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Abstract: Let G be a finite abelian group. Ferraz, Guerreiro, and Polcino Milies (2014) proved that the number of
G -equivalence classes of minimal abelian codes is equal to the number of G -isomorphism classes of subgroups for which
corresponding quotients are cyclic. In this article, we prove that the notion of G -isomorphism is equivalent to the notion
of isomorphism on the set of all subgroups H of G with the property that G/H is cyclic. As an application, we calculate
the number of non-G -equivalent minimal abelian codes for some specific family of abelian groups. We also prove that
the number of non-G -equivalent minimal abelian codes is equal to the number of divisors of the exponent of G if and
only if for each prime p dividing the order of G , the Sylow p -subgroups of G are homocyclic.
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1. Introduction
According to Berman [2] and MacWilliams [11], an abelian code over a field is defined to be an ideal in a
finite group algebra of an abelian group. In a more general context, a group code is an ideal in a finite group
algebra. Many important linear codes are group codes [10]. For example, cyclic codes are ideals in a finite
group algebra of a cyclic group. In [3], it is shown that Reed–Muller codes are ideals in modular group algebra
of an elementary abelian p -group. Group codes have been of interest for many researchers. For an extensive
literature review on group codes, see the work in [17]. For some recent studies in the field of group codes,
see the work in [1, 4–6, 8, 9, 15, 16]. From these articles, one can deduce that the group codes generate an
important family of codes in the framework of coding theory. For instance, in [1] it is shown that group codes
coming from metacyclic groups are good or in [5] it is proved that group codes over fields of any characteristic
are asymptotically good. A characterization for determining whether a linear code is a group code or not is
given in [4]. In [16], cyclic and noncyclic abelian group codes of the same length are considered and efficiency
of these group codes are compared.

An abelian code is said to be minimal if the corresponding ideal is minimal in the set of all ideals of the
group algebra. Let G be a finite abelian group and F a finite field of characteristic coprime to the order of
G . Under these conditions, Maschke’s theorem says that every abelian code is a direct sum of minimal abelian
codes. Moreover, as defined in [12], two abelian codes I and J are called G-equivalent if there is a group
automorphism φ : G → G whose linear extension to the group algebra maps I onto J . It is easy to see that
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G -equivalent codes have the same weight distribution. However, the converse is not true (see Proposition IV.2
in [7] ). Therefore, knowing the number of G -equivalence classes of minimal abelian codes tells us a lot about
the nature of codes that can be defined using the group algebra FG .

A one-to-one correspondence between G -equivalence classes of minimal abelian codes and G -isomorphism
classes of cocyclic subgroups of G was established by Ferraz et al. (for the details see Proposition III.2,
Proposition III.7 and Proposition III.8 in [7] ). According to [7], two subgroups H and K of G are called
G -isomorphic if there is an automorphism φ of G which maps H onto K . A subgroup L ≤ G is called a
cocyclic subgroup of G if G/L is cyclic. Note that this definition is not the same definition as in [7]. We take
into account G itself also as a cocyclic subgroup to count the minimal abelian code which corresponds to the
subgroup G of G . From the definition, it is clear that if two subgroups of G are G -isomorphic, then they are
isomorphic. However, the converse of this statement is not true for arbitrary subgroups of G . We observe that
the notion of G -isomorphism is equivalent to the notion of isomorphism on the set of cocyclic subgroups of G

as follows.

Proposition 1.1 Let G be a finite abelian group and let H , K be cocyclic subgroups of G . Then H and K

are G-isomorphic if and only if they are isomorphic.

This proposition, together with Proposition III.2, Proposition III.7, and Proposition III.8 in [7] leads us to write
the following theorem.

Theorem 1.2 Let G be a finite abelian group. The number of non-G-equivalent minimal abelian codes over F
is equal to the number of isomorphism classes of cocyclic subgroups of G .

Let η(FG) denote the number of non-G -equivalent minimal abelian codes over F . As an application of
Theorem 1.2, we prove the following results. Among these, the first result is the following. By using Theorem
V.6 in [7], we have that η(F(C)m) = η(FC) where C is a cyclic group. In this sense, Theorem 1.3 below is a
kind of generalization of Theorem V.6 in [7].

Theorem 1.3 Let H be a finite abelian group and let G be a direct product of finite number of copies of H .
Then we have that η(FG)=η(FH) .

There is no formula for η(F(H × K)) in terms of η(FH) and η(FK) in general. For example in [7],
Proposition IV.3 gives that η(F2(Cpn × Cp)) = 2n . On the other hand, η(F2Cpn) = n + 1 and η(F2Cp) = 2 .
We observe that under an assumption on the exponent of the direct factors, multiplying a finite abelian group
by a homocyclic group does not change the number η(FG). Here a homocyclic group is a direct product of
pairwise isomorphic cyclic groups.

Theorem 1.4 Let K be a finite homocyclic group and H a finite abelian group such that exp(K) = exp(H) .
If G = K ×H , then we have that η(FG)=η(FH) .

In fact, this result is another generalization of Theorem V.6 in [7].
As emphasized in [12], the codes arising from the group algebra F2(Cm × Cn) , where m and n are

positive odd integers, are referred to as two-dimensional linear recurring arrays, linear recurring planes, or two-
dimensional cyclic codes in [13] and [14]. These codes are related to the problem of constructing perfect maps
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and have applications to x -ray photography. In [12, Theorem 3.6], it is stated that the number of nonequivalent
minimal codes of F2(Cm × Cn) is equal to the number of divisors of the exponent of the corresponding group.
Ferraz et al. point out that this result is not true by calculating the number of nonequivalent minimal codes of
F2(Cpn × Cp) as 2n where p is an odd prime. (see [7, Propostion IV.3]). The following theorem generalizes
this result.

Theorem 1.5 If G = Cpn × Cpm and n > m , then η(FG) = (n−m+ 1)(m+ 1) .

As a corollary we obtain the following result.

Corollary 1.6 Let n be a positive integer such that n = p1
k1p2

k2 . . . pt
kt where pi ’s are distinct prime numbers

and ki ’s are positive integers. Then for G = Cnl × Cns where n, l, s are positive integers and l > s we have
that η(FG) =

∏t
i=1(kil − kis+ 1)(kis+ 1) .

In [12], for an abelian group G of odd order, it is proved that the number of non-G -equivalent minimal
abelian codes over F2 is equal to the number of divisors of the exponent of G . In [7], it is shown that this
statement is not true. Moreover, it is shown that if G is homocyclic, the number of non-G -equivalent minimal
abelian codes over F is equal to the number of divisors of exponent of G (see Theorem V.6 in [7]). In the
following theorem, we extend this result and give a characterization of an abelian group whose number of
nonequivalent minimal codes is equal to the number of divisors of its exponent.

Theorem 1.7 Let G be a finite abelian group and F a finite field of characteristic coprime to order of G . The
number of non-G-equivalent minimal abelian codes over F is equal to the number of divisors of exponent of G

if and only if for each prime p dividing the order of G , the Sylow p-subgroups of G are homocyclic.

Note that Theorem V.6 in [7] now follows from Theorem 1.7 as a corollary.
The structure of the paper is as follows. In Section 2, we establish some results on isomorphic cocyclic

subgroups of a finite abelian group and give the proofs of Proposition 1.1 and Theorem 1.2, Theorem 1.3 and
Theorem 1.4. We also present some important examples related to Theorem 1.4. In Section 3, we prove Theorem
1.5. In Section 4, we present the proof of Theorem 1.7.

2. Proof of Proposition 1.1 and its consequences
It is not very easy to determine whether two subgroups of a given group G are G -isomorphic or not. We begin
by showing that isomorphisms between cocyclic subgroups of G can be extended to an automorphism of G .
Then, we continue to prove some other facts to give a proof for Proposition 1.1.

Lemma 2.1 Let G be an abelian p-group of exponent pn and H a cocyclic subgroup of G . If the exponent of
H is strictly less than pn , then for any z ∈ G of order pn , zH generates the cyclic group G/H .

Proof Let z be any element in G of order pn . As exp(H) < pn , we have that z /∈ H , so zH is a nontrivial
element in G/H . Since H is a cocyclic subgroup of G , G/H ∼= Cpm for some 1 ≤ m ≤ n . Then there exists

some b ∈ G such that G/H = ⟨bH⟩ . Since zH is a nontrivial element in G/H , we have that zH = (bH)p
i for

some i where 0 ≤ i < m . This implies that (bp
i

)−1z ∈ H . As exp(H) < pn , this is possible only if z = bp
i .

Since z has order pn , i should be equal to zero so that z = b ; hence, G/H = ⟨zH⟩ . 2
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Lemma 2.2 Let G be an abelian p-group of exponent pn and H < G a cocyclic subgroup of G . Then there
exists an element x ∈ G of order pn so that G/H = ⟨xH⟩ .

Proof There are two cases to consider.
Case 1: exp(H) < pn : Follows from Lemma 2.1.
Case 2: exp(H) = pn : As H is cocyclic we have that G/H ∼= Cpm for some 1 ≤ m ≤ n. Then there exists
a ∈ G − H so that G/H = ⟨aH⟩ and then ap

m ∈ H and m is the smallest integer satisfying this property.
If the order of ap

m is equal to pn−m , then one can take x = a . If the order of ap
m is less than pn−m , as

exp(H) = pn, there exists some y ∈ H of order pn so one can take x = ya . It is clear that xH generates
G/H .

2

Lemma 2.3 Let G be an abelian p-group of exponent pn . Assume that H and K are subgroups of G such
that for some x, y ∈ G of order pn , we have that G/H = ⟨xH⟩ ∼= Cpm ∼= G/K = ⟨yK⟩ where 0 ≤ m ≤ n .
Then, we have that H/⟨xpm⟩ ∼= K/⟨ypm⟩ .

Proof As exp(G) = pn and |x| = |y| = pn , we can write

G = ⟨x⟩ ×A = ⟨y⟩ ×B

where A ∼= B , so that G/⟨x⟩ ∼= G/⟨y⟩ . On the other hand, the second isomorphism theorem gives us that

G/⟨x⟩ = ⟨x⟩H/⟨x⟩ ∼= H/H ∩ ⟨x⟩ = H/⟨xpm

⟩

and similarly G/⟨y⟩ = ⟨y⟩K/⟨y⟩ ∼= K/K ∩ ⟨y⟩ = K/⟨ypm⟩ . Therefore, we deduce that

H/⟨xpm

⟩ ∼= K/⟨yp
m

⟩.

2

Lemma 2.4 Let H be a finite abelian p-group and let x be a nongenerator of H . Then there exists a generator
a of H such that ⟨x⟩ ≤ ⟨a⟩ .

Proof Recall that the Frattini subgroup of H , denoted by Φ(H) is the set of all nongenerators of H . Then, if
H = ⟨a1⟩× · · · × ⟨ar⟩ , it is easy to see that Φ(H) = ⟨a1p⟩× · · · × ⟨arp⟩ . As x is a nongenerator, x ∈ Φ(H) and
x = (a1

p)i1 . . . (ar
p)ir where 0 ≤ ij ≤ |aj | , that is, x = (a1

i1 . . . ar
ir )p . If at least one of ik ’s is not a multiple

of p , set a = a1
i1 . . . ar

ir , then a /∈ Φ(H) , which means that a is a generator of H and ⟨ap⟩ = ⟨x⟩ ≤ ⟨a⟩ . If

all i′k s are multiple of p , then for a = a1
i1
p . . . ar

ir
p we have that x = ap

2 . Thus, ⟨x⟩ ≤ ⟨a⟩ . If one of ik
p ’s is

not a multiple of p , then a /∈ Φ(H) and a is a generator. If all ik
p ’s are a multiple of p then one can continue

the process until getting an ik
p which is not a multiple of p for some 1 ≤ k ≤ r . 2

Lemma 2.5 Let G be an abelian p-group of exponent pn . Assume that H and K are isomorphic subgroups
of G such that for some x, y ∈ G of order pn , we have that

G/H = ⟨xH⟩ ∼= Cpm ∼= ⟨yK⟩ = G/K

where 0 ≤ m ≤ n . Then xpm is a generator of H if and only if yp
m is a generator of K .
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Proof Suppose that xpm is a generator of H , then H = ⟨xpm⟩ × H1 for some H1 ≤ H . Suppose for a
contradiction that yp

m is not a generator of K . Then by Lemma 2.4, there exists a generator a ∈ K such
that yp

m

= ap
t for some t with t > 0 . Note that K = ⟨a⟩ ×K1 for some K1 ≤ K . On the other hand, since

the orders of x and y are equal, we have that ⟨xpm⟩ ̸∼= ⟨a⟩ . Hence, since H ∼= K , there exists b ∈ H1 with
⟨b⟩ ∼= ⟨a⟩ and there exists z ∈ K1 with ⟨z⟩ ∼= ⟨xpm⟩ , such that K = ⟨a⟩ × ⟨z⟩ ×K2 and H = ⟨b⟩ × ⟨xpm⟩ ×H2

where K2
∼= H2 . It follows that

⟨a⟩/⟨ap
t

⟩ × ⟨z⟩ ×K2
∼= K/⟨yp

m

⟩ ≇ H/⟨xpm

⟩ ∼= ⟨b⟩ ×H2.

However, this contradicts with Lemma 2.3. The converse implication is similar. 2

Proposition 2.6 Let G be an abelian p-group of exponent pn . Assume that H and K are isomorphic subgroups
of G such that for some x, y ∈ G of order pn , G/H = ⟨xH⟩ ∼= Cpm ∼= ⟨yK⟩ = G/K , where 0 ≤ m ≤ n . Then,
there exists an isomorphism θ : H → K such that θ(xpm

) = yp
m .

Proof If m = n we have that xpm

= yp
m

= 1 , then for any isomorphism θ : H → K , we definitely have
θ(xpm

) = yp
m . Thus, we can assume that m < n . Then we have that xpm ∈ H and yp

m ∈ K . There are two
cases.
Case 1: xpm is a generator of H .
By Lemma 2.5, yp

m is also a generator of K . Then H = ⟨xpm⟩ ×H1 and K = ⟨ypm⟩ ×K1 where H1
∼= K1 .

Thus, one can choose θ1 : H1 → K1 as an isomorphism, and define θ : H → K as

θ((xpm

)lh) = (yp
m

)lθ1(h)

for 0 ≤ l ≤ pn−m − 1 and h ∈ H1 . It is clear that θ is an isomorphism from H onto K which satisfies
θ(xpm

) = yp
m

.

Case 2: xpm is a nongenerator of H .
By Lemma 2.5, yp

m is also a nongenerator of K . In this case, by Lemma 2.4, there exists a generator a ∈ H

such that ⟨xpm⟩ ≤ ⟨a⟩ . Similarly, there exists a generator b ∈ K such that ⟨ypm⟩ ≤ ⟨b⟩ . We claim that
⟨a⟩ ∼= ⟨b⟩ . Assume that ⟨a⟩ ≇ ⟨b⟩ . Then as H ∼= K , we have that H = ⟨a⟩×⟨b1⟩×H1 and K = ⟨a1⟩×⟨b⟩×K1

where ⟨a⟩ ∼= ⟨a1⟩ , ⟨b1⟩ ∼= ⟨b⟩ , H1
∼= K1 . Note that ⟨a1⟩ ̸∼= ⟨b1⟩ since ⟨a⟩ ̸∼= ⟨b⟩ . We have that

(⟨a⟩/⟨xpm

⟩)× ⟨b1⟩ ×H1
∼= H/⟨xpm

⟩ ≇ K/⟨yp
m

⟩ ∼= ⟨a1⟩ × (⟨b⟩/⟨yp
m

⟩)×K1.

This contradicts with Lemma 2.3. Thus, ⟨a⟩ ∼= ⟨b⟩ . Hence, H = ⟨a⟩ × H1 , K = ⟨b⟩ × K1 where H1
∼= K1 .

Choose θ1 : H1 → K1 as one of those isomorphisms. Then one can define θ : H → K as

θ(ai · h) = bi · θ1(h)

for 0 ≤ i ≤ |a| − 1 and h ∈ H1 . Since the orders of a and b are equal, now it is easy to see that θ is an
isomorphism between H and K which takes xpm to yp

m . 2

Lemma 2.7 Assume that G = H ×K , where (|H|, |K|) = 1 . Then, we have that G1 is a cocyclic subgroup of
G if and only if G1 = H1 ×K1 where H1 is a cocyclic subgroup of H and K1 is a cocyclic subgroup of K .
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Proof If H1 is a cocyclic subgroup of H and K1 is a cocyclic subgroup of K , it is easy to see that H1 ×K1

is a cocyclic subgroup of H × K since the orders of H and K are coprime. Conversely, if G1 is a cocyclic
subgroup of H ×K . Then, since H and K are groups of coprime order, we have that G1 = H1 ×K1 , where
H1 ≤ H and K1 ≤ K . However, since G1 is a cocyclic subgroup of H × K , we have that H1 is a cocyclic
subgroup of H and K1 is a cocyclic subgroup of K . 2

Now we are ready to prove Proposition 1.1.

Proof [Proof of Proposition 1.1] Since any pair of G -isomorphic subgroups of G are isomorphic by definition,
it is enough to prove that isomorphic cocyclic subgroups of G are G -isomorphic. Let us prove this statement
first for p -groups. Assume that G is an abelian p -group of exponent pn and let H and K be two cocyclic
isomorphic subgroups of G . If H = K = G there is nothing to do, so assume that H,K < G . By Lemma 2.2,
there exist x, y ∈ G of order pn such that G/H = ⟨xH⟩ and G/K = ⟨yK⟩ . Since H and K are isomorphic,
their cyclic quotient groups G/H and G/K are isomorphic. Let G/H = ⟨xH⟩ ∼= Cpm ∼= ⟨yK⟩ = G/K for
some m with 0 < m ≤ n . By using Proposition 2.6, we can choose an isomorphism θ : H → K so that
θ(xpm

) = yp
m . For each g ∈ G there exist a unique i where 0 ≤ i ≤ pm − 1 and a unique h ∈ H such that

g = xih . Now, define φ : G → G as φ(g) = yiθ(h) . We claim that φ is an automorphism of G . It is easy
to see that φ is a bijection. To show that it is a homomorphism let us choose g1 = xi1h1 and g2 = xi2h2 for
0 ≤ i1, i2 < pm and h1, h2 ∈ H . Note that 0 ≤ i1 + i2 < 2pm , we will show that φ is a homomorphism by
considering two separate cases depending on the value of this sum.
Case 1: 0 ≤ i1 + i2 < pm

In this case φ(g1g2) = φ(xi1+i2h1h2) = yi1+i2θ(h1h2) = (yi1θ(h1))(y
i2θ(h2)) = φ(g1)φ(g2).

Case 2: pm ≤ i1 + i2 < 2pm

In this case, we have that

φ(g1g2) = φ((xi1+i2−pm

)(xpm

h1h2)) = yi1+i2−pm

θ(xpm

h1h2) = yi1+i2−pm

θ(xpm

)θ(h1)θ(h2)

from the definition of φ and from the fact that xpm ∈ H . However, this last expression is equal to yi1+i2θ(h1h2)

since yp
m

= θ(xpm

) . Moreover, φ(g1)φ(g2) = (yi1θ(h1))(y
i2θ(h2)) = yi1+i2θ(h1h2). Hence, φ(g1g2) =

φ(g1)φ(g2) in this case, too.
In both of the cases, we have shown that φ is an automorphism of G and it is easy to observe that φ takes H

onto K . Hence, H and K are G -isomorphic.
Now, let G be a finite abelian group whose order is composite. For 1 ≤ i ≤ r , let Gpi

denote a Sylow
pi -subgroup of G . Then G = Gp1 × Gp2 × ... × Gpr . If H and K are two cocyclic subgroups of G which
are isomorphic, H = Hp1

× Hp2
× ... × Hpr

and K = Kp1
× Kp2

× ... × Kpr
where for each 1 ≤ i ≤ r , one

has Hpi
∼= Kpi . Moreover, by Lemma 2.7, for each i , the groups Hpi and Kpi are cocyclic subgroups of Gpi .

Hence, by the first part of the proof, Hpi
and Kpi

are Gpi
-isomorphic subgroups or equivalently there exists

an automorphism φi of Gpi
which takes Hpi

onto Kpi
. Now let us set φ := (φ1, φ2, . . . , φr) , then it is easy

to see that φ is an automorphism of G which takes H onto K . 2

Proof [Proof of Theorem 1.2] Follows from Proposition III.2, Proposition III.7, and Proposition III.8 in [7],
together with Proposition 1.1. 2

For the proofs of Theorem 1.3, Theorem 1.4, and Theorem 1.7 we need to consider direct products of
groups whose orders are relatively prime.
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When G is equal to the direct product of subgroups of coprime order, the number of isomorphism classes
of cocyclic subgroups, hence the number of non-G -equivalent minimal abelian codes is calculated easily as
follows.

Theorem 2.8 Let G = H ×K where (|H|, |K|) = 1 . Then we have that η(FG) = η(FK) η(FH).

Proof By Lemma 2.7, any cocylic subgroup of G is of the form H1 ×K1 where H1 is a cocyclic of H and
K1 is a cocyclic of K . Thus, the number of isomorphism classes of cocyclic subgroups of G is the product of
number of isomorphism classes of cocyclic subgroups of H and the number of isomorphism classes of cocyclic
subgroups of K . Now the result follows from Theorem 1.2. 2

Now, thanks to Theorem 1.2, to count the number of non-G -equivalent minimal abelian codes over F ,
we just need to count the number of isomorphism classes of cocyclic subgroups of G .

Proof [Proof of Theorem 1.3] By using classification of finitely generated abelian groups and Theorem 2.8, it
is enough to prove the result when H is a finite p -group. Let H = Cpa1 × . . .×Cpan where ai ≥ 1 are integers
and G = Hk for k ≥ 1 , then G = G1 × . . . × Gn where Gi = (Cpai )k for i = 1, . . . , n . Let L be a cocyclic
subgroup of G . For each i , we have that

Gi/Gi ∩ L ∼= GiL/L ≤ G/L

, which implies that Gi/Gi ∩ L is cyclic. Thus, Gi ∩ L should contain a subgroup Li which is isomorphic
to (Cpai )k−1 (for example by [7, Theorem V.2] ). Moreover, it is easy to see that for each i , there exists an
element xi ∈ Gi of order pai such that Gi = Li × ⟨xi⟩ . Hence,

G = (

n∏
i=1

Li)× (

n∏
i=1

⟨xi⟩),

where the first term of the product is isomorphic to (H)k−1 and the second is isomorphic to H . Now, by the
use of the correspondence theorem, there is a bijection between the subgroups of G containing

∏n
i=1 Li and

the subgroups of
∏n

i=1⟨xi⟩ . Under this bijection, L corresponds to a cocyclic subgroup CL of
∏n

i=1⟨xi⟩ , where
L = (

∏n
i=1 Li)× CL . By Theorem 1.2, the result follows since

∏n
i=1⟨xi⟩ is isomorphic to H . 2

Proof [Proof of Theorem 1.4] It is enough to prove the result when H and K are finite p -groups by the
classification of finitely generated abelian groups and Lemma 2.8. Let pn be the exponent of H and K . Then
there exists x ∈ H of order pn such that H = ⟨x⟩ × Ĥ where Ĥ is a finite p -group of exponent less or equal
than pn and K ∼= (Cpn)r for some positive integer r . Let G1 ≤ G = H × K with G1

∼= (Cpn)r+1 so that

G = G1 × Ĥ and let L be a cocyclic subgroup of G . Then by a similar reasoning to that in the proof of
Theorem 1.3, we deduce that G1/G1 ∩ L is cyclic, so G1 ∩ L contains a subgroup isomorphic to (Cpn)r , call
this subgroup KL . Then there exists an element x1 ∈ G1 of order pn such that G1 = KL × ⟨x1⟩ . Thus,
G = KL × ⟨x1⟩ × Ĥ and letting HL = ⟨x1⟩ × Ĥ,G is equal to KL ×HL , where KL and HL are isomorphic
to K and H , respectively. Since L is a cocyclic subgroup of KL ×HL containing KL , by the correspondence
theorem, L corresponds to a cocyclic subgroup CL of HL . Therefore, L = KL × CL where KL is isomorphic
to K and CL is cocyclic subgroup of HL . Now, the result follows from Theorem 1.2. 2
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In Theorem 1.4, the assumption on the exponents of the groups is important. We end this section by
presenting the significance of this assumption with the following examples.

Example 2.1 For an odd prime p , if we take H = Cp ×Cp and K = Cp2 ×Cp2 , then η(FH) = 2 , η(FK) = 3

and η(F(H ×K)) = 4 where the characteristic of F is coprime to p .

Example 2.2 Let K be a finite homocyclic group and H be a finite abelian group which is not homocyclic and
exp(K) > exp(H) . Let F be a finite field of characteristic coprime to 3 . If G = K ×H , η(FG) = η(FH) is
no longer true. Indeed, if K = C27 × C27 and H = C9 × C3 , then η(FH) = 4 , η(FK) = 4 and η(FG) = 8 .
However, for G = C27 ×C27 ×C9 ×C3 if we write G = H ×K where K = C27 and H = C27 ×C9 ×C3 then
η(FG) = η(FH) .

Example 2.3 Consider G = C27 × C9 × C3 × C3 and take H = C27 × C9 and K = C3 × C3 . η(FH) = 6 ,
η(FK) = 2 and η(FG) = 8 , where the characteristic of F is coprime to 3 .

3. Calculation for Cpn × Cpm

For the proof of Theorem 1.5, we need the following lemma.

Lemma 3.1 Let G = ⟨a⟩ × ⟨b⟩ where ⟨a⟩ ∼= Cpn and ⟨b⟩ ∼= Cpm with n > m ≥ 1 . Assume that L is a cocyclic
subgroup of G which is not cyclic. Then L ∼= Cpi × Cpj where m ≤ i ≤ n and 1 ≤ j ≤ m .

Proof Let L be such a cocyclic subgroup of G . If the exponent of L is pn , then L ∼= Cpn × Cpj where
1 ≤ j ≤ m . If the exponent of L is strictly less than pn , by Lemma 2.1, G/L = ⟨aL⟩ , so that G = L⟨a⟩ . Thus,
we have that

Cpm ∼= G/⟨a⟩ = L⟨a⟩/⟨a⟩ ∼= L/L ∩ ⟨a⟩

that is, L has a quotient isomorphic to Cpm ; hence, L has a subgroup isomorphic to Cpm . Thus, the
exponent of L is at least pm , in this case. Hence, L ∼= Cpi × Cpj for i ≥ m and j ≥ 1 . As |L| ≥ pm+1 ,
|G/L| ≤ p(m+n)−(m+1) = pn−1 . Therefore, the index of L in G is at most pn−1 .

We prove the required result by induction on the index of the cocyclic subgroup L in G . Clearly, the
statement holds when |G/L| = 1 . If |G/L| = p , then either L ∼= Cpn−1 ×Cpm or L ∼= Cpn ×Cpm−1 . Assume the
statement holds for any noncyclic cocyclic subgroup of G with index strictly less than ps where 1 ≤ s ≤ n− 1 .
Now let L be a cocyclic subgroup of G such that |G/L| = ps . Then there exists a cocyclic subgroup L1 of G

such that L < L1 ≤ G where |G/L1| = ps−1 . By our induction hypothesis, L1
∼= Cpi × Cpj where m ≤ i ≤ n

and 1 ≤ j ≤ m . Moreover, i and j satisfy m + n − (i + j) = s − 1 ≤ n − 2 . We also have that L1/L ∼= Cp .
Thus, if i ̸= m and j ̸= 1 , then we deduce that L ∼= Cpi−1 × Cpj or L ∼= Cpi × Cpj−1 . If i = m , then j ≥ 2

by the inequality m+ n− (i+ j) = s− 1 ≤ n− 2 . Since the exponent of L is at least pm , we shall have that
L ∼= Cpm × Cpj−1 . If j = 1 , then by the same inequality we have that i ≥ m+ 1 . As L is not cyclic, we shall
have that L ∼= Cpi−1 × Cp . Therefore, we deduce that L ∼= Cpi × Cpj where m ≤ i ≤ n and 1 ≤ j ≤ m .

2
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Proposition 3.2 Let G = ⟨a⟩ × ⟨b⟩ where ⟨a⟩ ∼= Cpn and ⟨b⟩ ∼= Cpm with n > m ≥ 1 . Then any cocyclic
subgroup of G is isomorphic to one of the following subgroups in the following set

{Hk ×Kj | Hk = ⟨ap
k

b⟩,Kj = ⟨bp
j

⟩, 0 ≤ k ≤ n−m, 0 ≤ j ≤ m}.

Proof There are two cases to consider.
Case 1 (Cocyclic subgroups of G which are cyclic): For each k ∈ {0, . . . n − m} , Hk is a cocyclic subgroup
of G , because G/Hk = ⟨aHk⟩ ∼= Cpm+k . Notice that there are exactly n − m + 1 such subgroups of G . Up
to isomorphism, there is no other cyclic cocyclic subgroup of G . Indeed, if there is one such subgroup H

which is not isomorphic to any Hk for 0 ≤ k ≤ n −m , then |H| = ps where s ∈ {0 . . .m − 1} . In this case,
G/H ∼= Cpn+m−s where n+m− s ≥ n+1 , but this is impossible since the exponent of G is equal to pn . Note
that Hk

∼= Hk ×Km because Km = 1 .
Case 2 (Cocyclic subgroups of G which are not cyclic): From Case 1, we know that Hk is a cocyclic subgroup
of G , for each k , so that G/Hk is cyclic. Since for each j , the quotient G/(Hk × Kj) is isomorphic to a
subgroup of G/Hk , we have that Hk×Kj is a cocyclic subgroup of G for any j ∈ {0, . . .m} . Conversely, using
Lemma 3.1, we deduce that any cocyclic subgroup is isomorphic to one of Hk ×Kj since Hk

∼= Cpn−k where
k ∈ {0, . . . n−m, } and Kj

∼= Cpm−j for j ∈ {0, . . .m− 1} . 2

Proof [Proof of Theorem 1.5] By Proposition 3.2, the number of isomorphism classes of cocyclic subgroups of
G is (n−m+ 1)(m+ 1) . By Theorem 1.2, η(FG) = (n−m+ 1)(m+ 1). 2

An immediate consequence of Theorem 1.5 and Theorem 1.4 is the following result.

Corollary 3.3 Let n,m and s be positive integers such that n > m . If G = (Cpn × Cpm)s for s ∈ N , then
η(FG) = (n−m+ 1)(m+ 1) . Moreover, if G = Cpn × Cpm × (Cpn)s , then η(FG) = (n−m+ 1)(m+ 1) .

4. Proof of Theorem 1.7
Let τ(G) denote the number of divisors of the exponent of G . It is not difficult to see that the number of
non-G -equivalent minimal abelian codes is greater than or equal to τ(G) when G is a finite abelian group.
Therefore, if the exponent of G is given, Theorem 1.7 gives a complete characterization of the groups having
τ(G) non-G -equivalent minimal abelian codes, that is, having the least possible number of non-G -equivalent
abelian codes. For the proof of Theorem 1.7, first of all we find the number of non-G -equivalent minimal abelian
group codes for homocyclic p -groups and prove the following.

Theorem 4.1 Let G be a finite abelian p-group. The number of non-G-equivalent minimal abelian codes is
equal to τ(G) if and only if G is homocyclic.

Proof Assume that G is homocyclic, that is, G ∼= (Cpn)s . Then by Theorem 1.3, η(FG) = η(FCpn) . Now
it is clear that the number of isomorphism classes of subgroups of Cpn is equal to the number of divisors of
pn . For the converse implication, assume that G is not homocyclic. If the exponent of G is pr for some
r ≥ 1 , then G ∼= Cpr × H where H ∼= K × Cpi for some 1 ≤ i ≤ r − 1 for some subgroup K of H . Then
H,H × Cp,H × Cp2 , ..., H × Cpr−1 is a family of nonisomorphic cocyclic subgroups of G . Obviously, K × Cpr

is another cocyclic subgroup which is not isomorphic to none of the elements of this family. Thus, we have at
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least r + 2 nonisomorphic cocyclic subgroups. Hence, η(FG) is at least r + 2 . This leads to a contradiction
because τ(G) = r + 1 . 2

Proof [Proof of Theorem 1.7] Let G = Gp1
×Gp2

× ...×Gpk
where each Gpi

is a homocyclic Sylow pi -subgroup
of G . If the exponent of each Gpi

is pei , then by Theorem 4.1, η(FGpi
) is equal to τ(Gpi

) = ei+1 . By Lemma

2.8, η(FG) is equal to
∏k

i=1(ei + 1) which is equal to τ(G).

For the converse implication, assume for some i , a Sylow pi -subgroup Gpi
is not homocyclic. Then by

Theorem 4.1, η(FGpi) > τ(Gpi) = ei + 1 , which gives a contradiction. 2

5. Concluding remarks

Let I ⊆ FG be a code. Any element α ∈ I is written as α =
∑

g∈G αgg where αg ∈ F for each g ∈ G . The
weight of an element α ∈ I is defined to be w(α) = |{g ∈ G | αg ̸= 0}| . The weight of I is defined to be
w(I) = min{w(α) | α is a nonzero element in I} .

If two codes I and J in FG are G -equivalent, then they have equal dimensions, equal lengths, and equal
weights. The converse of this statement is not true in general. For example, Proposition IV.2 and Table I in [7]
show that there are non-G -eqiuvalent codes which have equal weights and equal dimensions. By using Table
VI in [7], for the group G = (Cr

p)
m we have that two minimal abelian codes I, J ⊆ FG are G -equivalent if and

only if they have equal weights. Naturally, one can ask the following question:

Question 5.1 For which abelian groups G can we say that any two minimal codes are G-equivalent if and only
if their weights (or dimensions) are equal?
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