use
that h0(H, IA∪B(u− 1)) ≥ n+ 1 + (t− 1)n (Lemma 9.10). We conclude by Lemma 5.3. 2

Lemma 7.8 A(j) is true for all j ≥ u+ 2 .

Proof Assume by induction that A(j − 1) is true and take Y = Z ∪ T satisfying A(j − 1) .
(a) Assume xj ≥ xj−1 . In this case the only difference with respect to the proof of Lemma 7.7

is that now we take x = 2 and d′ = aj − aj−1 . To check the condition on h0 in Lemma 5.4 we use
Remark 5.5 and the proof of Lemma 9.10, i.e. the proof of Lemma 9.5 using (7.9) instead of (6.12) and
that ngk−1 − (n+ 2)dk−1 ≥ ng − (n+ 2)aj−1 .

(b) Assume xj < xj−1 . By Lemma 9.10 we have aj − aj−1 ≥ n+ j ≥ n+ 1 + xj−1 − xj . Let F ⊂ H

be a smooth rational curve with maximal rank ([4–6, 18] passing though 1 + xj−1 + xj general points of H ,
one on Z and the remaining ones in different lines of T . We may apply Lemma 5.4 for the reasons explained
in step (a). 2

8. End of the proof of Theorem 1.1

For all integers k ≥ 2 set γk := 1− gk + ⌊(n+ 2)(dk − n− 1)/n⌋ . The integer γk is the maximal integer such
that A(dk, gk + γk;n) is defined.

Remark 8.1 By Lemma 9.4 we have limk→+∞ γk/k
n−1 = 0 .

Note that au+4 ≤ d− u− n by Lemma 9.8. Let σ be the maximal integer such that aσ + σ ≤ d . Thus,
d < aσ+1 + σ + 1 .

Remark 8.2 If d > aσ+1 the critical value v of (d, g) is σ + 2 , while if d ≤ aσ+1 we have v = σ + 1 .

Lemma 8.3 Assume d > aσ+1 . Then there is X ∈ A(d, g;n) such that h1(IX(σ + 2)) = 0 .

Proof The proof is divided into two steps. We first prove an assertion similar to A(σ + 1) for a connected
curve X ∈ A(aσ+1, g;n) . Then in step (b) we add a smooth rational curve A ⊂ H with deg(A) = d − aσ+1 ,
X ∪A ∈ A(d, g;n) and h1(IX∪A(σ + 1)) = 0 .
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(a) Take Y = Z ∪ T satisfying A(σ) and intersecting transversally H . Take a smooth rational curve
F ⊂ H such that deg(F ) = aσ+1 − aσ and containing exactly one point of each connected component of Y .
We use Lemmas 5.3 and 5.4 and Remark 5.5 with I > 0 ; to apply Remark 5.5 we observe that when I > 0 the
inequalities used in the proof of Lemma 9.5 are better by I .

Deform Y ∪ F to a smooth X ∈ A(aσ+1, g;n) intersecting transversally H .
(b) By Lemma 9.9 we have d < aσ+2 . Take the union of X and a smooth rational curve A ⊂ H such

that deg(A) = aσ+1 − aσ containing exactly one point of Y ∩H . By the definition of σ we have d− aσ+1 ≤ σ .
Thus, deg(A) is much smaller than the integer deg(F ) used in step (a). We apply Lemma 5.4 and Remark 5.5
with I > 0 ; the inequalities needed here are easier than the ones used in step (a). 2

Lemma 8.4 Assume aσ + σ ≤ d ≤ aσ+1 . Then there is X ∈ A(d, g;n) such that h1(IX(σ + 1)) = 0 .

Proof We start with a curve C satisfying A(σ) and hence with h0(IC(σ)) = 0 . We add a smooth rational curve
D with deg(D) = d−aσ ≥ 0 , meeting C at a unique point and quasitransversally. We have C ∪D ∈ A(d, g;n)

by Lemmas 2.7 and 2.8. 2

Proof [Proof of Theorem 1.1:] By Remark 8.1 and Lemma 9.4 Theorem 1.1 follows from the irreducibility of
A(d, g;n) and Lemma 8.3 (case d > aσ+1 ) and Lemma 8.4 (case aσ + σ ≤ d ≤ aσ+1 ). 2

9. Numerical lemmas
We will often silently use that as a polynomial in t the polynomial function

(
t
m

)
, m ≥ 0 , has degree m and

tm/m! as its leading term.

Lemma 9.1 For each integer k ≥ 2 we have gk,n ≥ fk,n

Proof Since fk,n ≤ k − 2 , we have gk,n = ⌊(
(
n+k
n

)
− 1− kn)/(k − 1)⌋ . Thus, it is sufficient to check the easy

inequality
(
n+k
n

)
≥ 1 + kn+ (k − 1)(k − 2) . 2

Lemma 9.2 We have ca−1 ≥ ba−1 .

Proof We have ga−1,n ≤ da−1,n − n . Since ca−1 = (n + 2)(da−1,n − n − 1) − n(ga−1,n − 1) we have
ca−1 ≥ 2da−1,n − n2 − 2n− 1 . Since

(a− 1)da−1,n + 1− ga−1,n =

(
n+ a− 1

n

)
and ga−1,n ≤ da−1,n − n , we have

(a− 2)da−1,n + 1− n ≥
(
n+ a− 1

n

)
(9.1)

Use (6.7). 2

Lemma 9.3 Fix an integer k ≥ a . For every integer k ≥ a we have:
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(i) dk − dk−1 ≥ n(bk − bk−1 + 2k) ;

(ii) gk > gk−1 ;

(iii) ck − ck−1 ≤ (n+ 2)(dk − dk−1)− n(gk − gk−1) ≤ ck − ck−1 + nk .

Proof We use induction on k . We do not write down the initial case of the induction, i.e. the case k = a ,
because the inductive step works verbatim for k = a , just using that ga−1 ≤ da−1 − n and in particular
ga−1 < 2da−1 . We also use that for the integer k − 1 the variety A(dk−1, gk−1;n) is defined, which is true if
we assume (iii) for the integer k − 1 . Set z := dk − dk−1 . By (6.10) and the inequality n ≥ 4 it is sufficient to
prove that

nk(bk − bk−1 + 2k) ≤
(
n+ k − 1

n− 1

)
− dk−1 − bk + bk−1 (9.2)

Since gk−1 < 2dk−1 , (6.8) for the integer k− 1 gives dk−1 ≤
(
n+k−1

n

)
/(k− 2) . Hence, it is sufficient to use the

inequality (6.6). Since dk−1 ≤
(
n+k−1

n

)
/(k − 2) ≤

(
n+k−1
n−1

)
and (k − 1)dk−1 + 1− gk−1 =

(
n+k−1

n

)
by (6.8) for

the integer k − 1 , we have kdk−1 + 1− gk−1 ≤
(
n+k
n

)
. Since dk > dk−1 , (6.8) gives gk > gk−1 .

Part (iii) is the case i = k of (6.9) proved before the definition of B(k) . 2

Lemma 9.4 We have
lim

k→+∞
dk/gk =

n

n+ 2
, (9.3)

lim
k→+∞

dk+1/dk = gk+1/gk = 1. (9.4)

lim
k→+∞

kn−1/dk = k! .

Proof By part (ii) of Lemma 9.3 we have limk→+∞ gk = +∞ . Part (iii) of Lemma 9.3 gives (9.3). By (9.3)
the two equalities in (9.4) are equivalent. We also see that limk→+∞ gk/k

n−1 = (n + 2)/(n!)n , which implies
the second equality in (9.4). 2

Lemma 9.5 In the set-up of the proof of Lemma 6.3 we have (n+2)(dk−1 −n− gk + gk−1 + z) ≥ n(gk−1 − 1) ,
i.e. A(dk−1 − n− gk + gk−1 + z, gk−1;n) is well-defined.

Proof We have n+ gk − gk−1 − z ≤ 2z/n . Since (n+ 2)(dk−1 − n− 1) ≥ n(gk−1 − 1) + ck−1 , it is sufficient
to observe that 2z/n ≤ ck−1 by (6.10) and the inequality ck−1 ≥ bk−1 . 2

Lemma 9.6 In the set-up of the proof of Lemma 6.3 we have s(n−2) ≤ 2z+n(n−2) , where s := n+gk−gk−1−z .

Proof By the definition of s the lemma is true if and only if

(n− 2)(gk − gk−1) ≤ nz (9.5)

Since (n+ 2)z ≥ n(gk − gk−1) + (n+ 2)(bk − bk−1) and n/(n− 2) ≥ (n+ 2)/n , (9.5) is true. 2
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Lemma 9.7 In the notation of the proof of Lemma 6.3 we have (k−2)z+1−z+n+(n+1)+n(t−1) ≤
(
n+k−3
n−1

)
.

Proof Look at (6.12). We have gk − gk−1 ≤ (n + 2)(dk − dk−1)/n − (bk + bk−1)/n ; hence, (k − n+2
n )z ≤(

n+k−1
n−1

)
−(bk−bk−1)/n . We have dk−1 ≥ 1+nt+bk−1/n . Thus, it is sufficient to have bk/n ≥

(
n+k−1
n−1

)
−
(
n+k−3
n−1

)
,

which is true by the definition of bk and the inequality a ≥ n+ 7 . 2

Lemma 9.8 We have m ≤ v − 6 .

Proof Assume m ≥ v − 5 . Thus, m ≥ h and gv−5 ≤ g . Since (d, g) has critical value v , we have

vd+ 1− g ≤ vdv + 1− gv. (9.6)

By (9.6), (7.1), and (7.2) we get a contradiction. 2

Lemma 9.9 For every integer j > u we have aj − xj > aj−1 and (7.10) is true.

Proof Assume aj−aj−1 ≤ xj . Since xj ≤ j−1 and xj−1 ≥ 0 , (7.9) gives aj+j2−1 ≤
(
n+j−1
n−1

)
, contradicting

the inequality aj ≤ dj . Since j(dj − aj) ≤ gj − j and (n + 2)(dj − da−1) ≥ n(gj − gj−1) + bj − ba−1 , we get
(7.10). 2

Lemma 9.10 In the set-up of the proof of Lemma 7.7 we have h0(H, IA∪B(u− 1)) ≤ n+ 1 + (t− 1)n .

Proof We mimic the proof of Lemma 9.7 using (7.9) instead of (6.12). In the set-up of Lemma 7.7 we have
z := deg(A ∪ B) = au+1 − au . Since xu+1 ≤ u and xu ≥ 0 , (7.9) gives kz ≤

(
n+u
n−1

)
− u − au . We use that

au ≥ n+ 1 + nt+ cu/n as in the proof of Lemma 9.5. 2
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