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Abstract: In this work, we consider the first-order dynamic equations
w2 () + p(t)z (7(t) = 0, t € [to, 00)r

where p € Cyrq ([to,00)r,RY), 7 € Cra([to,00)r,T) and 7(t) < ¢, limy_eo 7(t) = co. When the delay term 7(t) is not
necessarily monotone, we present a new sufficient condition for the oscillation of first-order delay dynamic equations on

time scales.
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1. Introduction
The oscillatory behavior of solutions of differential /difference and dynamic equations has been studied by many
authors. See, for example, [1-34] and the references cited therein. Consider the first-order delay dynamic

equations

z2(t) + p(t)z (7(t)) =0, t € [to,00)T, (1.1)

where T is a time scale unbounded above with t5 € T, p € Crd([to,oo)qLRg), 7 € Cra([to,0)T, T) is not

necessarily monotone such that

T(t) <t forallteT, tlim 7(t) = 0. (1.2)
—00

A function p : T — R is called positively regressive (we write p € R™) if it is rd-continuous and satisfies
1+ pu(t)p(t) > 0 for all t € T, where p: T — R is the graininess function defined by pu(t) := o(t) — t with
the forward jump operator ¢ : T — T defined by o := inf{s € T:s>t} for t € T. A point ¢ € T is called
right-dense if o(t) = ¢t and/or equivalently p(¢) = 0 holds, otherwise it is called right-scattered. The readers
are referred to Bohner and Peterson [2] for further details concerning the time scales calculus.

A function z : T — R is called a solution of Equation (1.1), if x(¢) is delta differentiable for ¢t € T* and satisfies
Equation (1.1) for ¢ € T®. We say that a solution x of Equation (1.1) has a generalized zero at ¢ if z(t) =0
or if p(t) >0 and x(t)z(o(t)) < 0. Let supT = co and then a nontrivial solution x of equation (1.1) is called

oscillatory on [t,00) if it has arbitrarily large generalized zeros in [t,00).
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Now, we give some well-known tests on oscillation of (1.1).
In 2002, Zhang and Deng [32], using the cylinder transforms, proved that if 7(t) is eventually nondecreasing

and

limsup sup {Xe_xp(t,7(t))} < 1,
t—oo MNeE

where E = {\: X >0, 1 —Ap(¢)u(t) > 0} and in 2005, Bohner [4], using exponential functions notation, proved
that if 7(t) is eventually nondecreasing and

limsup sup {de_xp(t,7())} <1,
t—oo —ApeRt

where

e s (,7(1)) = exp / Epio) (—Ap(s))As
7(t)

and
Log(14+hz) it h 0
_ ) == ith#
n(2) {z Jifh=0 "
then all solutions of Equation (1.1) are oscillatory.
In 2005, Zhang et al. [33] and in 2006, Sahiner and Stavroulakis [27], using different technique, obtained that

if 7(t) is eventually nondecreasing and

o(t)
lim sup / p(s)As > 1, (1.3)
t—o0
(t)
then all solutions of Equation (1.1) are oscillatory.
Zhang et al. [33] (See also Agarwal and Bohner [1, Theorem 1] gave the following result. Assume that 7(¢) is

eventually nondecreasing and

t
a = liminf / p(s)As > } (1.4)
e

t—o00
(1)
Then all solutions of (1.1) oscillate.

Sahiner and Stavroulakis [27] obtained that if 7(¢) is eventually nondecreasing and

t
2

t
lim inf / p(s)As > ¢ and limsup / p(s)As >1— c—, (1.5)
(t)

t—o00 t—o00 4

7(t)

T

where ¢ € (0,1)r, then every solution of Equation (1.1) oscillates.

Agarwal and Bohner [1] improved the condition (1.5) by the following. If 7(¢) is eventually nondecreasing and

t t

litm inf [ p(s)As>c and limsup / p(s)As>1—(1—v1— 6)2, (1.6)
— 00

t—o0

7(t) 7(t)
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where ¢ € (0,1)r, then every solution of Equation (1.1) oscillates.
In 2006, Karpuz and Ocalan [17] improved the condition (1.6) by extending the second integral condition to the

larger interval [7(t),t]r as the following. Assume that 7(¢) is eventually nondecreasing and

t a(t)
lim inf / p(s)As > ¢ and limsup / p(s)As >1— (1 —V1- 0)2, (1.7)

t—o0 t—o0
7(t) 7(t)

where ¢ € (0,1)g. Then every solution of Equation (1.1) oscillates.
Zhang et al. [33] established the following result. Assume that 7(t) is eventually nondecreasing and «a € [0, 2]
(where « is defined by (1.4)). Furthermore,

o(t)
14+1InA 1l—a—+vV1-2a—a?
limsup/p(s)As> Rk a a-a , (1.8)
t—o0 )\1 2
(1)

where \; € [1, €] is the unique root of the equation A = e**, then all solutions of Equation (1.1) are oscillatory.
It is clear that, since
]. + hl )\1

<1 for M\ €[l,¢],
A1

the condition (1.8) implies that

l—a—+vI-2a—a?
lim sup / p(s)As > 1 — a az (1.9)
t—o0 2
(1)
Clearly, when 0 < ¢ < %, it is easy to verify that
l—a—+vV1—-2a—a? 2 a?
5 >(1-vV1-a) >
and therefore the condition (1.9) is weaker than the conditions (1.5) and (1.7).
Now, we assume that 7(¢) is not necessarily monotone. Set
h(t) =sup7(s), teT, t >0. (1.10)

s<t

Clearly, h(t) is nondecreasing and 7(¢) < h(t) for all ¢t > 0.
In 2017, when 7(t) is not necessarily monotone, Ocalan, Ozkan and Yildiz [24, Theorem 2.2] studied Equation
(1.1) and obtained the following result. If

o(t)
lim sup / p(s)As > 1, (1.11)
t—o00

h(t)
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where h(t) is defined by (1.10), then every solution of (1.1) is oscillatory.

Very recently, Ocalan [25, Corollary 2.4] established the following result when 7(¢) is not necessarily monotone.
If

t ¢

. - 1

htrggolf p(s)As = htrglogf / p(s)As > o (1.12)
h(t) 7(t)

where h(t) is defined by (1.10), then all solutions of (1.1) oscillate.

Finally, Ocalan [25] obtained the following result when 7(t) is not necessarily monotone.

Theorem 1.1 Assume that (1.2) holds, —p € RT and
o(t)
limsup/ LS)AS >1 (1.13)
ep

t—00 h(t),7(s))
h(t)

or

1
As> =, (1.14)
e

where h(t) is defined by (1.10). Then all solutions of (1.1) oscillate.

Lately, Kilic and Ocalan [20] studied Equation (1.1) and obtained the following result, when 7(¢) is not

necessarily monotone.

Theorem 1.2 Assume that (1.2) holds, —p € R™. If

l—a—+vV1—-2a—a?
2 b

lim sup /p(s)As >1- (1.15)

t—o0

where h(t) is defined by (1.10) and « is defined by (1.4), then all solutions of (1.1) oscillate.

2. Main results

In this section, we present a new sufficient condition for the oscillation of all solutions of (1.1), under the

assumption that the argument 7(¢) is not necessarily monotone.
Now, we consider the case where 0 < @ < 1. So, we will obtain new oscillatory criteria for all solutions of (1.1).

To establish our main results, we need the following lemmas. The following result was given in [4].
Lemma 2.1 Suppose that —p € RT and s € T. If
z2(t) +pt)x(t) <0 for allt > s,

then
z(t) <e_p(t,s)x(s) forallt>s.
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The proof of the next Lemma can be done in a similar way to the proof of Lemma 2.4 in [33]. (Also, see [20].)

Lemma 2.2 Assume that 7(t) is not necessarily monotone. Let 0 < a < 1 and x(t) be an eventually positive

solution of Equation (1.1). Then

z(o(t) . 1—a—+V1-2a—a?

lminf ) = 2 ’ (2.1)
where h(t) is defined by (1.10) and « is defined by (1.4).
Theorem 2.3 Assume that (1.2) holds, —p € R™ and
7w I o VI %o o
hirisogp / mAs >1- 5 , (2.2)

h(t)
where h(t) is defined by (1.10) and « is defined by (1.4). Then all solutions of (1.1) oscillate.

Proof Assume, for the sake of contradiction, that there exists a nonoscillatory solution x(t) of (1.1). Since
—z(t) is also a solution of (1.1), we can confine our discussion only to the case where the solution x(t) is
eventually positive. Then, there exists t; > ¢y such that z(¢), = (7(t)), = (h(t)) > 0, for all ¢ > ¢;. Thus, from
(1.1) we have

22 (t) = —p(t)z(r(t)) <0, forallt>t,
which means that z(t) is an eventually nonincreasing function. In view of this and taking into account that
T(t) <t, (1.1) gives
z2(t) +x () pt) <0, t>t

and so we have Lemma 2.1. Integrating (1.1) from h(t) to o(t) and using Lemma 2.1, we obtain
o(t)

w(a(t))—ﬂc(h(t)H/p(S)x(T(S))AS =0
h(t)

>
@

INA
=)

=
Q
—~
=
I
8
—~
>
—~
=
—+
8
=
=
B
—~
»
~—
>
»
IN
o

or
o(t)

I LC) R PR G )
/€—p(h(t),f(s))A SR (2.3)

h(t)
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Consequently, from (2.3) we obtain

o(t)
lim sup / 6_(p<s>As <1 —liminf z(o(?)) (2.4)

t—o0 h(t),7(s)) t—oo  (h(1))
h(t)

and by (2.1), the inequality (2.4) leads to

o(t)

l—a—vV1-2a—a?
lim sup LAS <1- a a-a ,
moel | e ()7 (9)) 2
h(t)
which contradicts to (2.2). The proof of the theorem is completed. O

Example 2.4 Let h€Z and T = hZ = {hk : k € Z}. Then, we have for t € T

o(t) = t+h, u(t)=h and mA(t):w.

Thus, Equation (1.1) becomes

x(t+h) — x(t)
h

+p)x (7(t)) =0, te€{hk:keZ}.
Let 7(t) =t —2 and h = 2. Since p(t) € {2k : k € Z}, we assume
p(2t) =0.18 and p(2t +2) =0.21, t=0,2,4,....
When T = hZ, from (iii) in Theorem 1.79 [2], we have the following formula.
b by
/f(t)At = > f(kh)h fora<b. (2.5)

—a
k=4

Thus, by using (2.5) we obtain that for 7(t), p(t) € {2k : k € Z}

t %_1
= htrggjlf / p(s)As = htrgloglf 2;2 2p(2j4) = htrggolf 2p(t —2) =0.36
7(t) =5

and

o(t
“® 0

sy [P A e S 22
M= limsup / e—p (h(t)m(s))A ! Hoopj—z’;m e—p (h(t), 7(27))"
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Now, we observe that

h(t) LG
. 2log (1 — u(2¢)p(2i
e h0.72) = el [ Gulptu)dup = ep] Y LRI HEIE)
et w(21)
7(27) =50
LA | LA |
= exp Z log (1 — 2p(2i)) p = exp | log H (1 —2p(2i))
et et
a) g =2_4
= I a-2e)= T 0-2@).
= (29) i=j—1
So, we have
o(t) (s) 2 =2 .
. ps . .
M . =limsup —————As = limsup 2p(2j —_
s | o, ey e 2 2@ 1 e
h(t) =%
lims [2 (t—2) ! + 2 (t)]
= limsu —-2)
e N ) I
and
M =20.9825 4 1
shows that condition (1.13) fails. However, since
1-0.36 — /1 —2(0.36) — (0.36)
M =0.9825 > 1 — v 3 (0:36) — (0:36) =~ 0.87391
and therefore every solution oscillates by Theorem 2.3.
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