Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/
Research Article

Turk J Math
(2021) 45: $487-495$

An improved oscillation criteria for first order dynamic equations

Özkan ÖCALAN* ${ }^{*}$
Department of Mathematics, Faculty of Science, Akdeniz University, Antalya, Turkey

Received: 05.11.2020 • Accepted/Published Online: 14.12.2020 \quad Final Version: 21.01 .2021

Abstract: In this work, we consider the first-order dynamic equations

$$
x^{\Delta}(t)+p(t) x(\tau(t))=0, t \in\left[t_{0}, \infty\right)_{\mathbb{T}}
$$

where $p \in C_{r d}\left(\left[t_{0}, \infty\right)_{\mathbb{T}}, \mathbb{R}^{+}\right), \tau \in C_{r d}\left(\left[t_{0}, \infty\right)_{\mathbb{T}}, \mathbb{T}\right)$ and $\tau(t) \leq t, \lim _{t \rightarrow \infty} \tau(t)=\infty$. When the delay term $\tau(t)$ is not necessarily monotone, we present a new sufficient condition for the oscillation of first-order delay dynamic equations on time scales.

Key words: Dynamic equations, nonmonotone, oscillation, time scales

1. Introduction

The oscillatory behavior of solutions of differential/difference and dynamic equations has been studied by many authors. See, for example, $[1-34]$ and the references cited therein. Consider the first-order delay dynamic equations

$$
\begin{equation*}
x^{\Delta}(t)+p(t) x(\tau(t))=0, \quad t \in\left[t_{0}, \infty\right)_{\mathbb{T}} \tag{1.1}
\end{equation*}
$$

where \mathbb{T} is a time scale unbounded above with $t_{0} \in \mathbb{T}, p \in C_{r d}\left(\left[t_{0}, \infty\right)_{\mathbb{T}}, \mathbb{R}_{0}^{+}\right), \tau \in C_{r d}\left(\left[t_{0}, \infty\right)_{\mathbb{T}}, \mathbb{T}\right)$ is not necessarily monotone such that

$$
\begin{equation*}
\tau(t) \leq t \text { for all } t \in \mathbb{T}, \quad \lim _{t \rightarrow \infty} \tau(t)=\infty \tag{1.2}
\end{equation*}
$$

A function $p: \mathbb{T} \rightarrow \mathbb{R}$ is called positively regressive (we write $p \in \mathcal{R}^{+}$) if it is rd-continuous and satisfies $1+\mu(t) p(t)>0$ for all $t \in \mathbb{T}$, where $\mu: \mathbb{T} \rightarrow \mathbb{R}_{0}^{+}$is the graininess function defined by $\mu(t):=\sigma(t)-t$ with the forward jump operator $\sigma: \mathbb{T} \rightarrow \mathbb{T}$ defined by $\sigma:=\inf \{s \in \mathbb{T}: s>t\}$ for $t \in \mathbb{T}$. A point $t \in \mathbb{T}$ is called right-dense if $\sigma(t)=t$ and/or equivalently $\mu(t)=0$ holds, otherwise it is called right-scattered. The readers are referred to Bohner and Peterson [2] for further details concerning the time scales calculus.
A function $x: \mathbb{T} \rightarrow \mathbb{R}$ is called a solution of Equation (1.1), if $x(t)$ is delta differentiable for $t \in \mathbb{T}^{\kappa}$ and satisfies Equation (1.1) for $t \in \mathbb{T}^{\kappa}$. We say that a solution x of Equation (1.1) has a generalized zero at t if $x(t)=0$ or if $\mu(t)>0$ and $x(t) x(\sigma(t))<0$. Let $\sup \mathbb{T}=\infty$ and then a nontrivial solution x of equation (1.1) is called oscillatory on $[t, \infty)$ if it has arbitrarily large generalized zeros in $[t, \infty)$.

[^0]Now, we give some well-known tests on oscillation of (1.1).
In 2002, Zhang and Deng [32], using the cylinder transforms, proved that if $\tau(t)$ is eventually nondecreasing and

$$
\limsup _{t \rightarrow \infty} \sup _{\lambda \in E}\left\{\lambda e_{-\lambda p}(t, \tau(t))\right\}<1,
$$

where $E=\{\lambda: \lambda>0,1-\lambda p(t) \mu(t)>0\}$ and in 2005, Bohner [4], using exponential functions notation, proved that if $\tau(t)$ is eventually nondecreasing and

$$
\limsup _{t \rightarrow \infty} \sup _{-\lambda p \in \mathcal{R}^{+}}\left\{\lambda e_{-\lambda p}(t, \tau(t))\right\}<1,
$$

where

$$
e_{-\lambda p}(t, \tau(t))=\exp \left\{\int_{\tau(t)}^{t} \xi_{\mu(s)}(-\lambda p(s)) \Delta s\right\}
$$

and

$$
\xi_{h}(z)=\left\{\begin{array}{ll}
\frac{\log (1+h z)}{h} & , \text { if } h \neq 0 \\
z & , \text { if } h=0
\end{array},\right.
$$

then all solutions of Equation (1.1) are oscillatory.
In 2005, Zhang et al. [33] and in 2006, Şahiner and Stavroulakis [27], using different technique, obtained that if $\tau(t)$ is eventually nondecreasing and

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \int_{\tau(t)}^{\sigma(t)} p(s) \Delta s>1 \tag{1.3}
\end{equation*}
$$

then all solutions of Equation (1.1) are oscillatory.
Zhang et al. [33] (See also Agarwal and Bohner [1, Theorem 1] gave the following result. Assume that $\tau(t)$ is eventually nondecreasing and

$$
\begin{equation*}
\alpha:=\liminf _{t \rightarrow \infty} \int_{\tau(t)}^{t} p(s) \Delta s>\frac{1}{e} . \tag{1.4}
\end{equation*}
$$

Then all solutions of (1.1) oscillate.
Şahiner and Stavroulakis [27] obtained that if $\tau(t)$ is eventually nondecreasing and

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} \int_{\tau(t)}^{t} p(s) \Delta s>c \text { and } \limsup _{t \rightarrow \infty} \int_{\tau(t)}^{t} p(s) \Delta s>1-\frac{c^{2}}{4}, \tag{1.5}
\end{equation*}
$$

where $c \in(0,1)_{\mathbb{R}}$, then every solution of Equation (1.1) oscillates.
Agarwal and Bohner [1] improved the condition (1.5) by the following. If $\tau(t)$ is eventually nondecreasing and

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} \int_{\tau(t)}^{t} p(s) \Delta s>c \text { and } \limsup _{t \rightarrow \infty} \int_{\tau(t)}^{t} p(s) \Delta s>1-(1-\sqrt{1-c})^{2}, \tag{1.6}
\end{equation*}
$$

where $c \in(0,1)_{\mathbb{R}}$, then every solution of Equation (1.1) oscillates.
In 2006, Karpuz and Öcalan [17] improved the condition (1.6) by extending the second integral condition to the larger interval $[\tau(t), t]_{\mathbb{T}}$ as the following. Assume that $\tau(t)$ is eventually nondecreasing and

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} \int_{\tau(t)}^{t} p(s) \Delta s>c \text { and } \limsup _{t \rightarrow \infty} \int_{\tau(t)}^{\sigma(t)} p(s) \Delta s>1-(1-\sqrt{1-c})^{2} \tag{1.7}
\end{equation*}
$$

where $c \in(0,1)_{\mathbb{R}}$. Then every solution of Equation (1.1) oscillates.
Zhang et al. [33] established the following result. Assume that $\tau(t)$ is eventually nondecreasing and $\alpha \in\left[0, \frac{1}{e}\right]$ (where α is defined by (1.4)). Furthermore,

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \int_{\tau(t)}^{\sigma(t)} p(s) \Delta s>\frac{1+\ln \lambda_{1}}{\lambda_{1}}-\frac{1-\alpha-\sqrt{1-2 \alpha-\alpha^{2}}}{2} \tag{1.8}
\end{equation*}
$$

where $\lambda_{1} \in[1, e]$ is the unique root of the equation $\lambda=e^{\alpha \lambda}$, then all solutions of Equation (1.1) are oscillatory. It is clear that, since

$$
\frac{1+\ln \lambda_{1}}{\lambda_{1}} \leq 1 \text { for } \lambda_{1} \in[1, e]
$$

the condition (1.8) implies that

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \int_{\tau(t)}^{\sigma(t)} p(s) \Delta s>1-\frac{1-\alpha-\sqrt{1-2 \alpha-\alpha^{2}}}{2} \tag{1.9}
\end{equation*}
$$

Clearly, when $0<c \leq \frac{1}{e}$, it is easy to verify that

$$
\frac{1-\alpha-\sqrt{1-2 \alpha-\alpha^{2}}}{2}>(1-\sqrt{1-\alpha})^{2}>\frac{\alpha^{2}}{4}
$$

and therefore the condition (1.9) is weaker than the conditions (1.5) and (1.7).
Now, we assume that $\tau(t)$ is not necessarily monotone. Set

$$
\begin{equation*}
h(t)=\sup _{s \leq t} \tau(s), \quad t \in \mathbb{T}, \quad t \geq 0 \tag{1.10}
\end{equation*}
$$

Clearly, $h(t)$ is nondecreasing and $\tau(t) \leq h(t)$ for all $t \geq 0$.
In 2017, when $\tau(t)$ is not necessarily monotone, Öcalan, Özkan and Yıldız [24, Theorem 2.2] studied Equation (1.1) and obtained the following result. If

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \int_{h(t)}^{\sigma(t)} p(s) \Delta s>1 \tag{1.11}
\end{equation*}
$$

where $h(t)$ is defined by (1.10), then every solution of (1.1) is oscillatory.
Very recently, Öcalan [25, Corollary 2.4] established the following result when $\tau(t)$ is not necessarily monotone. If

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} \int_{h(t)}^{t} p(s) \Delta s=\liminf _{t \rightarrow \infty} \int_{\tau(t)}^{t} p(s) \Delta s>\frac{1}{e} \tag{1.12}
\end{equation*}
$$

where $h(t)$ is defined by (1.10), then all solutions of (1.1) oscillate.
Finally, Öcalan [25] obtained the following result when $\tau(t)$ is not necessarily monotone.
Theorem 1.1 Assume that (1.2) holds, $-p \in \mathcal{R}^{+}$and

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \int_{h(t)}^{\sigma(t)} \frac{p(s)}{e_{-p}(h(t), \tau(s))} \Delta s>1 \tag{1.13}
\end{equation*}
$$

or

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} \int_{h(t)}^{t} \frac{p(s)}{e_{-p}(h(s), \tau(s))} \Delta s>\frac{1}{e} \tag{1.14}
\end{equation*}
$$

where $h(t)$ is defined by (1.10). Then all solutions of (1.1) oscillate.
Lately, Kılıç and Öcalan [20] studied Equation (1.1) and obtained the following result, when $\tau(t)$ is not necessarily monotone.

Theorem 1.2 Assume that (1.2) holds, $-p \in \mathcal{R}^{+}$. If

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \int_{h(t)}^{\sigma(t)} p(s) \Delta s>1-\frac{1-\alpha-\sqrt{1-2 \alpha-\alpha^{2}}}{2}, \tag{1.15}
\end{equation*}
$$

where $h(t)$ is defined by (1.10) and α is defined by (1.4), then all solutions of (1.1) oscillate.

2. Main results

In this section, we present a new sufficient condition for the oscillation of all solutions of (1.1), under the assumption that the argument $\tau(t)$ is not necessarily monotone.
Now, we consider the case where $0<\alpha \leq \frac{1}{e}$. So, we will obtain new oscillatory criteria for all solutions of (1.1). To establish our main results, we need the following lemmas. The following result was given in [4].

Lemma 2.1 Suppose that $-p \in \mathcal{R}^{+}$and $s \in \mathbb{T}$. If

$$
x^{\Delta}(t)+p(t) x(t) \leq 0 \text { for all } t \geq s,
$$

then

$$
x(t) \leq e_{-p}(t, s) x(s) \text { for all } t \geq s .
$$

The proof of the next Lemma can be done in a similar way to the proof of Lemma 2.4 in [33]. (Also, see [20].)

Lemma 2.2 Assume that $\tau(t)$ is not necessarily monotone. Let $0 \leq \alpha \leq \frac{1}{e}$ and $x(t)$ be an eventually positive solution of Equation (1.1). Then

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} \frac{x(\sigma(t))}{x(h(t))} \geq \frac{1-\alpha-\sqrt{1-2 \alpha-\alpha^{2}}}{2} \tag{2.1}
\end{equation*}
$$

where $h(t)$ is defined by (1.10) and α is defined by (1.4).

Theorem 2.3 Assume that (1.2) holds, $-p \in \mathcal{R}^{+}$and

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \int_{h(t)}^{\sigma(t)} \frac{p(s)}{e_{-p}(h(t), \tau(s))} \Delta s>1-\frac{1-\alpha-\sqrt{1-2 \alpha-\alpha^{2}}}{2} \tag{2.2}
\end{equation*}
$$

where $h(t)$ is defined by (1.10) and α is defined by (1.4). Then all solutions of (1.1) oscillate.
Proof Assume, for the sake of contradiction, that there exists a nonoscillatory solution $x(t)$ of (1.1). Since $-x(t)$ is also a solution of (1.1), we can confine our discussion only to the case where the solution $x(t)$ is eventually positive. Then, there exists $t_{1}>t_{0}$ such that $x(t), x(\tau(t)), x(h(t))>0$, for all $t \geq t_{1}$. Thus, from (1.1) we have

$$
x^{\Delta}(t)=-p(t) x(\tau(t)) \leq 0, \quad \text { for all } t \geq t_{1}
$$

which means that $x(t)$ is an eventually nonincreasing function. In view of this and taking into account that $\tau(t) \leq t,(1.1)$ gives

$$
x^{\Delta}(t)+x(t) p(t) \leq 0, \quad t \geq t_{1}
$$

and so we have Lemma 2.1. Integrating (1.1) from $h(t)$ to $\sigma(t)$ and using Lemma 2.1, we obtain

$$
\begin{aligned}
& x(\sigma(t))-x(h(t))+\int_{h(t)}^{\sigma(t)} p(s) x(\tau(s)) \Delta s=0 \\
& x(\sigma(t))-x(h(t))+\int_{h(t)}^{\sigma(t)} p(s) x(h(t)) \\
& e_{-p}(h(t), \tau(s)) \\
& \leq 0 \\
& x(\sigma(t))-x(h(t))+x(h(t)) \int_{h(t)}^{\sigma(t)} \frac{p(s)}{e_{-p}(h(t), \tau(s))} \Delta s \leq 0
\end{aligned}
$$

or

$$
\begin{equation*}
\int_{h(t)}^{\sigma(t)} \frac{p(s)}{e_{-p}(h(t), \tau(s))} \Delta s \leq 1-\frac{x(\sigma(t))}{x(h(t))} \tag{2.3}
\end{equation*}
$$

Consequently, from (2.3) we obtain

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \int_{h(t)}^{\sigma(t)} \frac{p(s)}{e_{-p}(h(t), \tau(s))} \Delta s \leq 1-\liminf _{t \rightarrow \infty} \frac{x(\sigma(t))}{x(h(t))} \tag{2.4}
\end{equation*}
$$

and by (2.1), the inequality (2.4) leads to

$$
\limsup _{t \rightarrow \infty} \int_{h(t)}^{\sigma(t)} \frac{p(s)}{e_{-p}(h(t), \tau(s))} \Delta s \leq 1-\frac{1-\alpha-\sqrt{1-2 \alpha-\alpha^{2}}}{2}
$$

which contradicts to (2.2). The proof of the theorem is completed.

Example 2.4 Let $h \in \mathbb{Z}$ and $\mathbb{T}=h \mathbb{Z}=\{h k: k \in \mathbb{Z}\}$. Then, we have for $t \in \mathbb{T}$

$$
\sigma(t)=t+h, \quad \mu(t)=h \quad \text { and } \quad x^{\Delta}(t)=\frac{x(t+h)-x(t)}{h} .
$$

Thus, Equation (1.1) becomes

$$
\frac{x(t+h)-x(t)}{h}+p(t) x(\tau(t))=0, \quad t \in\{h k: k \in \mathbb{Z}\}
$$

Let $\tau(t)=t-2$ and $h=2$. Since $p(t) \in\{2 k: k \in \mathbb{Z}\}$, we assume

$$
p(2 t)=0.18 \text { and } p(2 t+2)=0.21, \quad t=0,2,4, \ldots
$$

When $\mathbb{T}=h \mathbb{Z}$, from (iii) in Theorem 1.79 [2], we have the following formula.

$$
\begin{equation*}
\int_{a}^{b} f(t) \Delta t=\sum_{k=\frac{a}{h}}^{\frac{b}{h}-1} f(k h) h \quad \text { for } a<b \tag{2.5}
\end{equation*}
$$

Thus, by using (2.5) we obtain that for $\tau(t), p(t) \in\{2 k: k \in \mathbb{Z}\}$

$$
\alpha:=\liminf _{t \rightarrow \infty} \int_{\tau(t)}^{t} p(s) \Delta s=\liminf _{t \rightarrow \infty} \sum_{j=\frac{t-2}{2}}^{\frac{t}{2}-1} 2 p(2 j)=\liminf _{t \rightarrow \infty} 2 p(t-2)=0.36
$$

and

$$
M:=\limsup _{t \rightarrow \infty} \int_{h(t)}^{\sigma(t)} \frac{p(s)}{e_{-p}(h(t), \tau(s))} \Delta s=\limsup _{t \rightarrow \infty} \sum_{j=\frac{h(t)}{2}}^{\frac{\sigma(t)}{2}-1} \frac{2 p(2 j)}{e_{-p}(h(t), \tau(2 j))}
$$

Now, we observe that

$$
\begin{aligned}
e_{-p}(h(t), \tau(2 j)) & =\exp \left\{\int_{\tau(2 j)}^{h(t)} \xi_{\mu(u)}(-p(u)) \Delta u\right\}=\exp \left\{\sum_{i=\frac{\tau(2 j)}{2}}^{\frac{h(t)}{2}-1} \frac{2 \log (1-\mu(2 i) p(2 i))}{\mu(2 i)}\right\} \\
& =\exp \left\{\sum_{i=\frac{\tau(2 j)}{2}}^{\frac{h(t)}{2}-1} \log (1-2 p(2 i))\right\}=\exp \left\{\log _{i=\frac{\tau(2 j)}{2}}^{\frac{h(t)}{2}-1}(1-2 p(2 i))\right\} \\
& =\prod_{i=\frac{\tau(2 j)}{2}}^{\frac{h(t)}{2}-1}(1-2 p(2 i))=\prod_{i=j-1}^{\frac{t-2}{2}-1}(1-2 p(2 i))
\end{aligned}
$$

So, we have

$$
\begin{aligned}
M & : \quad=\limsup _{t \rightarrow \infty} \int_{h(t)}^{\sigma(t)} \frac{p(s)}{e_{-p}(h(t), \tau(s))} \Delta s=\limsup _{t \rightarrow \infty} \sum_{j=\frac{t-2}{2}}^{\frac{t+2}{2}-1} 2 p(2 j) \prod_{i=j-1}^{\frac{t-2}{2}-1} \frac{1}{(1-2 p(2 i))} \\
& =\limsup _{t \rightarrow \infty}\left[2 p(t-2) \frac{1}{(1-2 p(t-4))}+2 p(t)\right]
\end{aligned}
$$

and

$$
M \cong 0.9825 \ngtr 1
$$

shows that condition (1.13) fails. However, since

$$
M \cong 0.9825>1-\frac{1-0.36-\sqrt{1-2(0.36)-(0.36)^{2}}}{2} \cong 0.87391
$$

and therefore every solution oscillates by Theorem 2.3.

References

[1] Agarwal RP, Bohner M. An oscillation criterion for first order delay dynamic equations. Functional Differential Equations 2009; 16 (1): 11-17.
[2] Bohner M, Peterson A. Dynamic Equations on Time Scales: An Introduction with Applications. Boston, MA, USA: Birkhauser, 2001.
[3] Bohner M, Peterson A. Advances in Dynamic Equations on Time Scales. Boston, MA, USA: Birkhauser, 2003.
[4] Bohner M. Some Oscillation criteria for first order delay dynamic equations. Far East Journal of Mathematical Sciences 2005; 18 (3): 289-304.
[5] Chatzarakis GE, Koplatadze R, Stavroulakis IP. Oscillation criteria of first order linear difference equations with delay argument. Nonlinear Analysis 2008; 68: 994-1005. doi: 10.1016/j.na.2006.11.055
[6] Chatzarakis GE, Koplatadze R, Stavroulakis IP. Optimal oscillation criteria for first order difference equations with delay argument. Pacific Journal of Mathematics 2008; 235: 15-33.
[7] Chatzarakis GE, Philos ChG, Stavroulakis IP. On the oscillation of the solutions to linear difference equations with variable delay. Electronic Journal of Differential Equations 2008; 2008 (50): 1-15.
[8] Chatzarakis GE, Philos ChG, Stavroulakis IP. An oscillation criterion for linear difference equations with general delay argument. Portugaliae Mathematica 2009; 66 (4): 513-533.
[9] Elbert A, Stavroulakis IP. Oscillations of first order differential equations with deviating arguments. In: Agarwal RP (editor). World Scientific Series in Applicable Analysis Vol. 1. Singapore: World Science Publishing Co., 1992; 1: 163-178.
[10] Erbe LH, Zhang BG. Oscillation of first order linear differential equations with deviating arguments. Differential Integral Equations 1988; 1: 305-314.
[11] Erbe LH, Zhang BG. Oscillation of discrete analogues of delay equations. Differential Integral Equations 1989; 2: 300-309.
[12] Erbe LH, Kong Q, Zhang BG. Oscillation Theory for Functional Differential Equations. New York, NY, USA: Marcel Dekker, Inc., 1995.
[13] Fukagai N, Kusano T. Oscillation theory of first order functional differential equations with deviating arguments. Annali di Matematica Pura ed Applicata 1984; 136: 95-117.
[14] Győri I, Ladas G. Oscillation Theory of Delay Differential Equations with Applications. Oxford, UK: Clarendon Press, 1991.
[15] Jaroš J, Stavroulakis IP. Oscillation tests for delay equations. Rocky Mountain Journal of Mathematics 1999; 29: 139-145.
[16] Jian C. Oscillation of linear differential equations with deviating argument. Mathematics in Practice and Theory 1991; 1: 32-41 (in Chinese).
[17] Karpuz B, Öcalan Ö. New oscillation tests and some refinements for first-order delay dynamic equations. Turkish Journal of Mathematics 2016; 40 (4): 850-863. doi: 10.3906/mat-1507-98
[18] Karpuz B. Sharp oscillation and nonoscillation tests for linear difference equations. Journal of Difference Equations and Applications 2017; 23 (12): 1929-1942. doi: 10.1080/10236198.2017.1379515
[19] Karpuz B. Sharp oscillation and nonoscillation tests for delay dynamic equations. Mathematical Methods in the Applied Sciences 2019; 42 (9): 2993-3001. doi: 10.1002/mma. 5558
[20] Kılıç N, Öcalan Ö. Oscillation criteria for first-order dynamic equations with nonmonotone delay. Hacettepe Journal of Mathematics and Statistics 2020 (in press). doi: 10.15672/hujms. 674428
[21] Koplatadze RG, Chanturija TA. Oscillating and monotone solutions of first-order differential equations with deviating arguments. Differentsial'nye Uravneniya 1982; 8: 1463-1465 (in Russian).
[22] Kwong MK. Oscillation of first-order delay equations. Journal of Mathematical Analysis and Applications 1991; 156: 274-286.
[23] Ladde GS, Lakshmikantham V, Zhang BG. Oscillation Theory of Differential Equations with Deviating Arguments. Monographs and Textbooks in Pure and Applied Mathematics, Vol. 110. New York, NY, USA: Marcel Dekker, Inc., 1987.
[24] Öcalan Ö, Özkan UM, Yıldız MK. Oscillatory solutions for dynamic equations with non-monotone arguments. Journal of Mathematics and Computer Science 2017; 7 (4): 725-738.
[25] Öcalan Ö. Oscillation of first-order dynamic equations with nonmonotone delay. Mathematical Methods in the Applied Sciences 2020; 43 (7): 3954-3964. doi: 10.1002/mma. 6165
[26] Philos ChG, Sficas YG. An oscillation criterion for first-order linear delay differential equations. Canadian Mathematical Bulletin 1998; 41: 207-213.
[27] Şahiner Y, Stavroulakis IP. Oscillations of first order delay dynamic equations. Dynamic Systems and Applications 2006; 15 (3-4): 645-655.
[28] Yu JS, Wang ZC. Some further results on oscillation of neutral differential equations. Bulletin of the Australian Mathematical Society 1992; 46: 149-157.
[29] Yu JS, Wang ZC, Zhang BG, Qian XZ. Oscillations of differential equations with deviating arguments. Panamerican Mathematical Journal 1992; 2: 59-78.
[30] Zhang BG, Tian CJ. Oscillation criteria for difference equations with unbounded delay. Computers and Mathematics with Applications 1998; 35 (4): 19-26.
[31] Zhang BG, Tian CJ. Nonexistence and existence of positive solutions for difference equations with unbounded delay. Computers and Mathematics with Applications 1998; 36: 1-8.
[32] Zhang BG, Deng X. Oscillation of delay differential equations on time scales. Mathematical and Computer Modelling 2002; 36 (11-13): 1307-1318. doi: 10.1016/S0895-7177(02)00278-9
[33] Zhang BG, Yan X, Liu X. Oscillation criteria of certain delay dynamic equations on time scales. Journal of Difference Equations and Applications 2005; 11 (10): 933-946. doi: 10.1080/10236190500211952
[34] Zhou Y, Yu YH. On the oscillation of solutions of first order differential equations with deviating arguments. Acta Mathematicae Applicatae Sinica 1999; 15 (3): 288-302.

[^0]: *Correspondence: ozkanocalan@akdeniz.edu.tr
 2010 AMS Mathematics Subject Classification: 34C10, 34N05, 39A12, 39A21.

