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Abstract: This research article presents the numerical solution of the viscous Burgers equation. The diagonally implicit
fractional step θ (DIFST) scheme is used for the time discretization and the space derivative is discretized by the
conforming finite element method with quadrilateral mesh. The viscosity effect on the shock wave is calculated with an
estimation of the L2 error. For comparison of different time discretization schemes, three test problems are computed.
The stability and accuracy of the schemes are given by estimating the L2 error norm. Numerical simulation for one- and
two-dimensional problems are given and illustrated graphically. The effect of the viscosity parameter on the nonlinearity
of the Burger equation is computed. The stability of the schemes for different time steps with CPU time is also given.

Key words: Burgers equation, diagonally implicit fractional step θ−scheme, conforming finite element method, DUNE-
PDELab

1. Introduction
Many natural and physical phenomena in science and engineering are governed by partial differential equations
(PDEs). However, finding the exact solution of some nonlinear and stiff partial differential equations is difficult.
So, the numerical methods [1, 2] can be used to compute the approximate solution. The Burgers equation
and advection equation [3] are PDEs with several applications in different areas such as fluid mechanics [4],
nonlinear acoustics [5], gas dynamics and traffic flow [6], fluid dynamics [7], electromagnetic [8], heat transfer
[9] and turbulence phenomena in a viscous fluid [10, 11]. In this research work, some numerical techniques are
used to study the diffusion phenomena at the sharp corner (jump discontinuities) in solving the viscous Burgers
equation.

In the literature, different numerical methods have been developed to find the numerical solution of the
Burgers equation i.e. Mittal et al. [12] and Kutluay et al. [13] has developed an explicit finite difference method
(FDM) and Bahadir et al. [14] proposed the mixed boundary element method for the numerical solutions of
the one-dimensional Burgers equation. Kadalbajoo et al. [15] proposed the implicit finite difference scheme
on uniform grids. The finite volume method (FVM) is proposed by Shih and Qin [16] and Kutluay et al. [17]
developed the finite element method (FEM). The main advantage of the FEM over FDM is that the resulting
procedures are stable and have flexibility in choosing the basis function. Also, the FEM is more suitable for
controlling the dispersion and dissipation errors in the propagation of discontinuities [18].

This research work deals with the numerical solution of the viscous Burgers equation by using the FEM
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for the discretization of the space derivative [19] and the DIFST scheme is used for temporal discretization.
The L2 error estimates are calculated and comparison of different time discretization schemes is provided.
The distributed and unified numerics environment (DUNE) is a modular toolbox for solving partial differential
equations (PDEs). The numerical simulations are carried out using the DUNE-PDELab [20, 21]. DUNE is a
software platform that substantially reduces the time to implement discretization and a solver for solving partial
differential equations (PDEs) [22].

The paper is organized as follow: Section 2 provides a description of the model problem. In Section 3,
numerical discretization is discussed in detail. Section 4 consists of numerical results obtained by considering
different test problems and grid-independent study. Section 5 concludes this paper.

2. Problem formulation
Let us consider the following form of the Burgers equation [23]:

∂tv − ν∆v + v∇v = 0 in Ω× Σ, (2.1)

v(., t) = g(., t) on ΓD ⊆ ∂Ω, (2.2)

−∇v · n(., t) = j on ΓN = ∂Ω \ ΓD, (2.3)

v(., t) = v0(., t) at t = t0. (2.4)

Here, Ω ⊂ Rd(d = 1, 2, 3) is a bounded domain, t in the subscript is the time derivative, v is the
conserved variable, ν is the viscosity and ∆ is the Laplacian operator. Equations 2.2 and 2.3 represent the
Dirichlet and the Neumann boundary conditions respectively, where n is the outward normal to the surface
and v0 is the given initial condition [23].

3. Numerical discretization
In this section, we give details of the discrtization schemes in both space and time.

3.1. Discretization in space
Consider the steady-state Burgers equation of the form:

−ν∆v + v∇v = 0, in Ω. (3.1)

To obtain the weak form of Equation 3.1, we multiply it with a suitable test function as follows:

v ∈ V such that r(v, w) = 0 ∀w ∈ W, (3.2)

V = {w ∈ H1(Ω) : w = g on ΓD} and W = {w ∈ H1(Ω) : w = 0 on ΓD},

are the functional spaces and the first Sobolev space H1(Ω) is given by,

H1(Ω) =

{
w (x) ;xϵΩ,

∫
Ω

w2dx < ∞ and
∫
Ω

(w′)
2
dx < ∞

}
.
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The rNLP (v, w) is the residual form of nonlinear problem defined as:

rNLP (v, w) =

∫
Ω

(
−ν∇v · ∇w +

1

2
∇v2 · w)

)
dx. (3.3)

The conforming finite element method [24] depends on the weak formulation of the problem. In the weak
formulations, the functional spaces V and W are replaced by Vh ⊂ V and Wh ⊂ W which are the discrete finite
dimensional subspaces, such that:

Vh = span{φ1, φ2 . . . , φn}, Wh = span{Ψ1,Ψ2 . . . ,Ψm}.

Here, the mesh size is denoted by the parameter h . Let us consider the approximate solution ”vh ” as
vh =

∑n
j=1(y)jφj by considering the coefficient vector y ∈ Rn , then Equation 3.2 becomes:

vh ∈ Vh such that r(vh, w) = 0, ∀ w ∈ Wh,

⇔ r
(∑n

j=1(y)jφj ,Ψi

)
= 0, ∀ i = 1, . . . ,m ,

⇔ R(y) = 0 .

The approximate solution of the resulting nonlinear algebraic equation R(y) = 0 is computed by using the
damped Newton’s method of the form:

y(k+1) = y(k) − µkX(y(k))R(y(k)). (3.4)

With µk as a damping parameter, (J(y(k)))i,j = ∂Ri

∂yj
(y(k)) is a Jacobian matrix and X(y(k)) is a preconditioning

matrix. By considering n = m and J(y(k)) an invertible Jacobian matrix in each time step, the resulting linear
system J(y(k))w = R(y(k)) is obtained which is solved by an efficient linear solver such as biconjugate gradient
(BiCG) method.

3.2. Discretization in time
For the unsteady part of Equation 2.1, we find v ∈ L2(t0, t0 + T ; vg +W (t)) such that

d

dt

∫
Ω

vw dx+

(
−
∫
Ω

ν∇v · ∇w +
1

2
∇v2w

)
dx = 0, ∀w ∈ W (t), and t ∈ Σ, (3.5)

where W (t) = {w ∈ H1(Ω) : w = 0 on ΓD(t)} and H1(Ω) ∋ vg(t)|ΓD
= g .

Now, Equations 3.3 and 3.5 can be rewritten as:

d

dt
m(v, w; t) + r(v, w; t) = 0 ∀w ∈ W (t), t ∈ Σ, (3.6)

where the residual form for space r(v, w; t) now depend on time as well with m(v, w; t) =
∫
Ω
vw dx as time

residual. The conforming finite element space W k,d
h (Th, t) and the function vh,g(t) are chosen in such a way

that vh(t) ∈ Vh(t) = vh,g(t) + Wh(t) . Therefore, both the residuals for time and space are approximated as
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m(v, w; t) ≈ mh(vh, wh; t) and r(v, w; t) ≈ rh(vh, wh; t) respectively. Next, by dividing the time interval into
subintervals and taking integration of the ODE system results as:

Σ = {t0} ∪ (t0, t1] ∪ . . . ∪ (tN−1, tN ],

with t0 = t0 , tN = t0 + T . tk−1 < tk for 1 ≤ k ≤ N , and we set the time step as ∆tk = tk+1 − tk . We used
the one-step θ−scheme Wang and Li [25] to solve the system of ODE, as follows:

find vk+1
h ∈ Vh(t

k+1) such that

1

∆tk
(mh(v

k+1
h , w; tk+1)−mh(v

k
h, w; t

k)) + θrh(v
k+1
h , w; tk+1) + (1− θ)rh(v

k
h, w; t

k) = 0, (3.7)

∀w ∈ Wh(t
k+1). (3.8)

By rearranging the terms for (k + 1) and k , we get a solution to a nonlinear Equation 3.7, i.e.

find vk+1
h ∈ Vh(t

k+1) such that

mh(v
k+1
h , w; tk+1) + ∆tkθrh(v

k+1
h , w; tk+1)−mh(v

k
h, w; t

k) + ∆tk(1− θ)rh(v
k
h, w; t

k) = 0, (3.9)

For diagonally implicit fractional θ -scheme, put θ = 1− 1
2

√
2 and Equation 3.9 becomes

(mh +∆tk(1− 2√
2
)rh)(v

k+1
h , w; tk+1)− (mh +∆tk(

2√
2
)rh)(v

k
h, w; t

k) = 0,

∀w ∈ Wh(t
k+1).

At each time step, the damped Newton’s method is used to solve the resulting nonlinear system of
equations, while the SSOR-BiCG method [26] is used to solve the linear system at each iteration of the Newton’s
method.

3.3. Shu–Osher form
All explicit and implicit Runge-Kutta (RK) methods are represented by Shu–Osher [27] form which is introduced
by mathematical relation that simplifies the resulting numerical methods. The Shu–Osher form [28, 29] for the
time residual mh and space residual rh can be written as:

1. v
(0)
h = vkh,

2. i = 1, . . . , p ∈ N, find v
(i)
h ∈ vh,g(t

k + ei∆tk) + vh(t
k+1) :

s∑
j=0

[
bijmh

(
v
(j)
h , w; tk + ej∆tk

)
+ cij∆tkrh

(
v
(j)
h , w; tk + ej∆tk

)]
= 0, ∀ v ∈ Vh(t

k+1),

3. vk+1
h = v

(s)
h .

Here, we assume that in the interval (tk, tk+1] , the boundary conditions remain the same.
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4. Results and discussion
In this section, the Burgers equation (2.1) is solved using the FEM for space discretization and the DIFST
scheme is used for the temporal discretization. By numerical experiment of different test problems, we studied
the viscosity parameter µ effect on the solution. For numerical simulations, Intel Core i7, 3.20×4 GHz CPU
and 16 GB of RAM with the Ubuntu 16.04 operating system are used.

In problems 1 and 2, we consider the 1D viscous Burgers equation and in problem 3, 2D viscous Burgers
equation is solved. General form of viscous Burgers equation is:

∂tv − ν∆v + v∇v = 0, in Ω× Σ, (4.1)

with the Dirichlet boundary condition on the given domain Ω . We choose different exact solutions of the
Burgers equation and the L2 error estimate is calculated with different degrees of freedom (DOF).

4.1. Test problem 1

In this case, we take the exact solution [23]:

v(x) = sin(πx) (4.2)

with the Dirichlet boundary condition on the given domain Ω = (0, 1) . The L2 error norm and CPU time for
different values of nodes and degree of freedom (DOF) are presented in Tables 1 and 2 by using Q1 and Q2

conforming FEM, respectively. It is noted that in Tables 1 and 2, when there is an increase in the number of
nodes and degrees of freedom, then L2 error is decreased. It is also observed that the Q2 conforming FEM is
more accurate than Q1 at the cost of more computational time.

Table 1. L2 -error estimate using the Q1 conforming FEM.

N L2 error DOF CPU time N L2 error DOF CPU time
(∆t = 0.1∆x) (∆t = 0.5∆x)

15 2.5821E–03 256 8.84010E–02 15 2.5821E–03 256 2.1706E–02
30 6.4027E–04 961 3.3693E–01 30 6.4027E–04 961 8.0237E–02
60 1.6150E–04 3721 1.3813E+00 60 1.6150E–04 3721 3.3305E–01
120 4.0386E–05 14641 5.0733E+01 120 4.0386E–05 14641 1.3497E+00

Table 2. L2 -error estimate using the Q2 conforming FEM.

N L2 error DOF CPU time N L2 error DOF CPU time
(∆t = 0.1∆x) (∆t = 0.5∆x)

15 3.1234E–05 961 3.9869E–01 15 3.1234E–05 961 1.02120E–01
30 3.9062E–06 3721 1.5299E+00 30 3.9062E–06 3721 4.1586E–01
60 4.8833E–07 14641 6.9242E+00 60 4.8833E–07 14641 2.1009E+00
120 6.1044E–08 58081 2.8276E+01 120 6.1044E–08 58081 8.0652E+00

For ν = 0.1 , it has shown that the shock becomes prominent with time as shown in Figure 1.
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Figure 1. Solution at different times levels.

4.2. Test problem 2

We take the exact solution as:

v(x, t) =
vR + vL

2
− vR + vL

2
tanh(

(x− 0.5× t)(vL − vR)

4ν
) (4.3)

with, vR = 0 and vL = 1

In Tables 3 and 4, the L2 error estimates and CPU times are computed at different nodes for Q1 and Q2 . It is
observed that the L2 error estimates are decreased when there is an increase in the number of nodes and DOF.
Although more accurate, the Q2 is computationally expensive (in terms of CPU times) than that of Q1 .

Table 3. The L2 -error estimate using the Q1 conforming FEM.

N L2 error DOF CPU time N L2 error DOF CPU time
(∆t = 0.1∆x) (∆t = 0.5∆x)

15 5.0846E–02 256 8.3789E–02 15 5.0846E–02 256 1.6461E–02
30 1.6665E–02 961 3.0538E–01 30 1.6665E–02 961 7.5153E–02
60 4.2455E–03 3721 1.2671E+00 60 4.2455E–03 3721 2.4192E–01
120 1.0672E–03 14641 4.8239E+00 120 1.0672E–03 14641 1.0219E+00

In Table 5, as ν increased from 0.01 to 0.3 , it is observed that the L2 error is decreased.
It is also observed that by increasing the value of ν , the solution becomes more diffusive (smooth).
The diffusive nature of the solution for different values of ν is illustrated in Figures 2a–2d. It is observed

that by increasing ν , the sharpness of the solution decreases which is given in Figure 3.
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Table 4. The L2 -error estimate using the Q2 conforming FEM.

N L2 error DOF CPU time N L2 error DOF CPU time
(∆t = 0.1∆x) (∆t = 0.5∆x)

15 1.0185E–02 961 3.8950E–01 15 1.0185E–02 961 8.0398E–02
30 1.0478E–03 3721 1.5598E+00 30 1.0478E–03 3721 3.1547E–01
60 1.3780E–04 14641 6.0810E+00 60 1.3780E–04 14641 1.2102E+00
120 1.73487E–05 58081 2.2447E+01 120 1.73487E–05 58081 1.7811E+01

Table 5. The L2 -Error estimate with different ν .

N ν DOF L2 error
120 0.01 14641 3.5479E–02
120 0.02 14641 1.1627E–02
120 0.03 14641 6.3793E–03
120 0.1 14641 1.0672E–03
120 0.2 14641 3.7783E–04
120 0.3 14641 2.0571E–04

Figure 2. Solution behavior at (a) ν = 0.01 , (b) ν = 0.02 , (c) ν = 0.03 , and (d) ν = 0.1 .

4.3. Test problem 3

We choose the exact solution [30] as:

v(x, y, t) =
3

4
− 1

4 + 4eR(−t−4x+4y)/32
(4.4)

with R = 5.0 . The computational domain is shown in Figure 4a, and approximate solution at the initial time
is shown in Figure 4b.

In Tables 6 and 7, the L2 error estimates and CPU times are given using the DIFST scheme at different
nodes for Q1 and Q2 . It is observed that the L2 error estimates are decreased when there is an increase in the
number of nodes and DOF. The Q2 is computationally expensive (in terms of CPU times) than that of Q1 .
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Figure 3. Solution profile at different values of ν .

Figure 4. (a) Computational domain, (b) initial profile at t = 0 .

Table 6. The L2 -error estimate using the Q1 conforming FEM.

Nx = Ny L2 error DOF CPU time Nx = Ny L2 error DOF CPU time
(∆t = 0.1∆x) (∆t = 0.5∆x)

60 1.7078E–04 3721 1.0280E+01 60 1.7078E–04 3721 2.2178E+00
120 4.2882E–05 14641 1.0541E+02 120 4.2882E–05 14641 1.7483E+01
180 1.9074E–05 32761 3.7313E+02 180 1.9074E–05 32761 6.6094E+01
240 1.0732E–05 58081 7.4698E+02 240 1.0732E–05 58081 1.6466E+02

By the numerical solution of the viscous Burgers equation, it is observed that L2 error estimate decrease
with an increase of the number of grids and Q2 finite element method is more accurate than Q1 finite element
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Table 7. The L2 -error estimate using the Q2 conforming FEM.

Nx = Ny L2 error DOF CPU time Nx = Ny L2 error DOF CPU time
(∆t = 0.1∆x) (∆t = 0.5∆x)

60 1.9778E–06 14641 4.4042E+01 60 1.9778E–06 14641 1.7441E+01
120 2.4701E–07 58081 4.0352E+02 120 2.4701E–07 58081 8.6631E+01
180 7.3175E–08 130321 1.7309E+03 180 7.3175E–08 130321 3.3313E+02
240 3.0869E–08 231361 3.0073E+03 240 3.0869E–08 231361 8.5384E+02

method but it is computationally expensive.

4.4. Stability of the scheme
Now, we discuss the stability of the different time discretization scheme for test problem 1. All the results are
taken by keeping viscosity parameter fixed (ν = 0.1) and number nodes N = 60. In Table 8, it is observed that
the one-step θ method, Alexander (order2), Alexander (order3) and DIFST method are stable for lagre time
steps but explicit Euler’s method, Heun’s, Shu-third order and RK4 methods are unstable for lagre time steps.

Table 8. Computational costs and stability of the time discretization schemes.

Scheme ∆t = 10−4 ∆t = 10−3 ∆t = 10−2 ∆t = 10−1

One-step θ 2.1446E+02 2.1652E+01 3.9256E+00 4.4606E-01
Alexander (order 2) 4.3964E+02 4.3089E+01 5.7173E+00 9.7595E-01
Alexander (order 3) 6.4294E+02 6.5925E+01 1.0005E+00 1.3727E+00
Fractional Step θ 5.7120E+02 6.5185E+01 7.8561E+00 1.3086E+00
Explicit Euler’s 5.9160e+01 Fails Fails Fails
Heun’s 1.1176e+02 Fails Fails Fails
Shu-third order 1.6737e+02 Fails Fails Fails
RK4 1.6737e+02 Fails Fails Fails

4.5. Grid-independent solution
In this section, we provided the grids independence study. By taking the different numbers of grids, the L2

error estimates are computed. It is observed that L2 error decreases with the increase in the number of grid
points. It is also noted that the solutions become almost identical at the two grids 1680 and 3120 as shown in
Table 9.

Table 9. The L2 -error estimate using the Q1 conforming FEM.

No. of grids (Nx = Ny) L2-error
480 3.8584E–09
960 4.8229E–10
1680 8.9990E–11
3120 1.4049E–11
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5. Conclusion
In this paper, a numerical method for solving the Burgers equation is proposed. The DIFST scheme is used
for the time discretization and compared with some other time discretization schemes. The conforming finite
element method (FEM) is used for the space discretization. The Newton’s method and the BiCG methods
are used for solving the resulting nonlinear and linear system of equations respectively. On the uniform grids,
the unsteady solution is computed. Some examples with a known solution are numerically solved to calculate
the L2 error norm and CPU time. The computation for viscosity parameter effects is also given and it is
observed that with the increase in the value of viscosity parameter ν , the diffusion occurs in the solution. The
L2 error estimate is also calculated and it is noted that L2 error decreases with the increase in the viscosity
parameter. A comparison for different time integration schemes is provided to show that the DIFST scheme is
more computationally efficient and stable.
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