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Abstract: In this work we introduce some generalizations of the singular parabolic Riesz and parabolic Bessel potentials.
Namely, ∆ν being the Laplace–Bessel singular differential operator, we define the families of operators

Hα
β,ν =

(
∂

∂t
+ (−∆ν)

β/2

)−α/β

and Hα
β,ν =

(
I +

∂

∂t
+ (−∆ν)

β/2

)−α/β

, (α, β > 0),

and investigate their properties in the special weighted Lp,ν -spaces.

Key words: Laplace–Bessel differential operator, Fourier–Bessel transform, singular parabolic potentials, generalized
translation operator, Hardy–Littlewood–Sobolev type inequality

1. Introduction
Singular parabolic Riesz and parabolic Bessel potentials are defined in terms of the Fourier–Bessel transform
by

(Hα
ν f)

∧(x, t) =
(
|x|2 + it

)−α/2

f∧(x, t) (1.1)

and

(Hα
ν f)

∧(x, t) =
(
1 + |x|2 + it

)−α/2

f∧(x, t), (1.2)

where x ∈ Rn
+ = {ξ | ξ = (ξ1, ..., ξn−1, ξn); ξn > 0} , |x|2 = x2

1 + ...+ x2
n , t ∈ (−∞,∞).

These potentials are interpretated as negative fractional powers of the singular heat operators
(

∂
∂t −∆ν

)
and

(
I + ∂

∂t −∆ν

)
, respectively. Here I is the identity operator and ∆ν =

n∑
i=1

∂2

∂x2
k
+ 2ν

xn

∂
∂xn

is the Laplace–Bessel

singular differential operator.
The singular parabolic potentials Hα

ν f and Hα
ν f , initially defined by (1.1) and (1.2), can be represented

as integral operators

(Hα
ν f) (x, t) =

1

Γ(α/2)

∫
Rn

+

∫ ∞

0

τ
α
2 −1Wν(y, τ)T

y,τf(x, t)y2νn dydτ (1.3)

∗Correspondence: caglasekin@akdeniz.edu.tr
2010 AMS Mathematics Subject Classification: 47G40, 47G10, 26A33

This work is licensed under a Creative Commons Attribution 4.0 International License.
566

https://orcid.org/0000-0001-7176-5164


SEKİN/Turk J Math

and

(Hα
ν f) (x, t) =

1

Γ(α/2)

∫
Rn

+

∫ ∞

0

τ
α
2 −1e−τWν(y, τ)T

y,τf(x, t)y2νn dydτ, (1.4)

where,

Wν(y, τ) =
√
c(n, ν)(2τ)−

n+2ν
2 exp(− |y|2 /4τ), y ∈ Rn

+, τ > 0 (1.5)

is the generalized Gauss–Weierstrass kernel, the operator T y,τ is the generalized translation associated to the
Laplace–Bessel differential operator and

c(n, ν) =

[
(2π)n−122ν−1Γ2(ν +

1

2
)

]−1

, (see [1, 3, 5, 22]). (1.6)

In the present work we introduce the operators

Hα
β,ν =

(
∂

∂t
+ (−∆ν)

β/2

)−α/β

(1.7)

and

Hα
β,ν =

(
I +

∂

∂t
+ (−∆ν)

β/2

)−α/β

, (α, β > 0), (1.8)

which have the following integral representations:

(
Hα

β,νf
)
(x, t) =

1

Γ(α/β)

∫
Rn

+

∫ ∞

0

τ
α
β −1W (β)

ν (y, τ)T y,τf(x, t)y2νn dydτ (1.9)

and (
Hα

β,νf
)
(x, t) =

1

Γ(α/β)

∫
Rn

+

∫ ∞

0

τ
α
β −1e−τW (β)

ν (y, τ)T y,τf(x, t)y2νn dydτ. (1.10)

Here, the kernel function W
(β)
ν (y, τ) is defined as the inverse Fourier–Bessel transform of the function

exp(−τ |y|β) with respect to y ∈ Rn
+ -variable, i.e.

Fν

(
W (β)

ν (., τ)
)
(y) = e−τ |y|β , (y ∈ Rn

+, τ > 0, β > 0). (1.11)

It is clear that in case of β = 2 the integral operators (1.9) and (1.10) coincide with the singular parabolic
Riesz and parabolic Bessel potentials (1.3) and (1.4), respectively.

In this work we investigate some properties of the operators (1.9) and (1.10) within the framework of
special weighted Lp -spaces, defined as

Lp,ν =

f :| ∥f∥p,ν ≡

∫
Rn

+

∫ ∞

−∞
|f(x, t)|p x2ν

n dxdt


1/p

< ∞

 . (1.12)
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Remark 1.1 The classical parabolic potentials, generated by the ordinary (nonsingular) heat operators (−∆+

∂
∂t ) and (I −∆+ ∂

∂t ) were introduced by Sampson [21] and Jones [13].
Various properties of these potentials and the suitable anisotropic Sobolev-type spaces were studied by

many authors: Gopala Rao [11, 12], Chanillo [9], Bagby [8], Sampson [21], Nogin and Rubin [15–17].
Extensive information on this subject can be found in the books [18, 19], see also [4, 7, 20, 24] and references
therein. Singular parabolic potentials Hα

ν f and Hα
ν f associated to the singular heat operators (−∆ν +

∂
∂t ) and

(I−∆ν +
∂
∂t ) were introduced by Aliev [1]. The wavelet approach to singular parabolic potentials were introduced

by Aliev and Rubin [3] (see, also [5, 22]).

2. Preliminaries and main results
The Fourier–Bessel and inverse Fourier–Bessel transforms of a function g(x, t) , ((x, t) ∈ Rn

+ × R1 ) are defined
by

g∧(y, τ) =

∫
Rn

+×R1

g(x, t)e−i(x′·y′+tτ)jν− 1
2
(xnyn)dµ(x)dt, (2.1)

g∨(y, τ) = c(n, ν)g∧(−y1, · · · ,−yn−1, yn,−τ), (2.2)

where x′ · y′ = x1y1 · · · + xn−1yn−1 ; dµ(x) = x2ν
n dx ≡ x2ν

n dx1 · · · dxn ; ν > 0 is a fixed parameter; jλ(z) =

2λΓ(λ + 1)z−λJλ(z) is the normalized Bessel function such that jλ(0) = 1 , j′λ(0) = 0 and the normalized

coefficient c(n, ν) =
[
(2π)n−122ν−1Γ2

(
ν + 1

2

)]−1 (see, e.g., [1, 3, 14, 22]). Here we actually deal with the
ordinary Fourier transform in x′ = (x1, · · · , xn−1) and t variables and the Bessel transform in xn > 0 variable.

The generalized translation operator of g : Rn
+ × R → C is defined as

T y,τg(x, t) =
Γ
(
ν + 1

2

)
Γ(ν)Γ

(
1
2

) ∫ π

0

g(x′ − y′,
√
x2
n − 2xnyn cos θ + y2n; t− τ) sin2ν−1 θdθ. (2.3)

In fact, the operator T y.τ is the ordinary (Euclidean) translation in x′ and t variable and the Bessel
translation in xn variable.

The relevant convolution is defined by

(h1 ⊛ h2) (x, t) =

∫
Rn

+×R1

h1(y, τ)T
y,τh2(x, t)dµ(y)dτ. (2.4)

It is well known that
(h1 ⊛ h2)

∧
= h∧

1 · h∧
2

and

∥h1 ⊛ h2∥q,ν ≤ ∥h1∥s,ν ∥h2∥p,ν , 1 ≤ p, q, s ≤ ∞, 1

q
=

1

p
+

1

s
− 1. (2.5)

The Gauss–Weierstrass kernel associated to the Fourier–Bessel transform (2.1) is defined by

Wν(y, τ) =
√
c(n, ν)(2τ)−

n+2ν
2 exp(− |y|2 /4τ), (y ∈ Rn

+, τ > 0). (2.6)
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Here, c(n, ν) is defined as in (1.6) (see [23] for n = 1 and [1, 3] for any n > 1). Note that the kernel function

Wν(y, τ) is the inverse Fourier–Bessel transform of the function e−s|x|2 with respect to x ∈ Rn
+ variable, i.e.∫

Rn
+

Wν(y, τ)e
−ix′·y′

jν− 1
2
(xnyn)dµ(y) = e−τ |x|2 . (2.7)

The generalization of the kernel Wν(y, τ) has been introduced in [6] as the inverse Fourier–Bessel

transform of exp(−t |x|β) , β > 0 . Namely, for a given β > 0 denote

W (β)
ν (y, τ) = (exp(−τ |·|β))∨(y) ≡ c(n, ν)

∫
Rn

+

e−τ |x|βeix
′·y′

jν− 1
2
(xnyn)dµ(x). (2.8)

We give here some properties of the kernel W
(β)
ν (y, τ) that we will need below.

Lemma 2.1 (cf. [6]) Let β > 0 , τ > 0 and y ∈ Rn
+ . Then

(a) W
(β)
ν (y, τ) is radial with respect to the variable y ∈ Rn

+ and has the following anisotropic homogeneity
property:

W (β)
ν (λ1/βy, λτ) = λ−(n+2ν)/βW (β)

ν (y, τ), λ > 0. (2.9)

In particular, for λ = 1/τ we have

τ−(n+2ν)/βW (β)
ν (τ−1/βy, 1) = W (β)

ν (y, τ). (2.10)

(b) For 0 < β ≤ 2 , the kernel function W
(β)
ν (y, τ) is positive.

(c) If β = 2k , (k ∈ N) then W
(β)
ν (y, τ) is rapidly decreasing as |y| → ∞ and infinitely smooth with

respect to y -variable.
(d) For any τ > 0 , ∫

Rn
+

W (β)
ν (y, τ)dµ(y) = 1, (2.11)

provided that 0 < β ≤ 2 or β = 2k , (k ∈ N).

Remark 2.2 In particular cases of β = 1 and β = 2 the kernel W
(β)
ν (y, τ) can be computed explicitly (see,

[2, 10]), namely,

W (1)
ν (y, τ) =

2Γ((n+ 2ν + 1)/2)

πn/2Γ(ν + 1/2)

τ

(|y|2 + τ2)(n+2ν+1)/2
; (2.12)

W (2)
ν (y, τ) =

√
c(n, ν)(2τ)−(n+2ν)/2 exp(− |y|2 /4τ)

=
2πν+1/2

Γ(ν + 1/2)
(4πτ)−(n+2ν)/2e−|y|2/4τ . (2.13)

(The functions W
(1)
ν (y, τ) and W

(2)
ν (y, τ) are named as modified Poisson and Gauss kernels, associated to

Laplace–Bessel differential operator ∆ν ).
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Remark 2.3 From now on it will be assumed that, W
(β)
ν (y, τ) = 0 , for τ ≤ 0 , i.e.

W (β)
ν (y, τ) =

{ (
exp(−τ |·|β

)
)∨(y), if τ > 0

0, if τ ≤ 0

}
.

By taking into account Remark 2.3 and setting

τ
α
β −1

+ =

{
τ

α
β −1, if τ > 0
0, if τ ≤ 0

}
,

the formulas (1.9) and (1.10) can be written as generalized convolution:

(
Hα

β,νf
)
(x, t) =

1

Γ(α/β)

∫
Rn

+×R1

τ
α
β −1

+ W (β)
ν (y, τ)T y,τf(x, t)dµ(y)dτ = (pα ⊛ f)(x, t) (2.14)

and (
Hα

β,νf
)
(x, t) =

1

Γ(α/β)

∫
Rn

+×R1

τ
α
β −1

+ e−τW (β)
ν (y, τ)T y,τf(x, t)dµ(y)dτ = (qα ⊛ f)(x, t). (2.15)

Here,

pα(y, τ) =
1

Γ(α/β)
τ

α
β −1

+ W (β)
ν (y, τ) (2.16)

and

qα(y, τ) =
1

Γ(α/β)
τ

α
β −1

+ e−τW (β)
ν (y, τ). (2.17)

If f is a Schwarz test function, we have(
Hα

β,νf
)∧

= p∧α · f∧ and
(
Hα

β,νf
)∧

= q∧α · f∧.

Further,

p∧α(x, t) =
1

Γ(α/β)

∫ ∞

−∞
τ

α
β −1

+ e−itτ

(∫
Rn

+

W (β)
ν (y, τ)e−ix′·y′

jν− 1
2
(xnyn)dµ(y)

)
dτ

=
1

Γ(α/β)

∫ ∞

0

τ
α
β −1e−itτe−τ |x|βdτ

=
1

Γ(α/β)

∫ ∞

0

τ
α
β −1e−τ(|x|β+it)dτ

= (|x|β + it)−α/β . (2.18)

Similarly, we have
q∧α(x, t) = (1 + |x|β + it)−α/β . (2.19)

(2.18) and (2.19) show that the operators Hα
β,νf and Hα

β,νf can be interpreted as fractional (−α/β)th

powers of the fractional differential operators ((−∆ν)
β/2 + ∂/∂t) and (I + (−∆ν)

β/2 + ∂/∂t) .
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Remark 2.4 From now on, regarding to the parameter β it will be assumed that 0 < β ≤ 2 or β = 2k , k ∈ N.

The main results of this study are as follows.

Theorem 2.5 Let the operators Hα
β,ν , (α, β, ν > 0) be defined as in (1.10). Then

(a) These operators Lp,ν → Lp,ν are bounded, i.e.

∥∥Hα
β,νf

∥∥
p,ν

≤ cβ ∥f∥p,ν , (1 ≤ p ≤ ∞);

(b) If 1 ≤ p ≤ q ≤ ∞ and α > (β + n+ 2ν)( 1p − 1
q ) , then

∥∥Hα
β,νf

∥∥
q,ν

≤ cβ(p, q) ∥f∥p,ν ;

(c) If α > (β + n+ 2ν) 1p , then

ess sup
(x,t)∈Rn

+×R1

∣∣(Hα
β,νf

)
(x, t)

∣∣ ≤ cβ(p) ∥f∥p,ν .

The next theorem is a generalization of the Hardy–Littlewood–Sobolev theorem for parabolic Riesz
potentials, associated to the Laplace–Bessel differential operator.

Theorem 2.6 Let f ∈ Lp,ν , 1 < p < ∞ and 0 < α < (β + n+ 2ν) 1p . Then

(a) The integrals
(
Hα

β,νf
)
(x, t) converge absolutely a.e. in Rn

+ × R1 ;

(b) For 1 ≤ p < q < ∞ , the operators Hα
β,ν are of the weak (p, q)-type, i.e.

m
{
(x, t) ∈ Rn

+ × R1 :
∣∣(Hα

β,νf
)
(x, t)

∣∣ > λ
}
≤
(
c ∥f∥p,ν

λ

)q

,

where α = (β+n+2ν)( 1p −
1
q ) and c = c(p, q, n, ν) > 0 . Here, the measure of a measurable subset E ⊂ Rn

+×R1

is defined by

m{E} =

∫
E

x2ν
n dxdt.

(c) For 1 < p < q < ∞ , the operators Hα
β,ν are bounded from Lp,ν to Lq,ν if and only if

α = (β + n+ 2ν)(
1

p
− 1

q
).

Remark 2.7 In the case of β = 2 , Theorem 2.6 has been proven in the paper [3] by Aliev and Rubin. For the
ordinary (nonsingular) parabolic-type potentials, the analogues of the Theorems 2.5-2.6 were studied by Aliev
and Sekin in [7]. Note also that, in the forthcoming studies we plan to apply these results to the characterization
of the functional spaces associated to these potential type operators.
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3. Proofs of main results

Proof [of Theorem 2.5] (a) Applying the Minkowski inequality to the formula (2.15) and using the inequality

∥T y,τf∥p,ν ≤ ∥f∥p,ν , (∀(y, τ) ∈ Rn
+ × R1) (3.1)

we have

∥∥Hα
β,νf

∥∥
p,ν

≤

(
1

Γ(α/β)

∫
Rn

+×R1

τ
α
β −1

+ e−τ
∣∣∣W (β)

ν (y, τ)
∣∣∣ dµ(y)dτ) ∥f∥p,ν

=
1

Γ(α/β)
∥f∥p,ν

∫ ∞

0

τ
α
β −1e−τ

(∫
Rn

+

∣∣∣W (β)
ν (y, τ)

∣∣∣ dµ(y)) dτ.

The anisotropic homogeneity property (2.10) gives∫
Rn

+

∣∣∣W (β)
ν (y, τ)

∣∣∣ dµ(y) =

∫
Rn

+

τ−(n+2ν)/β
∣∣∣W (β)

ν (τ−1/βy, 1)
∣∣∣ y2νn dy

(set y = τ1/βz)

=

∫
Rn

+

∣∣∣W (β)
ν (z, 1)

∣∣∣ z2νn dz ≡ cβ < ∞.

As a result, ∥∥Hα
β,νf

∥∥
p,ν

≤ cβ ∥f∥p,ν .

(Note that, if 0 < β ≤ 2 , then W
(β)
ν (y, τ) is positive and therefore, by virtue of (2.11) we have cβ = 1.)

(b) By making use of the generalized Young inequality (2.5) we have from (2.15) that

∥∥Hα
β,νf

∥∥
q,ν

≤ ∥q∥s,ν ∥f∥p,ν ,
(
1

q
=

1

p
+

1

s
− 1

)
.

Here,

∥q∥s,ν =
1

Γ(α/β)

(∫
Rn

+

∫ ∞

0

∣∣∣τ α
β −1e−τW (β)

ν (y, τ)
∣∣∣s dµ(y)dτ) 1

s

=
1

Γ(α/β)

(∫ ∞

0

τs(
α
β −1)e−τs

(∫
Rn

+

∣∣∣W (β)
ν (y, τ)

∣∣∣s y2νn dy

)
dτ

)1/s

.

Using the anisotropic homogeneity property and changing variables as in previous section (a), we have∫
Rn

+

∣∣∣W (β)
ν (y, τ)

∣∣∣s y2νn dy =

∫
Rn

+

τ−s(n+2ν)/β
∣∣∣W (β)

ν (τ−1/βy, 1)
∣∣∣s y2νn dy

=

∫
Rn

+

τ−s(n+2ν)/βτ
n+2ν

β

∣∣∣W (β)
ν (z, 1)

∣∣∣s z2νn dz.
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Therefore,

∥q∥s,ν =
1

Γ(α/β)

(∫ ∞

0

τs(
α
β −1)− (n+2ν)(s−1)

β e−sτdτ

) 1
s

(∫
Rn

+

∣∣∣W (β)
ν (z, 1)

∣∣∣s z2νn dz

) 1
s

.

The last integral on (0,∞) is finite if and only if

s

(
α

β
− 1

)
− 1

β
(n+ 2ν)(s− 1) > −1 ⇔ α

β
− 1

β
(n+ 2ν)

(
1− 1

s

)
> 1− 1

s

⇔ α

β
>

(
1− 1

s

)(
1 +

n+ 2ν

β

)
=

(
1

p
− 1

q

)(
1 +

n+ 2ν

β

)
⇔ α > (β + n+ 2ν)

(
1

p
− 1

q

)
.

This completes the proof of part (b). The part (c) follows from (b) by putting q = ∞ . 2

Proof [of Theorem 2.6] (a) We have (
Hα

β,νf
)
(x, t) = i1(x, t) + i2(x, t),

where

i1(x, t) =
1

Γ(α/β)

∫
Rn

+

∫ 1

0

τ
α
β −1W (β)

ν (y, τ)T y,τf(x, t)dµ(y)dτ

and

i2(x, t) =
1

Γ(α/β)

∫
Rn

+

∫ ∞

1

τ
α
β −1W (β)

ν (y, τ)T y,τf(x, t)dµ(y)dτ.

By making use of the Minkowski inequality and the anisotropic homogeneity property of W
(β)
ν we have

∥i1∥p,ν ≤ 1

Γ(α/β)

∫
Rn

+

∫ 1

0

τ
α
β −1

∣∣∣W (β)
ν (y, τ)

∣∣∣ ∥(T y,τf) (., .)∥p,ν dµ(y)dτ

(3.1)

≤ 1

Γ(α/β)
∥f∥p,ν

∫
Rn

+

∫ 1

0

τ
α
β −1

∣∣∣W (β)
ν (y, τ)

∣∣∣ dµ(y)dτ
=

1

Γ(α/β)
∥f∥p,ν

∫
Rn

+

∣∣∣W (β)
ν (z, 1)

∣∣∣ z2νn dz ·
∫ 1

0

τ
α
β −1dτ

=
1

Γ(αβ + 1)
cβ ∥f∥p,ν < ∞,

where cβ =
∫
Rn

+

∣∣∣W (β)
ν (z, 1)

∣∣∣ z2νn dz < ∞. Therefore, i1(x, t) is finite for almost all (x, t) ∈ Rn
+ × (0,∞) .

The application of the Hölder inequality yields

|i2(x, t)| ≤ 1

Γ(α/β)
∥f∥p,ν

(∫
Rn

+

∫ ∞

1

τ(
α
β −1)q

∣∣∣W (β)
ν (y, τ)

∣∣∣q dµ(y)dτ)1/q
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=
1

Γ(α/β)
∥f∥p,ν

(∫
Rn

+

∫ ∞

1

τ(
α
β −1)qτ−q n+2ν

β

∣∣∣W (β)
ν (τ−1/β , 1)

∣∣∣q dµ(y)dτ)1/q

=
1

Γ(α/β)
∥f∥p,ν cβ,q

(∫ ∞

1

τ q(
α
β −1−n+2ν

β )+n+2ν
β dτ

)1/q

, (3.2)

where 1
p + 1

q = 1 and cβ,q =
(∫

Rn
+

∣∣∣W (β)
ν (y, 1)

∣∣∣q y2νn dy
)1/q

< ∞.

The last integral in (3.2) is convergent if and only if

q

(
α

β
− 1− n+ 2ν

β

)
+

n+ 2ν

β
< −1

which is equivalant to the inequality α < (β + n + 2ν) 1p . As a result, the integrals
(
Hα

β,νf
)
(x, t) converge

absolutely for almost all (x, t) ∈ Rn
+ × (0,∞) . The case of p = 1 is proved by a slight modification:

(b) Let now 1 < p < q < ∞ , f ∈ Lp,ν and α = (β + n + 2ν)
(

1
p − 1

q

)
. We have to show that∥∥∥Hα

β,νf
∥∥∥
q,ν

≤ c ∥f∥p,ν , where c does not depend on f . We will use some of the techniques from our paper [7].

Taking into account the expression of the operator Hα
β,νf in formula (1.9), we introduce the function Kν , K1

ν

and K∞
ν as follows

Kν ≡ Kν(y, τ) =
1

Γ(α/β)
τ

α
β −1

+ W (β)
ν (y, τ), (y ∈ Rn

+, τ ∈ R1);

K1
ν =

{
Kν , τ ≤ µ
0, τ > µ

}
and K∞

ν =

{
0, τ < µ
Kν , τ ≥ µ

}
,

that is Kν = K1
ν +K∞

ν (we will choose the parameter µ later).
Everywhere below, the notation m{E} will denote the following measure of the set E = {(y, τ) : y ∈

Rn
+, τ ∈ R1} :

m{E} =

∫
E

y2νn dydτ.

Let λ > 0 . Then

m0(λ) ≡ m{|Kν ⊛ f | > 2λ} ≡ m{(y, τ) ∈ Rn
+ × R1 : |(Kν ⊛ f) (y, τ)| > 2λ}

≤ m{
∣∣K1

ν ⊛ f
∣∣ > λ}+m{|K∞

ν ⊛ f | > λ} ≡ m1(λ) +m∞(λ). (3.3)

The Chebyshev inequality and the Young inequality (2.5) yield

m1(λ) ≡ m{
∣∣K1

ν ⊛ f
∣∣ > λ} = m{

∣∣K1
ν ⊛ f

∣∣p > λp}

≤ λ−p
∥∥K1

ν ⊛ f
∥∥p
p,ν

≤ λ−p
∥∥K1

ν

∥∥p
1,ν

∥f∥pp,ν . (3.4)

Let us calculate
∥∥K1

ν

∥∥
1,ν

. By making use of the anisotropic homogeneity property (2.10) and then setting

y = τ
1
β z , (z ∈ Rn

+ ) we have

∥∥K1
ν

∥∥
1,ν

=
1

Γ(α/β)

∫
Rn

+

∫ µ

0

τ
α
β −1τ−(n+2ν)/β

∣∣∣W (β)
ν (τ−1/β , 1)

∣∣∣ y2νn dydτ
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=
1

Γ(α/β)

(∫
Rn

+

∣∣∣W (β)
ν (z, 1)

∣∣∣ z2νn dz

)∫ µ

0

τ
α
β −1dτ

=
1

Γ
(

α
β + 1

)µα
β cβ , (3.5)

where

cβ =

∫
Rn

+

∣∣∣W (β)
ν (z, 1)

∣∣∣ z2νn dz < ∞.

From (3.4) and (3.5) we have

m1(λ) ≤ Aλ−pµ
α
β p, (3.6)

where

A =

 cβ

Γ
(

α
β + 1

) ∥f∥p,ν

p

.

Further, the application of Hölder’s inequality gives

∥K∞
ν ⊛ f∥∞ ≡ ess sup |K∞

ν ⊛ f | (y, τ) ≤ ∥K∞
ν ∥p′,ν ∥f∥p,ν , (3.7)

where 1
p′ +

1
p = 1.

Furthermore, using the anisotropic homogeneity property of W
(β)
ν and changing variables as in (3.5) we

have

∥K∞
ν ∥p′,ν =

1

Γ(α/β)

(∫
Rn

+

∫ ∞

µ

(
τ

α
β −1

∣∣∣W (β)
ν (y, τ)

∣∣∣)p′

y2νn dydτ

)1/p′

=
1

Γ(α/β)

(∫ ∞

µ

τ(
α
β −1−n+2ν

β )p′+n+2ν
β dτ

)1/p′ (∫
Rn

+

∣∣∣W (β)
ν (z, 1)

∣∣∣p′

z2νn dz

)1/p′

.

Since α = (β + n+ 2ν)
(

1
p − 1

q

)
and 1

p′ +
1
p = 1 , we have

(
α

β
− 1− n+ 2ν

β

)
p′ +

n+ 2ν

β
+ 1 =

1

β
[(α− β − n− 2ν)p′ + β + n+ 2ν]

=
1

β
[αp′ − (β + n+ 2ν)(p′ − 1)]

=
p′ − 1

β
[αβ − (β + n+ 2ν)]

= −p′ − 1

β

p

q
(β + n+ 2ν)

= − p′

βq
(β + n+ 2ν).
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Then (∫ ∞

µ

τ(
α
β −1−n+2ν

β )p′+n+2ν
β dτ

)1/p′

=

(
βq

(β + n+ 2ν)p′

)1/p′

µ− β+n+2ν
βq ,

and therefore,

∥K∞
ν ∥p′,ν ≤ 1

Γ(α/β)

(
βq

(β + n+ 2ν)p′

)1/p′ ∥∥∥W (β)
ν (·, 1)

∥∥∥
p′,ν

µ− β+n+2ν
βq .

By taking this into account in (3.7) we get

∥K∞
ν ∥∞ ≤ Bµ− β+n+2ν

βq , (3.8)

where

B =
1

Γ(α/β)

(
βq

(β + n+ 2ν)p′

)1/p′ ∥∥∥W (β)
ν (·, 1)

∥∥∥
p′,ν

∥f∥p,ν .

Now let us choose the parameter µ so that

Bµ− β+n+2ν
βq = λ, i.e. µ =

(
λ

B

)− βq
β+n+2ν

. (3.9)

Then we obtain from (3.8) that
∥K∞

ν ⊛ f∥∞ ≤ λ

and therefore, m∞(λ) ≡ m{|K∞
ν ⊛ f | > λ} = 0 ; see (3.3).

Now, from (3.3) we have

m0(λ) ≤ m1(λ)
(3.6)

≤ Aλ−pµ
α
β p (3.9)

= Aλ−p

(
λ

B

)− βq
β+n+q

α
β p

= AB
αpq

β+n+2ν λ−p− αpq
β+n+2ν . (3.10)

Setting α = (β + n+ 2ν)
(

1
p − 1

q

)
, we have

−p− αpq

β + n+ q
= −p− pq

(
1

p
− 1

q

)
= −q

and

AB
αpq

β(β+n+2ν) =

 cβ

Γ
(

α
β + 1

) ∥f∥p,ν

p(
1

Γ(α/β)

βq

(β + n+ 2ν)p′

∥∥∥W (β)
ν (·, 1)

∥∥∥
p′,ν

∥f∥p,ν

)q−p

= C ∥f∥qp,ν ,where C does not depend on f .

As a result,

m{|Kν ⊛ f | > 2λ} ≤ C

(∥f∥p,ν
λ

)q

,
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and therefore the operator Hα
β,ν is of the weak (p, q) -type. The case of p = 1 is proved by a slight modification.

From the Marcinkiewicz interpolation theorem it follows that Hα
β,νf is of strong (p, q) -type, where 1 < p <

q < ∞ and α = (β + n+ 2ν)
(

1
p − 1

q

)
.

(c) The ”necessity part” of proposition (c) follows from the homogeneity property of the kernel W (β)
ν (y, τ) .

For completeness, we present a sketch of the proof.
Let α > 0 , 1 < p < q < ∞ and there exist c > 0 such that∥∥Hα

β,νf
∥∥
q,ν

≤ c ∥f∥p,ν , ∀f ∈ Lp,ν . (3.11)

Then the inequality ∥∥Hα
β,νg

∥∥
q,ν

≤ c ∥g∥p,ν (3.12)

must hold for g(y, τ) = f(λy, λβτ) , ∀λ ∈ (0,∞) , as well.
Further,

∥∥Hα
β,νg

∥∥
q,ν

=

(∫
Rn

+×R1

∣∣∣∣∣
∫
Rn

+

∫ ∞

0

τ
α
β −1W (β)

ν (y, τ)f(λx− λy, λβt− λβτ)y2νn dydτ

∣∣∣∣∣
q

x2ν
n dxdt

)1/q

.

Changing variables as y → λ−1y , τ → λ−βτ , x → λ−1x , t → λ−βt and using anisotropic homogeneity property

W
(β)
ν (λ−1y, λ−βτ) = λn+2νW

(β)
ν (y, τ) we have

∥∥Hα
β,νg

∥∥
q,ν

= λ−α− β+n+2ν
q

∥∥Hα
β,νf

∥∥
q,ν

. (3.13)

On the other hand

∥g∥p,ν =

(∫
Rn

+×R1

∣∣f(λy, λβτ)
∣∣p y2νn dydτ

)1/p

= λ− β+n+2ν
p ∥f∥p,ν . (3.14)

Since λ > 0 is arbitrary, we have from (3.11), (3.12), (3.13) and (3.14) that it must be

−α− β + n+ 2ν

q
= −β + n+ 2ν

p
, i.e. α = (β + n+ 2ν)

(
1

p
− 1

q

)
.

The theorem is completely proved. 2
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