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Abstract: Let L denote the discrete Dirac operator generated in ℓ2
(
N,C2

)
by the difference operators of first order{

△y
(2)
n + pny

(1)
n = λy

(1)
n

△y
(1)
n−1 + qny

(2)
n = λy

(2)
n ,

n ∈ N \ {k − 1, k, k + 1}

with boundary and impulsive conditions

y
(1)
0 = 0 ,(

y
(1)
k+1

y
(2)
k+2

)
= θ

(
y
(2)
k−1

y
(1)
k−2

)
; θ =

(
θ1 θ2
θ3 θ4

)
, {θi}i=1,2,3,4 ∈ R

where {pn}n∈N , {qn}n∈N are real sequences, λ = 2 sinh
(
z
2

)
is a hyperbolic eigenparameter and △ is forward operator.

In this paper, the spectral properties of L such as the spectrum, the eigenvalues, the scattering function and their
properties are given with an example in the special cases under the condition

∞∑
n=1

n (|pn|+ |qn|) < ∞.
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1. Introduction
Difference equations appear as a mathematical model in many daily events about ecology, medicine, economics,
control theory and mechanics. Because of that, spectral properties of these equations are attractive study topics
for many mathematicians from the recent past to the present [2, 4, 6, 14, 16, 19, 21, 25]. In particular discrete
Dirac equations have a wide place in these studies in terms of mathematical investigation of light theory in
physics.

Consider the nonself-adjoint system of difference equations of first order{
an+1y

(2)
n+1 + bny

(2)
n + pny

(1)
n = λy

(1)
n

an−1y
(1)
n−1 + bny

(1)
n + qny

(2)
n = λy

(2)
n

(1.1)

∗Correspondence: tkoprubasi@kastamonu.edu.tr
2010 AMS Mathematics Subject Classification: 34B37, 35P25, 39A70, 47A75

This work is licensed under a Creative Commons Attribution 4.0 International License.
540

https://orcid.org/0000-0003-1551-1527


KÖPRÜBAŞI/Turk J Math

where (an) , (bn) , (pn) and (qn) are complex sequences for n ∈ Z and λ is a spectral parameter. The analytical
properties of the Jost solutions of (1.1) have been studied in [10]. By using these properties, the authors have
obtained eigenvalues and spectral singularities of (1.1) which are finite number with finite multiplicities. Before
the study [10], the similar results included the properties of the principal vectors corresponding to the spectral
singularities has been founded in [1] for an ≡ 1 and bn ≡ −1 . Some other studies related to discrete Dirac
equation with different conditions can also be seen in [5, 9, 11, 17]. Moreover, the discrete impulsive equations
have led to the rapid development of the spectral theory of difference equations. These equations mostly
seen as a mathematical model in engineering, biological, physical problems, especially heat and mass transfer.
Therefore, analyzing the spectral properties of such equations is crucial for understanding the events in these
areas [3,7,8,12,15,18,20,22–24].

Let us consider the discrete Dirac operator L in Hilbert space ℓ2
(
N,C2

)
denoted by the first order

difference operator system {
△y(2)n + pny

(1)
n = λy

(1)
n

△y(1)n−1 + qny
(2)
n = λy

(2)
n

, n ∈ N \ {k − 1, k, k + 1} (1.2)

with boundary and impulsive conditions

y
(1)
0 = 0 , (1.3)

(
y
(1)
k+1

y
(2)
k+2

)
= θ

(
y
(2)
k−1

y
(1)
k−2

)
; θ =

(
θ1 θ2
θ3 θ4

)
, {θi}i=1,2,3,4 ∈ R (1.4)

where {pn}n∈N , {qn}n∈N are real sequences, det θ ̸= 0, λ = 2 sinh
(
z
2

)
is a hyperbolic eigenparameter and △

is forward operator. The system (1.2) is the discrete analogue of the well-known Dirac system(
0 1
−1 0

)(
y

′

1

y
′

2

)
+

(
p(x) 0
0 q(x)

)(
y1
y2

)
= λ

(
y1
y2

)
([19], Chap. 2). Therefore the systems (1.1) and (1.2) are called the discrete Dirac system. In this study, we
analyze various spectral properties of L ; i.e. the spectrum, the scattering function and their properties under
the condition

∞∑
n=1

n (|pn|+ |qn|) <∞. (1.5)

2. Scattering function of L

By following up [10], Eq. (1.2) has the bounded solutions

fn(z) =

(
f
(1)
n (z)

f
(2)
n (z)

)
=

(
I2 +

∞∑
m=1

Anme
imz

)(
e

z
2

1

)
enz, n ∈ N (2.1)

and

f
(1)
0 (z) =

{
e

z
2

[
1 +

∞∑
m=1

A11
0me

mz

]
+

∞∑
m=1

A12
0me

mz

}
(2.2)
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under the condition (1.5) for λ = 2 sinh
(
z
2

)
and z ∈ Cleft := {z : z ∈ C, R⌉z ≤ 0} with lim

n→∞
e−(n+

1
2 )zf

(1)
n (z) =

lim
n→∞

e−nzf
(2)
n (z) = 1 , where I2 is 2x2 identity matrix and Anm =

(
A11

nm A12
nm

A21
nm A22

nm

)
is expressed in terms of

(pn) and (qn), n ∈ N . Also, ∣∣Aij
nm

∣∣ ≤ C

∞∑
k=n+[|m2 |]

(|pk|+ |qk|) (2.3)

holds for i, j = 1, 2 , where
[∣∣m

2

∣∣] is the integer part of m
2 and C is a positive constant. Therefore fn is vector-

valued analytic function in Cleft := {z : z ∈ C, R⌉z < 0} , continuous on R and fn(z) = fn(z + 4πi) . Let two
semistrips T− = {z ∈ C : z = ξ + iτ, ξ < 0, τ ∈ [−π, 3π]} and T = T−∪T0 = {z ∈ C : z = ξ + iτ, ξ ≤ 0, τ ∈ [−π, 3π]}
are defined in Cleft where T0 = {z ∈ C : z = iτ, τ ∈ [−π, 3π]} .

After that, if we consider the fundamental solutions of (1.2) φn(z) =

(
φ
(1)
n (λ)

φ
(2)
n (λ)

)
and ψn(z) =

(
ψ
(1)
n (λ)

ψ
(2)
n (λ)

)
,

n = 0, 1, . . . , k − 1 for z ∈ T subject to the initial conditions

φ
(1)
0 (z) = 0 , φ

(2)
1 (z) = 1 ,

ψ
(1)
0 (z) = 1 , ψ

(2)
1 (z) = 0 ,

(2.4)

then φn(z) and ψn(z) are entire for z ∈ C and the wronskian of these equations is

W [φn(z), ψn(z)] =
[
φ(1)
n (z)ψ

(2)
n+1(z)− φ

(2)
n+1(z)ψ

(1)
n (z)

]
=

[
φ
(1)
0 (z)ψ

(2)
1 (z)− φ

(2)
1 (z)ψ

(1)
0 (z)

]
= −1.

Furthermore,

Jn(z) =

{
p(1)(z)φn(z) + p(2)(z)ψn(z) ; n = 0, 1, . . . , k − 1

fn(z) ; n = k + 1, k + 2, . . .
(2.5)

is the Jost solution of L for z ∈ T with

p(1)(z) = −detB

det θ
, p(2)(z) =

detC

det θ

and
J
(1)
0 (z) = p(2)(z)

where

B =

(
f
(1)
k+1(z) f

(2)
k+2(z)

θ1ψ
(2)
k−1(z) + θ2ψ

(1)
k−2(z) θ3ψ

(2)
k−1(z) + θ4ψ

(1)
k−2(z)

)
,

C =

(
f
(1)
k+1(z) f

(2)
k+2(z)

θ1φ
(2)
k−1(z) + θ2φ

(1)
k−2(z) θ3φ

(2)
k−1(z) + θ4φ

(1)
k−2(z)

)
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achieved from the condition (1.4). In addition,

W
[
fn(z), fn(z)

]
= lim

n→∞

[
f (1)n (z)f

(2)
n+1(z)− f

(2)
n+1(z)f

(1)
n (z)

]
= lim

n→∞

[
e(n+

1
2 )ze(n+1)z − e(n+1)ze(n+

1
2 )z
]

= e(n+
1
2 )ze−(n+1)z − e(n+1)ze−(n+

1
2 )z

= e−
z
2 + e

z
2

= 2 cosh
(z
2

)
for z ∈ T0 \ {πi} and then

Fn(z) =

{
φn(z) ; n = 0, 1, . . . , k − 1

q(1)(z)fn(z) + q(2)(z)fn(z) ; n = k + 1, k + 2, . . .
(2.6)

be the another solution of L for z ∈ T0 \ {πi} where

q(1)(z) = − detD

2 cosh
(
z
2

) , q(2)(z) =
detC

2 cosh
(
z
2

)
with

D =

(
f
(1)
k+1(z) f

(2)
k+2(z)

θ1φ
(2)
k−1(z) + θ2φ

(1)
k−2(z) θ3φ

(2)
k−1(z) + θ4φ

(1)
k−2(z)

)
.

On this occasion, we can find by following (2.5) and (2.6)

W [Jn(z), Fn(z)] =

{
p(2)(z) ; n = 0, 1, . . . , k − 1

−p(2)(z) det θ ; n = k + 1, k + 2, . . .

for z ∈ T0 \ {πi} because of q(2)(z) = − det θ

2 cosh( z
2 )
p(2)(z).

On the other hand, if we consider the unbounded solution of Eq. (1.2) f̂n(z) =

(
f̂
(1)
n (z)

f̂
(2)
n (z)

)
for n =

k + 1, k + 2, . . . with lim
n→∞

e(n+
1
2 )z f̂

(1)
n (z) = lim

n→∞
enz f̂

(2)
n (z) = 1, z ∈ Cleft , then

W
[
fn(z), f̂n(z)

]
= 2i cosh

(z
2

)
for T \ {πi} . So we can write the unbounded solution of L is

Gn(z) =

{
φn(z) ; n = 0, 1, . . . , k − 1

r(1)(z)fn(z) + r(2)(z)f̂n(z) ; n = k + 1, k + 2, . . .
(2.7)

for z ∈ T with

r(1)(z) = − detE

2 cosh
(
z
2

) , r(2)(z) =
detC

2 cosh
(
z
2

)
543



KÖPRÜBAŞI/Turk J Math

where

E =

(
f̂
(1)
k+1(z) f̂

(2)
k+2(z)

θ1φ
(2)
k−1(z) + θ2φ

(1)
k−2(z) θ3φ

(2)
k−1(z) + θ4φ

(1)
k−2(z)

)

and

r(2)(z) = q(2)(z) = − det θ

2 cosh
(
z
2

)p(2)(z) (2.8)

for z ∈ T0 \ {πi} .

Theorem 2.1 For all z in T0 \ {πi} , p(2)(z) ̸= 0 .

Proof Assume that p(2)(z0) = 0 for ∃z0 in T0 \ {πi} . From (2.6) and (2.8), we can find Fn(z0) = 0,

n ∈ N ∪ {0} by using the impulsive conditions (1.4). However, this is a contradiction since Fn(z0) cannot be a
trivial solution of L . 2

In this step, we define the function

S(z) =
J
(1)
0 (z)

J
(1)
0 (z)

=
p(2)(z)

p(2)(z)
(2.9)

which is called the scattering function of L . Also, it can be written that

S(z) =
f
(2)
k+2(z)

[
θ1φ

(2)
k−1(z) + θ2φ

(1)
k−2(z)

]
− f

(1)
k+1(z)

[
θ3φ

(2)
k−1(z) + θ4φ

(1)
k−2(z)

]
f
(2)
k+2(z)

[
θ1φ

(2)
k−1(z) + θ2φ

(1)
k−2(z)

]
− f

(1)
k+1(z)

[
θ3φ

(2)
k−1(z) + θ4φ

(1)
k−2(z)

]

and |S(z)| = 1 because S(z) =
[
S(z)

]−1

for z ∈ T0 \ {πi} from (2.9).

Theorem 2.2

σd(L) =
{
λ ∈ C : λ = 2 sinh

(z
2

)
, z ∈ T−, p

(2)(z) = 0
}
,

σss(L) = ∅

where σd(L) and σss(L) are respectively the sets of eigenvalues and spectral singularities of L .

Proof The first part of the Jost solution Jn(z) sets in finite number of elements and the second component
fn(z) ∈ ℓ2

(
N,C2

)
. Therefore, Jn(z) is in ℓ2

(
N,C2

)
from (2.5). Moreover

0 = J
(1)
0 (z) = p(1)(z)φ

(1)
0 (z) + p(2)(z)ψ

(1)
0 (z) = p(2)(z)

by using the condition (1.3). Hence, we can obtain

σd(L) =
{
λ ∈ C : λ = 2 sinh

(z
2

)
, z ∈ T−, p

(2)(z) = 0
}
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and

σss(L) =
{
λ ∈ C : λ = 2 sinh

(z
2

)
, z ∈ T0 \ {πi} , p(2)(z) = 0

}
= ∅

from the definition of spectral singularities and eigenvalues [13] and Theorem 2.1. 2

In addition, we can write the Wronskian of Jn(z) and Gn(z) as

W [Jn(z), Gn(z)] =

{
p(2)(z) ; n = 0, 1, . . . , k − 1

−p(2)(z) det θ ; n = k + 1, k + 2, . . .

for z ∈ T , and in the light of the Theorem 2.2., we need to the quantitative properties of the zeros of p(2)(z)
in T− in order to investigate the quantitative properties of the eigenvalues of L.

3. Some special cases

Let M denote the operator in ℓ2
(
N,C2

)
generated by the unperturbed system

{
y
(2)
n+1 − y

(2)
n = λy

(1)
n

y
(1)
n − y

(1)
n−1 = λy

(2)
n

, n ∈ N \ {2, 3, 4} (3.1)

and conditions

y
(1)
0 = 0 ,(

y
(1)
4

y
(2)
5

)
= θ

(
y
(2)
2

y
(1)
1

)
, θ =

(
θ1 θ2
θ3 θ4

)
, {θi}i=1,2,3,4 ∈ R,

(3.2)

with det θ ̸= 0 and λ = 2 sinh
(
z
2

)
is a hyperbolic eigenparameter. At the same time, if φn(z) =

(
φ
(1)
n (λ)

φ
(2)
n (λ)

)

and ψn(z) =

(
ψ
(1)
n (λ)

ψ
(2)
n (λ)

)
, n = 0, 1, 2, 3 are the fundamental solutions of (3.1) for z ∈ T subject to the initial

conditions (2.4) which imply

φ
(1)
1 (z) = 2 sinh

(
z
2

)
, φ

(2)
2 (λ) = 2 cosh z − 1 ,

ψ
(1)
1 (z) = 1 , ψ

(2)
2 (λ) = 2 sinh

(
z
2

)
then

Jn(z) =

{
p(1)(z)φn(z) + p(2)(z)ψn(z) ; n = 0, 1, 2

fn(z) ; n = 4, 5, 6, . . .
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is the Jost solution of M where

p(1)(z) = − 1

det θ

{
f
(2)
5 (z)

[
θ1ψ

(2)
2 (z) + θ2ψ

(1)
1 (z)

]
− f

(1)
4 (z)

[
θ3ψ

(2)
2 (z) + θ4ψ

(1)
1 (z)

]}
= − 1

det θ
e4z
[
θ1e

3z
2 − (θ3 − θ2) e

z − (θ1 + θ4) e
z
2 + θ3

]
p(2)(z) =

1

det θ

{
f
(2)
5 (z)

[
θ1φ

(2)
2 (z) + θ2φ

(1)
1 (z)

]
− f

(1)
4 (z)

[
θ3φ

(2)
2 (z) + θ4φ

(1)
1 (z)

]}
=

1

det θ
e

7z
2

[
θ1e

5z
2 − (θ3 − θ2) e

2z − (θ1 + θ4) e
3z
2 + (θ3 − θ2) e

z + (θ1 + θ4) e
z
2 − θ3

]

and also fn(z) =

(
e(n+

1
2 )z

enz

)
. Moreover, the scattering function of M is

S(z) =
f
(2)
5 (z)

[
θ1φ

(2)
2 (z) + θ2φ

(1)
1 (z)

]
− f

(1)
4 (z)

[
θ3φ

(2)
2 (z) + θ4φ

(1)
1 (z)

]
f
(2)
5 (z)

[
θ1φ

(2)
2 (z) + θ2φ

(1)
1 (z)

]
− f

(1)
4 (z)

[
θ3φ

(2)
2 (z) + θ4φ

(1)
1 (z)

]
= e−

19z
2

[
−θ3e

5z
2 + (θ1 + θ4) e

2z + (θ3 − θ2) e
3z
2 − (θ1 + θ4) e

z − (θ3 − θ2) e
z
2 + θ1

θ1e
5z
2 − (θ3 − θ2) e2z − (θ1 + θ4) e

3z
2 + (θ3 − θ2) ez + (θ1 + θ4) e

z
2 − θ3

]

can be written from (2.10) for z ∈ T0 \ {πi} , and the eigenvalues of M is

σd(M) =
{
λ ∈ C : λ = 2 sinh

(z
2

)
, z ∈ T−, p

(2)(z) = 0
}
.

So, we can obtain that

θ1e
5z
2 − (θ3 − θ2) e

2z − (θ1 + θ4) e
3z
2 + (θ3 − θ2) e

z + (θ1 + θ4) e
z
2 − θ3 = 0 (3.3)

because λ = 2 sinh
(
z
2

)
and p(2)(z) = 0 in σd(M) .

Case 1:Let θ = I2 where I2 is 2x2 identity matrix. From (3.3), we get

e
5z
2 − 2e

3z
2 + 2e

z
2 = 0

and

ez = 1− i ,
ez = 1 + i.

However, there is no roots of these equations in T−, so σd(M) = ∅.

Case 2:If θ =
(

1 0
1 1

)
, then

e
5z
2 − e2z − 2e

3z
2 + ez + 2e

z
2 − 1 = 0.

From this equation,
ez = 1 ,

ez ≈ 0.27551 ,
ez ≈ 2.22074

(3.4)
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can be obtained. The phrase (3.4) gives us, zp ≈ −1.28913 + i2pπ , p = 0, 1 which located in T− . Hence, M
has two eigenvalues such as λ1 = 2 sinh

(
z0
2

)
and λ2 = 2 sinh

(
z1
2

)
.

Case 3:For θ =
(

1 1
1 0

)
, it can be found that

e
5z
2 − e

3z
2 + e

z
2 − 1 = 0

and then
ez = 1 ,

ez ≈ −0.17509− 0.69182i ,
ez ≈ −0.17509 + 0.69182i.

(3.5)

There are four roots of (3.5) z1,p ≈ −0.33738 − i (1.81868− 2pπ) and z2,p ≈ −0.33738 + i (1.81868 + 2pπ) ,

p = 0, 1 in T− , hence the eigenvalues of M is σd(M) =
{
λ ∈ C : λ = 2 sinh

( zm,p

2

)
; m = 1, 2; p = 0, 1

}
.
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