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Abstract: The aim of this paper is to present the general structure of nonlinear surjective maps on S(H) preserving the
operator pairs in which their difference is a noninvertible algebraic operator. S(H) represents the real Jordan algebra
of bounded self-adjoint operators acting on an infinite dimensional Hilbert space H .
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1. Introduction
Recently nonlinear preserver problems have been investigated by many authors, see for instance [1,2,3,6]. In [2]
authors proved that if F is a map from the set of all complex n×n matrices into itself with F (0) = 0 such that
F (x)−F (y) and x−y have at least one common eigenvalue then F (x) = uxu−1 or F (x) = uxtu−1 , for some
invertible matrix u . Bourhim, Mashreghi and Stepanyan in 2014 [1] proved that a bicontinuous bijective map
Φ : B(X) → B(Y ) satisfies c(Φ(S)−Φ(T )) = c(S−T ) if and only if Φ(T ) = UTV +R or Φ(T ) = UT ∗V +R ,
for some bijective isometries U, V and R ∈ B(Y ) where c(.) stands either for minimum modulus or surjec-
tivity modulus or the maximun modulus of T . Also in [4], Oudghiri and Souilah characterized all surjective
maps of Φ : B(H) → B(H) that preserve operator pairs whose difference is a noninvertible algebraic operator.
They proved that if Φ(I) = I + Φ(0) , then there exists an invertible either linear or conjugate linear operator
A : H → H such that
Φ(T ) = ATA−1 +Φ(0) or Φ(T ) = AT ∗A−1 +Φ(0), T ∈ B(H) .

In this paper, we attempt to determine the general structure of Φ when it is restricted to the real Jordan
algebra S(H) .

Through out this paper H stands for an infinite dimensional separable complex Hilbert space. We denote
B(H) the algebra of all bounded linear operators on H and its self-adjoint part by S(H) . The set of all finite
rank operators in S(H) will be denoted by F(H) . For g, h ∈ H , < g, h > stands for the inner product of g
and h. For every T ∈ B(H) , we use the notations rank(T ), ker(T ), ran(T ) and σ(T ) for the rank, kernel,
range and the spectrum of T , respectively. A conjugate linear bijective operator U on H is called antiunitary,
provided that < Ux,Uy >=< y, x > for all x, y ∈ H . The identity operator on H will be denoted by I .
Two operators S, T in S(H) are called adjacent, provided that S − T is a rank one operator. It is said that a
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surjective map ψ : S(H) −→ S(H) preserves adjacency of operators in both directions, if it preserves adjacent
operators in both directions.

Definition 1.1 The set of all nonzero polynomials of a single variable with real coefficients, will be denoted by
P [R] . An operator S ∈ S(H) is called algebraic if P (S) = 0 , for some P ∈ P [R] .

We denote A(H) , NIA(H) and IA(H) , the set of all algebraic, noninvertible algebraic and invertible
algebraic operators in S(H) , respectively. A surjective map Λ : S(H) −→ S(H) is said to preserve operator
pairs whose difference is a noninvertible algebraic operator, if for every S, T ∈ S(H)

S − T ∈ NIA(H) ⇐⇒ Λ(S)− Λ(T ) ∈ NIA(H).

2. Main results
Before we present the main result, we mention four auxiliary lemmas from [4], with necessary modifications
for self-adjoint operator settings. The first two lemmas follow easily using almost same arguments as in [4].
However, in the second two lemmas some different phenomena take place, hence we prove them in details.

Lemma 2.1 [4, Remark 2.1] Let T ∈ S(H) . Then the following statements hold:

(1) Let h ∈ H be a unit vector, λ ∈ R and T is invertible. Then T − λh ⊗ h is noninvertible if and only if
< h, T−1h >= 1

λ .

(2) T ∈ A(H) , if and only if T + F ∈ A(H) , for every finite rank operator F ∈ S(H) .

(3) T ∈ A(H) , if and only if U∗TU ∈ A(H) , for every unitary or antiunitary operator U ∈ S(H) .

(4) If T ∈ A(H) , then σ(T ) ⊂ R is a finite set.

Lemma 2.2 [4, Lemma 2.3] Let K be a finite dimensional subspace of H and T ∈ S(H) be the operator
represented by

T =

[
A B
B∗ C

]
,

with respect to the decomposition of H = K⊕K⊥ . Then T is algebraic if and only if C is algebraic. Furthermore,
if B = 0 , then σ(T ) = σ(A)

∪
σ(C).

Lemma 2.3 Let A,B ∈ S(H) . Then A,B are adjacent, if and only if there exists R ∈ S(H) \ {A,B} such
that R−B ∈ NIA(H) and for every T ∈ S(H) , T −R, T −B ∈ NIA(H) imply T −A ∈ NIA(H) .

Proof Following the idea of [4, Proposition 2.2], we can restrict ourselves to the case where B = 0 . If A is
a rank one operator, then A = λh ⊗ h , for some unit vector h ∈ H and λ ∈ R \ {0} . Set R = −A . Then
R ∈ NIA(H) \ {A, 0} .
Assume T ∈ NIA(H) satisfies T − R ∈ NIA(H) . We claim T − A is noninvertible. Accordingly, there are
two cases. If ker(T ) ∩ {h}⊥ ̸= {0} , then ker(T − A) ̸= {0} and consequently T − A is noninvertible. If
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ker(T ) ∩ {h}⊥ = {0} , then T +A is noninjective, as T −R = T +A ∈ NIA(H) .
Let k ∈ ker(T +A) be a nonzero unit vector. Then Tk = −λ < k, h > h . Hence k /∈ {h}⊥ . As H = {h}⊥⊕Ch ,
it follows that k = µh , for some nonzero scalar µ ∈ C . Hence Th = −λh . Consequently, as

T −A = T (I + h⊗ h),

by applying the facts that T is noninvertible and I + h⊗ h is invertible, it follows that T −A is noninvertible.
Finally, as T ∈ NIA(H) , from the second part of Lemma 2.1, it follows that T −A ∈ NIA(H) .

For the inverse direction, it is assumed that dim ran(A) ≥ 2 . We claim that for every R ∈ NIA(H) \
{A, 0} , there exists T ∈ NIA(H) such that T − R ∈ NIA(H) and T − A /∈ NIA(H) . For this, let
R ∈ NIA(H) \ {A, 0} be fixed. There are two cases: if A /∈ NIA(H) , then it is enough to consider T = 0 .
If A ∈ NIA(H) , then A is not injective and there exists some h ∈ H such that (R − A)h ̸= 0 , as R ̸= A .
Considering the fact that dim ran(A) ≥ 2 , it follows that there exist some k ∈ H such that the vectors
{(R−A)h,Ak} are linearly independent. By replacing k with k+ θ , for some θ ∈ ker(A) if it is necessary, we
may assume {h, k} are linearly independent. Let K = span{h, k, (R−A)h,Ak} . Then we can write

A =

[
A1 A2

A∗
2 A3

]
and R =

[
R1 R2

R∗
2 R3

]
,

regarding to the decomposition of H = K ⊕K⊥ . Set

T =

[
S +A1 A2

A∗
2 cI

]
,

where c ∈ R \ σ(A3) and S ∈ S(K) is an invertible operator satisfying Sh = (R1 − A1)h and Sk = −A1k .
It follows from Lemma 2.2, that R ,T and T − R are algebraic operators. But as Tk = (T − R)h = 0 , hence
T, T −R ∈ NIA(H) . On the other hand, since

T −A =

[
S 0
0 cI −A3

]
,

it follows that T −A is invertible, thus T −A /∈ NIA(H) , which completes the proof. 2

Lemma 2.4 Let S, T ∈ S(H) . Then S = T , under any of the following conditions.

(i) For every N ∈ S(H) , S −N ∈ NIA(H) if and only if T −N ∈ NIA(H) .

(ii) For every N ∈ IA(H) , S −N ∈ IA(H) if and only if T −N ∈ IA(H) .

Proof (i) We follow the idea of [4, Proposition 2.4]. Since NIA(H) does not contain any invertible operator
and T − S ∈ NIA(H) , in order to prove S = T , it is enough to show that T − S is a scalar operator. If this
is not so, then there exists a unit vector h ∈ H such that h , (T − S)h are linearly independent. Regarding to
the decomposition of H = K ⊕K⊥ , let T − S be represented by

T − S =

[
A B
B∗ C

]
,
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where K = span{h, (T − S)h} and A =

[
0 1
1 z

]
. Set

R =

[
0 −B

−B∗ I − C

]
.

Then R ∈ S(H) and since Rh = 0 , it follows that R is not invertible. Using the fact that T − S ∈ NIA(H) ,
from Lemma 2.2, it follows that C and hence R are algebraic. Consequently, if we set N = S − R , then
S −N = R ∈ NIA(H) . But since

T −N =

[
A 0
0 I

]
is invertible, we get a contradiction.
(ii)Following the idea of [4, Lemma 3.3] it follows that σ(S) = σ(T ) . Hence it is enough to show that S − T is
a scalar operator. However, it is assumed that S − T is not a scalar operator. Then, there exists h ∈ H such
that the vectors h and (S − T )h are linearly independent. There are two cases: either {h, Th} or {h, Sh} is a
linearly independent set. It is enough to consider the first case. Let[

S1 S2

S∗
2 S3

]

be the representation of S regarding to the decomposition of H = K
⊕
K⊥ , where K = span{h, Th, Sh} . Let

(sij) be the representation of S1 regarding to the decomposition of K . Considering0 I o
1 s22 − I s23
0 s∗23 s33 − I

 ,
when dim(K) = 3 and

[
0 I
I s22

]
, when dim(K) = 2 , it follows that there exists an invertible operator,

A ∈ S(K) such that Ah = Th and S1 −A is invertible. Now consider

N =

[
A S2

S∗
2 λI

]
,

where λ ∈ R \ σ(S3) . Since A and S1 − A are invertible, it follows from Lemma 2.2 that N and S − N

are invertible algebraic operators. But since (T − N)h = 0 , we conclude that T − N /∈ IA(H) , which is a
contradiction. 2

The main idea for proving this theorem is taken from [4, Theorem B], however, a lot of new phenomena
take place.

Theorem 2.5 Let Λ : S(H) → S(H) be a surjective map satisfying Λ(I) = I + Λ(0) . Then Λ preserves
operator pairs whose difference is a noninvertible algebraic operator if and only if there exists either a unitary
or an antiunitary operator U on H such that Λ(S) = USU∗ + Λ(0) for every S ∈ S(H) .

Proof The ”if” part is obvious. Conversely, assume Λ preserves operator pairs whose difference belongs to
NIA(H) . Through a few steps, we show that Λ has the desired structure.
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Step 1. Λ is injective and preserves adjacency of operators in both directions.
Let Λ(S) = Λ(T ) , for some S, T ∈ S(H) . For every N ∈ S(H) by assumption,

T −N ∈ NIA(H) ⇐⇒ Λ(T )− Λ(N) = Λ(S)− Λ(N) ∈ NIA(H),

which is equivalent to S −N ∈ NIA(H) . Hence, from the first part of Lemma 2.4 it follows that S = T and
consequently Λ is injective. We consider that A,B ∈ S(H) such that rank(A − B) = 1 . From Lemma 2.3, it
follows that there exists R ∈ S(H) such that R − B ∈ NIA(H) and for every T ∈ S(H) , T − R, T − B ∈
NIA(H) which implies that T −A ∈ NIA(H) . As Λ is injective, we get

Λ(R) ∈ S(H) \ {Λ(A),Λ(B)}.

By assumption Λ(R)− Λ(B) ∈ NIA(H) . Let S ∈ S(H) be such that

S − Λ(R) ∈ NIA(H) and S − Λ(B) ∈ NIA(H).

Then, there exists T ∈ S(H) that Λ(T ) = S , as Λ is surjective. Thus, Λ(T ) − Λ(R) ∈ NIA(H) and
Λ(T )− Λ(B) ∈ NIA(H) , which implies T −R ∈ NIA(H) and T −B ∈ NIA(H) .
Hence, we have T − A ∈ NIA(H) and consequently S − Λ(A) ∈ NIA(H) . By applying Lemma 2.3, we get
rank(Λ(A)− Λ(B)) = 1 . Similarly, since Λ−1 has the same properties as Λ , the second assertion follows.

By replacing Λ with Λ1 = Λ − Λ(0) , it follows that Λ1 has the same properties as Λ . Furthermore,
Λ1(0) = 0 and Λ1(I) = I .
Step 2. Λ1 preserves rank one operators and maps F(H) into itself.

Consider a rank one operator F ∈ S(H) . Then, F is adjacent to 0. It follows from step 1 that Λ1(F ) and 0
are adjacent. Consequently, rank(Λ1(F )) = 1 . By using the same argument, it follows that rank(Λ1(E)) <∞ ,
for every E ∈ F(H) .
Step 3. Λ1 preserves projections of rank one, and there exists either a unitary or antiunitary operator
U : H → H such that Λ1(T ) = UTU∗ , for every T ∈ F(H) .

Since Λ1 : F(H) → F(H) preserves adjacency and satisfies Λ1(0) = 0 , it follows from [7, Theorem 2.1]
that either

• there exists a rank one operator R ∈ S(H) such that the range of Λ1 is contained in the linear span of
R ; or

• there exists an injective linear or conjugate linear operator U : H → H such that Λ1(
∑k

j=1 tjxj ⊗ xj) =∑k
j=1 tjU(xj ⊗ xj)U

∗ , for every
∑k

j=1 tjxj ⊗ xj ∈ F(H) ; or

• there exists an injective linear or conjugate linear operator U : H → H such that Λ1(
∑k

j=1 tjxj ⊗ xj) =

−
∑k

j=1 tjU(xj ⊗ xj)U
∗ for every

∑k
j=1 tjxj ⊗ xj ∈ F(H) .

As Λ1 is bijective, the first case is not happening. Since both Λ1 and Λ−1
1 have the same properties, from above

discussion it follows that there exists either an invertible linear or conjugate linear operator U : H → H and
λ ∈ {−1, 1} such that

Λ1(T ) = λUTU∗ , ∀ T ∈ F(H).
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Note that for an arbitrary unit vector f ∈ H , I − f ⊗ f ∈ NIA(H) . Hence, by assumption we should have

Λ1(I)− Λ1(f ⊗ f) = I − λUf ⊗ Uf ∈ NIA(H).

But this happens precisely when λ = 1 . Now, consider an arbitrary vector e ∈ H . Then

< e, e >= 1 ⇐⇒ I − e⊗ e ∈ NIA(H) ⇐⇒ I − Ue⊗ eU∗ ∈ NIA(H) ⇐⇒< Ue,Ue >= 1.

Consequently, Λ1 preserves projections of rank one. Furthermore, as for every unit vector e ∈ H , ||Ue|| =
√
< Ue,Ue > = 1 , it follows that U is either a unitary or an antiunitary operator on H .

By replacing Λ1 with Λ2 = U∗Λ1U , in the sequel we may assume Λ2(F ) = F , for every F ∈ F(H) .
Step 4. Λ2 preserves the difference of IA(H) in both directions, that is, for every S, T ∈ S(H) we have

S − T ∈ IA(H) ⇐⇒ Λ2(S)− Λ2(T ) ∈ IA(H).

Let S, T ∈ S(H) be such that T −S ∈ IA(H) . Then for some unit vectors e ∈ H , < e, (T −S)−1e >= 1 .
Set F = e ⊗ e . It follows from the first part of Lemma 2.1 that T − (S + F ) is not invertible. Hence
T − (S + F ) ∈ NIA(H) , which implies

Λ2(T )− Λ2(S + F ) ∈ NIA(H).

On the other hand, since (S + F )− S is rank one then so is Λ2(S + F )− Λ2(S) . Therefore, since

Λ2(T )− Λ2(S) = Λ2(T )− Λ2(S + F ) + (Λ2(S + F )− Λ2(S)),

it follows that Λ2(T )− Λ2(S) ∈ A(H) . But since by assumption T − S is invertible, T − S /∈ NIA(H) , which
implies

Λ2(T )− Λ2(S) /∈ NIA(H).

Hence

Λ2(T )− Λ2(S) ∈ IA(H).

Similarly, since Λ−1
2 satisfies the same properties as Λ2 , we conclude that Λ2 preserves the difference of IA(H)

in both directions.

Step 5. Λ2(T ) = T for every T ∈ IA(H)
∪

NIA(H) .
First let assume T ∈ IA(H) and because of T − 0 ∈ IA(H) , it follows from step 4 that Λ2(T ) =

Λ2(T ) − Λ2(0) ∈ IA(H) . If Λ2(T ) ̸= T , then there exists a unit vector e ∈ H such that T−1e ̸= Λ2(T )
−1e ,

< e, T−1e >= 1 while < e,Λ2(T )
−1e > ̸= 1 . By considering the first part of Lemma 2.1 that T −e⊗e /∈ IA(H)

but

Λ2(T )− e⊗ e = Λ2(T )− Λ2(e⊗ e) ∈ IA(H),

there appears a contradiction. This contradiction shows that Λ2(T ) = T . Now by considering T ∈ NIA(H) .
Then

Λ2(T ) = Λ2(T )− Λ2(0) ∈ NIA(H).
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For every N ∈ IA(H) , from the first part we have Λ2(N) = N and T − N ∈ IA(H) if and only if
Λ2(T )−N ∈ IA(H) . Hence, from the second part of Lemma 2.4, it follows that Λ2(T ) = T .

Step 6. Λ2(T ) = T for every T ∈ S(H) .
Temporarily, we denote LNIA(H) the real linear span of NIA(H) . It follows from [5, Theorem 3] that

the elements of S(H) can be represented by a real linear combination of at most eight projections. Hence by
considering suitable polynomials and applying the fact that every nontrivial projection is noninvertible algebraic,
it follows that LNIA(H) = S(H) . Consequently, if we show that Λ2 |NIA(H) is additive, then the desired result
follows from step 5. This is, let T1, T2 ∈ NIA(H) be fixed and consider the map Φ : S(H) → S(H) that for
every T ∈ S(H) is defined by

Φ(T ) := Λ2(T − T2)− T2.

It follows from previous steps that Φ is bijective. It preserves the difference of NIA(H) in both directions,
Φ(I) = I and Φ(F ) = F for every F ∈ F(H) . Hence, for every T ∈ NIA(H) , Φ(T ) = T . In particular, we get

T1 = Φ(T1) = Λ2(T1 + T2)− T2,

which implies

Λ2(T1 + T2) = T1 + T2.

Hence Λ2 |NIA(H) is additive.

Finally, it follows from step 6, that for every T ∈ S(H) , Λ2(T ) = T . From this we get

T = Λ2(T ) = U∗Λ1(T )U = U∗(Λ(T )− Λ(0))U

Hence
Λ(T ) = UTU∗ + Λ(0)

for every T ∈ S(H) which is the desired result and it completes the proof. 2
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