тӥвітак

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Research Article

Turk J Math
(2021) 45: $54-65$
© TÜBİTAK
doi:10.3906/mat-1911-80

Star edge coloring of graphs with $\operatorname{Mad}(G)<\frac{14}{5}$

Kavita PRADEEP* ${ }^{*}$
Department of Mathematics, Anna University, Chennai, India

| Received: 23.11 .2019 | Accepted/Published Online: 16.09 .2020 | Final Version: 21.01 .2021 |
| :--- | :--- | :--- | :--- | :--- |

Abstract

A star edge coloring of a graph G is a proper edge coloring such that there is no bicolored path or cycle of length four. The minimum number of colors needed for a graph G to admit a star edge coloring is called the star chromatic index and it is denoted by $\chi_{s}^{\prime}(G)$. In this paper, we consider graphs of maximum degree $\Delta \geq 4$ and show that if the maximum average degree of a graph is less than $\frac{14}{5}$ then $\chi_{s}^{\prime}(G) \leq 2 \Delta+1$.

Key words: Graph coloring, star edge coloring, star chromatic index, maximum average degree

1. Introduction

For a simple graph G, with vertex set $V(G)$ and edge set $E(G)$, a proper edge coloring is an assignment of a color to each edge of G so that no two edges with a common endpoint receive the same color. A star edge coloring is a proper edge coloring such that there is no bicolored path of length four or cycle of length four. The star chromatic index of G, denoted by $\chi_{s}^{\prime}(G)$ is the minimum number of colors required for G to admit a star edge coloring. This coloring was introduced by Liu and Deng [11] in 2008.

In 2013, Dvořák et al. showed that even determining the star chromatic index of complete graphs is a hard problem and gave the following bound for the star chromatic index of complete graphs [2].

$$
(2+o(1)) n \leq \chi_{s}^{\prime}\left(K_{n}\right) \leq n \frac{2^{2 \sqrt{2}(1+o(1)) \sqrt{\log (n)}}}{(\log (n))^{\frac{1}{4}}} .
$$

They also showed that for a subcubic graph G (graph with maximum degree at most 3), $\chi_{s}^{\prime}(G) \leq 7$. There are cubic graphs like K_{4} with one subdivided edge, $K_{3,3}$ and Heawood graph with the star chromatic index equal to 6 but there is no known example of a subcubic graph requiring seven colors. Thus, they conjectured that $\chi_{s}^{\prime}(G) \leq 6$ for subcubic graphs.

Pradeep and Vijayalakshmi [8] proved that if G is a subcubic graph with maximum average degree, $\operatorname{Mad}(G)<\frac{8}{3}$, then $\chi_{s}^{\prime}(G) \leq 6$. Bezegová et al. [1] obtained some tight bounds for the star chromatic index of trees and subcubic outerplanar graphs. Wang Y. et al. [10] showed that if G is a graph with $\Delta=4$, then $\chi_{s}^{\prime}(G) \leq 14$ and if G is a bipartite graph with $\Delta=4$, then $\chi_{s}^{\prime}(G) \leq 13$. Lei et al. [6] proved that it is NP-complete to determine whether $\chi_{s}^{\prime}(G) \leq 3$ for an arbitrary graph.

[^0]
PRADEEP/Turk J Math

The list version of star edge coloring is also studied in [3-5]. An edge list L for a graph G is a mapping that assigns a finite set of colors to each edge of G. Given an edge list L for a graph G, we say that G is L-star edge colorable if it has a star edge coloring c such that $c(e) \in L(e)$ for every edge e of G. The list star chromatic index of a graph G, denoted by $c h_{s}^{\prime}(G)$, is the smallest integer k such that for every edge list L for G with $|L(e)|=k$ for every edge $e \in E(G), G$ is L-star edge colorable. The bounds for list star chromatic index of a graph are given in terms of its maximum average degree. The maximum average degree of a graph G, denoted by $\operatorname{Mad}(G)$ is defined as $\operatorname{Mad}(G)=\max _{H \subseteq G,|V(H)| \geq 1}\left\{\frac{2|E(H)|}{|V(H)|}\right\}$. Dvořák et al. [2] asked a question whether $\operatorname{ch}_{s}^{\prime}(G) \leq 7$ for a subcubic graph G. Motivated by this Kerdjoudj et al. proved that for a subcubic graph G,
(i) if $\operatorname{Mad}(G)<\frac{7}{3}$, then $c h_{s}^{\prime}(G) \leq 5$,
(ii) if $\operatorname{Mad}(G)<\frac{5}{2}$, then $\operatorname{ch}_{s}^{\prime}(G) \leq 6$,
(iii) if $\operatorname{Mad}(G)<\frac{30}{11}$, then $c h_{s}^{\prime}(G) \leq 7$.

Lužar et al. [7] have shown that seven colors suffice for the list star edge coloring of a subcubic graph G. Apart from subcubic graphs, the following results were proved in [4] and [5] for a graph G with maximum degree $\Delta \geq 4$,
(i) if $\operatorname{Mad}(G)<\frac{7}{3}$, then $c h_{s}^{\prime}(G) \leq 2 \Delta-1$,
(ii) if $\operatorname{Mad}(G)<\frac{5}{2}$, then $c h_{s}^{\prime}(G) \leq 2 \Delta$,
(iii) if $\operatorname{Mad}(G)<\frac{8}{3}$, then $\operatorname{ch}_{s}^{\prime}(G) \leq 2 \Delta+1$,
(iv) if $\operatorname{Mad}(G)<\frac{14}{5}$, then $c h_{s}^{\prime}(G) \leq 2 \Delta+2$,
(v) if $\operatorname{Mad}(G)<3$, then $c h_{s}^{\prime}(G) \leq 2 \Delta+3$.

Using the concept of edge partitions, Wang et al. [9] showed that,
(i) for a planar graph G with maximum degree $\Delta, \chi_{s}^{\prime}(G) \leq 2.75 \Delta+18$,
(ii) for a planar graph G of girth at least $8, \chi_{s}^{\prime}(G) \leq\lfloor 1.5 \Delta\rfloor+3$.

In this paper, we consider the graphs of maximum degree $\Delta \geq 4$ with $\operatorname{Mad}(G)<\frac{14}{5}$ and improve the bound for the star chromatic index of G given in (iv) above and show that for such graphs $\chi_{s}^{\prime}(G) \leq 2 \Delta+1$.

2. Basic definitions and notations

For a graph G, let $d_{G}(v)$ denote the degree of a vertex v in G. If G is clear from the content, we may omit the subscript. Let $N(v)$ be the set of neighbors of v. A vertex of degree k is called a k-vertex. A k^{+}-vertex is a vertex of degree at least k. A k-vertex adjacent to a vertex v is a k-neighbor of v. A 3_{k}-vertex is a 3 -vertex adjacent to exactly $k(0 \leq k \leq 3) 2$-vertices. A 3_{1}-vertex adjacent to two 3 -vertices is called a bad 3_{1}-vertex. A 2-vertex adjacent to a 2 -vertex is called a bad 2-vertex. An edge incident to a vertex of degree one is called a pendant edge. For an edge coloring φ of the graph G, let $\varphi(v)$ denote the set of colors used on the edges incident with the vertex $v \in V(G)$, in the coloring φ. Similarly, for an edge $u v \in E(G), \varphi(u v)$ denotes the color used on the edge $u v$. We say that a color c is an available color for an edge $u v$ if c is not assigned to any of its neighbors and there is no bicolored path of length four or cycle of length four involving $u v$ when $u v$ is colored with c. Otherwise, it is said to be a forbidden color for the edge $u v$. The set of forbidden colors for a given edge $u v$ is denoted by $F(u v)$.

PRADEEP/Turk J Math

3. Graphs G with $\operatorname{Mad}(G)<\frac{14}{5}$

Theorem 3.1 Let G be a graph with maximum degree $\Delta \geq 4$ and $\operatorname{Mad}(G)<\frac{14}{5}$. Then $\chi_{s}^{\prime}(G) \leq 2 \Delta+1$.
Proof The proof is by the method of contradiction. Let H be a counterexample to the theorem. First, we prove the nonexistence of some structures in H and then use the discharging technique to get a contradiction. For some integer k, let G_{k} be the class of graphs with maximum degree at most k and maximum average degree less than $\frac{14}{5}$. Let for the smallest $k, H \in G_{k}$ be a counterexample to this theorem minimizing $|E(H)|+|V(H)|$. That is, $\operatorname{Mad}(H)<\frac{14}{5}$ and $\chi_{s}^{\prime}(H)>2 k+1$ and for any edge $e \in E(H), \chi_{s}^{\prime}(H \backslash\{e\}) \leq 2 k+1$. By minimality of H, we can assume that H is connected. Otherwise, we can star color independently the edges of each connected component of H with $2 k+1$ colors.

Now, we claim some structures or set of some subgraphs do not exist in H. We prove all the claims by the method of contradiction. To prove each of the claims, we suppose that the described structure exists in H. Then, we remove a certain number of edges from H to form a graph H^{\prime} which by minimality of H, is star edge colorable with $2 k+1$ colors. Let φ be such a star edge coloring of H^{\prime}. We extend this star edge coloring φ of H^{\prime} with $2 k+1$ colors to a star edge coloring of H with $2 k+1$ colors, which is a contradiction.

Structure of minimal counterexample

Claim 3.2 H does not contain a vertex u adjacent to $d(u)-1$ vertices of degree 1 .
Suppose H contains a p-vertex u with $N(u)=\left\{u_{1}, \ldots, u_{p}\right\}$ and $d\left(u_{i}\right)=1$ for $i \in\{1, \ldots, p-1\}(p \leq k)$. Let $H^{\prime}=H \backslash\left\{u u_{1}\right\}$. By minimality of H, H^{\prime} has a star edge coloring φ with $2 k+1$ colors. As $d\left(u_{p}\right) \leq k$, $\left|\varphi\left(u_{p}\right)\right| \leq k$ and $\left|F\left(u u_{1}\right)\right| \leq\left|\varphi(u) \cup \varphi\left(u_{p}\right)\right| \leq(k-1)+(k-1)=2 k-2$. So, there are at least three colors available for $u u_{1}$. Hence, φ can be extended to H, a contradiction.

Now, consider $G^{\prime}=H \backslash\left\{v: v \in V(H), d_{H}(v)=1\right\}$. If H does not contain a 1-vertex, then $G^{\prime}=H$. It can be observed that by Claim 3.2, G^{\prime} does not contain 1-vertices. Since $G^{\prime} \subseteq H$, we have, $\operatorname{Mad}\left(G^{\prime}\right)<\frac{14}{5}$.

Claim 3.3 G^{\prime} does not contain two adjacent 2-vertices.
Suppose G^{\prime} contains a 2-vertex u adjacent to another 2 -vertex v. Let x and y be the neighbors of u and v respectively. If u and v have 1-neighbors in H let them be denoted by u_{i} and v_{j} respectively for $i, j \in\{1, \ldots, k-2\}$. Consider $H^{\prime}=H \backslash\left\{u u_{1}\right\}$. By minimality of H, H^{\prime} has a star edge coloring φ with $2 k+1$ colors. As $\left|F\left(u u_{1}\right)\right| \leq|\varphi(x) \cup \varphi(v) \cup \varphi(u)| \leq k+2+(k-3)=2 k-1$, the coloring φ can be extended to $u u_{1}$. Therefore, $d_{H}(u)=2$. Similarly, $d_{H}(v)=2$.

Now, consider $H^{\prime}=H \backslash\{u v\}$, which by minimality of H has a star edge coloring φ with $2 k+1$ colors. As $|F(u v)| \leq|\varphi(x) \cup \varphi(y)|=k+k=2 k, \varphi$ can be easily extended to H, a contradiction.

Claim 3.4 If G^{\prime} contains a 2-vertex u adjacent to a 3-vertex, then $d_{H}(u)=2$.
Suppose u is a 2 -vertex adjacent to a 3-vertex v in G^{\prime}. Let w be a 3^{+}-neighbor of u. If u has 1neighbors in H, let them be denoted by u_{i} for $i \in\{1, \ldots, k-2\}$. Consider $H^{\prime}=H \backslash\left\{u u_{1}\right\}$. By minimality of

PRADEEP/Turk J Math

H, H^{\prime} has a star edge coloring φ with $2 k+1$ colors. As $\left|F\left(u u_{1}\right)\right| \leq|\varphi(w) \cup \varphi(v) \cup \varphi(u)| \leq k+3+(k-3)=2 k$, there is at least one color available for the edge $u u_{1}$. The colors used on the pendant edges incident to v and w may be available for $u u_{1}$. Therefore, $d_{H}(u)=2$.

Claim 3.5 If G^{\prime} contains a 3_{2}-vertex u adjacent to a p-vertex v, then $d_{H}(u)=3$ and $d_{H}(v)=p=k$.
Suppose u is a 3_{2}-vertex with $N(u)=\{v, w, x\}$ in G^{\prime}, where w and x are 2 -vertices and v is a vertex of degree $p \leq k$. By Claim 3.4, $d_{H}(w)=d_{H}(x)=2$. If u have 1-neighbors in H, denote them by u_{i} for $i \in\{1, \ldots, k-3\}$. Let $H^{\prime}=H \backslash\left\{u u_{1}\right\}$. By minimality of H, H^{\prime} has a star edge coloring φ with $2 k+1$ colors. As $\left|F\left(u u_{1}\right)\right| \leq|\varphi(v) \cup \varphi(w) \cup \varphi(x) \cup \varphi(u)| \leq p+2+2+(k-4) \leq 2 k,(p \leq k)$, there is at least one color available for $u u_{1}$. Therefore, $d_{H}(u)=3$.

Now, let $d_{H}(v)<k$. It may have 1-neighbors in H. Let y and z be the vertices adjacent to w and x respectively other than u. Consider $H^{\prime}=H \backslash\{u w, u x\}$ which by minimality of H, has a star edge coloring φ with $2 k+1$ colors. First, we color the edge $u w$ with a color, say, c_{1} such that $c_{1} \notin \varphi(v) \cup \varphi(y) \cup\{\varphi(x z)\}$. As $d_{H}(v)<k$, there is at least one such color for the edge $u w$. Now, as $c_{1} \notin \varphi(y),|F(u x)| \leq\left|\varphi(v) \cup \varphi(z) \cup\left\{c_{1}\right\}\right| \leq$ $(k-1)+k+1=2 k$. The colors used on the pendant edges incident to v, y and z may be available for $u w$ and $u x$. This is possible due to our assumption that $d_{H}(v)<k$. Hence, $d_{H}(v)=k$.

Claim 3.6 G^{\prime} does not contain a path uvwxy, where v, w and x are 3_{1}-vertices.
Suppose G^{\prime} contains a path uvwxy, where v, w and x are 3_{1}-vertices. Let v_{1}, w_{1} and x_{1} be the 2-neighbors of v, w and x respectively. Let v_{2}, w_{2} and x_{2} be the other neighbors of v_{1}, w_{1} and x_{1} other than v, w and x respectively. By Claim 3.4, $d_{H}\left(v_{1}\right)=d_{H}\left(w_{1}\right)=d_{H}\left(x_{1}\right)=2$. It is easy to see that, all the vertices v_{1}, w_{1} and x_{1} are distinct and by Claim 3.3, any two of the vertices v_{1}, w_{1} and x_{1} are not adjacent.

The vertices v, w and x may have 1-neighbors in H. Let them be $v_{i}^{\prime}, w_{j}^{\prime}$ and x_{l}^{\prime} respectively for $i, j, l \in\{1, \ldots, k-3\}$. Consider $H^{\prime}=H \backslash\left\{w w_{1}^{\prime}\right\}$. By minimality of H, H^{\prime} has a star edge coloring φ with $2 k+1$ colors. As $\left|F\left(w w_{1}^{\prime}\right)\right| \leq\left|\varphi(v) \cup \varphi\left(w_{1}\right) \cup \varphi(x) \cup \varphi(w)\right| \leq 3+2+3+(k-4)=k+4$ and $k \geq 4$, there is a color available for $w w_{1}^{\prime}$. The colors used on the pendant edges incident to v and x may also be available for $w w_{1}^{\prime}$. Therefore, $d_{H}(w)=3$.

Now, consider the graph $H^{\prime}=H \backslash\left\{v w, v v_{1}, v v_{i}^{\prime}, w x, w w_{1}, x x_{1}, x x_{l}^{\prime}\right\}$ for $i, l \in\{1, \ldots, k-3\}$ as shown in Figure 1. By minimality of H, the graph H^{\prime} has a star edge coloring φ with $2 k+1$ colors. Let $\varphi(u v)=a$ and $\varphi(x y)=b$. Color the edge $v v_{1}$ with a color, say, c_{1} such that $c_{1} \notin \varphi(u) \cup \varphi\left(v_{2}\right)$ and the edge $x x_{1}$ with a color, say, c_{2} such that $c_{2} \notin \varphi(y) \cup \varphi\left(x_{2}\right)$. Then, color the edge $w w_{1}$ with a color, say, c_{3} such that $c_{3} \notin \varphi\left(w_{2}\right) \cup\left\{c_{1}, c_{2}, a, b\right\}$. Since $\left|\varphi\left(w_{2}\right) \cup\left\{c_{1}, c_{2}, a, b\right\}\right| \leq k+4$ and $k \geq 4$, there is at least one color available for $w w_{1}$. Next, color the edge $v w$ with a color, say, c_{4} such that $c_{4} \notin \varphi(u) \cup\left\{c_{1}, c_{2}, c_{3}, b\right\}$. Now, it can be observed that $|F(w x)| \leq\left|\varphi(y) \cup\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\}\right| \leq k+4$. So, we have at least one color available for $w x$, say, c_{5}.

Finally, to color the edges $v v_{i}^{\prime}$ and $x x_{l}^{\prime}$, for $i, l \in\{1, \ldots, k-3\}$, we choose two sets of colors A_{1} and A_{2} such that each color in A_{1} is not in $\varphi(u) \cup\left\{c_{1}, c_{3}, c_{4}, c_{5}\right\}$ and each color in A_{2} is not in $\varphi(y) \cup\left\{c_{2}, c_{3}, c_{4}, c_{5}\right\}$. As $\left|\varphi(u) \cup\left\{c_{1}, c_{3}, c_{4}, c_{5}\right\}\right| \leq k+4$ and $\left|\varphi(y) \cup\left\{c_{2}, c_{3}, c_{4}, c_{5}\right\}\right| \leq k+4$, there are at least $2 k+1-(k+4)=k-3$

PRADEEP/Turk J Math

colors in each of the sets A_{1} and A_{2}. So, we color the edges $v v_{i}^{\prime}$ with colors from A_{1} and the edges $x x_{l}^{\prime}$ with colors from A_{2}. Therefore, φ can be extended to H, a contradiction.

- vertices with known degree
Δ vertices with unknown degree

Figure 1. Illustration of Claim 3.6.

Claim 3.7 G^{\prime} does not contain a 3-vertex adjacent to two bad 3_{1}-vertices.
Suppose G^{\prime} contains a 3 -vertex v adjacent to two bad 3_{1}-vertices u and w with $N(v)=\{u, w, z\}$. Let x and y be the 3-neighbors and u^{\prime} and w^{\prime} be the 2-neighbors of u and w respectively. Let $N(x)=\left\{x_{1}, x_{2}, u\right\}$ and $N(y)=\left\{y_{1}, y_{2}, w\right\}$. Let $u^{\prime \prime}$ and $w^{\prime \prime}$ be the neighbors of u^{\prime} and w^{\prime} respectively other than u and w. By Claim 3.4, $d_{H}\left(u^{\prime}\right)=d_{H}\left(w^{\prime}\right)=2$. The 3 -vertices u, v, w, x and y may have 1 -neighbors in H. Using similar arguments as in Claim 3.6 for the vertex w, we can show that $d_{H}(w)=3$. Similarly, $d_{H}(u)=3$. Let the 1-neighbors of v, x and y be denoted by v_{j}, x_{m} and y_{n} respectively for $j \in\{1, \ldots, k-3\}$ and $m, n \in\{3, \ldots, k-1\}$.

Now, consider $H^{\prime}=H \backslash\left\{u u^{\prime}, u v, v v_{j}, v w, w w^{\prime}\right\}$ for $j \in\{1, \ldots, k-3\}$ as shown in Figure 2. By minimality of H, H^{\prime} has a star edge coloring φ with $2 k+1$ colors. First, we recolor the edge $u x$ such that $\varphi(u x)$ do not appear on $\varphi\left(x_{1}\right) \cup \varphi\left(x_{2}\right) \cup \varphi\left(x x_{m}\right)$, for $m \in\{3, \ldots, k-1\}$. As we have $2 k+1$ colors, there is at least one color that do not appear on $\varphi\left(x_{1}\right) \cup \varphi\left(x_{2}\right)$. Let that color be a^{\prime}. If a^{\prime} is not present on the pendant edges $x x_{m}$, for any m, we set $\varphi(u x)=a^{\prime}$. Otherwise, we swap the color of the edge $u x$ with the color a^{\prime}. Similarly, we recolor the edge $w y$ such that $\varphi(w y)$ do not appear on $\varphi\left(y_{1}\right) \cup \varphi\left(y_{2}\right) \cup \varphi\left(y y_{n}\right)$, for $n \in\{3, \ldots, k-1\}$. After this recoloring, let $\varphi(u x)=a$ and $\varphi(w y)=b$. Let $\varphi\left(u^{\prime} u^{\prime \prime}\right)=d$ and $\varphi\left(w^{\prime} w^{\prime \prime}\right)=f$. We color the remaining edges as follows.

Figure 2. Configuration of Claim 3.7.

Color the edge $u v$ with a color, say, c_{1} such that $c_{1} \notin \varphi(z) \cup\{a, b, d\}$, the edge $v w$ with a color, say, c_{2} such that $c_{2} \notin \varphi(z) \cup\left\{a, b, f, c_{1}\right\}$, the edge $u u^{\prime}$ with color, say, c_{3} such that $c_{3} \notin \varphi\left(u^{\prime \prime}\right) \cup\left\{a, c_{1}\right\}$ then color the
edge $w w^{\prime}$ with a color, say, c_{4} such that $c_{4} \notin \varphi\left(w^{\prime \prime}\right) \cup\left\{b, c_{1}, c_{2}\right\}$. As there are at most $k+4$ colors forbidden for each of the edge, we get at least one available color for every edge. Finally, to color the pendant edges $v v_{j}$, $j \in\{1, \ldots, k-3\}$, we choose a set of colors A such that each color in A is not in $\varphi(z) \cup\left\{a, b, c_{1}, c_{2}\right\}$. As $c_{1} \neq d$ and $c_{2} \neq f, c_{3}$ and c_{4} can be in A. As $|A| \geq k-3$, we color all the pendant edges incident to v with colors from A. Hence, we can extend the coloring φ of H^{\prime} to a star edge coloring of H.

Claim 3.8 G^{\prime} does not contain a 4-vertex adjacent to a 3_{1}-vertex and three 2-vertices.
Suppose G^{\prime} contains a 4 -vertex u adjacent to a 3_{1}-vertex u_{1} and three 2 -vertices u_{2}, u_{3} and u_{4}. Let $N\left(u_{1}\right)=\left\{u, v_{1}, v_{2}\right\}$, where v_{1} is a 2 -vertex. By Claim 3.4, $d_{H}\left(v_{1}\right)=2$. For $i \in\{2,3,4\}$, let $N\left(u_{i}\right)=\left\{u, u_{i}^{\prime}\right\}$. If these u_{i} 's have 1 -neighbors in H, denote them by $w_{j}^{i}, j \in\{1, \ldots, k-2\}$. The vertices u and u_{1} may also have 1 -neighbors in H. Let them be u_{m} and x_{l} respectively for $m \in\{5, \ldots, k\}$ and $l \in\{1, \ldots, k-3\}$. It is easy to see that each 2 -vertex u_{i} is distinct from the 2 -vertex v_{1} and by Claim 3.3, any two of the vertices u_{2}, u_{3}, u_{4} and v_{1} are not adjacent. Let $H^{\prime}=H \backslash\left\{u u_{1}, u u_{i}, u_{i} w_{j}^{i}, u_{1} x_{l}\right\}$, for $i \in\{2,3,4\}, j \in\{1, \ldots, k-2\}$ and $l \in\{1, \ldots, k-3\}$. By minimality of H, H^{\prime} has a star edge coloring φ with $2 k+1$ colors. Let $\varphi\left(u_{2} u_{2}^{\prime}\right)=a$, $\varphi\left(u_{3} u_{3}^{\prime}\right)=b$ and $\varphi\left(u_{4} u_{4}^{\prime}\right)=d$. We extend this coloring to H by coloring the following edges in order.

Color the edge $u u_{1}$ with a color, say, c_{1} such that $c_{1} \notin \varphi\left(v_{1}\right) \cup \varphi\left(v_{2}\right) \cup\{a, b\}$, the edge $u u_{2}$ with a color, say, c_{2} such that $c_{2} \notin \varphi\left(u_{2}^{\prime}\right) \cup \varphi\left(u_{1}\right) \cup\{d\}$ and the edge $u u_{3}$ with a color, say, c_{3} such that $c_{3} \notin \varphi\left(u_{3}^{\prime}\right) \cup\left\{c_{1}, c_{2}, a, d\right\}$. When $c_{1}=d$, color the edge $u u_{4}$ with a color, say, c_{4} such that $c_{4} \notin \varphi\left(u_{4}^{\prime}\right) \cup \varphi\left(u_{1}\right) \cup\left\{c_{2}, c_{3}\right\}$. Otherwise, color the edge $u u_{4}$ with color c_{4} such that $c_{4} \notin \varphi\left(u_{4}^{\prime}\right) \cup\left\{c_{1}, c_{2}, c_{3}, b\right\}$. It can be observed that there are at most $k+4$ colors used on the colored edges which are forbidden for each of the above mentioned edges at each step hence, we have at least one color available for each of them. This coloring is shown in Figure 3.

Figure 3. Configuration of Claim 3.8.
Now, we color the pendant edges incident to each u_{i} for $i \in\{1, \ldots, 4\}$. We choose a set of colors A_{1} such that each color in A_{1} is not in $\varphi\left(v_{1}\right) \cup \varphi\left(v_{2}\right) \cup\left\{c_{1}, c_{4}\right\}$. As $c_{1} \notin\{a, b\}, c_{2}$ and c_{3} can be in A_{1}. Therefore, $\left|A_{1}\right| \geq 2 k+1-(k+4)=k-3$, so we color the edges $u_{1} x_{l}$ for $l \in\{1, \ldots, k-3\}$ with colors from A_{1}. To color the edges $u_{i} w_{j}^{i}$ for $i \in\{2,3,4\}$ and $j \in\{1, \ldots, k-2\}$, we choose the three sets of colors A_{2}, A_{3} and A_{4} such that each color in A_{2} is not in $\varphi\left(u_{2}^{\prime}\right) \cup\left\{c_{1}, c_{2}, c_{3}\right\}$ and each color in A_{3} is not in $\varphi\left(u_{3}^{\prime}\right) \cup\left\{c_{1}, c_{3}, c_{4}\right\}$. If $c_{1}=d$, we choose A_{4} such that each color in A_{4} is not in $\varphi\left(u_{4}^{\prime}\right) \cup\left\{c_{2}, c_{3}, c_{4}\right\}$. Otherwise, each color in A_{4} is not in

PRADEEP/Turk J Math

$\varphi\left(u_{4}^{\prime}\right) \cup\left\{c_{1}, c_{2}, c_{4}\right\}$. As $c_{2} \neq d, c_{4}$ can be in A_{2} and $c_{3} \neq a, c_{2}$ can be in A_{3}. When $c_{1} \neq d, c_{4} \neq b$ so c_{3} can be in A_{4}. When $c_{1}=d$, all the colors $c_{1}, c_{2}, c_{3}, c_{4}$ are not in A_{4}. Therefore, in every set $A_{i}, i \in\{2,3,4\}$, at most $k+3$ colors are forbidden. This gives, $\left|A_{i}\right| \geq k-2$, for $i \in\{2,3,4\}$. So, we color the pendant edges $u_{i} w_{j}^{i}$ with colors from A_{i} for $i \in\{2,3,4\}$ and $j \in\{1, \ldots, k-2\}$. Finally, the edges $u u_{i}$, for $i \in\{5, \ldots, k\}$ can be easily colored as only four colors c_{1}, c_{2}, c_{3} and c_{4} are forbidden for them. Hence, φ can be extended to H, a contradiction.

Claim 3.9 G^{\prime} does not contain (i) a 4-vertex adjacent to two 3_{2}-vertices or (ii) a k-vertex, $k \geq 5$, adjacent to three 3_{2}-vertices.
(i) Suppose G^{\prime} contains a 4 -vertex u with $N(u)=\left\{u_{i}\right\}$ for $i \in\{1, \ldots, 4\}$, where u_{1} and u_{2} are 3_{2} vertices. By Claim 3.5, $d_{H}(u)=4=k$ and $d_{H}\left(u_{1}\right)=d_{H}\left(u_{2}\right)=3$. Let v_{1} and v_{2} be the 2-neighbors of u_{1} and let v_{3} and v_{4} be the 2-neighbors of u_{2}. For $i \in\{1, \ldots, 4\}$, let v_{i}^{\prime} be the neighbors of v_{i} other than v. By Claim 3.4, $d_{H}\left(v_{i}\right)=2$, for all i. By Claim 3.3, any of the two v_{i} 's are not adjacent. If $v_{1}=v_{3}$, let $H^{\prime}=H \backslash\left\{u_{1} v_{1}\right\}$. By minimality of H, H^{\prime} has a star edge coloring φ with $2 k+1$ colors. As $\left|F\left(u_{1} v_{1}\right)\right| \leq \varphi\left(v_{2}\right) \cup \varphi(u) \cup \varphi\left(u_{2}\right) \mid=2+4+1=7$, there are at least two colors available for $u_{1} v_{1}$. Therefore, we can easily extend this coloring to H. Hence, $v_{1} \neq v_{3}$. Using similar arguments we can show that v_{1} is distinct from v_{4} and the vertex v_{2} is distinct from v_{3} and v_{4}.

Now, consider $H^{\prime}=H \backslash\left\{u_{1} v_{1}, u_{1} v_{2}\right\}$ as shown in Figure 4b. By minimality of H, H^{\prime} has a star edge coloring φ with $2 k+1$ colors. To extend this coloring, first we color the edge $u_{1} v_{1}$ with a color not in $\varphi\left(v_{1}^{\prime}\right) \cup \varphi(u)$. There is at least one such color say, c_{1}, available for $u_{1} v_{1}$. Next, if there is an available color for the edge $u_{1} v_{2}$, we are done. Otherwise, as all the colors are forbidden for $u_{1} v_{2},\left|\varphi\left(v_{2}^{\prime}\right) \cap \varphi(u)\right|=0$, $\varphi\left(v_{1}^{\prime}\right)=\varphi\left(v_{2}^{\prime}\right)$ and the color of the edge $u u_{1}$, say, b appears on all the vertices u_{i}, for $i \in\{2,3,4\}$ forming bi-colored paths of length three. So, we uncolor the edge $u u_{1}$ and try to recolor it with a color other than b. If we get such a color, then it is easy to see that b is an available color for $u_{1} v_{2}$ and we are done.

Figure 4. Configuration of Claim 3.9(i).
Otherwise, $\left|\varphi\left(u_{2}\right) \cap \varphi\left(u_{3}\right) \cap \varphi\left(u_{4}\right)\right|=1$ and that color is b. So, we uncolor the edges $u_{2} v_{3}$ and $u_{2} v_{4}$ (shown with strike out colors on these edges). This makes the color $\varphi\left(u u_{2}\right)=c_{2}$ (say), an available color for the edge $u_{1} v_{2}$. We assign $\varphi\left(u_{1} v_{2}\right)=c_{2}$. Next, we color the edge $u_{2} v_{3}$ with a color, say, c_{3} such that $c_{3} \notin \varphi\left(v_{3}^{\prime}\right) \cup \varphi(u)$. There is at least one such color. Now, we can observe that there is at least one color available for the edge $u_{2} v_{4}$. As c_{2} can be present on at most one of the vertices u_{3} and u_{4}. If c_{2} is on both u_{3} and u_{4}, we could have recolored the edge $u u_{1}$. So, φ can be extended to H, a contradiction.
(ii) Suppose G^{\prime} contains a k-vertex u with $N(u)=\left\{u_{i}\right\}$ for $i \in\{1, \ldots, k\}$, where u_{1}, u_{2} and u_{3} are 3_{2}-vertices. By Claim 3.5, $d_{H}(u)=k$ and $d_{H}\left(u_{1}\right)=d_{H}\left(u_{2}\right)=d_{H}\left(u_{3}\right)=3$. Let v_{1} and v_{2} be the 2-neighbors of u_{1}, let v_{3} and v_{4} be the 2-neighbors of u_{2} and let v_{5} and v_{6} be the 2-neighbors of u_{3} in G^{\prime}. For $i \in\{1, \ldots, 6\}$, let v_{i}^{\prime} be the neighbors of v_{i} other than v. By Claim 3.4, $d_{H}\left(v_{i}\right)=2$, for all i. It is easy to see that all the 2-vertices v_{i} 's are distinct.

Now, let $H^{\prime}=H \backslash\left\{u_{1} v_{1}, u_{1} v_{2}\right\}$. By minimality of H, H^{\prime} has a star edge coloring φ with $2 k+1$ colors. First, color the edge $u_{1} v_{1}$ with a color, say, c_{1} as in Claim 3.9(i). If there is an available color for the edge $u_{1} v_{2}$, we are done. Otherwise, $\left|\varphi\left(v_{2}^{\prime}\right) \cap \varphi(u)\right|=0, \varphi\left(v_{1}^{\prime}\right)=\varphi\left(v_{2}^{\prime}\right)$ and $\varphi\left(u u_{1}\right)=b$ (say) appears on all the vertices u_{i}, for $i \in\{2, \ldots, k\}$ forming bicolored paths of length three. So, we uncolor the edges $u_{2} v_{3}$ and $u_{2} v_{4}$. This makes the color $\varphi\left(u u_{2}\right)=c_{2}$ (say) an available color for the edge $u_{1} v_{2}$. We assign $\varphi\left(u_{1} v_{2}\right)=c_{2}$.

Next, we color the edge $u_{2} v_{3}$ with a color, say, c_{3} such that $c_{3} \notin \varphi\left(v_{3}^{\prime}\right) \cup \varphi(u)$. If there is an available color for the edge $u_{2} v_{4}$, we are done. Otherwise, $\left|\varphi\left(v_{4}^{\prime}\right) \cap \varphi(u)\right|=0, \varphi\left(v_{3}^{\prime}\right)=\varphi\left(v_{4}^{\prime}\right)$ and $\varphi\left(u u_{2}\right)=c_{2}$ appears on all the vertices u_{i}, for $i \in\{1, \ldots, k\}$ forming bicolored paths of length three. So, we uncolor the edges $u_{3} v_{5}$ and $u_{3} v_{6}$. This makes the color $\varphi\left(u u_{3}\right)=c_{4}$ an available color for the edge $u_{2} v_{4}$. So, we assign $\varphi\left(u_{2} v_{4}\right)=c_{4}$ as shown in Figure 5. Finally, we color the edge $u_{3} v_{5}$ with a color, say, c_{5} such that $c_{5} \notin \varphi\left(v_{5}^{\prime}\right) \cup \varphi(u)$. There is at least one such color for $u_{3} v_{5}$. Now, observe that there is at least one color available for the edge $u_{3} v_{6}$ as $c_{5} \notin \varphi\left(v_{5}^{\prime}\right)$ and $c_{4} \notin \varphi\left(u_{1}\right)$. So, φ can be extended to H, a contradiction.

Figure 5. Configuration of Claim 3.9(ii).

Claim 3.10 G^{\prime} does not contain a 4-vertex u adjacent to a 3_{2}-vertex and a 2-vertex.
Suppose there is a 4 -vertex u in G^{\prime} with $N(u)=\left\{u_{i}\right\}$ for $i \in\{1, \ldots, 4\}$, where u_{1} is a 3_{2}-vertex and u_{2} is a 2-vertex. By Claim 3.5, $d_{H}\left(u_{1}\right)=3$ and $d_{H}(u)=4=k$. Let v_{1} and v_{2} be the 2-neighbors of u_{1}. By Claim 3.4, $d_{H}\left(v_{1}\right)=d_{H}\left(v_{2}\right)=2$. Let v_{1}^{\prime} and v_{2}^{\prime} be the other neighbors of v_{1} and v_{2} respectively other than u_{1}. Let u_{2}^{\prime} be a neighbor of u_{2} (of degree greater than 2) other than u. The 2-vertex u_{2} may have 1-neighbors in H. Let them be w_{1} and w_{2}. Let $H^{\prime}=H \backslash\left\{u_{1} v_{1}, u_{1} v_{2}\right\}$. By minimality of H, the graph H^{\prime} has a star edge coloring φ with $2 k+1$ colors. We color the edge $u_{1} v_{1}$ with a color, say, c_{1} such that $c_{1} \notin \varphi\left(v_{1}^{\prime}\right) \cup \varphi(u)$. If we get an available color for the edge $u_{1} v_{2}$, we are done. Otherwise, $\left|\varphi\left(v_{2}^{\prime}\right) \cap \varphi(u)\right|=0, \varphi\left(v_{1}^{\prime}\right)=\varphi\left(v_{2}^{\prime}\right)$ and $\varphi\left(u u_{1}\right)=b$, (say) appears on the vertices u_{i}, for $i \in\{2,3,4\}$ forming bicolored paths of length three. So, we recolor $u u_{1}$ as follows.

PRADEEP/Turk J Math

- When $\varphi\left(u_{2} u_{2}^{\prime}\right)=b$. We uncolor $u_{1} v_{1}$ and choose a color, say, c_{2} such that $c_{2} \notin \varphi\left(u_{4}\right) \cup \varphi\left(u_{3}\right) \cup \varphi(u)$. As b is a common color at u_{3} and u_{4}, there is at least one color for $u u_{1}$. Set $\varphi\left(u u_{1}\right)=c_{2}$. Then, we can extend this coloring to both the edges $u_{1} v_{1}$ and $u_{1} v_{2}$ easily, as there are at least two colors available for one edge and at least one for the other.
- When b is present on a pendant edge incident to u_{2}, let $\varphi\left(u_{2} w_{1}\right)=b$. We uncolor $u_{1} v_{1}$ and choose a color, say, c_{3} such that $c_{3} \notin \varphi\left(u_{4}\right) \cup \varphi\left(u_{3}\right) \cup\left\{\varphi\left(u u_{2}\right), \varphi\left(u_{2} u_{2}^{\prime}\right)\right\}$. If such c_{3} exists, we set $\varphi\left(u u_{1}\right)=c_{3}$. Then, we can extend the coloring to the edges $u_{1} v_{1}$ and $u_{1} v_{2}$ easily. Otherwise, we can swap the color b of the edge $u_{2} w_{1}$ with the color of the edge $u u_{2}$. Then, we get a color $\varphi\left(u u_{2}\right)$ available for $u u_{1}$. As this color do not appear on u_{3} and u_{4}, we can easily color the edges $u_{1} v_{1}$ and $u_{1} v_{2}$. So, φ can be extended to H, a contradiction.

Claim 3.11 For $k \geq 5, G^{\prime}$ does not contain a k-vertex u adjacent to two 3_{2}-vertices and $k-2$ vertices of degree 2.

Suppose G^{\prime} contains a k-vertex u with $N(u)=\left\{u_{i}\right\}$ for $i \in\{1, \ldots, k\}$, where u_{1} and u_{2} are 3_{2} vertices and u_{i}, for $i \in\{3, \ldots, k\}$ are $k-2$ vertices of degree 2. By Claim 3.5, $d_{H}\left(u_{1}\right)=d_{H}\left(u_{2}\right)=3$ and $d_{G^{\prime}}(u)=d_{H}(u)=k$. Let v_{1} and v_{2} be the 2-neighbors of u_{1} and let v_{3} and v_{4} be the 2-neighbors of u_{2}. By Claim 3.4, $d_{H}\left(v_{i}\right)=2$, for all i. For $i \in\{1, \ldots, 4\}$, let v_{i}^{\prime} be the other neighbors of v_{i}. The 2-vertices u_{i}, $i \in\{3, \ldots, k\}$ may have 1-neighbors in H. Let them be w_{j}^{i} for $j \in\{1, \ldots, k-2\}$.

Let $H^{\prime}=H \backslash\left\{u_{1} v_{1}, u_{1} v_{2}\right\}$ as shown in Figure 6. By minimality of H, H^{\prime} has a star edge coloring φ with $2 k+1$ colors. First, we color the edge $u_{1} v_{1}$ with a color, say, c_{1} such that $c_{1} \notin \varphi\left(v_{1}^{\prime}\right) \cup \varphi(u)$. If we get an available color for the edge $u_{1} v_{2}$, we are done. Otherwise, $\left|\varphi\left(v_{2}^{\prime}\right) \cap \varphi(u)\right|=0, \varphi\left(v_{1}^{\prime}\right)=\varphi\left(v_{2}^{\prime}\right)$ and $\varphi\left(u u_{1}\right)=b$ (say), appears on the vertices u_{i}, for each $i \in\{2, \ldots, k\}$ forming bi-colored paths of length three. So, we recolor $u u_{1}$ with a color other than b (shown with strike out color b on the edge). As at most two colors are forbidden for the edge $u u_{1}$ at each $u_{i}, i \in\{2, \ldots, k\},\left|F\left(u u_{1}\right)\right| \leq\left|\bigcup_{i=2}^{k} \varphi\left(u_{i}\right) \cup\left\{c_{1}\right\}\right| \leq 2(k-1)+1=2 k-1$. So, we get at least one color other than b for $u u_{1}$. Then, we have at least one available color for the remaining edge $u_{1} v_{2}$. Hence, φ can be extended to H, a contradiction.

Figure 6. Configuration of Claim 3.11.

Discharging Next, we show that the counterexample H does not exist. We set a weight function $w: V\left(G^{\prime}\right) \rightarrow$ \mathbb{R} such that

$$
\begin{equation*}
w(v)=d(v)-\frac{14}{5}, \forall v \in V\left(G^{\prime}\right) \tag{I}
\end{equation*}
$$

As $\operatorname{Mad}\left(G^{\prime}\right)<\frac{14}{5}, \quad \sum_{v \in V\left(G^{\prime}\right)} w(v)<0$.

PRADEEP/Turk J Math

Then, we redistribute the weights among the vertices according to the discharging rules described below, to obtain a weight function w^{\prime}. During the discharging process, the total sum of weights is kept fixed.

Discharging rules:

R1: A 3_{0}-vertex sends $\frac{1}{5}$ to its adjacent bad 3_{1}-vertex.
R2: A 3_{1}-vertex sends $\frac{2}{5}$ to its adjacent 2 -vertex.
R3: A 3_{2}-vertex sends $\frac{2}{5}$ to its adjacent 2-vertex.
R4: A k-vertex, $k \geq 4$ sends $\frac{2}{5}$ to each of its adjacent 2 -vertex.
R5: A k-vertex, $k \geq 4$ sends $\frac{1}{5}$ to each of its adjacent 3_{1}-vertex.
R6: A k-vertex, $k \geq 4$ sends $\frac{3}{5}$ to each of its adjacent 3_{2}-vertex.
Let $v \in V\left(G^{\prime}\right)$ be a k-vertex, $k \geq 2$.
Case 1: When $d(v)=2, w(v)=-\frac{4}{5}$.
By Claim 3.3, v has 3^{+}-neighbors so, by R2, R3 or R4, v receives $\frac{2}{5}$ units from each neighbor. Therefore, $w^{\prime}(v)=-\frac{4}{5}+2\left(\frac{2}{5}\right)=0$ 。

Case 2: When $d(v)=3, w(v)=\frac{1}{5}$.

- If v is a 3_{0}-vertex, then by Claim 3.5 , it is not adjacent to any 3_{2}-vertices and by Claim 3.7 , it can be adjacent to at most one bad 3_{1}-vertex. If v is adjacent to a bad 3_{1}-vertex, then by R1, v sends $\frac{1}{5}$ units to it. Therefore, $w^{\prime}(v)=\frac{1}{5}-\frac{1}{5}=0$. Otherwise, the weight of v remains unchanged.
- If v is a 3_{1}-vertex which is not bad, then it is adjacent to $p 4^{+}$-vertices, $p \in\{1,2\}$. By R5, v receives $\frac{1}{5}$ units from its 4^{+}-neighbor and by R2, v sends $\frac{2}{5}$ units to its 2-neighbor. Therefore, $w^{\prime}(v)=\frac{1}{5}+p\left(\frac{1}{5}\right)-\frac{2}{5} \geq 0$. If v is a bad 3_{1}-vertex, then by Claim 3.6, v can be adjacent to one 3_{0} and one 3_{1}-vertex or two 3_{0}-vertices. By R1, v receives $\frac{1}{5}$ units from the 3_{0}-vertices and by R2, v sends $\frac{2}{5}$ units to its 2-neighbor. Therefore, $w^{\prime}(v)=\frac{1}{5}+p\left(\frac{1}{5}\right)-\frac{2}{5} \geq 0$, where $p \in\{1,2\}$ is the number of 3_{0}-vertices adjacent to v.
- If v is a 3_{2}-vertex, then by Claim 3.5 , it is adjacent to a 4^{+}-vertex. So, by R6, v receives $\frac{3}{5}$ units from its 4^{+}-neighbor and by R3, v sends $\frac{2}{5}$ units to each of its 2-neighbor. Therefore, $w^{\prime}(v)=\frac{1}{5}+\frac{3}{5}-2\left(\frac{2}{5}\right)=0$.

Case 3: When $d(v)=4, w(v)=\frac{6}{5}$.

- If v is adjacent to 2-vertices, then by Claim 3.8, v can be adjacent to at most three 2 -vertices. If v is adjacent to exactly three 2 -vertices then it is not adjacent to a 3_{1}-vertex. So, by R4, v sends $\frac{2}{5}$ units to each of its 2-neighbors. Therefore, $w^{\prime}(v)=\frac{6}{5}-3\left(\frac{2}{5}\right)=0$.
- If v is adjacent to 3_{1}-vertices, then by Claim $3.8, v$ can be adjacent to at most two 2 -vertices. Let v be adjacent to $p 2$-vertices and $q 3_{1}$-vertices, then by R4, v sends $\frac{2}{5}$ units to each of its 2-neighbors and by R5, v sends $\frac{1}{5}$ units to each of the adjacent 3_{1}-vertices. Therefore, $w^{\prime}(v)=\frac{6}{5}-p\left(\frac{2}{5}\right)-q\left(\frac{1}{5}\right) \geq 0$, where $p \in\{0,1,2\}$ and $q \in\{1,2,3,4\}$ such that $p+q \leq 4$.
- If v is adjacent to 3_{2}-vertices, then by Claim $3.9, v$ can be adjacent to at most one 3_{2}-vertex and by Claim 3.10 , such v is not adjacent to any 2 -vertex. So, when v is adjacent to one 3_{2}-vertex and $p 3_{1}$-vertices, where $p \in\{0,1,2,3\}$, then by R5, v sends $\frac{3}{5}$ units to adjacent 3_{2}-vertex and by R6, v sends $\frac{1}{5}$ units to each of the adjacent 3_{1}-vertices. Therefore, $w^{\prime}(v)=\frac{6}{5}-\frac{3}{5}-p\left(\frac{1}{5}\right) \geq 0$.

Case 4: When $d(v)=k, k \geq 5, w(v)=k-\frac{14}{5}$.

- If v is adjacent to 2 -vertices and 3_{1} vertices, then by R 4 and $\mathrm{R} 5, v$ sends $\frac{2}{5}$ units to each of its 2-neighbors and $\frac{1}{5}$ units to each of the adjacent 3_{1}-vertices respectively. Let v be adjacent to $p 2$-vertices and $q 3_{1}$ vertices, then $w^{\prime}(v)=k-\frac{14}{5}-p\left(\frac{2}{5}\right)-q\left(\frac{1}{5}\right)=\frac{3 k-14}{5} \geq 0$, where $p, q \in\{0, \ldots, k\}$ such that $p+q \leq k$.
- If v is adjacent to 2 -vertices and 3_{2} vertices, then by Claim 3.9, v can be adjacent to at most two 3_{2}-vertices and by Claim 3.11, such v can be adjacent to at most $k-3$ vertices of degree 2 . Let v be adjacent to two 3_{2}-vertices, $p 2$-vertices and $q 3_{1}$-vertices, then by R4, R 5 and R6, v sends $\frac{3}{5}$ units to each of the two 3_{2} vertices, $\frac{1}{5}$ units to each of the 3_{1}-vertices and $\frac{2}{5}$ units to each of its 2-neighbors respectively. Therefore, $w^{\prime}(v)=k-\frac{14}{5}-2\left(\frac{3}{5}\right)-p\left(\frac{2}{5}\right)-(q)\left(\frac{1}{5}\right) \geq k-\frac{14}{5}-2\left(\frac{3}{5}\right)-(k-3)\left(\frac{2}{5}\right)-\left(\frac{1}{5}\right) \geq \frac{3 k-15}{5} \geq 0$, where $p \in\{0, \ldots, k-3\}$ and $q \in\{0, \ldots, k-2\}$ such that $p+q \leq k-2$.

Therefore, after discharging, in all the above cases, $w^{\prime}(v) \geq 0$ for every $v \in V\left(G^{\prime}\right)$.
$\Rightarrow \sum_{v \in V\left(G^{\prime}\right)} w^{\prime}(v) \geq 0$.
From (I) and (II), we get a contradiction. So, the subgraph G^{\prime} does not exist. Hence, the minimal counterexample H cannot exist. This completes the proof.

As every planar graph with girth g (length of the shortest cycle) satisfies (Folklore) $\operatorname{Mad}(G)<\frac{2 g}{g-2}$, the following corollary, can be easily derived from Theorem 3.1.

Corollary 3.12 Let G be a planar graph with girth $g \geq 7$. Then $\chi_{s}^{\prime}(G) \leq 2 \Delta+1$.

References

[1] Bezegová L, Lužar B, Mockovčiaková M, Soták R, Škrekovski R. Star edge coloring of some classes of graphs. Journal of Graph Theory 2016; 81 (1): 73-82. doi: $10.1002 / \mathrm{jgt} .21862$.
[2] Dvořák Z, Mohar B, Šámal R. Star chromatic index. Journal of Graph Theory 2013; 72 (3): 313-326. doi: 10.1002/jgt. 21644
[3] Kerdjoudj S, Kostochka AV, Raspaud A. List star edge coloring of subcubic graphs. Discussiones Mathematicae Graph Theory 2018; 38: 1037-1054. doi: 10.7151/dmgt. 2037
[4] Kerdjoudj S, Pradeep K, Raspaud A. List star chromatic index of sparse graphs. Discrete Mathematics 2018; 341: 1835-1849. doi: 10.1016/j.disc.2018.03.012
[5] Kerdjoudj S, Raspaud A. List star edge coloring of sparse graphs. Discrete Applied Mathematics 2018; 238: 115-125. doi: 10.1016/j.dam.2017.12.010
[6] Lei H, Shi Y, Song Z-X. Star chromatic index of subcubic multigraphs. Journal of Graph Theory 2018; 88 (4): 566-576. doi: 10.1002/jgt. 22230
[7] Lužar B, Mockovčiaková M, Soták R. Note on list star edge coloring of subcubic graphs. Journal of Graph Theory 2016; 81 (1): 73-82. doi: 10.1002/jgt. 22402
[8] Pradeep K, Vijayalakshmi V. Star edge coloring of subcubic graphs. Applied Mathematics and Information Sciences 2019; 13 (2): 279-284. doi: 10.18576/amis/130216
[9] Wang Y, Wang W, Wang Y. Edge partition and star chromatic index. Applied Mathematics and Computation 2018; 333: 480-489. doi: 10.1016/j.amc.2018.03.079
[10] Wang Y, Wang Y, Wang W. Star edge coloring of graphs with maximum degree four. Applied Mathematics and Computation 2019; 340 (1): 268-275. doi: 10.1016/j.amc.2018.08.035
[11] Liu X, Deng K. An upper bound on the star chromatic index of graphs with $\delta \geq 7$. Journal of Lanzhou University (Natural Sciences) 2008; 44: 94-95.

[^0]: *Correspondence: kavita2428@gmail.com
 2010 AMS Mathematics Subject Classification: 05C15

