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Abstract: In this study, nearness near-ring, subnearness near-ring, nearness M-group and nearness ideal are introduced.
By considering operations on the set of all near left weak cosets, nearness near-ring of all near left weak cosets and
nearness near-ring homomorphism are also presented. Moreover, some properties of these structures are investigated.
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1. Introduction
Nearness approximation spaces and near sets were introduced in 2007 as generalizations of rough sets [8, 13].
Near set theory begins with the selection of probe functions that provide a basis for describing and discerning
affinities between objects in distinct perceptual granules. A probe function is a real-valued function representing
a feature of objects such as images.

In the concept of ordinary algebraic structures, the sets consist of abstract points and the sets with
binary operations must hold certain axioms given in [1]. In the nearness approximation space, however, the
sets are composed of perceptual objects (nonabstract points) instead of abstract points. Perceptual objects are
points that have features. These points are describable with feature vectors [8]. Upper approximation of a set
is determined by matching descriptions of objects in the set of perceptual objects. In the algebraic structures
on nearness approximation spaces, the basic tool is the consideration of upper approximations of the subsets of
perceptual objects. In a nearness groupoid, the binary operation must be closed in upper approximation of the
set instead of the set.

Near-rings were introduced in 1983 by Pilz as a generalization of rings. In these rings, the addition
operation does not need to be commutative as only one distributive law is sufficient. [11].

In 2012, İnan and Öztürk [2, 3] investigated the concept of groups on nearness approximation spaces. In
2013, nearness group of weak cosets are introduced [7]. In 2015, İnan et al. [4] also investigated the nearness
semigroups. In 2019, nearness rings are introduced as well [5].

The aim of this study is to introduce nearness near-ring, subnearness near-ring, nearness M-group and
nearness ideal. By considering operations on the set of all near left weak cosets, nearness near-ring of all near
left weak cosets and nearness near-ring homomorphism are also presented. Moreover, some properties of these
structures are investigated.
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2. Preliminaries
Perceptual objects are points that are describable with feature vectors. Let O be a set of perceptual objects,
X ⊆ O , F be a set of probe functions and Φ : O −→ RL be a mapping where the description length is |Φ| = L .

Φ(x) = (φ1 (x) , φ2 (x) , φ3 (x) , · · · , φi (x) , · · · , φL (x)) is an object description of x ∈ X such that each
φi ∈ B ⊆ F (φi : O −→ R) is a probe function that represents features of sample objects X ⊆ O [8].

Sample objects are near each other if and only if the objects have similar descriptions. Recall that each
φi defines a description of an object. ∆φi

is defined by ∆φi
= |φi (x

′)− φi (x)| , where x, x′ ∈ O .
Let x, x′ ∈ O and B ⊆ F .

∼B= {(x, x′) ∈ O ×O | ∆φi
= 0 for all φi ∈ B}

is called the indiscernibility relation on O , where description length is i ≤ |Φ| [8].

Definition 2.1 [6] Let O be a set of perceptual objects, Φ be an object description and A ⊆ O . Then the set
description of A is defined as

Q(A) = {Φ(a) | a ∈ A}.

Definition 2.2 [6, 10] Let O be a set of perceptual objects and A , B ⊆ O . Then the descriptive (set)
intersection of A and B is defined as

A ∩
Φ
B = {x ∈ A ∪B | Φ(x) ∈ Q (A) and Φ(x) ∈ Q (B)}.

If Q(A) ∩ Q(B) 6= ∅ , then A is called descriptively near B and denoted by AδΦB . Also, ξΦ (A) =

{B ∈ P (O) | AδΦB} is a descriptive nearness collection [9].

Definition 2.3 [8] Let X ⊆ O and x ∈ X .

[x]Br
= {x′ ∈ O | x ∼Br

x′}

is called nearness class of x ∈ X .

Definition 2.4 [8] Let X ⊆ O .

Nr (B)
∗
X =

⋃
[x]Br

∩X ̸=∅

[x]Br

is called upper approximation of X .

A nearness approximation space is (O,F ,∼Br
, Nr (B) , νNr

) where O is a set of perceptual objects, F is
a set of probe functions, “∼Br

” is an indiscernibility relation relative to Br ⊆ B ⊆ F , Nr (B) is a collection of
partitions and νNr

: ℘ (O)×℘ (O) −→ [0, 1] is an overlap function that maps a pair of sets to [0, 1] representing
the degree of nearness between sets. The subscript r denotes the cardinality of the restricted subset Br .

Definition 2.5 [2] Let (O,F ,∼Br
, Nr (B) , νNr

) be a nearness approximation space and “ ·” be a binary
operation defined on O . G ⊆ O is called a nearness group if the following properties are satisfied:
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(NG1) For all x, y ∈ G , x · y ∈ Nr (B)
∗
G ,

(NG2) For all x, y, z ∈ G , (x · y) · z = x · (y · z) property holds in Nr (B)
∗
G ,

(NG3) There exists eG ∈ Nr (B)
∗
G such that x · eG = eG · x = x for all x ∈ G (eG is called the near

identity element of G),
(NG4) There exists y ∈ G such that x · y = y · x = eG for all x ∈ G (y is called the near inverse of x

in G and denoted as x−1 ).

Additionally, if the property x · y = y · x is satisfied in Nr (B)
∗
G for all x, y ∈ G , then G is said to be

a commutative nearness group.
Also, S ⊆ O is called a nearness semigroup if x · y ∈ Nr (B)

∗
S for all x, y ∈ S and (x · y) · z = x · (y · z)

property is satisfied in Nr (B)
∗
(S) for all x, y, z ∈ S .

Theorem 2.6 [3] Let G be a nearness group, H be a nonempty subset of G and Nr (B)
∗
H be a groupoid.

Then H ⊆ G is a subnearness group of G if and only if x−1 ∈ H for all x ∈ H .

Definition 2.7 [5] Let NAS = (O,F ,∼Br
, Nr (B) , νNr

) be a nearness approximation space and “+” and “ ·”
be binary operations defined on O . R ⊆ O is called a nearness ring if the following properties are satisfied:

(NR1) R is an commutative nearness group with binary operation “+”,
(NR2) R is a nearness semigroup with binary operation “ ·”,
(NR3) For all x, y, z ∈ R ,

x · (y + z) = (x · y) + (x · z) and (x+ y) · z = (x · z) + (y · z)

properties hold in Nr (B)
∗
R .

In addition,
(NR4) R is said to be a commutative nearness ring if x · y = y · x for all x, y ∈ R ,
(NR5) R is said to be a nearness ring with identity if Nr (B)

∗
R contains an element 1R such that

1R · x = x · 1R = x for all x ∈ R .

Definition 2.8 [11] Let N be a nonempty set and “+” and “ ·” be binary operations defined on N . N is
called a (right) near-ring if the following properties are satisfied:

(N1) N is a group with binary operation “+” (It does not need to be commutative),
(N2) N is a semigroup with binary operation “ ·”,
(N3) For all x, y, z ∈ N , (x+ y) · z = (x · z) + (y · z) properties hold in Nr (B)

∗
N .

Theorem 2.9 [7] Let G be a nearness group, H be a subnearness group of G and G/∼ℓ
be a set of all near

left weak cosets of G determined by H . If
(
Nr (B)

∗
G
)
/∼ℓ

⊆ Nr (B)
∗
(G/∼ℓ

) , then G/∼ℓ
is a nearness group

with the operation given by aH � bH = (a · b)H for all a, b ∈ G .

3. Nearness near-rings

Definition 3.1 Let (O,F ,∼Br , Nr (B) , νNr ) be a nearness approximation space, “+” and “ ·” be binary
operations defined on O . M ⊆ O is called a near-ring on nearness approximation spaces or shortly nearness
near-ring if the following properties are satisfied:
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(NN1) (M,+) is a nearness group (it does not need to be commutative),
(NN2) (M, ·) is a nearness semigroup,

(NN3) For all x, y, z ∈M , (x+ y) · z = (x · z) + (y · z) property holds in Nr (B)
∗
M .

In addition, M is called a commutative nearness near-ring if x · y = y · x for all x, y ∈ M and M

is called a nearness near-ring with identity if Nr (B)
∗
M contains 1M such that 1M · x = x · 1M = x for all

x ∈M .

Since (NN3) , nearness right near-ring can be used instead of nearness near-ring. Furthermore, if we
consider the condition x · (y + z) = (x · y) + (x · z) for all x, y, z ∈ M instead of (NN3) , then it can be called
as a nearness left near-ring. Throughout this study nearness near-ring will be used.

Generally, the identity element of the nearness group (M,+) is defined as zero of the nearness near-ring
M . Also, the set of all nearness near-rings is denoted by M .

(NN1) − (NN3) properties must be satisfied in Nr (B)
∗
M . Sometimes these properties may be hold

in O⧹Nr (B)
∗
M , in which case M is not a nearness near-ring. Addition or multiplying of finite number of

elements in M may not always belong to Nr (B)
∗
M . As a result, we cannot always say that nx ∈ Nr (B)

∗
M

or xn ∈ Nr (B)
∗
M for all x ∈M and some n ∈ Z+ .

If
(
Nr (B)

∗
M,+

)
and

(
Nr (B)

∗
M, ·

)
are groupoids, then we can say that nx ∈ Nr (B)

∗
M for all x ∈M

and all n ∈ Z or xn ∈ Nr (B)
∗
M for all x ∈M and all n ∈ Z+ .

Let M be a nearness near-ring with identity. x ∈ M is said to be a left (resp. right) near invertible if
there exists y ∈ Nr (B)

∗
M (resp. z ∈ Nr (B)

∗
M ) such that y · x = 1M (resp. x · z = 1M ). y (resp. z ) is

called a left (resp. right) near inverse of x . If x ∈ M is both a left and a right near invertible, then x is said
to be a near invertible.

Example 3.2 Let O = {a, b, c, d, e, f} be a set of perceptual objects and B = {φ1, φ2} ⊆ F be a set of probe
functions. Probe functions

φ1 : O −→ V1 = {α1, α2} ,

φ2 : O −→ V2 = {β1, β2, β3}

are given in Table 1.

a b c d e f
φ1 α1 α1 α1 α2 α2 α2

φ2 β1 β2 β2 β3 β3 β3

Table 1.

Let “+” and “ ·” be binary operations on O as in Tables 2 and 3.
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+ a b c d e f
a a b c d e f
b b c a f d e
c c a b e f d
d d e f a b c
e e f d c a b
f f d e b c a

· a b c d e f
a a a a a a a
b b b b b b b
c c c c c c c
d d d d d d d
e e e e e e e
f f f f f f f

Table 2. Table 3.

Let M = {a, d, e, f} ⊆ O , “+” and “ ·” be binary operations on M ⊆ O as in Tables 4 and 5. From
Table 4, since d+ e = b /∈ M for d, e ∈ M ⊆ O is not a group with binary operation “+” and so M is not a
near-ring.

+ a d e f
a a d e f
d d a b c
e e c a b
f f b c a

· a d e f
a a a a a
d d d d d
e e e e e
f f f f f

Table 4. Table 5.

[a]φ1
= {x′ ∈ O | φ1 (x

′) = φ1 (a) = α1}
= {a, b, c} = [b]φ1

= [c]φ1
,

[d]φ1
= {x′ ∈ O | φ1 (x

′) = φ1 (d) = α2}
= {d, e, f} = [e]φ1

= [f ]φ1
.

Then ξφ1 =
{
[a]φ1

, [d]φ1

}
.

[a]φ2
= {x′ ∈ O | φ2 (x

′) = φ2 (a) = β1}
= {a} ,

[b]φ2
= {x′ ∈ O | φ2 (x

′) = φ2 (b) = β2}
= {b, c} = [c]φ2

,

[d]φ2
= {x′ ∈ O | φ2 (x

′) = φ2 (d) = β3}
= {d, e, f} = [e]φ2

= [f ]φ2
.

Thus we obtain ξφ2 =
{
[a]φ2

, [b]φ2
, [d]φ2

}
. Therefore the set of partitions of O is N1 (B) = {ξφ1 , ξφ2}

for r = 1 .
In this case, we can write

N1 (B)
∗
M =

∪
[x]φi

[x]φi
∩ M ̸=∅

= {a, b, c} ∪ {d, e, f} ∪ {a}

= {a, b, c, d, e, f} = O.
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From Definition 3.1,
(NN1) :

(NG1) x+ y ∈ Nr (B)
∗
M for all x, y ∈M .

(NG2) (x+ y) + z = x+ (y + z) property holds in Nr (B)
∗
M for all x, y, z ∈M .

(NG3) There exists eM = a ∈ Nr (B)
∗
M such that x+ eM = eM + x = x for all x ∈M .

(NG4) There exists y ∈ M such that x+ y = y + x = a for all x ∈ M , i.e. −a = a , −d = d , −e = e

and −f = f .
Also, since e+ f = b , f + e = c and b 6= c from Table 4, (M,+) is a noncommutative nearness group.
(NN2) (M, ·) is a nearness semigroup.
(NN3) (x+ y) · z = (x · z) + (y · z) property holds in Nr (B)

∗
M for all x, y, z ∈M .

As a result, M is a nearness near-ring.

Lemma 3.3 Every near-ring is a nearness near-ring.

Proof Let M ⊆ O be a near-ring. Since M ⊆ Nr (B)
∗
M , then the properties (NN1) − (NN3) hold in

Nr (B)
∗
M . Therefore M is a nearness near-ring. 2

Lemma 3.4 Every nearness ring is a nearness near-ring.

Proof Let M ⊆ O be a nearness ring. From definition of nearness ring, it is easily shown that M is a nearness
near-ring. 2

Remark 3.5 Nearness near-ring is not always near-ring, and also nearness near-ring is not always nearness
ring.

Examples 3.6 and 3.7 are show that the opposites of the Lemma 3.3 and Lemma 3.4 are not true.

Example 3.6 From Example 3.2 M is a nearness near-ring. But M is not a near-ring since d+ e = b /∈ M

for d, e ∈M .

Example 3.7 From Example 3.2 M is a nearness near-ring. But M is not a nearness ring since d · (e+ f) 6=
(d · e) + (d · f) for d, e, f ∈M .

Lemma 3.8 Let M ⊆ O be a nearness near-ring and 0M ∈M . If 0M · x ∈M for all x ∈M , then
(i) 0M · x = 0M ,
(ii) (−x) · y = − (x · y)
for all x, y ∈M .

Proof (i) For all x ∈M ,
0M · x = (0M + 0M ) · x = 0M · x+ 0M · x.

Since the near identity element is unique, 0M · x = 0M .
(ii) From (i), 0M · y = 0M for all y ∈M . Then

0M = 0M · y = ((−x) + x) · y = (−x) · y + x · y.
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Since the near inverse element is unique, (−x) · y = − (x · y) . 2

For all x, y ∈M , the equalities x · 0M = 0M and x · (−y) = − (x · y) may not be provided.

Definition 3.9 Let M be a nearness near-ring. The set

M0 = {x ∈M | x · 0M = 0M }

is called a zero symmetric part of M and the set

Mc = {x ∈M | x · 0M = x}

is called a constant part of M .

If M = M0 , then M is called a zero symmetric nearness near-ring. If M = Mc , then M is called a
constant nearness near-ring. The set of all zero symmetric nearness near-rings is denoted by M0 and the set
of all constant nearness near-rings is denoted by Mc .

If the condition d · (x + y) = d · x + d · y holds in Nr (B)
∗
M for all x, y ∈ M , then d is called a

distributive element. Also, the set of all nearness near-ring with the identity is represented as M1 and the set
of all distributive elements in M is represented as Md . If M = Md , then M is called a distributive nearness
near-ring.

Definition 3.10 Let (G,+) be a nearness group, M be a nearness near-ring and

η : Nr (B)
∗
M ×G→ Nr (B)

∗
G, η ((x, g)) = xg.

(G, η) is called a nearness M -group if (x+ y)g = xg + yg and (x · y)g = x (yg) properties are satisfied
in Nr (B)

∗
G for all g ∈ G and all x, y ∈ M . It is denoted by MG and the set of all nearness M -groups is

denoted by MG .

Lemma 3.11 Every nearness near-ring (M,+, ·) is a nearness M -group.

Definition 3.12 Let M ∈M1 and MG ∈ MG . If 1M g = g property holds in Nr (B)
∗
G for all g ∈ G , then

MG is called an unitary nearness M -group.

Lemma 3.13 Let M be a nearness near-ring and G be a nearness M -group. Then
(i) 0Mg = 0G for all g ∈ G .
(ii) (−x) g = −xg for all g ∈ G and all x ∈M .
(iii) x0G = 0G for all x ∈M0 .
(iv) xg = x0G for all g ∈ G and all x ∈Mc .

Proof (i) For all g ∈ G ,
0Mg = (0M + 0M ) g = 0Mg + 0Mg.

Since the near identity element is unique, 0Mg = 0G .
(ii) From (i), 0Mg = 0G for all g ∈ G . Then

0G = 0Mg = ((−x) + x) g = (−x) g + xg.
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Since the near inverse element is unique, (−x) g = −xg .
(iii) Since x · 0M = 0M for all x ∈M0 ,

x0G = x (0Mg) = (x · 0M ) g = 0Mg = 0G

from (i).
(iv) Since x · 0M = x for all x ∈Mc ,

xg = (x · 0M ) g = x (0Mg) = x0G

from (i). 2

Definition 3.14 Let M be a nearness near-ring and (K,+) be a subnearness group of (M,+) . K is called a
subnearness near-ring of M if K ·K ⊆ Nr (B)

∗
K .

Example 3.15 Let M be a nearness near-ring. Then M0 and Mc are subnearness near-rings of M .

Theorem 3.16 Let M be a nearness near-ring, K be a nonempty subset of M and (Nr (B)
∗
K,+) , (Nr (B)

∗
K, ·)

be groupoids. Then K is a subnearness near-ring of M if and only if −x ∈ K for all x ∈ K .

Proof (⇒) Let K be a subnearness near-ring of M . Then (K,+) is a nearness group and hence −x ∈ K

for all x ∈ K .
(⇐) Let −x ∈ K for all x ∈ K . Since

(
Nr (B)

∗
K,+

)
is a groupoid, (K,+) is a nearness group from

Theorem 2.6. Therefore, since (Nr (B)
∗
K, ·) is a groupoid and K ⊆ M , (x · y) · z = x · (y · z) property holds

in Nr (B)
∗
K for all x, y, z ∈ K . Hence (K, ·) is a nearness semigroup. Furthermore, since

(
Nr (B)

∗
K,+

)
,(

Nr (B)
∗
K, ·

)
are groupoids and M is a nearness near-ring, (x+ y) · z = (x · z) + (y · z) property holds in

Nr (B)
∗
K for all x, y, z ∈ K . Consequently, K is a subnearness near-ring of M . 2

Example 3.17 From Example 3.2, let K = {a, f} ⊆M with the binary operations as in Tables 6 and 7.

+ a f
a a f
f f a

· a f
a a a
f f f

Table 6. Table 7.

For r = 1 , a classification of O is N1 (B) = {ξφ1
, ξφ2

} by Example 3.2. Then N1 (B)
∗
K = {a, b, c, d, e, f} .

Hence (Nr (B)
∗
K,+) , (Nr (B)

∗
K, ·) are groupoids and −a = a,−f = f ∈ K . Therefore K is a subnearness

near-ring of M from Theorem 3.16.

Definition 3.18 Let M be a nearness near-ring, G be a nearness M -group and H be a subnearness group of
(G,+) . Then H is called a subnearness M -group of G if H ·M ⊆ Nr (B)

∗
H .

Definition 3.19 Let M be a nearness near-ring, I be a subnearness group of (M,+) and
(
Nr (B)

∗
I,+

)
,(

Nr (B)
∗
I, ·

)
be groupoids. Then I is called a nearness ideal of M if the following properties are satisfied:
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(1) I ·M ⊆ Nr (B)
∗
I ,

(2) x · (y + a)− x · y ∈ Nr (B)
∗
I for all x, y ∈M and all a ∈ I .

Furthermore, I is called a right nearness ideal of M if only the condition (1) is satisfied. Also, I is
called a left nearness ideal of M if only the condition (2) is satisfied.

Example 3.20 From Example 3.2, let we consider the nearness near-ring M . Let K = {a, f} ⊆M . Then K

is a nearness ideal of M with the binary operations “+” and “ ·”.

Definition 3.21 Let M be a nearness near-ring, G be a nearness M -group and H be a subnearness M -group
of G . Then H is called a nearness ideal of G if x (g + h)− xg ∈ Nr (B)

∗
H for all g ∈ G , all h ∈ H and all

x ∈M .

Theorem 3.22 Let M be a nearness near-ring, K1 and K2 be two subnearness near-rings of M and
Nr (B)

∗
K1 , Nr (B)

∗
K2 be groupoids with the binary operations “+” and “ ·”. If

(
Nr (B)

∗
K1

)
∩
(
Nr (B)

∗
K2

)
= Nr (B)

∗
(K1 ∩K2) ,

then K1 ∩K2 is a subnearness near-ring of M .

Proof It is straightforward. 2

Corollary 3.23 Let M be a nearness near-ring, {Ki : i ∈ ∆} be a nonempty family of subnearness near-rings
of M and Nr (B)

∗
Ki be groupoids with the binary operations “+” and “ ·” for all i ∈ ∆ . If

⋂
i∈∆

Nr (B)
∗
Ki = Nr (B)

∗
( ⋂

i∈∆

Ki

)
,

then
⋂
i∈∆

Ki is a subnearness near-ring of M .

4. Nearness near-rings of weak cosets

Let M be a nearness near-ring and K be a subnearness near-ring of M . The relation “∼r ” is defined as

x ∼r y :⇔ x+ (−y) ∈ K ∪ {0M}

where x, y ∈M .

Theorem 4.1 Let M be a nearness near-ring. Then “∼r ” is a right weak equivalence relation on M .

Proof Since (M,+) is a nearness group, −x ∈ M for all x ∈ M . Due to x + (−x) = 0M ∈ K ∪ {0M} ,
x ∼r x . Let x ∼r y for all x, y ∈M . Then x+(−y) ∈ K ∪{0M} , that is x+(−y) ∈ K or x+(−y) ∈ {0M} . If
x+ (−y) ∈ K , since (K,+) is a subnearness group, then − (x+ (−y)) = y + (−x) ∈ K . Hence y ∼r x . Also,
if x + (−y) ∈ {0M} , then x + (−y) = 0M . Therefore y + (−x) = − (x+ (−y)) = −0M = 0M and so y ∼r x .
Consequently, “∼r ” is a right weak equivalence relation on M . 2
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A class that contains the element x ∈M is

x̃r = {k + x|k ∈ K,x ∈M,k + x ∈M} ∪ {x}

that is determined by “∼r ” .

Definition 4.2 Let M be a nearness near-ring. A weak class determined by right weak equivalence relation
“∼r ” is called a near right weak coset.

Similarly, the relation “∼ℓ ” is defined as

x ∼ℓ y :⇔ (−x) + y ∈ K ∪ {0M}

where x, y ∈M .

Theorem 4.3 Let M be a nearness near-ring. Then “∼ℓ ” is a left weak equivalence relation on M .

Proof Since (M,+) is a nearness group, −x ∈ M for all x ∈ M . Due to (−x) +x = 0M ∈ K ∪ {0M} ,
x ∼ℓ x . Let x ∼ℓ y for all x, y ∈M . Then (−x) + y ∈ K ∪ {0M} , that is, (−x) + y ∈ K or (−x) + y ∈ {0M} .
If (−x)+ y ∈ K , since (K,+) is a subnearness group, then − ((−x) + y) = (−y)+x ∈ K . Hence y ∼ℓ x . Also
if (−x) + y ∈ {0M} , then (−x) + y = 0M . Therefore (−y) + x = − ((−x) + y) = −0M = 0M and so y ∼ℓ x .
Consequently, “∼ℓ ” is a left weak equivalence relation on M . 2

A class that contains the element x ∈M is

x̃ℓ = {x+ k|k ∈ K,x ∈M,x+ k ∈M} ∪ {x}

that is determined by “∼ℓ ” .

Definition 4.4 Let M be a nearness near-ring. A class determined by left weak equivalence relation “∼ℓ ” is
called a near left weak coset.

We can easily show that x̃r = K + x and x̃ℓ = x + K . Nearness group (K,+) may not always be
commutative. If (K,+) is a commutative nearness group, x̃r = x̃ℓ . Otherwise x̃r 6= x̃ℓ .

Let M be a nearness near-ring and K be a subnearness near-ring of M . Then

M/∼ℓ
= {x+K|x ∈M}

is a set of all near left weak cosets of M determined by K . If we consider Nr (B)
∗
M instead of nearness

near-ring M (
Nr (B)

∗
M

)
/∼ℓ

=
{
x+K|x ∈ Nr (B)

∗
M

}
.

Hence
x+K =

{
x+ k|k ∈ K,x ∈ Nr (B)

∗
M,x+ k ∈M

}
∪ {x} .

Definition 4.5 Let M be a nearness near-ring and K be a subnearness near-ring of M . For x, y ∈ M , let
x+K and y+K be two near left weak cosets determined the elements x and y , respectively. Then sum of two
near left weak cosets determined by x+ y ∈ Nr (B)

∗
M can be defined as{

(x+ y) + k|k ∈ K,x+ y ∈ Nr (B)
∗
M, (x+ y) + k ∈M

}
∪ {x+ y}
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and denoted by
(x+K)⊕ (y +K) = (x+ y) +K.

Definition 4.6 Let M be a nearness near-ring and K be a subnearness near-ring of R . For x, y ∈ R , let
x+K and y+K be two near left weak cosets that determined the elements x and y , respectively. Then product
of two near left weak cosets that determined by x · y ∈ Nr (B)

∗
M can be defined as{

(x · y) + k|k ∈ K,x · y ∈ Nr (B)
∗
M, (x · y) + k ∈M

}
∪ {x · y}

and denoted by
(x+K)� (y +K) = (x · y) +K.

Definition 4.7 Let M/∼ℓ
be a set of all near left weak cosets of M determined by K and ξΦ (A) be a

descriptive nearness collection of A ∈ P (O) . Then

Nr (B)
∗
(M/∼ℓ

) =
⋃

ξΦ(A) ∩
Φ

M/∼ℓ
̸=∅

ξΦ (A)

is called upper approximation of M/∼ℓ
.

Theorem 4.8 Let M be a nearness near-ring, K be a subnearness near-ring of M and M/∼ℓ
be a set of all

near left weak cosets of M determined by K . If(
Nr (B)

∗
M

)
/∼ℓ

⊆ Nr (B)
∗
(M/∼ℓ

) ,

then M/∼ℓ
is a nearness near-ring with the operations given by

(x+K)⊕ (y +K) = (x+ y) +K

and
(x+K)� (y +K) = (x · y) +K

for all x, y ∈M .

Proof (NN1) Let
(
Nr (B)

∗
M

)
/∼ℓ

⊆ Nr (B)
∗
(M/∼ℓ

) . Since M is a nearness near-ring, (M/∼ℓ
,⊕) is a

nearness group of all near left weak cosets of M determined by K from Theorem 2.9.
(NN2)

(NS1) Since (M, ·) is a nearness semigroup, x · y ∈ Nr (B)
∗
M for all x, y ∈ M and (x+K) �

(y +K) = (x · y) +K ∈
(
Nr (B)

∗
M

)
/∼ℓ

for all (x+K) , (y +K) ∈ M/∼ℓ
. From the hypothesis, (x+K)�

(y +K) = (x · y) +K ∈ Nr (B)
∗
(M/∼ℓ

) for all (x+K) , (y +K) ∈M/∼ℓ
.

(NS2) Since (M, ·) is a nearness semigroup, associative property holds in Nr (B)
∗
M . Hence

((x+K)� (y +K))� (z +K)
= ((x · y) +K)� (z +K)
= ((x · y) · z) +K
= (x · (y · z)) +K
= (x+K)� ((y · z) +K)
= (x+K)� ((y +K)� (z +K))
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holds in
(
Nr (B)

∗
M

)
/∼ℓ

for all (x+K) , (y +K) , (z +K) ∈ M/∼ℓ
. From the hypothesis, associative

property holds in Nr (B)
∗
(M/∼ℓ

) . So (M/∼ℓ
,�) is a nearness semigroup of all near left weak cosets of M

determined by K .
(NN3) Since M is a nearness near-ring, right distributive property holds in Nr (B)

∗
M for all x, y, z ∈

M . Then

((x+K)⊕ (y +K))� (z +K)
= ((x+ y) +K)� (z +K)
= ((x+ y) · z) +K
= ((x · z) + (y · z)) +K
= ((x · z) +K)⊕ ((y · z) +K)
= ((x+K)� (z +K))⊕ ((y +K)� (z +K))

for all (x+K) , (y +K) , (z +K) ∈M/∼ℓ
.

Hence, right distributive property holds in Nr (B)
∗
(M/∼ℓ

) by the hypothesis.
Consequently, M/∼ℓ

is a nearness near-ring. 2

Definition 4.9 Let M be a nearness near-ring and K be a subnearness near-ring of M . The nearness near-
ring M/∼ℓ

is called a nearness near-ring of all near left weak cosets of M determined by K and denoted by
M/wK .

4.1. Nearness near-ring homomorphisms

Definition 4.10 Let M1,M2 ⊆ O be two nearness near-rings and

ψ : Nr (B)
∗
M1 → Nr (B)

∗
M2

be a mapping. If
ψ (x+ y) = ψ (x) + ψ (y)

and
ψ (x · y) = ψ (x) · ψ (y)

for all x, y ∈ M1 , then ψ is called a nearness near-ring homomorphism. Also, M1 is called a nearness
homomorphic to M2 and denoted by M1 'n M2 .

A nearness near-ring homomorphism ψ : Nr (B)
∗
M1 → Nr (B)

∗
M2 is called

(1) a nearness near-ring monomorphism if η is one-one,
(2) a nearness near-ring epimorphism if η is onto,
(3) a nearness near-ring isomorphism if η is one-one and onto.
Set of all nearness near-ring homomorphisms from Nr (B)

∗
M1 into Nr (B)

∗
M2 is denoted by

Hom
(
Nr (B)

∗
M1, Nr (B)

∗
M2

)
.

Definition 4.11 Let M ⊆ O be a nearness near-ring and G1 , G2 be two nearness M -groups. Let

µ : Nr (B)
∗
G1 → Nr (B)

∗
G2
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be a mapping such that
µ (g + h) = µ (g) + µ (h)

and
µ (xg) = xµ (g)

for all g, h ∈ G1 and all x ∈ M . Then µ is called a nearness M -homomorphism. Also, G1 is called near
M -homomorphic to G2 and denoted by G1 'n G2 .

A nearness M -homomorphism µ : Nr (B)
∗
G1 → Nr (B)

∗
G2 is called

(1) a nearness M -monomorphism if µ is one-one,
(2) a nearness M -epimorphism if µ is onto,
(3) a nearness M -isomorphism if µ is one-one and onto.
Set of all nearness M -homomorphisms from Nr (B)

∗
G1 into Nr (B)

∗
G2 is denoted by

HomM

(
Nr (B)

∗
G1, Nr (B)

∗
G2

)
.

Example 4.12 Let M ⊆ O be a nearness near-ring and G be a nearness M -group. Let us consider

µ : Nr (B)
∗
M → Nr (B)

∗
G

x 7→ µ (x) = xg

where g ∈ G and x ∈M . Then µ is a nearness M -homomorphism.

Theorem 4.13 Let M1,M2 be two nearness near-rings and ψ be a nearness near-ring homomorphism from
Nr (B)

∗
M1 into Nr (B)

∗
M2 . Then

(i) ψ (0M1
) = 0M2

, where 0M2
∈ Nr (B)

∗
M2 is the near zero of M2 .

(ii) ψ (−x) = −ψ (x) for all x ∈M1 .

Proof (i) Since 0M1
= 0M1

+0M1
and ψ is a nearness near-ring homomorphism, ψ (0M1

) = ψ (0M1
+ 0M1

) =

ψ (0M1
) + ψ (0M1

) . Hence ψ (0M1
) = 0M2

by the near identity element is unique.
(ii) x + (−x) = 0M1 for all x ∈ M1 . Then 0M2 = ψ (0M1) = ψ (x+ (−x)) = ψ (x) + ψ (−x) by (i).

Similarly, 0M2
= ψ (−x) + ψ (x) for all x ∈ M1 . Since ψ (x) has a unique near inverse, ψ (−x) = −ψ (x) for

all x ∈M1 . 2

Definition 4.14 Let M1,M2 ⊆ O be two nearness near-rings and ψ be a nearness near-ring homomorphism
from Nr (B)

∗
M1 to Nr (B)

∗
M2 . The set

Kerψ = {x ∈M1 | ψ (x) = 0M2
}

is called a kernel of nearness near-ring homomorphism ψ .

Theorem 4.15 Let M1,M2 ⊆ O be two nearness near-rings and ψ be a nearness near-ring homomorphism
from Nr (B)

∗
M1 to Nr (B)

∗
M2 and

(
Nr (B)

∗
Ker ψ,+

)
,
(
Nr (B)

∗
Ker ψ, ·

)
be groupoids. Then Kerψ is a

subnearness near-ring of M1 .
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Proof Let x ∈ Kerψ . Then ψ (x) = 0M2 . Since M1,M2 ⊆ O are two nearness near-rings, 0M1 ∈ Nr (B)
∗
M1

and 0M2
∈ Nr (B)

∗
M2 , ψ (0M1

) = 0M2
by Theorem 4.13 (i). Hence 0M2

= ψ (0M1
) = ψ (x+ (−x)) =

ψ (x) + ψ (−x) and so ψ (−x) = 0M2 from ψ (x) = 0M2 . Thus from Definition 4.14, −x ∈ Ker ψ . Therefore
Kerψ is a subnearness near-ring of M1 from Theorem 3.16. 2

Theorem 4.16 Let M1,M2 ⊆ O be two nearness near-rings and ψ be a nearness near-ring homomorphism from
Nr (B)

∗
M1 to Nr (B)

∗
M2 and

(
Nr (B)

∗
Ker ψ,+

)
,
(
Nr (B)

∗
Ker ψ, ·

)
be groupoids. If K is a subnearness

near-ring of M1 and
ψ
(
Nr (B)

∗
K
)
= Nr (B)

∗
ψ (K) ,

then ψ (K) = {ψ (x) |x ∈ K} is a subnearness near-ring of M2 .

Proof Since M1,M2 ⊆ O are two nearness near-rings, 0M1
∈ Nr (B)

∗
M1 and 0M2

∈ Nr (B)
∗
M2 , ψ (0M1

) =

0M2 by Theorem 4.13 (i). Thus 0M2 = ψ (0M1) ∈ ψ
(
Nr (B)

∗
K
)

= Nr (B)
∗
ψ (K) . This means that

Nr (B)
∗
ψ (K) 6= ∅ , i.e. ψ (K) 6= ∅ . Since K is a subnearness near-ring of M1 , −x ∈ K for all x ∈ K from

Theorem 3.16. Therefore −ψ (x) = ψ (−x) ∈ ψ (K) for all ψ (x) ∈ ψ (K) by Theorem 4.13 (ii). Consequently,
ψ (K) is a subnearness near-ring of M2 from Theorem 3.16. 2

Theorem 4.17 Let M1,M2 ⊆ O be two nearness near-rings and ψ be a nearness near-ring homomorphism
from Nr (B)

∗
M1 to Nr (B)

∗
M2 and

(
Nr (B)

∗
L,+

)
,
(
Nr (B)

∗
L, ·

)
be groupoids. If L is a subnearness

near-ring of M2 , then ψ−1 (L) = {x ∈M1|ψ (x) ∈ L} is a subnearness near-ring of M1 .

Proof Let x ∈ ψ−1 (L) . Then ψ (x) ∈ L . Since L is a subnearness near-ring of M2 , −ψ (x) ∈ L from
Theorem 3.16. Hence ψ (−x) ∈ L and so −x ∈ ψ−1 (L) by Theorem 4.13 (ii). Consequently, ψ−1 (L) is a
subnearness near-ring of M1 from Theorem 3.16. 2

Theorem 4.18 Let M be a nearness near-ring and K be a subnearness near-ring of M . Then the mapping
Π : Nr (B)

∗
M → Nr (B)

∗
(M/wK) defined by Π(x) = x +K for all x ∈ Nr (B)

∗
M is a nearness near-ring

homomorphism.

Proof From the definition of Π , Definitions 4.5 and 4.6,

Π(x+ y) = (x+ y) +K = (x+K)⊕ (y +K) = Π (x)⊕Π(y) ,

Π(x · y) = (x · y) +K = (x+K)� (y +K) = Π (x)�Π(y)

for all x, y ∈M . Thus Π is a nearness near-ring homomorphism from Definition 4.10. 2

Definition 4.19 The nearness near-ring homomorphism Π is called a natural nearness near-ring homomor-
phism from Nr (B)

∗
M into Nr (B)

∗
(M/wK) .

Definition 4.20 Let M1,M2 ⊆ O be two nearness near-rings and K ⊆M1 . Let

τ : Nr (B)
∗
M1 −→ Nr (B)

∗
M2
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be a mapping and

τ
K
= τ

∣∣
K : K −→ Nr (B)

∗
M2

be a restricted mapping. If

τ (x+ y) = τ
K
(x+ y) = τ

K
(x) + τ

K
(y) = τ (x) + τ (y)

and
τ (x · y) = τ

K
(x · y) = τ

K
(x) · τ

K
(y) = τ (x) · τ (y)

for all x, y ∈ K , then τ is called a restricted nearness near-ring homomorphism and also, M1 is called restricted
near homomorphic to M2 , denoted by M1 'rn M2 .

Theorem 4.21 Let M1,M2 ⊆ O be two nearness near-rings and ψ be a nearness near-ring homomorphism from
Nr (B)

∗
M1 to Nr (B)

∗
M2 . Let

(
Nr (B)

∗
Kerτ,+

)
,
(
Nr (B)

∗
Kerτ, ·

)
be groupoids and

(
Nr (B)

∗
M1

)
/∼ℓ

be
a set of all near left weak cosets of Nr (B)

∗
M1 determined by Kerτ . If

(
Nr (B)

∗
M1

)
/∼ℓ

⊆ Nr (B)
∗
(M1/∼ℓ

)

and
Nr (B)

∗
τ (M1) = τ

(
Nr (B)

∗
M1

)
,

then
M1/∼ℓ

'rn τ (M1) .

Proof Since
(
Nr (B)

∗
Kerτ,+

)
and

(
Nr (B)

∗
Kerτ, ·

)
are groupoids, Kerτ is a subnearness near-ring of M1

from Theorem 4.15. Since Kerτ is a subnearness near-ring of M1 and
(
Nr (B)

∗
M1

)
/∼ℓ

⊆ Nr (B)
∗
(M1/∼ℓ

) ,
then M1/∼ℓ

is a nearness near-ring of all near left weak cosets of M1 determined by Kerτ , from Theorem 4.8.
Since Nr (B)

∗
τ (M1) = τ

(
Nr (B)

∗
M1

)
, τ (M1) is a subnearness near-ring of M2 from Theorem 4.16. Let

σ : Nr (B)
∗
(M1/∼ℓ

) −→ Nr (B)
∗
τ (M1)

A 7−→ σ(A) =

{
σM1/∼ℓ

(A) , A ∈
(
Nr (B)

∗
M1

)
/∼ℓ

0τ(M1) , A /∈
(
Nr (B)

∗
M1

)
/∼ℓ

be a mapping where

σ
M1/∼ℓ

= σ
∣∣
M1/∼ℓ

:M1/∼ℓ
−→ Nr (B)

∗
τ (M1)

x+Kerτ 7−→ σ
M1/∼ℓ

(x+Kerτ) = τ (x)

for all x+Kerτ ∈M1/∼ℓ
.

Since

x+Kerτ = {x+ k | k ∈ Kerτ, x+ k ∈M1} ∪ {x} ,

y +Kerτ = {y + k′ | k′ ∈ Kerτ, y + k′ ∈M1} ∪ {y}
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and the mapping τ is a nearness near-ring homomorphism,

x+Kerτ = y +Kerτ
⇒ x ∈ y +Kerτ
⇒ x ∈ {y + k′ | k′ ∈ Kerτ, y + k′ ∈M1} or x ∈ {y}
⇒ x = y + k′, k′ ∈ Kerτ, y + k′ ∈M1 or x = y
⇒ −y + x = (−y + y) + k′, k′ ∈ Kerτ or τ (x) = τ (y)
⇒ −y + x = k′, k′ ∈ Kerτ
⇒ −y + x ∈ Kerτ
⇒ τ (−y + x) = 0τ(M1)

⇒ τ (−y) + τ (x) = 0τ(M1)

⇒ −τ (y) + τ (x) = 0τ(M1)

⇒ τ (x) = τ (y)
⇒ σ

M1/∼ℓ
(x+Kerτ) = σ

M1/∼ℓ
(y +Kerτ) .

Therefore σ
M1/∼ℓ

is well defined.

For A,B ∈ Nr (B)
∗
(M1/∼ℓ

) , we suppose that A = B . Since the mapping σ
M1/∼ℓ

is well defined,

σ (A) =

{
σ

M1/∼ℓ
(A) , A ∈

(
Nr (B)

∗
M1

)
/∼

0τ(M1) , A /∈
(
Nr (B)

∗
M1

)
/∼

=

{
σ

M1/∼ℓ
(B) , B ∈

(
Nr (B)

∗
M1

)
/∼

0τ(M1) , B /∈
(
Nr (B)

∗
M1

)
/∼

= σ (B).

Consequently, σ is well defined.
For all x+Kerτ, y +Kerτ ∈M1/∼ℓ

⊂ Nr (B)
∗
(M1/∼ℓ

) ,

σ ((x+Kerτ)⊕ (y +Kerτ))
= σ ((x+ y) +Kerτ)
= σ

M1/∼ℓ
((x+ y) +Kerτ)

= τ (x+ y)
= τ (x) + τ (y)
= σ

M1/∼ℓ
(x+Kerτ) + σ

M1/∼ℓ
(y +Kerτ)

= σ (x+Kerτ) + σ (y +Kerτ)

and
σ ((x+Kerτ)⊙ (y +Kerτ))

= σ ((x · y) +Kerτ)
= σ

M1/∼ℓ
((x · y) +Kerτ)

= τ (x · y)
= τ (x) · τ (y)
= σ

M1/∼ℓ
(x+Kerτ) · σ

M1/∼ℓ
(y +Kerτ)

= σ (x+Kerτ) · σ (y +Kerτ).

Therefore σ is a restricted nearness near-ring homomorphism by Definition 4.20. Consequently, M1/∼ℓ
'rn

τ (M1) . 2
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5. Conclusion
To extend this work, one could study the properties of other algebraic structures on nearness approximation
spaces. Hopefully this subject provides a basic framework for some theoretical sciences.
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