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Abstract: In this work, we consider the first-order dynamic equations

x∆(t) + p(t)x (τ(t)) = 0, t ∈ [t0,∞)T

where p ∈ Crd

(
[t0,∞)T,R+

)
, τ ∈ Crd ([t0,∞)T,T) and τ(t) ≤ t, limt→∞ τ(t) = ∞ . When the delay term τ(t) is not

necessarily monotone, we present a new sufficient condition for the oscillation of first-order delay dynamic equations on
time scales.
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1. Introduction
The oscillatory behavior of solutions of differential/difference and dynamic equations has been studied by many
authors. See, for example, [1–34] and the references cited therein. Consider the first-order delay dynamic
equations

x∆(t) + p(t)x (τ(t)) = 0, t ∈ [t0,∞)T, (1.1)

where T is a time scale unbounded above with t0 ∈ T, p ∈ Crd([t0,∞)T,R+
0 ), τ ∈ Crd([t0,∞)T,T) is not

necessarily monotone such that

τ(t) ≤ t for all t ∈ T, lim
t→∞

τ(t) = ∞. (1.2)

A function p : T → R is called positively regressive (we write p ∈ R+ ) if it is rd-continuous and satisfies
1 + µ(t)p(t) > 0 for all t ∈ T , where µ : T → R+

0 is the graininess function defined by µ(t) := σ(t) − t with
the forward jump operator σ : T → T defined by σ := inf {s ∈ T : s > t} for t ∈ T. A point t ∈ T is called
right-dense if σ(t) = t and/or equivalently µ(t) = 0 holds, otherwise it is called right-scattered. The readers
are referred to Bohner and Peterson [2] for further details concerning the time scales calculus.
A function x : T → R is called a solution of Equation (1.1), if x(t) is delta differentiable for t ∈ Tκ and satisfies
Equation (1.1) for t ∈ Tκ . We say that a solution x of Equation (1.1) has a generalized zero at t if x(t) = 0

or if µ(t) > 0 and x(t)x(σ(t)) < 0 . Let supT = ∞ and then a nontrivial solution x of equation (1.1) is called
oscillatory on [t,∞) if it has arbitrarily large generalized zeros in [t,∞) .

∗Correspondence: ozkanocalan@akdeniz.edu.tr
2010 AMS Mathematics Subject Classification: 34C10, 34N05, 39A12, 39A21.

This work is licensed under a Creative Commons Attribution 4.0 International License.
487

https://orcid.org/0000-0001-7808-9314


ÖCALAN/Turk J Math

Now, we give some well-known tests on oscillation of (1.1).
In 2002, Zhang and Deng [32], using the cylinder transforms, proved that if τ(t) is eventually nondecreasing
and

lim sup
t→∞

sup
λ∈E

{λe−λp(t, τ(t))} < 1,

where E = {λ : λ > 0, 1− λp(t)µ(t) > 0} and in 2005, Bohner [4], using exponential functions notation, proved
that if τ(t) is eventually nondecreasing and

lim sup
t→∞

sup
−λp∈R+

{λe−λp(t, τ(t))} < 1,

where

e−λp (t, τ(t)) = exp


t∫

τ(t)

ξµ(s)(−λp(s))∆s


and

ξh(z) =

{ Log(1+hz)
h , if h ̸= 0

z , if h = 0
,

then all solutions of Equation (1.1) are oscillatory.
In 2005, Zhang et al. [33] and in 2006, Şahiner and Stavroulakis [27], using different technique, obtained that
if τ(t) is eventually nondecreasing and

lim sup
t→∞

σ(t)∫
τ(t)

p(s)∆s > 1, (1.3)

then all solutions of Equation (1.1) are oscillatory.
Zhang et al. [33] (See also Agarwal and Bohner [1, Theorem 1] gave the following result. Assume that τ(t) is
eventually nondecreasing and

α := lim inf
t→∞

t∫
τ(t)

p(s)∆s >
1

e
. (1.4)

Then all solutions of (1.1) oscillate.
Şahiner and Stavroulakis [27] obtained that if τ(t) is eventually nondecreasing and

lim inf
t→∞

t∫
τ(t)

p(s)∆s > c and lim sup
t→∞

t∫
τ(t)

p(s)∆s > 1− c2

4
, (1.5)

where c ∈ (0, 1)R , then every solution of Equation (1.1) oscillates.
Agarwal and Bohner [1] improved the condition (1.5) by the following. If τ(t) is eventually nondecreasing and

lim inf
t→∞

t∫
τ(t)

p(s)∆s > c and lim sup
t→∞

t∫
τ(t)

p(s)∆s > 1−
(
1−

√
1− c

)2
, (1.6)

488



ÖCALAN/Turk J Math

where c ∈ (0, 1)R , then every solution of Equation (1.1) oscillates.
In 2006, Karpuz and Öcalan [17] improved the condition (1.6) by extending the second integral condition to the
larger interval [τ(t), t]T as the following. Assume that τ(t) is eventually nondecreasing and

lim inf
t→∞

t∫
τ(t)

p(s)∆s > c and lim sup
t→∞

σ(t)∫
τ(t)

p(s)∆s > 1−
(
1−

√
1− c

)2
, (1.7)

where c ∈ (0, 1)R . Then every solution of Equation (1.1) oscillates.
Zhang et al. [33] established the following result. Assume that τ(t) is eventually nondecreasing and α ∈ [0, 1

e ]

(where α is defined by (1.4)). Furthermore,

lim sup
t→∞

σ(t)∫
τ(t)

p(s)∆s >
1 + lnλ1

λ1
− 1− α−

√
1− 2α− α2

2
, (1.8)

where λ1 ∈ [1, e] is the unique root of the equation λ = eαλ, then all solutions of Equation (1.1) are oscillatory.
It is clear that, since

1 + lnλ1

λ1
≤ 1 for λ1 ∈ [1, e],

the condition (1.8) implies that

lim sup
t→∞

σ(t)∫
τ(t)

p(s)∆s > 1− 1− α−
√
1− 2α− α2

2
. (1.9)

Clearly, when 0 < c ≤ 1
e , it is easy to verify that

1− α−
√
1− 2α− α2

2
>

(
1−

√
1− α

)2
>

α2

4

and therefore the condition (1.9) is weaker than the conditions (1.5) and (1.7).
Now, we assume that τ(t) is not necessarily monotone. Set

h(t) = sup
s≤t

τ(s), t ∈ T, t ≥ 0. (1.10)

Clearly, h(t) is nondecreasing and τ(t) ≤ h(t) for all t ≥ 0.

In 2017, when τ(t) is not necessarily monotone, Öcalan, Özkan and Yıldız [24, Theorem 2.2] studied Equation
(1.1) and obtained the following result. If

lim sup
t→∞

σ(t)∫
h(t)

p(s)∆s > 1, (1.11)
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where h(t) is defined by (1.10), then every solution of (1.1) is oscillatory.
Very recently, Öcalan [25, Corollary 2.4] established the following result when τ(t) is not necessarily monotone.
If

lim inf
t→∞

t∫
h(t)

p(s)∆s = lim inf
t→∞

t∫
τ(t)

p(s)∆s >
1

e
, (1.12)

where h(t) is defined by (1.10), then all solutions of (1.1) oscillate.
Finally, Öcalan [25] obtained the following result when τ(t) is not necessarily monotone.

Theorem 1.1 Assume that (1.2) holds, −p ∈ R+ and

lim sup
t→∞

σ(t)∫
h(t)

p(s)

e−p (h(t), τ(s))
∆s > 1 (1.13)

or

lim inf
t→∞

t∫
h(t)

p(s)

e−p (h(s), τ(s))
∆s >

1

e
, (1.14)

where h(t) is defined by (1.10) . Then all solutions of (1.1) oscillate.

Lately, Kılıç and Öcalan [20] studied Equation (1.1) and obtained the following result, when τ(t) is not
necessarily monotone.

Theorem 1.2 Assume that (1.2) holds, −p ∈ R+ . If

lim sup
t→∞

σ(t)∫
h(t)

p(s)∆s > 1− 1− α−
√
1− 2α− α2

2
, (1.15)

where h(t) is defined by (1.10) and α is defined by (1.4) , then all solutions of (1.1) oscillate.

2. Main results
In this section, we present a new sufficient condition for the oscillation of all solutions of (1.1), under the
assumption that the argument τ(t) is not necessarily monotone.
Now, we consider the case where 0 < α ≤ 1

e . So, we will obtain new oscillatory criteria for all solutions of (1.1).
To establish our main results, we need the following lemmas. The following result was given in [4].

Lemma 2.1 Suppose that −p ∈ R+ and s ∈ T . If

x∆(t) + p(t)x(t) ≤ 0 for all t ≥ s,

then
x(t) ≤ e−p (t, s)x(s) for all t ≥ s.

490



ÖCALAN/Turk J Math

The proof of the next Lemma can be done in a similar way to the proof of Lemma 2.4 in [33]. (Also, see [20].)

Lemma 2.2 Assume that τ(t) is not necessarily monotone. Let 0 ≤ α ≤ 1
e and x(t) be an eventually positive

solution of Equation (1.1). Then

lim inf
t→∞

x (σ(t))

x (h(t))
≥ 1− α−

√
1− 2α− α2

2
, (2.1)

where h(t) is defined by (1.10) and α is defined by (1.4).

Theorem 2.3 Assume that (1.2) holds, −p ∈ R+ and

lim sup
t→∞

σ(t)∫
h(t)

p(s)

e−p (h(t), τ(s))
∆s > 1− 1− α−

√
1− 2α− α2

2
, (2.2)

where h(t) is defined by (1.10) and α is defined by (1.4) . Then all solutions of (1.1) oscillate.

Proof Assume, for the sake of contradiction, that there exists a nonoscillatory solution x(t) of (1.1). Since
−x(t) is also a solution of (1.1), we can confine our discussion only to the case where the solution x(t) is
eventually positive. Then, there exists t1 > t0 such that x(t), x (τ(t)) , x (h(t)) > 0, for all t ≥ t1. Thus, from
(1.1) we have

x∆(t) = −p(t)x(τ(t)) ≤ 0, for all t ≥ t1,

which means that x(t) is an eventually nonincreasing function. In view of this and taking into account that
τ(t) ≤ t , (1.1) gives

x∆(t) + x (t) p(t) ≤ 0, t ≥ t1

and so we have Lemma 2.1. Integrating (1.1) from h(t) to σ(t) and using Lemma 2.1, we obtain

x(σ(t))− x (h(t)) +

σ(t)∫
h(t)

p(s)x(τ(s))∆s = 0

x(σ(t))− x (h(t)) +

σ(t)∫
h(t)

p(s)
x (h(t))

e−p (h(t), τ(s))
∆s ≤ 0

x(σ(t))− x (h(t)) + x (h(t))

σ(t)∫
h(t)

p(s)

e−p (h(t), τ(s))
∆s ≤ 0

or
σ(t)∫

h(t)

p(s)

e−p (h(t), τ(s))
∆s ≤ 1− x(σ(t))

x (h(t))
. (2.3)
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Consequently, from (2.3) we obtain

lim sup
t→∞

σ(t)∫
h(t)

p(s)

e−p (h(t), τ(s))
∆s ≤ 1− lim inf

t→∞

x (σ(t))

x (h(t))
(2.4)

and by (2.1), the inequality (2.4) leads to

lim sup
t→∞

σ(t)∫
h(t)

p(s)

e−p (h(t), τ(s))
∆s ≤ 1− 1− α−

√
1− 2α− α2

2
,

which contradicts to (2.2). The proof of the theorem is completed. 2

Example 2.4 Let h ∈ Z and T = hZ = {hk : k ∈ Z}. Then, we have for t ∈ T

σ(t) = t+ h, µ(t) = h and x∆(t) =
x(t+ h)− x(t)

h
.

Thus, Equation (1.1) becomes

x(t+ h)− x(t)

h
+ p(t)x (τ(t)) = 0, t ∈ {hk : k ∈ Z}.

Let τ(t) = t− 2 and h = 2. Since p(t) ∈ {2k : k ∈ Z}, we assume

p(2t) = 0.18 and p(2t+ 2) = 0.21, t = 0, 2, 4, . . . .

When T = hZ , from (iii) in Theorem 1.79 [2], we have the following formula.

b∫
a

f(t)∆t =

b
h−1∑
k= a

h

f(kh)h for a < b. (2.5)

Thus, by using (2.5) we obtain that for τ(t), p(t) ∈ {2k : k ∈ Z}

α := lim inf
t→∞

t∫
τ(t)

p(s)∆s = lim inf
t→∞

t
2−1∑

j= t−2
2

2p(2j) = lim inf
t→∞

2p(t− 2) = 0.36

and

M := lim sup
t→∞

σ(t)∫
h(t)

p(s)

e−p (h(t), τ(s))
∆s = lim sup

t→∞

σ(t)
2 −1∑

j=
h(t)
2

2p(2j)

e−p (h(t), τ(2j))
.
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Now, we observe that

e−p (h(t), τ(2j)) = exp


h(t)∫
τ(2j)

ξµ(u)(−p(u))∆u

 = exp


h(t)
2 −1∑

i=
τ(2j)

2

2 log (1− µ(2i)p(2i))

µ(2i)


= exp


h(t)
2 −1∑

i=
τ(2j)

2

log (1− 2p(2i))

 = exp

log

h(t)
2 −1∏

i=
τ(2j)

2

(1− 2p(2i))


=

h(t)
2 −1∏

i=
τ(2j)

2

(1− 2p(2i)) =

t−2
2 −1∏

i=j−1

(1− 2p(2i)) .

So, we have

M : = lim sup
t→∞

σ(t)∫
h(t)

p(s)

e−p (h(t), τ(s))
∆s = lim sup

t→∞

t+2
2 −1∑

j= t−2
2

2p(2j)

t−2
2 −1∏

i=j−1

1

(1− 2p(2i))

= lim sup
t→∞

[
2p(t− 2)

1

(1− 2p(t− 4))
+ 2p(t)

]
and

M ∼= 0.9825 ≯ 1

shows that condition (1.13) fails. However, since

M ∼= 0.9825 > 1−
1− 0.36−

√
1− 2(0.36)− (0.36)2

2
∼= 0.87391

and therefore every solution oscillates by Theorem 2.3.
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