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Abstract: Our fundamental purpose in the present manuscript is to explore existence and uniqueness criteria for a new
coupled Caputo conformable system of pantograph problems in which for the first time, the given boundary conditions
are formulated in the Riemann–Liouville conformable framework. To reach the mentioned aims, we utilize different
analytical techniques in which some fixed point results play a vital role. In the final part, a simulative example is
designed to cover the applicability aspects of theoretical findings available in this research manuscript from a numerical
point of view.
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1. Introduction
Investigation and analysis of different mathematical models for numerous natural dynamical processes are an
interesting and important branches of the applied mathematics in which the researchers focus on dynamics of
newly formulated systems by means of the existing computational tools. In such way, there exists a vast range
of classical and modern fractional operators which play a vital role to model different natural phenomena and
processes. Indeed during past decades, mathematicians have introduced various operators. But to describe
natural processes, fractional order modelings are more accurate than integer order ones, thus new fractional
operators have been provided.

In most published literatures, one can simply observe numerous structures of fractional modelings in
which one of the Riemann–Liouville and the Caputo fractional operators have been utilized (see for instance,
[5, 10–12, 16, 18, 22, 24, 31, 41, 43, 50, 52, 53, 63]). Besides, several applied generalizations of mentioned
operators such as the Hadamard, Caputo–Hadamard and Hilfer fractional operators are employed by other
mathematicians in the subsequent time periods and different fractional modelings are designed using these
extended operators (see for example, [2, 8, 19, 20, 26–28, 34, 44, 51, 57]).

On the other side, coupled systems of fractional differential equations and inclusions are another part
of the vast domain of mathematical modelings. These fractional coupled systems usually arise from different
areas of applied sciences and biological processes. The study of the existence, uniqueness, stability and other
dynamical behaviors of solutions related to such fractional systems plays a vital role in this regard. For example,
Jin and Sun [37] studied the existence of solutions for a coupled system of fractional compartmental biological
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models as differential inclusions. In [58], Wang, Shah and Ali investigated the existence and Hyers–Ulam stability
of solutions to fractional nonlinear impulsive switched coupled system of evolution equations. Recently, Xu,
Ma and Xing [59] studied the existence and asymptotic behavior of vector solutions for a new version of the
linearly coupled Choquard type system by means of variational methods. In this direction, one can see many
other works on the fractional coupled systems of boundary value problems such as ([3, 4, 13, 15, 36, 42, 62]).

Five years ago, Caputo and Fabrizio [29] formulated an extended normal structure of new fractional
differentiation operator in which the kernel function has no singularity in any point. This novel operator is
called the fractional Caputo–Fabrizio operator. Immediately after them, Losada and Nieto [40] focused on
some pure aspects of this new nonsingular operator. Some flexible properties of the Caputo–Fabrizio integro-
derivative operators led to publish research papers on the different fractional modelings in this subject (see for
instance, [7, 9, 21, 23, 25, 47]).

After Caputo–Fabrizio operator, Abdeljawad [1] generalized some concepts given in [39] and investigated
some pure and applied aspects of the well-behaved conformable differentiation operator of arbitrary order. After
that, Jarad, Ugurlu, Abdeljawad and Baleanu [35] generalized the well-known standard fractional Riemann–
Liouville integral provided that a unification to other differentiation operators including Riemann–Liouville,
Caputo, Hadamard, Caputo–Hadamard and other derivatives are obtained [38]. In this way, they tried to
derive two integration and differentiation operators of arbitrary order based on the conformable operators.
They first constructed new functional spaces and in the sequel, they proved some basic applied aspects of
two newly defined combined operators entitled the Reimann–Liouville conformable integral and the Caputo
conformable derivative.

The pantograph differential equation can be considered one of the most important class of differential
equations in the applied sciences. This type of differential equation is regarded as a kind of delay differential
equations and has many applications in both applied and pure mathematics. For the first time, Balachandran,
Kiruthika and Trujillo [14] introduced the pantograph equation of arbitrary order and established the existence
and also uniqueness criteria for the given problem. Next, they expressed neutral version of the fractional
pantograph equation and extracted existence criteria of its solutions [14]. After them, many other researchers
began to study fractional pantograph equations by the aid of various numerical techniques including the spectral
collocation method, Hermite wavelet method, the operational method and etc. (refer to [30, 48, 60, 61]). Besides,
other mathematicians worked on various classes of fractional pantograph equations with the help of analytical
methods (see for example, [54–56]).

In 2019, Rabiei and Ordokhani [46] derived some numerical results on the fractional pantograph delay
differential equations in any arbitrary interval as

CDη∗

0 ϖ(z) = a(z)ϖ(z) +

l∑
j=1

bj(z)
CD

η∗
j

0 ϖ(qjz), (z ∈ [0, h], h ≤ 1)

ϖ(i)(0) = µi, (i = 0, 1, 2, . . . , n− 1, µi ∈ R),

where n − 1 < η∗ ≤ n , 0 ≤ η∗j < η∗ ≤ n , 0 < qj < 1 , CD
(·)
0 is the Caputo fractional derivative and functions

bj(z) and a(z) are known and determined in [0, h] . In that work, the authors introduced fractional order
Boubaker polynomials in relation to the Boubaker polynomials and then constructed pantograph operational
matrices and by means of these matrices, they implemented Newton’s iterative method to extract approximate
solutions [46]. In the same year, Iqbal, Shah and Khan [33])established conditions for obtaining mild solutions to
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the coupled system of multipoint boundary value problems of nonlinear fractional hybrid pantograph differential
equations given by

CDη∗

0

[
ϖ(z)− φ(z,ϖ(z))

]
= ψ(z, ϱ(z), ϱ(λ1z)), (z ∈ [0, 1]),

CDη∗

0

[
ϱ(z)− φ(z, ϱ(z))

]
= ψ(z,ϖ(z), ϖ(λ2z)), (z ∈ [0, 1]),

CDp
0ϖ(0) = κ1ϖ(ξ1), ϖ′(0) = 0, . . . , ϖn−2(0) = 0, CDp

0ϖ(1) = κ2ϖ(ξ2),

CDp
0ϱ(0) = κ1ϱ(ξ1), ϱ′(0) = 0, . . . , ϱn−2(0) = 0, CDp

0ϱ(1) = κ2ϱ(ξ2),

where η∗ ∈ (n − 1, n] , n ∈ N , p, ξ1, ξ2 ∈ (0, 1) , λ1, λ2 ∈ (0, 1) , κ1, κ2 ∈ R \ {0} , CD
(·)
0 denotes the Caputo

fractional derivative and the nonlinear functions φ and ψ are continuous. In the mentioned paper, the authors
proved the existence results by using Burton and coupled type fixed point theorems ([33]).

In 2020, Alrabaiah, Ahmad, Shah and Rahman [6] developed a qualitative analysis to the class of nonlinear
coupled system of fractional pantograph delay differential equations with integral boundary conditions as follows:

RD
η∗
1

0 ϖ(z) = −f1(z,ϖ(λz), ϱ(z),RDp1

0 ϱ(z)), (z ∈ [0, 1]),

RD
η∗
2

0 ϱ(z) = −f2(z,ϖ(z), ϱ(λz),RDp2

0 ϖ(z)),

ϖ(0) = 0, ϖ(1) =

∫ 1

0

φ(q)ϖ(q) dq,

ϱ(0) = 0, ϱ(1) =

∫ 1

0

φ(q)ϱ(q) dq,

where η∗1 , η
∗
2 ∈ (1, 2] , λ, p1, p2 ∈ (0, 1) and RD

(·)
0 denotes the Riemann–Liouville fractional derivative. The

nonlinear functions f1, f2 : [0, 1]× R3 → R are continuous and φ : (0, 1) → [0,∞) is a bounded function. The
authors studied the existence and uniqueness of the solution related to this coupled system with the help of
Leray–Schauder and Banach fixed point theorem and then investigated a kind of stability of solution named
Ulam–Hyers for the system [6].

By taking into account aforementioned new operators introduced by Jarad et al. [35] and inspired by
some existing primitive ideas in above articles, in the current manuscript for the first time, we formulate the
following coupled system of the Caputo conformable fractional version of the pantograph differential equations
as follows: 

CCD
σ,η∗

1
z0 ϖ(z) = Õ1(z, ϱ(z), ϱ(λ

∗z)), (z ∈ [z0, T̃ ], z0 ≥ 0)

CCD
σ,η∗

2
z0 ϱ(z) = Õ2(z,ϖ(z), ϖ(λ∗z))

(1.1)

subject to three-point Riemann–Liouville conformable integral conditions
ϖ(z0) = 0, µ∗

1ϖ(T̃ ) + µ∗
2
RCIσ,θ∗

z0 ϖ(δ) = ξ∗1 ,

ϱ(z0) = 0, γ∗1ϱ(T̃ ) + γ∗2
RCIσ,θ∗

z0 ϱ(ν) = ξ∗2

(1.2)

so that CCD
σ,η∗

j
z0 stands for the Caputo conformable derivatives of fractional order η∗j ∈ (1, 2) with σ ∈ (0, 1]

for j = 1, 2 and also RCIσ,θ∗

z0 illustrates the Riemann–Liouville conformable integral of fractional order θ∗ > 0 .

498



THABET et al./Turk J Math

Furthermore, δ, ν ∈ (z0, T̃ ) , µ∗
1, µ

∗
2, γ

∗
1 , γ

∗
2 , ξ

∗
1 , ξ

∗
2 ∈ R , λ∗ ∈ (0, 1) and Õj : [z0, T̃ ]×R×R → R are supposed to

be continuous maps for j = 1, 2 .
It is notable that until now, limited researchers have been worked on the newly formulated Caputo

conformable and the Riemann–Liouville conformable operators. It is necessary that researchers pay attention
to this fact that this structure of a coupled system of pantograph boundary problem with respect to the Caputo
conformable operators is a new version and this type of construction has not been studied in any literature
yet. In fact, we extend the well-known pantograph differential equation to a coupled system by utilizing newly
defined conformable operators in both Caputo and Riemann–Liouville settings simultaneously for the first time.
The boundary integral conditions given in our coupled system involve a vast range of many simple boundary
conditions defined before by other researchers.

We demonstrate the contents of the current research manuscript as follows. In Section 2, we briefly
review some fundamental and auxiliary concepts and notions. Section 3 has two folds. First, we employ
some well-known analytical techniques to establish existence and uniqueness criteria corresponding to the given
pantograph coupled system problem (1.1)–(1.2). In the following of this section, some estimates for the solutions
of the mentioned pantograph coupled system are investigated. The last part of the present research is devoted
to propose a numerical example to demonstrates the applicability of our findings.

2. Preliminaries
In this moment, we are going to assemble some fundamental and basic concepts. It is well-known that the
Riemann–Liouville integral for a function ϖ : [0,+∞) → R of order η∗ > 0 is illustrated by

RIη∗

0 ϖ(z) =

∫ z

0

(z − q)η
∗−1

Γ(η∗)
ϖ(q) dq (2.1)

so that the existing integral is finite valued ([45], [49]). Now we assume that η∗ ∈ (n−1, n) so that n = [η∗]+1 .

About the given function ϖ ∈ AC(n)
R ([0,+∞)) , the fractional Caputo derivative of order η∗ is formulated by

CDη∗

0 ϖ(z) =

∫ z

0

(z − q)n−η∗−1

Γ(n− η∗)
ϖ(n)(q) dq (2.2)

such that the existing integral has the finite value [45, 49]. In this place, we can define the left conformable
derivative of a function ϖ : [z0,∞) → R with σ ∈ (0, 1] at the initial point z0 by the following relation

Dυ
z0ϖ(z) = lim

υ→0

ϖ(z + υ(z − z0)
1−σ)−ϖ(z)

υ

such that the limit exists [39]. It is necessary that you pay attention this interesting fact that an equality
Dσ

z0ϖ(z0) = limz→z+
0
Dσ

z0ϖ(z) holds whenever Dσ
z0ϖ(z) exists on the interval (z0, r) for 0 ≤ z0 < r . Also,

clearly the relation Dσ
z0ϖ(z) = (z − z0)

1−σϖ′(z) is valid when ϖ is a differentiable function. In this way, one
can indicate the definition of the left conformable integral about the function ϖ with σ ∈ (0, 1] of the following

form Iσ
z0ϖ(z) =

∫ z

z0

ϖ(q)
dq

(q − z0)1−σ
when the existing integral is finite valued [39]. In the sequel, Jarad et

al. [35] extended aforementioned conformable operators to arbitrary real orders in both the Caputo and the
Riemann–Liouville settings as follows: Let η∗ ∈ C be such that the real part of η∗ is nonnegative. In this case,
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the Riemann–Liouville conformable integral about a given function ϖ of order η∗ with σ ∈ (0, 1] is formulated
by

RCIσ,η∗

z0 ϖ(z) =
1

Γ(η∗)

∫ z

z0

(
(z − z0)

σ − (q − z0)
σ

σ

)η∗−1

ϖ(q)
dq

(q − z0)1−σ
(2.3)

whenever the value of integral is finite ([35]). Notice that if we take z0 = 0 and σ = 1 , then RCIσ,η∗

z0 ϖ(z)

defined by (2.3) is transformed into the standard fractional integral RIη∗

0 ϖ(z) given by (2.1). In the similar
manner, the Riemann–Liouville conformable derivative for a given function ϖ of order η∗ with σ ∈ (0, 1] is
introduced by

RCDσ,η∗

z0 ϖ(z) = Dσ,n
z0

(RCIσ,n−η∗

z0 ϖ
)
(z)

=
Dσ,n

z0

Γ(n− η∗)

∫ z

z0

(
(z − z0)

σ − (q − z0)
σ

σ

)n−η∗−1

ϖ(q)
dq

(q − z0)1−σ
(2.4)

such that n = [Re(η∗)] + 1 and Dσ,n
z0 =

n times︷ ︸︸ ︷
Dσ

z0 D
σ
z0 . . . D

σ
z0 where Dσ

z0 stands for the left conformable derivative

with σ ∈ (0, 1] [35]. Again, it is notable that if we take z0 = 0 and σ = 1 , then RCDσ,η∗

z0 ϖ(z) defined by (2.4)

is transformed into the standard Riemann-Liouville derivative RDη∗

0 w(s) . In the next step, to introduce the
generalized notion of the conformable derivative in the Caputo settings, we construct

Lσ(z0) :=
{
φ : [z0, r] → R : Iσ

z0φ(z) exists for each z ∈ [z0, r]
}

for σ ∈ (0, 1] and we set

Iσ([z0, r]) :=
{
ϖ : [z0, r] → R : ϖ(z) = Iσ

z0φ(z) +ϖ(z0), for some φ ∈ Lσ(z0)
}
,

where Iσ
z0φ(z) indicates the same left conformable integral of the given function φ at z0 ([1]). Also, we make

Cn
z0,σ([z0, r]) :=

{
ϖ : [z0, r] → R : Dσ,n−1

z0 ϖ ∈ Iσ([z0, r])
}

for n = 1, 2, 3, . . . . In consequence, the Caputo
conformable derivative for a given function ϖ ∈ Cn

z0,σ([z0, r]) of order η∗ with σ ∈ (0, 1] is formulated by

CCDσ,η∗

z0 ϖ(z) = RCIσ,n−η∗

z0

(
Dσ,n

z0 ϖ
)
(z)

=
1

Γ(n− η∗)

∫ z

z0

(
(z − z0)

σ − (q − z0)
σ

σ

)n−η∗−1

Dσ,n
z0 ϖ(q)

dq

(q − z0)1−σ
(2.5)

such that n = [Re(η∗)]+1 ([35]). It is known that the operator CCDσ,η∗

z0 ϖ(z) given by (2.5) equals to CDη∗

0 ϖ(z)

given by (2.2) if we take z0 = 0 and σ = 1 . In some lemmas, we assemble several applied properties of both
Caputo– and Riemann–Liouville fractional conformable operators which you can find it in the following.

Lemma 2.1 ([17, 35]) Let Re(η∗) > 0 , Re(θ∗) > 0 and Re(ρ∗) > 0 . Then for σ ∈ (0, 1] and for any z > z0 ,
we have the following statements:

(L1) RCIσ,η∗

z0

(RCIσ,θ∗

z0 ϖ
)
(z) =

(RCIσ,η∗+θ∗

z0 ϖ
)
(z),
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(L2) RCIσ,η∗

z0 (z − z0)
σ(ρ∗−1)(s) =

1

ση∗

Γ(ρ∗)

Γ(ρ∗ + η∗)
(s− z0)

σ(ρ∗+η∗−1),

(L3) RCDσ,η∗

z0 (z − z0)
σ(ρ∗−1)(s) = ση∗ Γ(ρ∗)

Γ(ρ∗ − η∗)
(s− z0)

σ(ρ∗−η∗−1),

(L4) RCDσ,η∗

z0

(
RCIσ,θ∗

z0 ϖ
)
(z) =

(
RCIσ,θ∗−η∗

z0 ϖ
)
(z),

(
Re(η∗) < Re(θ∗)

)
.

Lemma 2.2 ([17, 35]) Let n − 1 < Re(η∗) < n and ϖ ∈ Cn
z0,σ([z0, r]) . Then for σ ∈ (0, 1] , the following

identity holds

RCIσ,η∗

z0

(CCDσ,η∗

z0 ϖ
)
(z) = ϖ(z)−

n−1∑
l=0

Dσ,l
z0 ϖ(z0)

σll!
(z − z0)

lσ. (2.6)

In the light of the identity (2.6), it is concluded that the series solution of the homogeneous equation
(CCDσ,η∗

z0 ϖ)(z) = 0 is obtained by

ϖ(z) =

n−1∑
l=0

b∗l (z − z0)
lσ = b∗0 + b∗1(z − z0)

σ + b∗2(z − z0)
2σ + · · ·+ b∗n−1(z − z0)

(n−1)σ,

so that n− 1 < Re(η∗) < n and b∗0, b
∗
1, . . . , b

∗
n−1 ∈ R . We utilize both following theorems to conclude our main

results.

Theorem 2.3 [32] (Leray–Schauder degree theorem) The space M is supposed to be a Banach space. In
addition, let W be an open bounded subset of M with 0 ∈ W and P : W → M be a an operator having
the complete continuity property. Also, let αPϖ − ϖ ̸= 0 for all ϖ ∈ ∂W and for any α ∈ [0, 1] . Then
deg(I − αP,W, 0) = 1 and P has a fixed point in W .

3. Main results
After assembling required auxiliary notions in the previous section, we are ready to establish the desired existence
theorems. For this reason, we regard the Banach space M = {ϖ : ϖ ∈ CR[z0, T̃ ]} furnished with the norm
∥ϖ∥M = supz∈[z0,T̃ ] |ϖ(z)| . One can deduce that the product space M × M supplemented with the norm

∥(ϖ, ϱ)∥M×M = ∥ϖ∥M + ∥ϱ∥M for (ϖ, ϱ) ∈ M×M is a Banach space. Further, for the sake of simplicity in
writing, we consider the following constants:

Ω̃1∗ = µ∗
1(T̃ − z0)

σ + µ∗
2

(δ − z0)
σ(1+θ∗)

σθ∗Γ(2 + θ∗)
̸= 0,

Ω̃2∗ = γ∗1(T̃ − z0)
σ + γ∗2

(ν − z0)
σ(1+θ∗)

σθ∗Γ(2 + θ∗)
̸= 0. (3.1)

In the next lemma, we derive an equivalent integral structure for the solution of the three-point Caputo
conformable pantograph boundary problem given in the coupled system (1.1)–(1.2).
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Lemma 3.1 Let h̆∗ ∈ M be an arbitrary function. Then the function ϖ∗
0 satisfies the given Caputo conformable

differential equation
CCD

σ,η∗
1

z0 ϖ(z) = h̆∗(z), (z ∈ [z0, T̃ ], z0 ≥ 0) (3.2)

furnished with three-point Riemann–Liouville conformable integral boundary conditions

ϖ(z0) = 0, µ∗
1ϖ(T̃ ) + µ∗

2
RCIσ,θ∗

z0 ϖ(δ) = ξ∗1 , (3.3)

if and only if ϖ∗
0 is a solution function for the Riemann–Liouville conformable integral equation

ϖ(z) =
1

Γ(η∗1)

∫ z

z0

(
(z − z0)

σ − (q − z0)
σ

σ

)η∗
1−1

h̆∗(q)
dq

(q − z0)1−σ

+
(z − z0)

σ

Ω̃1∗

[
ξ∗1 − µ∗

1

Γ(η∗1)

∫ T̃

z0

(
(T̃ − z0)

σ − (q − z0)
σ

σ

)η∗
1−1

h̆∗(q)
dq

(q − z0)1−σ

− µ∗
2

Γ(η∗1 + θ∗)

∫ δ

z0

(
(δ − z0)

σ − (q − z0)
σ

σ

)η∗
1+θ∗−1

h̆∗(q)
dq

(q − z0)1−σ

]
, (3.4)

so that a nonzero constant Ω̃1∗ is illustrated by (3.1).

Proof In the first stage, the function ϖ∗
0 is supposed to be satisfied the Caputo conformable equation (3.2).

Simply, we see that CCD
σ,η∗

1
z0 ϖ∗

0(z) = h̆∗(z) . Now, we integrate the last equality in the Riemann–Liouville
conformable settings of order η∗1 and so we obtain

ϖ∗
0(z) =

1

Γ(η∗1)

∫ z

z0

(
(z − z0)

σ − (q − z0)
σ

σ

)η∗
1−1

h̆∗(q)
dq

(q − z0)1−σ
+ b∗0 + b∗1(z − z0)

σ, (3.5)

where we intend to find two unknown constants b∗0, b∗1 ∈ R . On the other hand, we integrate from both sides of
Equation (3.5) in the Riemann–Liouville conformable settings of order θ∗ with respect to z . Then we get

RCIσ,θ∗

z0 ϖ∗
0(z) =

1

Γ(η∗1 + θ∗)

∫ z

z0

(
(z − z0)

σ − (q − z0)
σ

σ

)η∗
1+θ∗−1

h̆∗(q)
dq

(q − z0)1−σ

+ b∗0
(z − z0)

σθ∗

σθ∗Γ(1 + θ∗)
+ b∗1

(z − z0)
σ(1+θ∗)

σθ∗Γ(2 + θ∗)
.

From the first boundary condition, we find that b∗0 = 0 . Later, in the light of the second integral boundary
condition, we reach

b∗1 =
1

Ω̃1∗

[
ξ∗1 − µ∗

1

Γ(η∗1)

∫ T̃

z0

(
(T̃ − z0)

σ − (q − z0)
σ

σ

)η∗
1−1

h̆∗(q)
dq

(q − z0)1−σ

− µ∗
2

Γ(η∗1 + θ∗)

∫ δ

z0

(
(δ − z0)

σ − (q − z0)
σ

σ

)η∗
1+θ∗−1

h̆∗(q)
dq

(q − z0)1−σ

]
.
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In this position, we insert both obtained values b∗0 and b∗1 into Equation (3.5) and hence we get

ϖ∗
0(z) =

1

Γ(η∗1)

∫ z

z0

(
(z − z0)

σ − (q − z0)
σ

σ

)η∗
1−1

h̆∗(q)
dq

(q − z0)1−σ

+
(z − z0)

σ

Ω̃1∗

[
ξ∗1 − µ∗

1

Γ(η∗1)

∫ T̃

z0

(
(T̃ − z0)

σ − (q − z0)
σ

σ

)η∗
1−1

h̆∗(q)
dq

(q − z0)1−σ

− µ∗
2

Γ(η∗1 + θ∗)

∫ δ

z0

(
(δ − z0)

σ − (q − z0)
σ

σ

)η∗
1+θ∗−1

h̆∗(q)
dq

(q − z0)1−σ

]

which demonstrates that ϖ∗
0 is a solution for the Riemann–Liouville conformable integral equation (3.4). On

contrary, we can simply conclude that ϖ∗
0 is a solution for given three-point Caputo conformable boundary

problem (3.2)–(3.3) whenever ϖ∗
0 is regarded as a solution for the Riemann–Liouville conformable integral

equation (3.4) and this ends the proof. 2

In the light of Lemma 3.1, we can define a new operator P∗ : M×M → M×M by

P∗(ϖ, ϱ)(z) = (P∗
1ϖ(z),P∗

2ϱ(z)), (3.6)

where two operators P∗
1 : M → M and P∗

2 : M → M are given by follows:

P∗
1ϖ(z) =

1

Γ(η∗1)

∫ z

z0

(
(z − z0)

σ − (q − z0)
σ

σ

)η∗
1−1

Õ1(q, ϱ(q), ϱ(λ
∗q))

dq

(q − z0)1−σ
(3.7)

+
(z − z0)

σ

Ω̃1∗

[
ξ∗1 − µ∗

1

Γ(η∗1)

∫ T̃

z0

(
(T̃ − z0)

σ − (q − z0)
σ

σ

)η∗
1−1

Õ1(q, ϱ(q), ϱ(λ
∗q))

dq

(q − z0)1−σ

− µ∗
2

Γ(η∗1 + θ∗)

∫ δ

z0

(
(δ − z0)

σ − (q − z0)
σ

σ

)η∗
1+θ∗−1

Õ1(q, ϱ(q), ϱ(λ
∗q))

dq

(q − z0)1−σ

]
,

and

P∗
2ϱ(z) =

1

Γ(η∗2)

∫ z

z0

(
(z − z0)

σ − (q − z0)
σ

σ

)η∗
2−1

Õ2(q,ϖ(q), ϖ(λ∗q))
dq

(q − z0)1−σ
(3.8)

+
(z − z0)

σ

Ω̃2∗

[
ξ∗2 − γ∗1

Γ(η∗2)

∫ T̃

z0

(
(T̃ − z0)

σ − (q − z0)
σ

σ

)η∗
2−1

Õ2(q,ϖ(q), ϖ(λ∗q))
dq

(q − z0)1−σ

− γ∗2
Γ(η∗2 + θ∗)

∫ ν

z0

(
(ν − z0)

σ − (q − z0)
σ

σ

)η∗
1+θ∗−1

Õ2(q,ϖ(q), ϖ(λ∗q))
dq

(q − z0)1−σ

]
,

for each z ∈ [z0, T̃ ] and the nonzero constants Ω̃1∗ and Ω̃2∗ are illustrated by (3.1).
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In the subsequent, we shall discuss the existence criteria for the coupled system of the Caputo conformable
fractional pantograph boundary problems (1.1)–(1.2). It is an evident fact that the fixed point of the operator
P∗ is considered the same solution for such coupled system. In the sequel, we utilize the following notations:

∆1 =
(T̃ − z0)

ση∗
1

ση∗
1Γ(η∗1 + 1)

+
(T̃ − z0)

σ

|Ω̃1∗|

[
|µ∗

1|(T̃ − z0)
ση∗

1

ση∗
1Γ(η∗1 + 1)

+
|µ∗

2|(δ − z0)
σ(η∗

1+θ∗)

σ(η∗
1+θ∗)Γ(η∗1 + θ∗ + 1)

]
, (3.9)

and

∆2 =
(T̃ − z0)

ση∗
2

ση∗
2Γ(η∗2 + 1)

+
(T̃ − z0)

σ

|Ω̃2∗|

[
|γ∗1 |(T̃ − z0)

ση∗
2

ση∗
2Γ(η∗2 + 1)

+
|γ∗2 |(ν − z0)

σ(η∗
2+θ∗)

σ(η∗
2+θ∗)Γ(η∗2 + θ∗ + 1)

]
. (3.10)

The first existence criterion demonstrated below is deduced by means of the well-known result attributed
to Banach.

Theorem 3.2 Let Õ1, Õ2 : [z0, T̃ ]×M×M → M be two continuous functions. Moreover, assume that

(PH1) The real constants m1,m2 > 0 exists so that

|Õj

(
z, u, v

)
− Õj

(
z, ũ, ṽ

)
| ≤ mj

(
|u− ũ|+ |v − ṽ|

)
for any z ∈ [z0, T̃ ] and u, v, ũ, ṽ ∈ M and j = 1, 2 .

Then the coupled system of the Caputo conformable pantograph fractional boundary problems (1.1)–(1.2) has a
solution on [z0, T̃ ] uniquely, whenever

2m∆ < 1 such that m = max{m1,m2} and ∆ = max{∆1,∆2}

and also Mj = supz∈[z0,T̃ ] |Õj

(
z, 0, 0

)
|, (j = 1, 2) and the constants ∆1,∆2 are illustrated by (3.9) and (3.10).

Proof We regard the operator P∗ : M ×M → M ×M by P∗(ϖ, ϱ) = (P∗
1ϖ,P

∗
2ϱ) so that both operators

P∗
1 : M → M and P∗

2 : M → M are formulated by (3.7) and (3.8). In addition to this, we regard an open
bounded ball

Wϵ = {(ϖ, ϱ) ∈ M×M : ∥(ϖ(z), ϱ(z))∥M×M < ϵ, z ∈ [z0, T̃ ]},

where

ϵ ≥ 1

(1− 2m∆)

[
∆(M1 +M2) +

|ξ∗1 |(T̃ − z0)
σ

|Ω̃1∗|
+

|ξ∗2 |(T̃ − z0)
σ

|Ω̃2∗|

]
. (3.11)

Now, we verify that P∗(Wϵ) ⊂ Wϵ , by using hypothesis (PH1). For (ϖ, ϱ) ∈ Wϵ and z ∈ [z0, T̃ ] , we get

|Õ1(z, ϱ(z), ϱ(λ
∗z))| ≤ |Õ1(z, ϱ(z), ϱ(λ

∗z))− Õ1(z, 0, 0)|+ |Õ1(z, 0, 0)|

≤ m1 (|ϱ(z)|+ |ϱ(λ∗z)|) +M1

≤ 2m1∥ϱ∥M +M1,
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and similarly |Õ2(z,ϖ(z), ϖ(λ∗z))| ≤ 2m2∥ϖ∥M +M2, which implies

|P∗
1ϖ(z)| ≤ 1

Γ(η∗1)

∫ z

z0

(
(z − z0)

σ − (q − z0)
σ

σ

)η∗
1−1

|Õ1(q, ϱ(q), ϱ(λ
∗q))| dq

(q − z0)1−σ

+
(z − z0)

σ

|Ω̃1∗|

[
|ξ∗1 |+

|µ∗
1|

Γ(η∗1)

∫ T̃

z0

(
(T̃ − z0)

σ − (q − z0)
σ

σ

)η∗
1−1

|Õ1(q, ϱ(q), ϱ(λ
∗q))| dq

(q − z0)1−σ

+
|µ∗

2|
Γ(η∗1 + θ∗)

∫ δ

z0

(
(δ − z0)

σ − (q − z0)
σ

σ

)η∗
1+θ∗−1

|Õ1(q, ϱ(q), ϱ(λ
∗q))| dq

(q − z0)1−σ

]

≤ (2m1∥ϱ∥M +M1) (T̃ − z0)
ση∗

1

ση∗
1Γ(η∗1 + 1)

+
(T̃ − z0)

σ

|Ω̃1∗|
(2m1∥ϱ∥M +M1)

×

[
|µ∗

1|(T̃ − z0)
ση∗

1

ση∗
1Γ(η∗1 + 1)

+
|µ∗

2|(δ − z0)
σ(η∗

1+θ∗)

σ(η∗
1+θ∗)Γ(η∗1 + θ∗ + 1)

]
+

|ξ∗1 |(T̃ − z0)
σ

|Ω̃1∗|

≤ ∆1 (2m1∥ϱ∥M +M1) +
|ξ∗1 |(T̃ − z0)

σ

|Ω̃1∗|
.

Above inequalities yield that

∥P∗
1ϖ∥M ≤ ∆1 (2m1∥ϱ∥M +M1) +

|ξ∗1 |(T̃ − z0)
σ

|Ω̃1∗|
,

where ∆1 is illustrated by (3.9). In the similar manner, we have an inequality

∥P∗
2ϱ∥M ≤ ∆2 (2m2∥ϖ∥M +M2) +

|ξ∗2 |(T̃ − z0)
σ

|Ω̃2∗|

so that ∆2 is illustrated by (3.10). Hence, in view of the above inequalities we realize that P∗(Wϵ) ⊂ Wϵ , since
we have

∥P∗(ϖ, ϱ)∥M×M ≤ ∥P∗
1ϖ∥M + ∥P∗

2ϱ∥M

≤ ∆1 (2m1∥ϱ∥M +M1) +
|ξ∗1 |(T̃ − z0)

σ

|Ω̃1∗|
+∆2 (2m2∥ϖ∥M +M2) +

|ξ∗2 |(T̃ − z0)
σ

|Ω̃2∗|

≤ 2m∆∥(ϖ, ϱ)∥M×M +∆(M1 +M2) +
|ξ∗1 |(T̃ − z0)

σ

|Ω̃1∗|
+

|ξ∗2 |(T̃ − z0)
σ

|Ω̃2∗|

≤ 2m∆ ϵ+∆(M1 +M2) +
|ξ∗1 |(T̃ − z0)

σ

|Ω̃1∗|
+

|ξ∗2 |(T̃ − z0)
σ

|Ω̃2∗|
< ϵ.
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Next, to verify this fact that P∗ is a contraction, for ϖ, ϖ̃ ∈ M and z ∈ [z0, T̃ ] , we have∣∣P∗
1ϖ(z)−P1ϖ̃(z)

∣∣ ≤ RCIσ,η∗
1

z0

∣∣Õ1(z, ϱ(z), ϱ(λ
∗z))− Õ1(z, ϱ̃(z), ϱ̃(λ

∗z))
∣∣

+
(z − z0)

σ

˜|Ω1∗|

[
|µ∗

1|RCIσ,η∗
1

z0

∣∣Õ1(T̃ , ϱ(T̃ ), ϱ(λ
∗T̃ ))− Õ1(T̃ , ϱ̃(T̃ ), ϱ̃(λ

∗T̃ ))
∣∣

+ |µ∗
2|RCIσ,(η∗

1+θ∗)
z0

∣∣Õ1(δ, ϱ(δ), ϱ(λ
∗δ))− Õ1(δ, ϱ̃(δ), ϱ̃(λ

∗δ))
∣∣]

≤
2m1

∥∥ϱ− ϱ̃
∥∥
M
(T̃ − z0)

ση∗
1

ση∗
1Γ(η∗1 + 1)

+
(T̃ − z0)

σ

|Ω̃1∗|

[
2m1|µ∗

1|
∥∥ϱ− ϱ̃

∥∥
M
(T̃ − z0)

ση∗
1

ση∗
1Γ(η∗1 + 1)

+
2m1|µ∗

2|
∥∥ϱ− ϱ̃

∥∥
M
(δ − z0)

σ(η∗
1+θ∗)

ση∗
1Γ(η∗1 + θ∗ + 1)

]

≤ 2m1∆1

∥∥ϱ− ϱ̃
∥∥
M
.

Hence, ∥∥P∗
1ϖ −P∗

1ϖ̃
∥∥
M

≤ 2m1∆1

∥∥ϱ− ϱ̃
∥∥
M
.

In the same way, we obtain ∥∥P∗
2ϱ−P∗

2ϱ̃
∥∥
M

≤ 2m2∆2

∥∥ϖ − ϖ̃
∥∥
M
.

Consequently,

∥P∗(ϖ, ϱ)−P∗(ϖ̃, ϱ̃)∥M×M ≤ 2m1∆1

∥∥ϱ− ϱ̃
∥∥
M

+ 2m2∆2

∥∥ϖ − ϖ̃
∥∥
M

≤ 2m∆
(∥∥ϱ− ϱ̃

∥∥
M

+
∥∥ϖ − ϖ̃

∥∥
M

)
.

Since 2m∆ < 1 , so P∗ is a contraction. Thus, by virtue of the Banach’s principle, the operator P∗ has a
fixed point uniquely which is the unique solution of the coupled system of the Caputo conformable pantograph
fractional boundary problems (1.1)–(1.2) and the proof is finished. 2

Lemma 3.3 Let Õ1, Õ2 : [z0, T̃ ]×M×M → M be two continuous functions. Moreover, assume that

(PH2) there exist constants N1,N2 > 0 so that |Õ1(z, ϱ, ϱ̃)| ≤ N1 and |Õ2(z,ϖ, ϖ̃)| ≤ N2 for any z ∈ [z0, T̃ ]

and each ϖ, ϖ̃, ϱ, ϱ̃ ∈ M .

Then the operator P∗ : M×M → M×M illustrated in (3.6) has the complete continuity property.

Proof Consider P∗ : M×M → M×M formulated by (3.6). At first, with due attention to the continuity of
the functions Õ1 and Õ2 and by considering the Lebesgue’s dominated convergence theorem, we immediately
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find that P∗ has the continuity property. Now, let W ⊂ M×M be a bounded subset of the mentioned product
space. Then, for each z ∈ [z0, T̃ ] and (ϖ(z), ϱ(z)) ∈ W and in view of hypothesis (PH2) , we get

|P∗
1ϖ(z)| ≤ 1

Γ(η∗1)

∫ z

z0

(
(z − z0)

σ − (q − z0)
σ

σ

)η∗
1−1

|Õ1(q, ϱ(q), ϱ(λ
∗q))| dq

(q − z0)1−σ

+
(z − z0)

σ

|Ω̃1∗|

[
|ξ∗1 |+

|µ∗
1|

Γ(η∗1)

∫ T̃

z0

(
(T̃ − z0)

σ − (q − z0)
σ

σ

)η∗
1−1

|Õ1(q, ϱ(q), ϱ(λ
∗q))| dq

(q − z0)1−σ

+
|µ∗

2|
Γ(η∗1 + θ∗)

∫ δ

z0

(
(δ − z0)

σ − (q − z0)
σ

σ

)η∗
1+θ∗−1

|Õ1(q, ϱ(q), ϱ(λ
∗q))| dq

(q − z0)1−σ

]

≤ N1(T̃ − z0)
ση∗

1

ση∗
1Γ(η∗1 + 1)

+
(T̃ − z0)

σ

|Ω̃1∗|

[
|µ∗

1|N1(T̃ − z0)
ση∗

1

ση∗
1Γ(η∗1 + 1)

+
|µ∗

2|N1(δ − z0)
σ(η∗

1+θ∗)

σ(η∗
1+θ∗)Γ(η∗1 + θ∗ + 1)

]
+

|ξ∗1 |(T̃ − z0)
σ

|Ω̃1∗|

≤ ∆1N1 +
|ξ∗1 |(T̃ − z0)

σ

|Ω̃1∗|
,

which yields that ∥P∗
1ϖ∥M ≤ ∆1N1 +

|ξ∗1 |(T̃ − z0)
σ

|Ω̃1∗|
, where ∆1 is illustrated by (3.9). In the similar manner,

we have an inequality ∥P∗
2ϱ∥M ≤ ∆2N2 +

|ξ∗2 |(T̃ − z0)
σ

|Ω̃2∗|
so that ∆2 is illustrated by (3.10). Hence, in view of

the above inequalities we realize that the operator P∗ is uniformly bounded since we have

∥P∗(ϖ, ϱ)∥M×M ≤ ∥P∗
1ϖ∥M + ∥P∗

2ϱ∥M

≤ ∆1N1 +
|ξ∗1 |(T̃ − z0)

σ

|Ω̃1∗|
+ ∆2N2 +

|ξ∗2 |(T̃ − z0)
σ

|Ω̃2∗|
.

In the sequel, we intend to check the equi-continuity of P∗(ϖ, ϱ) = (P∗
1ϖ,P

∗
2ϱ) . To reach this goal, for any
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z′, z′′ ∈ [z0, T̃ ] with z′ < z′′ , we have

|P∗
1ϖ(z′′)−P∗

1ϖ(z′)| ≤

∣∣∣∣∣ 1

Γ(η∗1)

∫ z′′

z0

(
(z′′ − z0)

σ − (q − z0)
σ

σ

)η∗
1−1

Õ1(q, ϱ(q), ϱ(λ
∗q))

dq

(q − z0)1−σ

− 1

Γ(η∗1)

∫ z′

z0

(
(z′ − z0)

σ − (q − z0)
σ

σ

)η∗
1−1

Õ1(q, ϱ(q), ϱ(λ
∗q))

dq

(q − z0)1−σ

∣∣∣∣∣
+

(z′′ − z0)
σ − (z′ − z0)

σ

|Ω̃1∗|

[
|ξ∗1 |+

|µ∗
1|

Γ(η∗1)

∫ T̃

z0

(
(T̃ − z0)

σ − (q − z0)
σ

σ

)η∗
1−1

× |Õ1(q, ϱ(q), ϱ(λ
∗q))| dq

(q − z0)1−σ

]

≤
∣∣∣N1(z

′′ − z0)
ση∗

1

ση∗
1Γ(η∗1 + 1)

− N1(z
′ − z0)

ση∗
1

ση∗
1Γ(η∗1 + 1)

∣∣∣+ (z′′ − z0)
σ − (z′ − z0)

σ

|Ω̃1∗|

[
|ξ∗1 |+

|µ∗
1|N1(T̃ − z0)

ση∗
1

ση∗
1Γ(η∗1 + 1)

]
.

We find that the right-hand side of the obtained inequality is not dependent of ϖ and also approaches to 0

when z′ tends to z′′ . In consequence, P∗
1 is equi-continuous and hence it is confirmed the complete continuity

of P∗
1 by the Arzelá–Ascoli theorem. Analogously, by similar reason, we realize that P∗

2 is equi-continuous and
hence completely continuous too. Therefore it is conclude that P∗ = (P∗

1,P
∗
2) is an operator with complete

continuity property and the proof is finished. 2

In this position, the next existence criterion depends on the Leray–Schauder degree theory indicated in
Theorem 2.3.

Theorem 3.4 Assume that Õ1, Õ2 : [z0, T̃ ] × M × M → M are continuous functions and there exist
Kj(z),Lj(z) ∈ CR+ [z0, T̃ ] so that we have |Õj(z, u, v)| ≤ Kj(z)(|u| + |v|) + Lj(z) for j = 1, 2. Then the
coupled system of the Caputo conformable pantograph fractional boundary problems (1.1)–(1.2) has at least one
solution on [z0, T̃ ] whenever

0 ≤ ∆K∗ <
1

2
such that K∗ = max{K∗

1,K∗
2} and ∆ = max{∆1,∆2},

where K∗
j = supz∈[z0,T̃ ] |Kj(z)| , L∗

j = supz∈[z0,T̃ ] |Lj(z)| and the constants ∆1,∆2 are illustrated by (3.9) and

(3.10).

Proof To begin the proof, we regard the fixed point problem χ = P∗χ where χ = (ϖ, ϱ) and P∗ = (P∗
1,P

∗
2)

is formulated by (3.6). Then we need to check that there exists at least one solution χ = (ϖ, ϱ) ∈ M×M which
satisfies χ = P∗χ . In this direction, we construct the following ball

Wϵ̃ = {χ ∈ M×M : ∥χ(z)∥M×M < ϵ̃, ∀ϵ̃ > 0, z ∈ [z0, T̃ ]}.

our target in this moment is to confirm that P∗ : Wϵ̃ → M×M satisfies the condition

χ ̸= αP∗χ (3.12)
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for all χ ∈ ∂Wϵ̃ and for any α ∈ [0, 1] . Set H(α, χ) = αP∗χ for all χ ∈ M×M and α ∈ [0, 1] . By taking into
account Lemma 3.3, it is well known that the operator P∗ is continuous, uniformly bounded and equi-continuous.
Hence, by invoking the Arzelá–Ascoli theorem, we realize that a continuous map hα : M × M → M × M

formulated by hα(χ) = χ−H(α, χ) = χ−αP∗χ is an operator with the complete continuity property. If (3.12)
is valid, then Leray–Schauder degrees are well defined and in the light of the homotopy invariance of topological
degree, we may write

deg(hα,Wϵ̃, 0̃) = deg(Ĩ − αP∗,Wϵ̃, 0̃) = deg(h1,Wϵ̃, 0̃)

= deg(h0,Wϵ̃, 0̃) = deg(Ĩ ,Wϵ̃, 0̃) = 1̃ ̸= 0̃

so that Ĩ = I× I and I stands for the unit operator and 1̃ = (1, 1) and 0̃ = (0, 0) ∈ Wϵ̃ . The nonzero property
of Leray–Schauder degree implies that we have h1(χ) = χ −P∗χ = 0̃ for at least one χ ∈ Wϵ̃ . Now, to show
that (3.12) holds, we assume that χ = αP∗χ for some α ∈ [0, 1] . Then for each z ∈ [z0, T̃ ] , we get

ϖ(z) = α(P∗
1ϖ)(z) and ϱ(z) = α(P∗

2ϱ)(z).

Hence one can write

|ϖ(z)| = |α(P∗
1ϖ)(z)|

≤ 1

Γ(η∗1)

∫ z

z0

(
(z − z0)

σ − (q − z0)
σ

σ

)η∗
1−1

|Õ1(q, ϱ(q), ϱ(λ
∗q))| dq

(q − z0)1−σ

+
(z − z0)

σ

|Ω̃1∗|

[
|ξ∗1 |+

|µ∗
1|

Γ(η∗1)

∫ T̃

z0

(
(T̃ − z0)

σ − (q − z0)
σ

σ

)η∗
1−1

|Õ1(q, ϱ(q), ϱ(λ
∗q))| dq

(q − z0)1−σ

+
|µ∗

2|
Γ(η∗1 + θ∗)

∫ δ

z0

(
(δ − z0)

σ − (q − z0)
σ

σ

)η∗
1+θ∗−1

|Õ1(q, ϱ(q), ϱ(λ
∗q))| dq

(q − z0)1−σ

]

≤ (2K∗
1∥ϱ∥M + L∗

1)(T̃ − z0)
ση∗

1

ση∗
1Γ(η∗1 + 1)

+
(T̃ − z0)

σ

|Ω̃1∗|

[
|µ∗

1|(2K∗
1∥ϱ∥M + L∗

1)(T̃ − z0)
ση∗

1

ση∗
1Γ(η∗1 + 1)

+
|µ∗

2|(2K∗
1∥ϱ∥M + L∗

1)(δ − z0)
σ(η∗

1+θ∗)

ση∗
1Γ(η∗1 + θ∗ + 1)

]
+

|ξ∗1 |(T̃ − z0)
σ

|Ω̃1∗|

≤ ∆1(2K∗
1∥ϱ∥M + L∗

1) +
|ξ∗1 |(T̃ − z0)

σ

|Ω̃1∗|
.

Thus

∥ϖ∥M ≤ ∆1(2 K∗
1∥ϱ∥M + L∗

1) +
|ξ∗1 |(T̃ − z0)

σ

|Ω̃1∗|
.
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By similar calculations, we get

∥ϱ∥M ≤ ∆2(2K∗
2∥ϖ∥M + L∗

2) +
|ξ∗2 |(T̃ − z0)

σ

|Ω̃2∗|
.

Hence, we reach the following inequalities:

∥(ϖ, ϱ)∥M×M = ∥ϖ∥M + ∥ϱ∥M

≤ ∆1(2K∗
1∥ϱ∥M + L∗

1) +
|ξ∗1 |(T̃ − z0)

σ

|Ω̃1∗|
+∆2(2K∗

2∥ϖ∥M + L∗
2) +

|ξ∗2 |(T̃ − z0)
σ

|Ω̃2∗|

≤ 2∆1K∗
1∥ϱ∥M + 2∆2K∗

2∥ϖ∥M +∆1L∗
1 +∆2L∗

2 +
|ξ∗1 |(T̃ − z0)

σ

|Ω̃1∗|
+

|ξ∗2 |(T̃ − z0)
σ

|Ω̃2∗|

≤ 2∆K∗(∥ϱ∥M + ∥ϖ∥M) + ∆1L∗
1 +∆2L∗

2 +
|ξ∗1 |(T̃ − z0)

σ

|Ω̃1∗|
+

|ξ∗2 |(T̃ − z0)
σ

|Ω̃2∗|

≤ 2∆K∗∥(ϖ, ϱ)∥M×M +∆1L∗
1 +∆2L∗

2 +
|ξ∗1 |(T̃ − z0)

σ

|Ω̃1∗|
+

|ξ∗2 |(T̃ − z0)
σ

|Ω̃2∗|
.

This yields

∥(ϖ, ϱ)∥M×M ≤
( 1

1− 2∆K∗

)(
∆1L∗

1 +∆2L∗
2 +

|ξ∗1 |(T̃ − z0)
σ

|Ω̃1∗|
+

|ξ∗2 |(T̃ − z0)
σ

|Ω̃2∗|

)
:= Υ.

By setting ϵ̃ = Υ+ 1 , we observe that 3.12 holds. Since 0 ≤ ∆K∗ < 1
2 , thus by Theorem 2.3, we find that the

coupled system of the Caputo conformable pantograph fractional boundary problems (1.1)–(1.2) has at least
one solution on [z0, T̃ ] and this ends the proof. 2

Here, some estimates for solutions of the given pantograph coupled system are investigated in two folds.
The first estimate for solutions of the coupled system of the Caputo conformable pantograph fractional boundary
problems (1.1)–(1.2) is established due to small changes occurred in the right-hand side of equations (1.1).

Theorem 3.5 Let hypothesis of Theorem 3.2 are hold. In addition, assume that (ϖ, ϱ) and (ϖ̃, ϱ̃) are solutions
of the proposed Caputo conformable pantograph coupled system (1.1)–(1.2) and

CCD
σ,η∗

1
z0 ϖ̃(z) = Õ1(z, ϱ̃(z), ϱ̃(λ

∗z)) + εF̃1(z, ϱ̃(z), ϱ̃(λ
∗z)),

CCD
σ,η∗

2
z0 ϱ̃(z) = Õ2(z, ϖ̃(z), ϖ̃(λ∗z)) + εF̃2(z, ϖ̃(z), ϖ̃(λ∗z)),

ϖ̃(z0) = 0, µ∗
1ϖ̃(T̃ ) + µ∗

2
RCIσ,θ∗

z0 ϖ̃(δ) = ξ∗1 ,

ϱ̃(z0) = 0, γ∗1 ϱ̃(T̃ ) + γ∗2
RCIσ,θ∗

z0 ϱ̃(ν) = ξ∗2 .

(3.13)

for ε > 0 , respectively. Then the following inequality

∥(ϖ, ϱ)− (ϖ̃, ϱ̃)∥M×M ≤ ε ∆1∥F1∥M + ε ∆2∥F2∥M
1− 2m∆

,
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is valid provided that m∆ < 1
2 , where m = max{m1,m2} and ∆ = max{∆1,∆2} so that ∆1 and ∆2 are

illustrated by (3.9) and (3.10) and also we have ∥Fj∥M = supz∈[z0,T̃ ]|Fj(z, u, v)| for j = 1, 2 .

Proof First of all, in view of Lemma 3.1, we have

ϖ̃(z) = RCIσ,η∗
1

z0

[
Õ1(z, ϱ̃(z), ϱ̃(λ

∗z)) + ε F̃1(z, ϱ̃(z), ϱ̃(λ
∗z))

]

+
(z − z0)

σ

Ω̃1∗

[
ξ∗1 − µ∗

1
RCIσ,η∗

1
z0

[
Õ1(T̃ , ϱ̃(T̃ ), ϱ̃(λ

∗T̃ )) + ε F̃1(T̃ , ϱ̃(T̃ ), ϱ̃(λ
∗T̃ ))

]

− µ∗
2
RCIσ,(η∗

1+θ∗)
z0

[
Õ1(δ, ϱ̃(δ), ϱ̃(λ

∗δ)) + ε F̃1(δ, ϱ̃(δ), ϱ̃(λ
∗δ))

]]

and

ϱ̃(z) = RCIσ,η∗
2

z0

[
Õ2(z, ϖ̃(z), ϖ̃(λ∗z)) + ε F̃2(z, ϖ̃(z), ϖ̃(λ∗z))

]

+
(z − z0)

σ

Ω̃2∗

[
ξ∗2 − γ∗1

RCIσ,η∗
2

z0

[
Õ2(T̃ , ϖ̃(T̃ ), ϖ̃(λ∗T̃ )) + ε F̃2(T̃ , ϖ̃(T̃ ), ϖ̃(λ∗T̃ ))

]

− γ∗2
RCIσ,(η∗

2+θ∗)
z0

[
Õ2(δ, ϖ̃(δ), ϖ̃(λ∗δ)) + ε F̃2(δ, ϖ̃(δ), ϖ̃(λ∗δ))

]]

for any z ∈ [z0, T̃ ] where both nonzero constants Ω̃1∗ and Ω̃2∗ are illustrated by (3.1). Now, we obtain the
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following estimates for |ϖ − ϖ̃| as follows:∣∣ϖ(z)− ϖ̃(z)
∣∣ ≤ RCIσ,η∗

1
z0

∣∣Õ1(z, ϱ(z), ϱ(λ
∗z))− Õ1(z, ϱ̃(z), ϱ̃(λ

∗z))
∣∣

+
(z − z0)

σ

˜|Ω1∗|

[
|µ∗

1|RCIσ,η∗
1

z0

∣∣Õ1(T̃ , ϱ(T̃ ), ϱ(λ
∗T̃ ))− Õ1(T̃ , ϱ̃(T̃ ), ϱ̃(λ

∗T̃ ))
∣∣

+ |µ∗
2|RCIσ,(η∗

1+θ∗)
z0

∣∣Õ1(δ, ϱ(δ), ϱ(λ
∗δ))− Õ1(δ, ϱ̃(δ), ϱ̃(λ

∗δ))
∣∣]+ εRCIσ,η∗

1
z0

∣∣F̃1(z, ϱ̃(z), ϱ̃(λ
∗z))

∣∣

+
(z − z0)

σ

˜|Ω1∗|

[
ε|µ∗

1|RCIσ,η∗
1

z0

∣∣F̃1(T̃ , ϱ̃(T̃ ), ϱ̃(λ
∗T̃ ))

∣∣+ ε|µ∗
2|RCIσ,(η∗

1+θ∗)
z0

∣∣F̃1(δ, ϱ̃(δ), ϱ̃(λ
∗δ))

∣∣]

≤
2m1

∥∥ϱ− ϱ̃
∥∥
M
(T̃ − z0)

ση∗
1

ση∗
1Γ(η∗1 + 1)

+
(T̃ − z0)

σ

|Ω̃1∗|

[
2m1|µ∗

1|
∥∥ϱ− ϱ̃

∥∥
M
(T̃ − z0)

ση∗
1

ση∗
1Γ(η∗1 + 1)

+
2m1|µ∗

2|
∥∥ϱ− ϱ̃

∥∥
M
(δ − z0)

σ(η∗
1+θ∗)

ση∗
1Γ(η∗1 + θ∗ + 1)

]
+
ε∥F1∥M(T̃ − z0)

ση∗
1

ση∗
1Γ(η∗1 + 1)

+
(T̃ − z0)

σ

|Ω̃1∗|

[
ε|µ∗

1|∥F1∥M(T̃ − z0)
ση∗

1

ση∗
1Γ(η∗1 + 1)

+
ε |µ∗

2|∥F1∥M(δ − z0)
σ(η∗

1+θ∗)

ση∗
1Γ(η∗1 + θ∗ + 1)

]

≤ 2m1∆1

∥∥ϱ− ϱ̃
∥∥
M

+ ε∆1∥F1∥M.

Hence, this yields ∥∥ϖ − ϖ̃
∥∥
M

≤ 2m1∆1

∥∥ϱ− ϱ̃
∥∥
M

+ ε∆1∥F1∥M. (3.14)

In the same manner, we get

∥∥ϱ− ϱ̃
∥∥
M

≤ 2m2∆2

∥∥ϖ − ϖ̃
∥∥
M

+ ε∆2∥F2∥M. (3.15)

By both inequalities (3.14) and (3.15), we deduce that

∥(ϖ, ϱ)− (ϖ̃, ϱ̃)∥M×M ≤ ε∆1∥F1∥M + ε∆2∥F2∥M
1− 2m∆

and the proof is completed. 2

The second estimate for solutions of the given coupled system of the Caputo conformable pantograph
fractional boundary problem (1.1)–(1.2) is established due to small changes occurred in the boundary conditions
(1.2). Specifically, the time interval [z0, T̃ ] changes to [z0, T̃ + ε] for ε > 0 .

Theorem 3.6 Assume that all hypotheses of Theorem 3.5 are valid. Moreover, let (ϖ, ϱ) and (ϖ̃, ϱ̃) be
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solutions of the pantograph coupled system (1.1)–(1.2) and

CCDσ,η∗
1

z0 ϖ̃(z) = Õ1(z, ϱ̃(z), ϱ̃(λ
∗z)), z ∈ [z0, T̃ + ε],

CCDσ,η∗
2

z0 ϱ̃(z) = Õ2(z, ϖ̃(z), ϖ̃(λ∗z)),

ϖ̃(z0) = 0, µ∗
1ϖ̃(T̃ + ε) + µ∗

2
RCIσ,θ∗

z0 ϖ̃(δ) = ξ∗1 ,

ϱ̃(z0) = 0, γ∗1 ϱ̃(T̃ + ε) + γ∗2
RCIσ,θ∗

z0 ϱ̃(ν) = ξ∗2

(3.16)

for ε > 0 , respectively. Then the following inequality

∥(ϖ, ϱ)− (ϖ̃, ϱ̃)∥M×M ≤ Ξ

1− 2m∆

holds provided that m∆ < 1
2 , where m = max{m1,m2} , ∆ = max{∆1,∆2} so that ∆1 and ∆2 are illustrated

by (3.9) and (3.10) and ∥Õj∥M = supz∈[T̃ ,T̃+ε]{|Õj(z, u, v)|} for j = 1, 2 and

Ξ =
(T̃ − z0)

σ

|Ω̃1∗|
|µ∗

1|
∥∥Õ1

∥∥
M
εση

∗
1

ση∗
1Γ(η∗1 + 1)

+
(T̃ − z0)

σ

|Ω̃2∗|
|γ∗1 |

∥∥Õ2

∥∥
M
εση

∗
2

ση∗
2Γ(η∗2 + 1)

.

Proof first of all, with due attention to Lemma 3.1, we have

ϖ̃(z) = RCIσ,η∗
1

z0 Õ1(z, ϱ̃(z), ϱ̃(λ
∗z))

+
(z − z0)

σ

Ω̆1∗

[
ξ∗1 − µ∗

1
RCIσ,η∗

1
z0 Õ1(T̃ + ε, ϱ̃(T̃ + ε), ϱ̃(λ∗(T̃ + ε)))

− µ∗
2
RCIσ,(η∗

1+θ∗)
z0 Õ1(δ, ϱ̃(δ), ϱ̃(λ

∗δ))

]

and

ϱ̃(z) = RCIσ,η∗
2

z0 Õ2(z, ϖ̃(z), ϖ̃(λ∗z))

+
(z − z0)

σ

Ω̆2∗

[
ξ∗2 − γ∗1

RCIσ,η∗
2

z0 Õ2(T̃ + ε, ϖ̃(T̃ + ε), ϖ̃(λ∗(T̃ + ε)))

− γ∗2
RCIσ,(η∗

2+θ∗)
z0 Õ2(δ, ϖ̃(δ), ϖ̃(λ∗δ))

]

for all z ∈ [z0, T̃ + ε] and both nonzero constants Ω̆1∗ and Ω̆2∗ are illustrated by

Ω̆1∗ = µ∗
1(T̃ + ε− z0)

σ + µ∗
2

(δ − z0)
σ(1+θ∗)

σθ∗Γ(2 + θ∗)
̸= 0,

Ω̆2∗ = γ∗1 (T̃ + ε− z0)
σ + γ∗2

(ν − z0)
σ(1+θ∗)

σθ∗Γ(2 + θ∗)
̸= 0.

513



THABET et al./Turk J Math

It is obvious that min{Ω̃1∗, Ω̆1∗} = Ω̃1∗ and min{Ω̃2∗, Ω̆2∗} = Ω̃2∗ , where both nonzero constants Ω̃1∗ and Ω̃2∗

are illustrated by (3.1). Now, we have the following estimate∣∣ϖ(z)− ϖ̃(z)
∣∣ ≤ RCIσ,η∗

1
z0

∣∣Õ1(z, ϱ(z), ϱ(λ
∗z))− Õ1(z, ϱ̃(z), ϱ̃(λ

∗z))
∣∣

+
(z − z0)

σ

˜|Ω1∗|

[
|µ∗

1|RCIσ,η∗
1

z0

∣∣Õ1(T̃ , ϱ(T̃ ), ϱ(λ
∗T̃ ))− Õ1(T̃ , ϱ̃(T̃ ), ϱ̃(λ

∗T̃ ))
∣∣

+ |µ∗
2|RCIσ,(η∗

1+θ∗)
z0

∣∣Õ1(δ, ϱ(δ), ϱ(λ
∗δ))− Õ1(δ, ϱ̃(δ), ϱ̃(λ

∗δ))
∣∣]

+
|µ∗

1|(z − z0)
σ

˜|Ω1∗|
RCIσ,η∗

1

T̃

∣∣Õ1(T̃ + ε, ϱ(T̃ + ε), ϱ(λ∗(T̃ + ε)))
∣∣

≤
2m1

∥∥ϱ− ϱ̃
∥∥
M
(T̃ − z0)

ση∗
1

ση∗
1Γ(η∗1 + 1)

+
(T̃ − z0)

σ

|Ω̃1∗|

[
2m1|µ∗

1|
∥∥ϱ− ϱ̃

∥∥
M
(T̃ − z0)

ση∗
1

ση∗
1Γ(η∗1 + 1)

+
2m1|µ∗

2|
∥∥ϱ− ϱ̃

∥∥
M
(δ − z0)

σ(η∗
1+θ∗)

ση∗
1Γ(η∗1 + θ∗ + 1)

]
+

(T̃ − z0)
σ

|Ω̃1∗|
|µ∗

1|
∥∥Õ1

∥∥
M
εση

∗
1

ση∗
1Γ(η∗1 + 1)

≤ 2m1∆1

∥∥ϱ− ϱ̃
∥∥
M

+
(T̃ − z0)

σ

|Ω̃1∗|
|µ∗

1|
∥∥Õ1

∥∥
M
εση

∗
1

ση∗
1Γ(η∗1 + 1)

.

Therefore,we obtain

∥∥ϖ − ϖ̃
∥∥
M

≤ 2m1∆1

∥∥ϱ− ϱ̃
∥∥
M

+
(T̃ − z0)

σ

|Ω̃1∗|
|µ∗

1|
∥∥Õ1

∥∥
M
εση

∗
1

ση∗
1Γ(η∗1 + 1)

. (3.17)

In similar manner, we obtain

∥∥ϱ− ϱ̃
∥∥
M

≤ 2m2∆2

∥∥ϖ − ϖ̃
∥∥
M

+
(T̃ − z0)

σ

|Ω̃2∗|
|γ∗1 |

∥∥Õ2

∥∥
M
εση

∗
2

ση∗
2Γ(η∗2 + 1)

. (3.18)

Hence, according to both inequalities (3.17) and (3.18), we conclude that

∥(ϖ, ϱ)− (ϖ̃, ϱ̃)∥M×M ≤ Ξ

1− 2m∆
,

and this ends the proof. 2

4. Examples

In this part of the current research, we examine our obtained results by proposing an example to confirm the
validity of the findings from a numerical point of view.
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Example 4.1 According to general structure (1.1)–(1.2), we design the following fractional coupled system of
the Caputo conformable pantograph boundary problems

CCD0.5,1.27
0 ϖ(z) = Õ1(z, ϱ(z), ϱ(0.24z)), (z ∈ [0, 1]),

CCD0.5,1.09
0 ϱ(z) = Õ2(z,ϖ(z), ϖ(0.24z))

ϖ(0) = 0, 0.11ϖ(1) + 0.08RCI0.5,0.6
0 ϖ(0.2) = 1,

ϱ(0) = 0, 0.15ϱ(1) + 0.04RCI0.5,0.6
0 ϱ(0.7) = 1.5,

(4.1)

so that σ = 0.5 , η∗1 = 1.27 , η∗2 = 1.09 , θ∗ = 0.6 , µ∗
1 = 0.11 , µ∗

2 = 0.08 , γ∗1 = 0.15 , γ∗2 = 0.04 λ∗ = 0.24 ,
δ = 0.2 , ν = 0.7 , ξ∗1 = 1 , ξ∗2 = 1.5 , z0 = 0 and T̃ = 1 . On the other hand, we formulate two continuous
functions Õ1(z, ϱ(z), ϱ(0.24z)) and Õ2(z,ϖ(z), ϖ(0.24z)) by follows

Õ1(z, ϱ, ϱ̃) =
0.0001

z + 1

[
sin(ϱ) + arcsin(ϱ̃)

]
+
z

2
, (4.2)

and

Õ2(z,ϖ, ϖ̃) =
0.0008

z + 2

[
arctan(ϖ) + ϖ̃

]
+

0.5z2

8
. (4.3)

then one can write

|Õ1(z, ϱ, ϱ̃)| ≤
0.0001

z + 1

[
| sin(ϱ)|+ | arcsin(ϱ̃)|

]
+
z

2

≤ 0.0001

z + 1

[
|ϱ|+ |ϱ̃|

]
+
z

2

≤ K1(z)
[
|ϱ|+ |ϱ̃|

]
+ L1(z)

for any z ∈ [0, 1] . In the similar manner, we have

|Õ2(z,ϖ, ϖ̃)| ≤ 0.0008

z + 2

[
| arctan(ϖ)|+ |ϖ̃|

]
+

0.5z2

8

≤ 0.0008

z + 2

[
|ϖ|+ |ϖ̃|

]
+

0.5z2

8

≤ K2(z)
[
|ϖ|+ |ϖ̃|

]
+ L2(z)

for any z ∈ [0, 1] . In view of above estimates, we define functions Kj(z),Lj(z) : [0, 1] → R by K1(z) =
0.0001

z + 1
,

K2(z) =
0.0008

z + 2
, L1(z) =

z

2
and L2(z) =

0.5z2

8
. In this case, we have

K∗
1 = sup

z∈[0,1]

|K1(z)| = 0.0001, K∗
2 = sup

z∈[0,1]

|K2(z)| = 0.0004,

L∗
1 = sup

z∈[0,1]

|L1(z)| = 0.5, L∗
2 = sup

z∈[0,1]

|L2(z)| = 0.0625.
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In consequence, K∗ = max{K∗
1,K∗

2} = max{0.0001, 0.0004} = 0.0004 . On the other hand, by considering
the existing parameters, we obtain the value of constants Ω̃1∗ = 0.13325 , Ω̃2∗ = 0.18228 , ∆1 = 4.1147 and
∆2 = 4.0678 and so ∆ = max{∆1,∆2} = 4.1147 . Hence since 0 ≤ ∆K∗ = 0.0016459 < 0.5 , thus we find
that all hypotheses of Theorem 3.4 are valid. This causes that the fractional coupled system of the Caputo
conformable pantograph boundary problems (4.1) along with two continuous functions Õ1 and Õ2 formulated
by (4.2) and (4.3) has at least one solution on z ∈ [0, 1] .

5. Conclusion
Over the decades, the human beings need to be familiar with structures and behaviors of different natural
phenomena more and more. One of the possible ways to reach this goal is to apply techniques and existing
tools in mathematics along with newly defined mathematical operators in modeling of various processes. In
this paper, we used one of these newly introduced operators named as the Caputo conformable derivative
to model a coupled system of pantograph equations. Further, the boundary value conditions of this coupled
system are equipped with the Riemann–Liouville conformable integrals. After recalling some properties of these
new fractional operators in Section 2, we applied the well-known Leray–Schauder degree theorem to obtain
sufficient conditions for proving the existence result of solutions for the proposed coupled system of pantograph
boundary value problems. Also, the uniqueness result is verified by applying the Banach fixed point theorem. By
implementing small changes in the boundary conditions and the right-hand side of the equations, we estimated
solutions of two existing coupled systems. Finally, we provided an example to check theoretical findings by a
numerical point of view. The outcomes expressed in the current paper are unique and new and also will mainly
contribute to the existing materials on the pantograph boundary value problems.
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