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Abstract: Let U ⊆ Rn (res. D ⊂ Rn ) be an open (res. a compact) subset, and let L be an elliptic operator defined
on C2(U,R) (res. C2(D,R)). In the present paper, we are going to extend the maximum principle for the function
f ∈ C2(U,R) (res. f ∈ C2(D,R)) satisfying the equation Lf = ε , where ε is a real everywhere nonzero continuous
function on U (res. D ). Finally, we obtain some applications in mathematics and physics.
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1. Preliminary notes

Let U ⊆ Rn be an open set. A function f : U → R with two continuous partial derivatives is called a C2

function. The set of all real C2 functions defined on U , is denoted by C2(U,R) . Let f : U → R be an element
of C2(U,R) , and let ∇2 denotes the Laplace operator. The function f is said to be harmonic if ∇2f = 0 .
Suppose that ε : U → R is an everywhere positive (res. negative) continuous function. The function f is said
to be ε−strictly subharmonic (res. ε−strictly superharmonic) if ∇2f = ε . For a nonempty set E ⊆ Rn , the
function f : E → R is said to be harmonic on E if there exists an open set U containing E and a function
g ∈ C2(U,R) such that, g|E = f and ∇2g = 0 on E . Similarly, for a nonempty set E ⊆ Rn and an everywhere
positive (res. negative) continuous function ε : E → R , the function f : E → R is said to be ε−strictly
subharmonic (res. ε−strictly superharmonic) on E , if there exists an open set U containing E and a function
g ∈ C2(U,R) such that, g|E = f and ∇2g = ε on E . The sets of all harmonic, ε−strictly subharmonic, and
ε−strictly superharmonic functions on E are denoted by H(E) , SBH(ε,E) and SPH(ε,E) , respectively.

Let A = [aij ] be an n× n positive definite symmetric matrix and let L = ( ∂
∂X )A( ∂

∂X )t . Then L is said
to be an elliptic operator, and the C2 function f : U → R is said to be L−harmonic on U if L(f) = 0 .
For an everywhere positive (res. negative) continuous function ε : U → R , the function f ∈ C2(U,R)

is said to be εL−strictly subharmonic (res. εL−strictly superharmonic) on U if L(f) = ε . The sets of
all L−harmonic, εL−strictly subharmonic and εL−strictly superharmonic functions on U , are denoted by
H(L,U) , SBH(ε, L, U) and SPH(ε, L, U) respectively. For an arbitrary nonempty set E ⊆ Rn , the sets
H(L,E) , SBH(ε, L,E) and SPH(ε, L,E) are defined as H(E) , SBH(ε,E) and SPH(ε,E) , respectively.
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2. Introduction
The maximum principle refers to a collection of results and techniques in the study of partial differential
equations. It is also a very valuable tool for most results concerning existence, uniqueness and qualitative
properties of solutions to quasilinear, linear, elliptic and parabolic types of partial differential equations. There
are numerous references, in which the authors have provided some of the aspects of this principle.

Some early results, related to the maximum principle for harmonic functions of two variables defined on
a domain of the Euclidean plane, is interpreted in [8, 25, 29]. In these discussions, the harmonic functions are
proposed as the real part of some analytic functions.

Some of the generalizations of maximum principle in the last three dedicates are given in Banach spaces.
For instance, the maximum principle for “Banach space valued harmonic functions” is established by Dowling
in [17]. The author showed that for an open connected subset D of the complex field C and the real Banach
space X , the maximum principle holds for every function f : D → X , if and only if X is a strictly convex
Banach space. The result is a real analogue of Thorp and Whitley on the strong maximum modulus theorem
for “Banach space valued analytic functions” [36]. Some extensions of maximum principle for vector-valued
analytic and harmonic functions are also considered by the same author in [16].

One of the research topics in this theory, is the study of the analogies of the maximum principles known
for different types of partial differential equations, as well as their applications to analysis of their solutions.

For instance, in [13], De Figueiredo and Mitidieri discussed the elliptic system

−△u = f(x, u)− v,−△v = δu− γv, in Ω (2.1)

subject to Dirichlet boundary conditions u = v = 0 on the boundary of Ω , ∂Ω . Here △ is the Laplacian, δ ,
γ are positive constants, and Ω ⊂ Rn(n ≥ 2) is a bounded smooth domain. They used a maximum principle
for a linear elliptic system associated with (2.1), as the key ingredient for the question of existence of positive
solutions.

In [15], the same authors investigated the weakly coupled elliptic system{
L(D)U = A(x)U + F in Ω ⊂ Rn,
U = 0 on ∂Ω

concerning maximum principle, where Ω ⊂ Rn(n ≥ 1) is a bounded smooth domain, L(D) is a diagonal matrix
of second order elliptic operators, A(x) is an n × n coefficient matrix and F is a given n−vector function
defined in Ω . Here, the maximum principle means that “U ≥ 0 in Ω when the given function F ≥ 0 in Ω”.

In [14], the authors established maximum principles for weakly coupled elliptic systems of the form{
LkD = Σakjuj + fk in Ω, k = 1, . . . , n
uk = 0 on ∂Ω

where the set
Lk(D) = −ΣijbijDiDj +Σib

k
iDi, k = 1, . . . , n

of second order elliptic operators with real cofficients, defined in some bounded domain Ω ⊂ Rn .
In [19], Fleckinger et al. considered another cooperative elliptic system on a bounded smooth domain

Ω ⊂ Rd . They studied the problem{
−△pui = Σaij(x)|uj |p−2uj + fi in Ω,
ui = 0 on ∂Ω
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where the coefficients aij(1 ≤ i, j ≤ n) are constant, aij ≥ 0 for i ̸= j (cooperative systems), and the operator
△p defined by △pu = div(|∇u|p−2∇u), p > 1 , is called p -Laplacian. They are concerned with existence of
positive solutions and with the following form of maximum principle, called inverse positivity: The hypothesis
fi > 0 on Ω implies ui > 0 on Ω for any solution U = (ui) .

In [12], Corrêa and Souto investigated the maximum principle for the linear system{
L(U) = BU + F (x) in Ω,
β(U) = 0 on ∂Ω

(2.2)

where Ω is a bounded smooth domain in Rn , L = [L1, . . . , Lp] is a diagonal-matrix with second order elliptic
operators Lku = −akijDiju+ aki (x)Diu, 1 ≤ k ≤ p , B(x) = (bij(x)) is a p× p cooperative matrix (i.e. bij ≥ 0

in Ω , if i ̸= j ), F (X) = (f1(x), . . . , fp(x))
t is a given p -vector function defined in Ω , u = (u1, . . . , up)

t is the
p -vector solution and β(U) is some boundary condition. By a maximum principle they meant the statement:
if F ≥ 0 in Ω , then U ≥ 0 in Ω whenever U is a solution of (2.2). As usual U ≥ 0 means ui ≥ 0 for all
i = 1, . . . , p .

In [31], Serag and El-Zahrani studied the problem

 −△pu = a(x)|u|p−2u+ b(x)|u|α|v|βv + f x ∈ Rn,
−△qv = c(x)|u|α|v|βu+ d(x)|v|q−2v + g x ∈ Rn,
lim|x|→∞u(x) = lim|x|→∞v(x) = 0, u, v > 0 in Rn

where α, β > 0, 1 < p, q < n , the degenerated p−Laplacian defined as △pu = div|∇u|p−2∇u] with p > 1 ,
p ̸= 2 , and f, g are given functions. Moreover, the cofficients a(x), b(x), c(x) and d(x) are given positive smooth
functions satisfied some inequlities as the authors stated in [31]. They obtained some necessary and sufficient
conditions for having a maximum principle.

In [33], Serag and Qamlo obtained some necessary and sufficient conditions for having the maximum
principle and existence of positive solutions for some cooperative systems involving Schrödinger operators defined
on unbounded domains. Then, they deduced the existence of solutions for semilinear systems. Finally they
discussed the generalized maximum principle for non cooperative systems.

In [22], Khafagy considered the problem

 −△P,pu = −div[P (x)|∇u|p−2∇u] = a(x)|u|p−2u+ b(x)|u|α|β|βv + f x ∈ Rn,
−△Q,qv = −div[Q(x)|∇v|p−2∇v] = c(x)|u|α|v|βu+ d(x)|v|q−2|v + g x ∈ Rn,
lim|x|→∞u(x) = lim|x|→∞v(x) = 0, u, v > 0 in Rn

where P (x) is a weight function and △P,p
with 1 < p < n , p ̸= 2 denotes the degenerate p -Laplacian defined

by △P,p
u = div[P (x)|∇u|p−2∇u] . They gave necessary and sufficient conditions to have a maximum principle

for this system and proved the existence of weak solutions for the same system by using an approximation
method.

In [32], Serag and Khafagy studied the problem

{
−△P,p

ui = Σj=n
j=1aij(x)|uj |p−2uj + fi(x, u1, . . . , un) in Ω,

ui = 0, i = 1, . . . , n on ∂Ω,
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where P (x) is a weight function and △P,p with p > 1 , p ̸= 2 defined as above. The author gave some conditions
for having the maximum principle for this system and then proved the existence of positive weak solutions for
the quasilinear system.

The study of Enache [18] is concerned with a class of boundary value problems for fully nonlinear elliptic
PDEs involving the p−Hessian operator. Here, Enache derived a maximum principle for a suitable function
involving the solution u and its gradient of the following type of boundary value problems{

Sp(D
2(u)) = g(u)h(|∇u|2) in Ω,

u = 0 on ∂Ω

where n ≥ 2,Ω ⊂ Rn is a bounded domain containing the origin, p ∈ {1, . . . , n} , and g , h are positive C1

functions assumed to satisfy the following condition

h−1 g
′

g
+ 2

(
n
p

)−1
p

g
1
p
h

′

h
≥ 0.

This maximum principle is then applied to obtain some sharp estimates for the solution and the magnitude of
its gradient.

Some of the recent works in this area, are related to the fractional derivative of functions. Proving the
maximum principle, uniqueness of solutions to the initial boundary value problems for the time-fractional partial
differential equations are some of the results in these works.

In [2], the initial boundary value problems for linear and nonlinear multiterm fractional diffusion equa-
tions with the Riemann–Liouville time-fractional derivatives are considered. To guarantee the uniqueness of
solutions, Al-Refai and Luchko employed the weak and the strong maximum principles for the equations under
consideration that were formulated and proved. An essential element of their proof of the maximum principles
is an estimation for the value of the Riemann–Liouville fractional derivative of a function at its maximum point
that is established for a wider space of functions compared to those used in their previous works.

In [37], Ye et al. considered a multiterm time-space Riesz–Caputo fractional differential equation over
an open bounded domain and proved a maximum principle for the equation. They also derived the uniqueness
and continuous dependence of the solution.

In [3], Al-Refai and Luchko analyzed the initial boundary value problems for the one-dimensional linear
and nonlinear fractional diffusion equations with the Riemann–Liouville time-fractional derivative. First, they
derived a weak and a strong maximum principles for solutions of the linear problems. Then they employed these
principles to show uniqueness of solutions of the initial boundary value problems for the nonlinear fractional
diffusion equations under some standard assumptions posed on the nonlinear part of the equations.

In [4], Alsaedi et al. presented an inequality for the fractional derivatives related to the Leibniz rule to
obtain a modern proof of the maximum principle for the fractional differential equations.

In [1], Al-Refai and Luchko formulated and proved the weak and strong maximum principles for a
general parabolic-type fractional differential operator with the Riemann–Liouville time-fractional derivative of
distributed order. The proofs of the maximum principles are based on an estimate of the Riemann–Liouville
fractional derivative at its maximum point that was recently derived by the authors.

In [27], Luchko and Yamamoto after introducing the general fractional derivatives of the types of Caputo
and Riemann–Liouville, derived some important estimates for the general time-fractional derivatives of the
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mentioned types of a function at its maximum point. Then these estimates are applied to prove a weak
maximum principle for the general time-fractional diffusion equation.

In [38], Zhenhai et al. dealt with maximum principles for ”multiterm space-time variable-order Riesz–
Caputo fractional differential equations”. They firstly derived several important inequalities for variable-order
fractional derivatives at extreme points. Then, based on these inequalities, they obtained the maximum
principles. Finally, these principles were employed to show the uniqueness of solutions of the ”multiterm space-
time variable-order Riesz–Caputo fractional differential equations” and continuous dependance of solutions on
initial boundary value conditions.

In [10], Chan and Li established a weak maximum principle for a fractional diffusion equation involving
the Riemann–Liouville fractional derivative. Then they used it to prove the uniqueness and the continuous
dependence of a solution on the initial data.

In [24], Kochubei and Luchko devoted an in-depth discussion of the maximum principle for the time-
fractional partial differential equations, with applications including uniqueness of solutions to the initial bound-
ary value problems for the time-fractional partial differential equations.

In [28], Luchko and Yamamoto dealt with the following initial boundary value problem for the single-term
time-fractional diffusion equation


∂αt (x, t) = Σn

i,j=1∂i(aij(x)∂ju(x, t)) + c(x)u(x, t) + F (x, t) x ∈ Ω, t > 0,
u(x, t) = 0 x ∈ ∂Ω, t > 0,
u(x, 0) = a(x) x ∈ Ω

where 0 < α < 1 , Ω is a bounded domain with smooth boudary ∂Ω , c ∈ C1(Ω) , aij = aji ∈ C(Ω) for
1 ≤ i, j ≤ n , and there exists a constant µ0 > 0 such that Σi,j=1aij(x)ξiξj ≥ µ0Σ

n
i=1ξ

2
i for all x ∈ Ω and

ξ1, . . . , ξn ∈ R . They introduced a key lemma, that is a basis for the proofs of all other results. Then the key
lemma and the fixed point theorem, are employed to prove the maximum and comparison principles and some
of their corollaries.

In [9], Cao et al. proposed maximum and minimum principles for time-fractional Caputo–Katugampola
diffusion operators. They proved several inequalities at extreme points, and considered uniqueness and contin-
uous dependence of solutions for fractional diffusion equations of initial boundary value problems.

In [11], Chen and Li considered nonlinear equations involving the following fractional p -Laplacian

(−△)spu(x) ≡ Cn,s,pPV

∫
Rn

|u(x)− u(y)|p−2[u(x)− u(y)]

|x− z|n+ps
dy = f(x, u).

They proved a maximum principle for antisymmetric functions and obtained other key ingredients for carrying
on the method of moving planes, such as a variant of the Hopf lemma. Then they established radial symmetry
and monotonicity for positive solutions to semilinear equations involving the fractional p -Laplacian in a unit
ball and in the whole space.

In [5], Bahaa investigated the optimal control problem for fractional order cooperative system governed
by Schrödinger operator, and discussed the maximum principle for the fractional order cooperative system.

In [7], Borikhanov et al. formulated and proved a maximum principle for the one-dimensional subdiffusion
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equation 
∂u
∂t (x, t) =

∂2

∂x2D
1−α
∗t u(x, t) + F (x, t, u) in (0, a)× (0, T ] = Ω,

u(x, t) = φ(x) x ∈ [0, a],
u(0, t) = λ(t), u(a, t) = µ(t) t ∈ [0, T ]

(2.3)

with Atangana–Baleanu fractional derivative. Their proof of the maximum principle is based on an extremum
principle for the Atangana–Baleanu fractional derivative that is given in the paper. Then they applied the
maximum principle and showed that the initial boundary value problem for the linear and nonlinear time-
fractional diffusion equations possesses at most one classical solution and this solution continuously depends on
the initial and boundary conditions.

In [23], Kirane and Torebek obtained some new estimates of the Hadamard fractional derivatives of a
function at its extreme points. They applied the extremum principle to show that the initial boundary value
problem for linear and nonlinear time-fractional diffusion equations possesses at most one classical solution and
this solution depends continuously on the initial and boundary conditions. Moreover, they proved the extremum
principle for an elliptic equation with a Hadamard fractional derivative.

In [6], Boccardo and Orsina proved that the strong maximum principle holds for solutions of some
quasilinear elliptic equations having lower order terms with quadratic growth with respect to the gradient of
the solution.

In [34], Shengda et al. obtained two significant inequalities for generalized time fractional derivatives
at extreme points. They applied the inequalities to establish the maximum principles for multiterm time-
space fractional variable-order operators. Finally, they employed the principles to investigate two kinds of
diffusion equations involving generalized time-fractional Caputo derivatives and space-fractional Riesz–Caputo
derivatives.

In the present paper, we obtain the maximum principle for the elements of H(ε,E) , SBH(ε, L,E) , and
SPH(ε, L,E) where E is an open or compact subset of Rn , ε : E → R is an everywhere nonzero continuous
function, and L = ( ∂

∂X )A( ∂
∂X )t is an elliptic operator on C2(E,R) . Finally, we employ the results to deduce

some applications in the theory of elliptic boundary value problems, existence of optimum LP solution in
operational research, greatest distance in Euclidian geometry, smallest force, and smallest light intensity in
physics. Among other things, we provide a new theorem about extremum values of quadratic forms on the unit
disc in the general inner product spaces.

3. Equivalence

At first we indicate that two arbitrary sets X and Y are said to be equivalent if there exists a 1-1 mapping of
X onto Y . To capture this idea in set theoretic terms, we write X ∼ Y [26]. Now, we would intend to show
that the following theorems hold.

Theorem 3.1 For a nonzero constant function ε > 0 (res.andε < 0) , and for an arbitrary set E ⊆ Rn , we
have H(E) ∼ SBH(ε,E) , (res. H(E) ∼ SPH(ε,E)).

Proof Let φ : H(E) → SBH(ε,E) (res. φ : H(E) → SPH(ε,E)) defined by

φ(f) = f + h, (3.1)
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where h : Rn → R is the function h(x1 . . . , xn) =
ε
2n

∑n
i=1 x

2
i . Then φ is well defined, one to one and surjective.

2

Suppose that A = [aij ] is an n × n positive definite symmetric matrix, and L = ( ∂
∂X )A( ∂

∂X )t is an
elliptic operator. Theorem 3.1 can be generalized as follows:

Theorem 3.2 For a nonzero constant function ε > 0 (res.andε < 0) , and for an arbitrary set E ⊆ Rn , we
have (H(L,E) ∼ SBH(ε, L,E)), (res.H(L,E) ∼ SPH(ε, L,E)).

Proof Let φ : H(L,E) → SBH(ε, L,E) (res. φ : H(L,E) → SPH(ε, L,E)) be defined as in (3.1) for
M = 2Σiaii + 4Σi<jaij for (1 ≤ i, j ≤ n) and

h(x1, . . . , xn) =
ε

M
(
∑
i

x2i + 2
∑
i<j

xixj).

A simple computation shows that M ̸= 0 , and φ is well defined, one to one and surjective. 2

4. Existence and uniqueness

In this section, we are going to obtain some results on the existence and uniqueness of extremum points of the
elements of H(D) , H(L,D) , SBH(ε, L,D) and SPH(ε, L,D) , for a compact subset D ⊂ Rn . We divide the
problem into two steps.

4.1. Step one

We begin with the elements of H(D) , SBH(ε,D) and SPH(ε,D) .

Theorem 4.1 Let ∅ ̸= U ⊆ Rn be an open set, and ε > 0 (res. ε < 0) on U . Then every f ∈ SBH(ε, U)

(res. f ∈ SPH(ε, U)) does not have a local maximum (res. minimum) point on U .

Proof Let x0 ∈ U be the local maximum point of f ∈ SBH(ε, U) for ε > 0 . Then ∂f
∂xi

(x0) = 0 and
∂2f
∂x2

i
(x0) ≤ 0 for all i = 1, . . . , n . Therefore ∇2f = ε ≤ 0 , contradics the hypothesis. The proof of the elements

of SPH(ε, U) is similar. 2

As a consequence of the properties of continuous functions (see [30]) and Theorem 4.1, we have the
following corollary.

Corollary 4.2 Let ∅ ̸= U ⊂ Rn be an open set, ∂U be its boundary in Rn , D = U ∪ ∂U be a bounded set
and ε > 0 (res. ε < 0). Then every f ∈ SBH(ε,D) (res. f ∈ SPH(ε,D)) has an absolute maximum (res.
minimum) point on ∂U .

Theorem 4.3 Let ∅ ̸= U ⊂ Rn be an open set, and let D = U ∪ ∂U be a bounded set. If f ∈ H(D) has an
absolute maximum (res. minimum) point on U, then it has an absolute maximum (res. minimum) point on ∂U

with the same value.
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Proof Let x0 ∈ U be the absolute maximum point of f . Let w ∈ H(ε,D) for some ε > 0 , and define the
sequence of functions {fk}k∈N by fk(x) = f(x)+ 1

kw(x) . Therefore ∇2fk(x) =
ε
k > 0 and so, fk ∈ SBH( εk , D) .

According to Corollary 4.2, let xk ∈ ∂U be the absolute maximum point of fk , then fk(xk) ≥ fk(x0) and

f(x0) ≥ f(xk) ≥ f(x0) +
1

k
(w(x0)− w(xk)),

therefore w(x0) ≤ w(xk) . Let limk→+∞xk = x∞ ∈ ∂U , then

f(x0) ≥ limk→+∞f(xk) ≥ f(x0) + limk→+∞
1

k
(w(x0)− w(xk))

and so f(x0) ≥ f(x∞) ≥ f(x0) , therefore f(x0) = f(x∞) . The proof of the absolute minimum point is similar.
2

A celebrated theorem in complex analysis asserts that a holomorphic function defined on a disc, is
completely determined by its values on the boundary of the disc [29]. The following important corollaries are
some similar versions for the stated theorem.

Corollary 4.4 Let ∅ ̸= U ⊂ Rn be an open set, and let D = U ∪ ∂U be a bounded set. Let f : D → R be an
element of H(D) such that f|∂U = c for some constant c . Then f|D = c .

Corollary 4.5 Let ∅ ̸= U ⊂ Rn be an open set, D = U ∪ ∂U be a bounded set, and f, g ∈ H(D) (res.
∇2f = ∇2g = ϵ for an arbitrary continuous function ϵ defined on D ) such that f|∂U = g|∂U = φ for some
continuous function φ : ∂U → R . Then f|D = g|D . In other words, φ has at most one extension on D .

The following example shows that the extenstion of φ on D in Corollary 4.5, in general, does not exist.
It also shows that an elliptic boundary value problem does not have essentially a zero.

Example 4.6 Let U = (1, 2) ∪ (3, 4) , φ1(x) = x , φ2(x) = 0 and ε(x) = 6x . Then D = [1, 2] ∪ [3, 4] and the
elliptic boundary value problem {

d2f
dx2 = ε if x ∈ D,
f(x) = φi(x) if x ∈ ∂D

does not have any solution for i = 1, 2 .

The following example shows that the function φ in Corollary 4.5, may have infinitely many extensions
on a set properly containing D .

Example 4.7 Let m ∈ N , and the functions α, βm, γm : R→ R are defined by

α(x) =

{
exp(−1

x ) if x > 0,
0 if x ≤ 0

and

βm(x) = α(x−m)α(m+ 1− x), γm(x) =

{ ∫ m+1
x

βm(t)dt∫ m+1
m

βm(t)dt
if x ≤ m+ 1,

0 if x > m+ 1.
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Let U = {(x1, . . . , xn)|x21+ · · ·+x2n < 1
2} , and φ : ∂U → R is defined by φ(x1, . . . , xn) = 1 , then a computation

shows that fm : Rn → R given by fm(x1, . . . , xn) = γm(
√
x21 + · · ·+ x2n) is an element of C2(D,R) ∩H(D) ,

and also an extension of φ on Rn for all m ∈ N .

The following example shows that an element of H(U) , in general, does not have an extension in H(D) .

Example 4.8 Let n ∈ N , U = {(x1, . . . , x4n)|0 < Σi=4n
i=1 x2i < 1} and

f(x1, . . . , x4n) = (Σi=4n
i=1 x2i )

−1,

then ∂U = (x1, . . . , x4n)|Σi=4n
i=1 x2i = 1} ∪ {0} , f ∈ H(U) , and an argument using continuity shows that f does

not have an extension f̂ ∈ H(D) .

4.2. Step two

Here we will generalize the previous theorems for the elements of H(L,E) , SBH(ε, L,E) and SPH(ε, L,E) ,
where E is an open or compact subset of Rn , ε is an everywhere nonzero continuous function on E , and L is
an elliptic operator on C2(E,R) .

Any n × n symmetric positive definite matrix is orthogonally similar to the diagonal matrix Λ =

diag(λ1, . . . , λn) with real entries of its eigenvalues. Therefore there exists an invertible matrix C such that

Λ = CAC−1 and C−1 = Ct [20]. Let ∂

∂x
be the 1× n matrix ∂

∂x
= (

∂

∂x1
, . . . ,

∂

∂xn
) , x be the 1× n matrix

x = (x1, . . . , xn) , and ∂

∂xi
· ∂

∂xj
=

∂2

∂xi∂xj
symbolically. Define the new matrix y = (y1, . . . , yn) by yt = Cxt .

A simple computation shows that λi > 0 for all 1 ≤ i ≤ n , A = CtΛC and ∂

∂x
=

∂

∂y
C . Therefore

L =
∂

∂x
A(

∂

∂x
)t = (

∂

∂y
C)ACt

(
∂

∂y

)t

=
∂

∂y
Λ

(
∂

∂y

)t

= Σn
i=1λi

∂2

∂y2i
.

The following results are immediate consequences of subsection 4.1 and the former discussion.

Theorem 4.9 Let ∅ ̸= U ⊆ Rn be an open set, L be an elliptic operator and ε > 0 (res. ε < 0) on U . Then
every f ∈ SBH(ε, L, U) , (res. SPH(ε, L, U)), does not have a local maximum (res. minimum) point on U .

Corollary 4.10 Let ∅ ̸= U ⊂ Rn be an open set, D = U ∪ ∂U be a bounded set, L be an elliptic operator on
C2(D,R) and ε > 0 (res. ε < 0) on D . Then every f ∈ SBH(ε, L,D) , (res. SPH(ε, L,D)) has an absolute
maximum (res. minimum) point on ∂U .

Theorem 4.11 Let ∅ ̸= U ⊂ Rn be an open set, D = U ∪ ∂U be a bounded set, and let L be an elliptic
operator on C2(D,R) . If f ∈ H(L,D) has an absolute maximum (res. minimum) point on U , then it has an
absolute maximum (res. minimum) point on ∂U with the same value.

Corollary 4.12 Let ∅ ̸= U ⊂ Rn be an open set, D = U ∪ ∂U be a bounded set, and let L be an elliptic
operator on C2(D,R) . If f : D → R be an element of H(L,D) with f = c on ∂U for some constant c , then
f = c on D .
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Corollary 4.13 Let ∅ ̸= U ⊂ Rn be an open set, D = U ∪ ∂U be a bounded set, φ : ∂U → R be a continuous
function, L be an elliptic operator on C2(D,R) , and f, g ∈ H(L,D) (res. Lf = Lg = ϵ for an arbitrary
continuous function ϵ defined on D ) such that f|∂U = g|∂U = φ . Then f|D = g|D .

Remark 4.14 Suppose that ∅ ̸= U ⊂ Rn is an open subset, D = U ∪ ∂U , and ε : D → R , φ : ∂D → R

are continuous functions. Let L be an elliptic operator on C2(D,R) with matrix A , f : D → R be a
C2 function such that Lf = ε on D , and f = φ on ∂D . Let C be an orthogonal matrix such that
CAC−1 = Λ = diag(λ1, . . . , λn) , λi > 0 for i = 1, . . . , n . Let y = (y1, . . . , yn), x = (x1, . . . , xn) and
define the linear isomorphism l : Rn → Rn by l(x) = xCt = y . If V = l(U) = UCt and D̃ = V ∪ ∂V , then
∂D̃ = l(∂D) = (∂D)Ct . Define the functions g : D̃ → R , ψ : ∂D̃ → R and ϵ : D̃ → R by g(y) = f(x) ,
ψ(y) = φ(x) and ϵ(y) = ε(x) respectively, so g(∂D̃) = f(∂D) = φ(∂D) = ψ(∂D̃) . Since f is a C2 function,
then so is g . Moreover, ∂g

∂y = ∂f
∂xC

t and

∂g

∂y
Λ(
∂g

∂y
)t = (

∂f

∂x
Ct)Λ(

∂f

∂x
Ct)t

=
∂f

∂x
(CtΛC)(

∂f

∂x
)t =

∂f

∂x
A(
∂f

∂x
)t = ε(x) = ϵ(y).

Therefore the following two boundary value problems are equivalent, in the sense that one of them has a solution
if and only if the other has a solution, i.e.

{
L(f)(x) = 0 if x ∈ D,
f(x) = φ(x) if x ∈ ∂D.

≡
{

Λ(g)(y) = 0 if y ∈ D̃,

g(y) = ψ(y) if y ∈ ∂D̃.

Similarly, {
L(f)(x) = ε if x ∈ D,
f(x) = φ(x) if x ∈ ∂D.

≡
{

Λ(g)(y) = ϵ if y ∈ D̃,

g(y) = ψ(y) if y ∈ ∂D̃.

5. Applications

In this section, some applications of the preceding results would be provided.

5.1. Uniqueness of solution in the elliptic boundary value problems

The following uniqueness theorem, is based on the Corollary 4.13, that we have just obtained.

Theorem 5.1 Let ∅ ̸= U ⊂ Rn be an open set, D = U ∪ ∂U be a bounded set, L be an elliptic operator on
C2(D,R) and φ : ∂D → R be a continuous function. Then the boundary value problem

{
L(f)(x) = 0 if x ∈ D,
f(x) = φ(x) if x ∈ ∂D

has at most one solution on D .
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5.2. Property of the extremum values for the quadratic forms
In the following, a theorem on the eigenvalues of the matrix of a quadratic form would be proved. This theorem
provides a notable result on the eigenvalues of the self adjoint linear transformations.

Let m ∈ N , σS be the inner product on Rm+1 with symmetric positive definite (m+1)×(m+1) matrix
S , and let A be an (m+1)×(m+1) symmetric matrix such that AS = SA . Let U = {x ∈ Rm+1|σS(x, x) < 1} ,
and f(x) = σS(xA, x) for x ∈ Rm+1 . Then ∂U = {x ∈ Rm+1|σS(x, x) = 1} and D = U ∪ ∂U is a compact
subset of Rm+1 . A simple computation shows that f is an element of H(ε,D)∪H(D) for ε = 2trAS . Corollary
4.2 and Theorem 4.3 imply that f|D takes its extremum on ∂U . Let ε ≥ 0 , and f takes its maximum at a
point u ∈ ∂U . Then x ∈ ∂U implies that f(x) ≤ f(u) . Let λ = f(u) , so σS(x, x) = 1 implies that
f(u) = λσS(x, x) = σS(λx, x) , or σS(xA, x) ≤ σS(λx, x) . The last inequality is valid for all z ∈ Rm+1 , because
let a > 0 and σS(z, z) = a2 , then z = ay , where σS(y, y) = 1 , hence σS(zA, z) = σS((ay)A, ay) = a2σS(yA, y)

and σS(λz, z) = a2σS(λy, y) . But σS(yA, y) ≤ σS(λy, y) since σS(y, y) = 1 . Therefore

σS(zA, z) = a2σS(yA, y) ≤ a2σS(λy, y) = σS(λz, z) (5.1)

and the inequality is proved.
If µ is an eigenvalue of A , with corresponding eigenvector ω ∈ Rm+1 , then (5.1) implies that

µσS(ω, ω) = σS(µω, ω) = σS(ωA, ω) ≤ σS(λω, ω) = λσS(ω, ω),

and so µ ≤ λ , i.e. λ is the largest eigenvalue of A .
Let B = A − λI , so (5.1) asserts that σS(zB, z) ≤ 0 for all z ∈ Rm+1 . Let g(z) = σS(zB, z) , then

g(z) ≤ 0 for all z ∈ Rm+1 and

g(u) = σS(uB, u) = σS(uA− λu, u)

= σS(uA, u)− σS(λu, u) = f(u)− λσS(u, u) = 0.

Let v ∈ Rm+1 −{0} be arbitrary, and consider the function h(t) = g(u+ tv) for t ∈ R . A simple computation
shows that h(t) = 2tσS(uB, v)+t

2g(v) . Therefore h(0) = 0 and the quadratic polynomial h takes its maximum
at t = 0 , so h′(0) = 2σS(uB, v) = 0 . Since v is arbitrary, we have uB = 0 , or uA = λu .

The following theorem is a consequence of what we have just proved.

Theorem 5.2 For m ∈ N and any inner product space (Rm+1, σS) with symmetric positive definite matrix
S(m+1)×(m+1) , any symmetric matrix A(m+1)×(m+1) satisfying AS = SA and trAS ≥ 0 (res. trAS ≤ 0), the
maximum (res. minimum) point of f(x) = σS(xA, x) defined on D = {x ∈ Rm+1|σS(x, x) ≤ 1} lies in ∂D ,
with the value equal to the largest (res. smallest) eigenvalue of A .

Note that if S be the identity matrix, then a special case of Theorem 5.2, would be obtained.

Theorem 5.3 Let A = [aij ] be a symmetric (m + 1) × (m + 1) matrix of real numbers. Then at least one
of the maximum or minimum points of the function f(x1, ..., xm+1) = Σm+1

i,j=1aijxixj defined on the unit ball

B = {(x1, ..., xm+1) ∈ Rm+1|x21 + · · · + x2m+1 ≤ 1} lies in ∂B , with the value equal to the largest or smallest
eigenvalue of the matrix A , respectively. If trA = 0 , then both of the maximum and minimum points of the
function f on B , lies in ∂B .

76



PARSIAN/Turk J Math

The following corollary, is also a special case of Theorem 5.2.

Corollary 5.4 Let (Rm+1, σS) be any inner product space with symmetric positive definite matrix S(m+1)×(m+1) .
Then for any symmetric matrix A(m+1)×(m+1) , and any polynomial Γ with real coefficients, satistying AS = SA

and trΓ(A)S ≥ 0 (res. trΓ(A)S ≤ 0), the maximum (res. minimum) point of f(x) = σS(xΓ(A), x) defined
on D = {x ∈ Rm+1|σS(x, x) ≤ 1} lies in ∂D , with the value equal to the largest (res. smallest) eigenvalue of
Γ(A) .

If M is a p × q matrix of real entries, the norm of M = [mij ] denoted by ∥M∥ , is defined to be the

nonnegative number given by the formula ∥M∥ = Σi=p
i=1Σ

j=q
j=1|mij | . For an infinite sequence of p × q matrices

Tk(k = 1, 2, . . . ) whose entries are real numbers, denote the ij−entry of Tk by tkij . If for a sequence {ak}k∈N

of real numbers, all pq series
Σk=1akt

k
ij (i = 1, . . . , p; j = 1, . . . , q) (5.2)

are convergent, then we say that the series of matrices Σk=1akTk is convergent, and its sum, denoted by
Σ∞

k=1akTk is defined to be the p× q matrix whose ij−entry is the sum of the series in (5.2). If Σk=1|ak|∥Tk∥
converges, then Weierstrass test implies that the matrix series Σk=1akTk is convergent [30]. In the case that
p = q , each Tk be a symmetric matrix, and Σk=1akTk be a convergent matrix series, then Σ∞

k=1akTk is also a
symmetric matrix.

The following theorem is a consequence of the above discussion and Corollary 5.4.

Theorem 5.5 For any inner product space (Rm+1, σS) , any power series Σk=1akx
k with radius of convergence

R > ∥S∥ , A = Σ∞
k=1akS

k satisfying trAS ≥ 0 (res. trAS ≤ 0), the maximum (res. minimum) point of
f(x) = σS(xA, x) on D = {x ∈ Rm+1|σS(x, x) ≤ 1} lies in ∂D , with the value equal to the largest (res.
smallest) eigenvalue of Σ∞

k=1akS
k .

5.3. Existence of optimum solution in operational research

In operational research, the feasible solution space of a two variables LP problem represents the compact set
D , in the first quadrant in which all the constraints are satisfied simultaneously. An important characteristic of
the optimum LP solution is that, it is always associated with a corner point in ∂D of the solution space where
two lines intersect. Since an affine function is a harmonic function, the following result, generalizes the theorem
of the existence of a solution to an n variables problem [35].

Theorem 5.6 Let ∅ ̸= U ⊂ Rn be an open set, and let D = U ∪ ∂U be a bounded set. Then every affine
function defined on D , takes its extremums on ∂U .

5.4. Greatest distance between a point and a compact set

Let ∅ ̸= D ⊂ Rn be a compact set, (p1, . . . , pn) ∈ Rn and f : Rn → R be defined by the equation
f(x1, . . . , xn) = Σi=n

i=1 (xi − pi)
2 , then ∇2f = 2n > 0 and so, Corollary 4.2 implies the following theorem.

Theorem 5.7 The farthest point of a compact set ∅ ̸= D ⊂ Rn from a point p ∈ Rn , lies on ∂D .
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5.5. Inverse-square law

The inverse-square law in physics, is any physical law stating that a specified physical quantity or intensity, is
inversely proportional to the square of the distance from the source of that physical quantity. The law of light
intensity, Newton’s law for universal gravitation, and Coulomb’s law for the electrostatic force of interaction
between two point charges, follow an inverse-square behavior [21].

As the consequences of Theorem 5.7, we have the following results.

Corollary 5.8 The smallest light intensity emitted from a spherical source at a point p of a thin plate, is
occurred necessarily when p belongs to the boundary of the plate.

Corollary 5.9 The smallest gravitational (res. electrostatic) force, between a point mass (res. charge) p and
a point mass (res. charge) q of a body, is created necessarily when q belongs to the outer shell of the body.
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