

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Research Article

Turk J Math (2021) 45: 471 – 478 © TÜBİTAK doi:10.3906/mat-2009-92

A new recursive formula arising from a determinantal expression for weighted Delannoy numbers

Muhammet Cihat DAĞLI*®

Department of Mathematics, Faculty of Science, Akdeniz University, Antalya, Turkey

Received: 08.09.2020 • Accepted/Published Online: 10.12.2020 • Final Version: 21.01.2021

Abstract: In this paper, we obtain a determinantal expression for weighted Delannoy numbers, from which we give a new recurrence relation for it. For the special case of our formula, we compute central weighted Delannoy number in terms of weighted Delannoy number.

Key words: Delannoy number, central Delannoy number, determinantal expression, recurrence relation

1. Introduction

For positive integers a, b and c, let us consider paths that start at the origin, remain in the first quadrant and use only the steps (1,0) with weight a, (0,1) with weight b and (1,1) with weight c. The weight of a path is then the product of the weights of the individual steps in the path. For all nonnegative integers p,q, let w(p,q|a,b,c) denote the total of all of the weights of paths that connect the origin to the point (p,q). The w(p,q|a,b,c) are known as the weighted Delannov numbers and are given by the recurrence relation

$$w(p+1,q+1|a,b,c) = a \cdot w(p,q+1|a,b,c) + b \cdot w(p+1,q|a,b,c) + c \cdot w(p,q|a,b,c),$$
(1.1)

subject to the initial conditions $w(p,0|a,b,c)=a^p$, and $w(0,q|a,b,c)=b^q$ for $p,q\geq 0$.

They possess the closed form expression [6, p. 87]

$$w(p, q|a, b, c) = \sum_{k=0}^{p} {p \choose k} {q \choose k} a^{p-k} b^{q-k} (ab+c)^{k}.$$

The recurrence relation (1.1) implies the following generating function for $w\left(p,q|a,b,c\right)$:

$$\sum_{p,q\geq 0}w\left(p,q|a,b,c\right)x^{p}y^{q}=\frac{1}{1-ax-by-cxy}.$$

Substituting a = b = c = 1 yields the classical Delannov numbers d(p,q), given by the recurrence relation

$$d(p,q) = d(p-1,q) + d(p,q-1) + d(p-1,q-1),$$

2010 AMS Mathematics Subject Classification: 05A15, 05A10, 11B83, 11C20.

^{*}Correspondence: mcihatdagli@akdeniz.edu.tr

and can be generated by

$$\sum_{p,q \ge 0} d(p,q) x^p y^q = \frac{1}{1 - x - y - xy}.$$

The historic significance of these numbers is explained in the paper "Why Delannoy numbers?" [1] by Banderier and Schwer. Various properties of Delannoy numbers and their generalizations have been discussed by many authors (see [4, 5, 7, 8, 10, 11, 17, 29–33]).

For example, Razpet [27] studied a divisibility property of weighted Delannoy numbers w(p, q|a, b, c) and showed that these numbers satisfy a congruence relation for all positive integers a, b and c as follows:

$$w(\alpha p + \beta, \gamma p + \delta | a, b, c) \equiv w(\alpha, \gamma | a, b, c) \cdot w(\beta, \delta | a, b, c) \pmod{p}$$

where p is a prime number and α, β, γ and δ are nonnegative integers with $0 \le \beta < p$, $0 \le \delta < p$.

Also, Noble [12] considered some divisibility properties for central weighted Delannoy numbers w(p, p|a, b, c) by applying a generalization of a method of Stoll and Haible that appears [28] for the asymptotic coefficients.

On the other hand, adopting the determinantal representation, some authors have studied important topics such as Bernoulli numbers and polynomials [18, 21], the Euler numbers and polynomials [34], central Delannoy numbers [16], Horadam polynomials [22], Fibonacci polynomials [25] and obtained many remarkable relations for them. One may consult [9, 13, 14, 19, 20, 23, 24, 26] and closely related references therein.

Very recently, by applying a formula for derivatives of a ratio of two differential functions and a recursive relation of the Hessenberg determinant, a new determinantal expression and a new recursive relation for the Delannoy numbers d(p,q) have been offered in [15].

In this paper, we give a determinantal expression for weighted Delannoy number $w\left(p,q|a,b,c\right)$. As an application this representation, we derive a new recursive formula for weighted Delannoy numbers. Consequently, we also deduce similar formula for central weighted Delannoy numbers. We remark that our formulas cover some conclusions in this context.

2. Lemmas

In this section, we give two lemmas. The first one is a simple and useful instrument to express some quantities in mathematics by means of some special determinants, while the second one enables us to derive recursive formulas.

Lemma 2.1 [2, p. 40, Entry 5] For two differentiable functions p(x) and $q(x) \neq 0$, we have for $k \geq 0$

$$\left[\frac{p(x)}{q(x)}\right]^{(k)} = \frac{(-1)^k}{(q(x))^{k+1}} \\
\begin{vmatrix}
p & q & 0 & \cdots & 0 & 0 \\
p' & q' & q & \cdots & 0 & 0 \\
p'' & q'' & ({}_1^2)q' & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
p^{(k-2)} & q^{(k-2)} & ({}_1^{k-2})q^{(k-3)} & \cdots & q & 0 \\
p^{(k-1)} & q^{(k-1)} & ({}_1^{k-1})q^{(k-2)} & \cdots & ({}_{k-2}^{k-1})q' & q \\
p^{(k)} & q^{(k)} & ({}_1^k)q^{(k-1)} & \cdots & ({}_{k-2}^k)q'' & ({}_{k-1}^k)q'
\end{vmatrix} \right] .$$
(2.1)

In other words, formula (2.1) can be represented as

$$\frac{d^k}{dx^k} \left[\frac{p\left(x\right)}{q\left(x\right)} \right] = \frac{\left(-1\right)^k}{q^{k+1}} \left| W_{(k+1)\times(k+1)}\left(x\right) \right|,$$

where $|W_{(k+1)\times(k+1)}(x)|$ denotes the determinant of the matrix

$$W_{(k+1)\times(k+1)}(x) = \begin{bmatrix} U_{(k+1)\times1}(x) & V_{(k+1)\times k}(x) \end{bmatrix}.$$

Here $U_{(k+1)\times 1}(x)$ has the elements $u_{l,1}(x) = p^{(l-1)}(x)$ for $1 \le l \le k+1$ and $V_{(k+1)\times k}(x)$ has the entries of the form

$$v_{i,j}(x) = \begin{cases} \binom{i-1}{j-1} q^{(i-j)}(x), & \text{if } i-j \ge 0; \\ 0, & \text{if } i-j < 0, \end{cases}$$

for $1 \le i \le k+1$ and $1 \le j \le k$.

Lemma 2.2 [3, p. 222, Theorem] Let $M_0 = 1$ and

for $n \in \mathbb{N}$, then, the sequence M_n satisfies the following relation with $M_1 = m_{1,1}$,

$$M_n = \sum_{r=1}^n (-1)^{n-r} m_{n,r} \left(\prod_{j=r}^{n-1} m_{j,j+1} \right) M_{r-1}, \quad \text{for } n \ge 2.$$
 (2.2)

3. Results

This section is devoted to present the results.

Theorem 3.1 The weighted Delannoy numbers w(p, q|a, b, c) for $p, q \ge 0$ can be represented in terms of the following determinant as

$$w(p, q|a, b, c) = \frac{(-1)^q}{q!} \left| L_{(q+1)\times 1}(p) M_{(q+1)\times q}(p) \right|_{(q+1)\times (q+1)}, \tag{3.1}$$

where

$$\begin{split} L_{(q+1)\times 1}\left(p\right) &= \left(\left\langle p\right\rangle_0 a^p, \left\langle p\right\rangle_1 a^{p-1}c, ..., \left\langle p\right\rangle_q a^{p-q}c^q\right)^T, \\ M_{(q+1)\times q}\left(p\right) &= \left(\left(-1\right)^{i-j} \binom{i-1}{j-1} \left\langle p+1\right\rangle_{i-j} b^{i-j}\right)_{\substack{1 \leq i \leq q+1 \\ 1 \leq j \leq q}}, \end{split}$$

with the notation T (transpose of matrix), and

$$\langle x \rangle_n = \prod_{k=0}^{n-1} (x-k) = \begin{cases} x (x-1) \dots (x-n+1), & \text{if } n \ge 1; \\ 1, & \text{if } n = 0, \end{cases}$$

is called the falling factorial of $x \in \mathbb{R}$.

Proof From Lemma 2.1, we have

$$\begin{split} &\frac{\partial^p}{\partial x^p} \left[\frac{1}{1-ax-by-cxy} \right] \\ &= \frac{(-1)^p}{(1-ax-by-cxy)^{(p+1)}} \\ & \begin{vmatrix} 1 & 1-ax-by-cxy & 0 & 0 & \dots & 0 \\ 0 & -(a+cy) & 1-ax-by-cxy & 0 & \dots & 0 \\ 0 & 0 & -\binom{2}{1}(a+cy) & 1-ax-by-cxy & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & 0 & 0 & \dots & 1-ax-by-cxy \\ 0 & 0 & 0 & 0 & 0 & \dots & 1-ax-by-cxy \\ 0 & 0 & 0 & 0 & \dots & -\binom{p}{1}(a+cy) \end{vmatrix} \\ &= \frac{p! \left(a+cy\right)^p}{\left(1-ax-(b+cx)y\right)^{(p+1)}} \end{split}$$

and

$$\begin{split} &\frac{\partial^{p+q}}{\partial y^q \partial x^p} \left[\frac{1}{1-ax-by-cxy} \right] = p! \frac{\partial^q}{\partial y^q} \frac{(a+cy)^p}{(1-ax-(b+cx)\,y)^{p+1}} \\ &= p! \frac{(-1)^q}{(1-ax-(b+cx)\,y)^{(p+1)(q+1)}} \\ & \begin{vmatrix} (a+cy)^p & (1-ax-(b+cx)\,y)^{p+1} \\ \langle p \rangle_1 \, (a+cy)^{p-1} \, c & -\langle p+1 \rangle_1 \, (b+cx) \, (1-ax-(b+cx)\,y)^p \\ \langle p \rangle_2 \, (a+cy)^{p-2} \, c^2 & \langle p+1 \rangle_2 \, (b+cx)^2 \, (1-ax-(b+cx)\,y)^{p-1} \\ \\ & \vdots & \vdots \\ \langle p \rangle_{q-2} \, (a+cy)^{p-q+2} \, c^{q-2} & (-1)^{q-2} \, \langle p+1 \rangle_{q-2} \, (b+cx)^{q-2} \, (1-ax-(b+cx)\,y)^{p-q+3} \\ \langle p \rangle_q \, (a+cy)^{p-q+1} \, c^{q-1} & (-1)^{q-1} \, \langle p+1 \rangle_{q-1} \, (b+cx)^{q-1} \, (1-ax-(b+cx)\,y)^{p-q+2} \\ \langle p \rangle_q \, (a+cy)^{p-q} \, c^q & (-1)^q \, \langle p+1 \rangle_q \, (b+cx)^q \, (1-ax-(b+cx)\,y)^{p-q+2} \\ & & 0 \\ (1-ax-(b+cx)\,y)^{p+1} \\ -\binom{2}{1} \, \langle p+1 \rangle_1 \, (b+cx) \, (1-ax-(b+cx)\,y)^p \\ & \vdots \\ (-1)^{q-3} \, \binom{q-2}{1} \, \langle p+1 \rangle_{q-3} \, (b+cx)^{q-3} \, (1-ax-(b+cx)\,y)^{p-q+4} \\ (-1)^{q-2} \, \binom{q-1}{1} \, \langle p+1 \rangle_{q-2} \, (b+cx)^{q-2} \, (1-ax-(b+cx)\,y)^{p-q+3} \\ (-1)^{q-1} \, \binom{q}{1} \, \langle p+1 \rangle_{q-1} \, (b+cx)^{q-1} \, (1-ax-(b+cx)\,y)^{p-q+2} \\ \end{matrix}$$

as $x, y \to 0$. So, we have

$$\begin{split} w\left(p,q|a,b,c\right) &= \frac{1}{p!q!} \frac{\partial^{p+q}}{\partial y^q \partial x^p} \left[\frac{1}{1-ax-by-cxy} \right] \\ &= \frac{(-1)^q}{q!} \left| \left. \left(\langle p \rangle_{ij} \, a^{p-ij} c^{ij} \right)_{\substack{0 \leq i \leq q \\ j=1}} \right. \left. \left((-1^{i-j} \binom{i-1}{j-1}) \, \langle p+1 \rangle_{i-j} \, b^{i-j} \right)_{\substack{1 \leq i \leq q+1 \\ 1 \leq j \leq q}} \right. \right|_{(q+1) \times (q+1)}, \end{split}$$

which completes the proof.

Remark 3.2 For the special case a = b = c = 1, Equation 3.1 reduces to Theorem 2.1 of [15].

Theorem 3.3 For $p,q \geq 0$, the weighted Delannoy numbers w(p,q|a,b,c) satisfy the following recursive formula

$$= \binom{p}{q} a^{p-q} c^q + (-1)^{q+1} \sum_{r=0}^{q-1} (-1)^r \binom{p+1}{q-r} b^{q-r} w(p,r|a,b,c).$$
 (3.2)

For p = q = n, we have the following relation for the central weighted Delannoy numbers:

$$w(n, n|a, b, c) = c^{n} + (-1)^{n+1} \sum_{r=0}^{n-1} (-1)^{r} {n+1 \choose r+1} b^{n-r} w(n, r|a, b, c).$$
(3.3)

Proof Applying (2.2) to the determinantal expressions (3.1), we get

$$w(p, n-1|a, b, c)$$

$$=\frac{\langle p\rangle_{n-1}}{(n-1)!}a^{p-n+1}c^{n-1}+(-1)^n\sum_{r=2}^n\left(-1\right)^r\frac{\langle p+1\rangle_{n-r+1}}{(n-r+1)!}b^{n-r+1}w\left(p,r-2|a,b,c\right),$$

which can be simplified as (3.2). Taking p = q = n yields the recurrence formula (3.3) for central weighted Delannoy numbers in terms of weighted Delannoy numbers. So, the proof is completed.

Remark 3.4 If we set a = b = c = 1, Equations 3.2 and 3.3 coincide with identities (3.1) and (3.2) of [15], respectively.

Remark 3.5 We notice that a combinatorial proof of our recursive formula (3.2) for weighted Delannoy numbers w(p,q|a,b,c) can be achieved by using the principle of inclusion and exclusion.

References

- [1] Banderier C, Schwer S. Why Delannoy numbers? Journal of Statistical Planning and Inference 2005; 135: 40-54. doi: 10.1016/j.jspi.2005.02.004
- [2] Bourbaki N. Functions of a Real Variable, Elementary Theory. Translated from the 1976 French Original by Philip Spain. Elements of Mathematics (Berlin). Berlin, Germany: Springer, 2004. doi: 10.1007/978-3-642-59315-4
- [3] Cahill ND, D'Errico JR, Narayan DA, Narayan JY. Fibonacci determinants. The College Mathematics Journal 2002; 33 (3): 221-225. doi: 10.2307/1559033
- [4] Caughman JS, Haithcock CR, Veerman JJP. A note on lattice chains and Delannoy numbers. Discrete Mathematics 2008; 308 (12): 2623-2628. doi: 10.1016/j.disc.2007.05.017
- [5] Dağlı MC. A new generalization of Delannoy numbers. Indian Journal of Pure and Applied Mathematics 2020; 51
 (4) 1729-1735. doi: 10.1007/s13226-020-0492-7
- [6] Fray RD, Roselle DP. Weighted lattice paths. Pacific Journal of Mathematics 1971; 37 (1): 85-96.
- [7] Fray RD, Roselle DP. On weighted lattice paths. Journal of Combinatorial Theory, Series A 1973; 14 (1): 21-29. doi: 10.1016/0097-3165(73)90060-5
- [8] Guo VJW. Proof of Sun's conjectures on integer-valued polynomials. Journal of Mathematical Analysis and Applications 2016; 444: 182-191. doi: 10.1016/j.jmaa.2016.06.028
- [9] İpek A, Arı K. On Hessenberg and pentadiagonal determinants related with Fibonacci and Fibonacci-like numbers.
 Applied Mathematics and Computation 2014; 229: 433-439. doi: 10.1016/j.amc.2013.12.071
- [10] Liu JC. A supercongruence involving Delannoy numbers and Schröder numbers. Journal of Number Theory 2016; 168: 117-127. doi: 10.1016/j.jnt.2016.04.019

DAĞLI/Turk J Math

- [11] Liu JC, Li L, Wang SD. Some congruences on Delannoy numbers and Schröder numbers. International Journal of Number Theory 2018; 14: 2035-2041. doi: 10.1142/S1793042118501221
- [12] Noble R. Asymptotics of the weighted Delannoy numbers. International Journal of Number Theory 2012; 8 (1): 175-188. doi: 10.1142/S1793042112500108
- [13] Qi F. Denying a short proof of a determinantal formula for generalized Fibonacci polynomials. Journal of Mathematical Analysis 2020; 11 (1): 52-57.
- [14] Qi F. Derivatives of tangent function and tangent numbers. Applied Mathematics and Computation 2015; 268: 844-858. doi: 10.1016/j.amc.2015.06.123
- [15] Qi F. A determinantal expression and a recursive relation of the Delannoy numbers. Acta Universitatis Sapientiae Mathematica 2021; 13 (1) (in press).
- [16] Qi F, Cernanova V, Semenov YS. Some tridiagonal determinants related to central Delannoy numbers, the Chebyshev polynomials, and the Fibonacci polynomials. UPB Scientific Bulletin, Series A: Applied Mathematics and Physics 2019; 81: 123-136.
- [17] Qi F, Cernanova V, Shi XT, Guo BN. Some properties of central Delannoy numbers. Journal of Computational and Applied Mathematics 2018; 328: 101-115. doi: 10.1016/j.cam.2017.07.013
- [18] Qi F, Chapman RJ. Two closed forms for the Bernoulli polynomials. Journal of Number Theory 2016; 159: 89-100. doi: 10.1016/j.jnt.2015.07.021
- [19] Qi F, Dağlı MC, Du WS. Determinantal forms and recursive relations of the Delannoy two-functional sequence. Advances in the Theory of Nonlinear Analysis and its Application 2020; 4 (3): 184-193. doi: 10.31197/atnaa.772734
- [20] Qi F, Guo BN. Expressing the generalized Fibonacci polynomials in terms of a tridiagonal determinant. Matematiche (Catania) 2017; 72 (1): 167-175. doi: 10.4418/2017.72.1.13
- [21] Qi F, Guo BN. Some determinantal expressions and recurrence relations of the Bernoulli polynomials. Mathematics 2016; 4 (4): 1-11. doi: 10.3390/math4040065
- [22] Qi F, Kızılates C, Du WS. A closed formula for the Horadam polynomials in terms of a tridiagonal determinant. Symmetry 2019; 11 (6): 1-8. doi: 10.3390/sym11060782
- [23] Qi F, Niu DW, Guo BN. Some identities for a sequence of unnamed polynomials connected with the Bell polynomials. Revista de la Real Academia de Ciencias Exactas Fisicas y Naturales. Seria A. Matematicas (RACSAM) 2019; 113: 557-567. doi: 10.1007/s13398-018-0494-z
- [24] Qi F, Wang JL, Guo BN. A representation for derangement numbers in terms of a tridiagonal determinant. Kragujevac Journal of Mathematics 2018; 42: 7-14. doi: 10.5937/KgJMath1801007F
- [25] Qi F, Wang JL, Guo BN. A determinantal expression for the Fibonacci polynomials in terms of a tridiagonal determinant. Bulletin of the Iranian Mathematical Society 2019; 45: 1821-1829. doi: 10.1007/s41980-019-00232-4
- [26] Qi F, Zhao JL, Guo BN. Closed forms for derangement numbers in terms of the Hessenberg determinants. Revista de la Real Academia de Ciencias Exactas Fisicas y Naturales. Seria A. Matematicas (RACSAM) 2018; 112: 933-944. doi: 10.1007/s13398-017-0401-z
- [27] Razpet M. The Lucas property of a number array. Discrete Mathematics 2002; 248: 157-168. doi: 10.1016/S0012-365X(01)00172-8
- [28] Stoll M, Haible B. Asymptotic expansions of P-recursive sequences. Preprint (July, 1994).
- [29] Sun ZH. A kind of orthogonal polynomials and related identities. Journal of Mathematical Analysis and Applications 2017; 456: 912-926. doi: 10.1016/j.jmaa.2017.07.049
- [30] Sun ZW. On Delannoy numbers and Schröder numbers. Journal of Number Theory 2011; 131: 2387-2397. doi: $10.1016/\mathrm{j.jnt.}2011.06.005$

DAĞLI/Turk J Math

- [31] Sun ZW. Supercongruences involving dual sequences. Finite Fields and Their Applications 2017; 46: 179-216. doi: 10.1016/j.ffa.2017.03.007
- [32] Sun ZW. Arithmetic properties of Delannoy numbers and Schröder numbers. Journal of Number Theory 2018; 183: 146-171. doi: 10.1016/j.jnt.2017.07.011
- [33] Wang Y, Zheng SN, Chen X. Analytic aspects of Delannoy numbers. Discrete Mathematics 2019; 342 (8): 2270-2277. doi: 10.1016/j.disc.2019.04.003
- [34] Wei CF, Qi F. Several closed expressions for the Euler numbers. Journal of Inequalities and Applications 2015; 219 (2015). doi: 10.1186/s13660-015-0738-9