т $̈$ вітак

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math
(2021) 45: $617-623$
© TÜBİTAK
doi:10.3906/mat-2012-97

Maps on $\mathcal{S}(\mathcal{H})$ preserving the difference of noninvertible algebraic operators

Zynab IZADI©, Rahmat SOLTANI* ${ }^{\text {(}}$
Department of Mathematics, Faculty of Sciences, Payamenoor University, Tehran, Iran

Received: 29.12.2020 • Accepted/Published Online: 31.12.2020 • Final Version: 21.01.2021

Abstract

The aim of this paper is to present the general structure of nonlinear surjective maps on $\mathcal{S}(\mathcal{H})$ preserving the operator pairs in which their difference is a noninvertible algebraic operator. $\mathcal{S}(\mathcal{H})$ represents the real Jordan algebra of bounded self-adjoint operators acting on an infinite dimensional Hilbert space \mathcal{H}.

Key words: Nonlinear preserver problem, algebraic operators, algebraic singularity

1. Introduction

Recently nonlinear preserver problems have been investigated by many authors, see for instance [1,2,3,6]. In [2] authors proved that if F is a map from the set of all complex $n \times n$ matrices into itself with $F(0)=0$ such that $F(x)-F(y)$ and $x-y$ have at least one common eigenvalue then $F(x)=u x u^{-1}$ or $F(x)=u x^{t} u^{-1}$, for some invertible matrix u. Bourhim, Mashreghi and Stepanyan in 2014 [1] proved that a bicontinuous bijective map $\Phi: \mathcal{B}(X) \rightarrow \mathcal{B}(Y)$ satisfies $c(\Phi(S)-\Phi(T))=c(S-T)$ if and only if $\Phi(T)=U T V+R$ or $\Phi(T)=U T^{*} V+R$, for some bijective isometries U, V and $R \in \mathcal{B}(Y)$ where $c($.$) stands either for minimum modulus or surjec-$ tivity modulus or the maximun modulus of T. Also in [4], Oudghiri and Souilah characterized all surjective maps of $\Phi: \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{H})$ that preserve operator pairs whose difference is a noninvertible algebraic operator. They proved that if $\Phi(I)=I+\Phi(0)$, then there exists an invertible either linear or conjugate linear operator $A: \mathcal{H} \rightarrow \mathcal{H}$ such that
$\Phi(T)=A T A^{-1}+\Phi(0) \quad$ or $\quad \Phi(T)=A T^{*} A^{-1}+\Phi(0), \quad T \in \mathcal{B}(\mathcal{H})$.
In this paper, we attempt to determine the general structure of Φ when it is restricted to the real Jordan algebra $\mathcal{S}(\mathcal{H})$.

Through out this paper \mathcal{H} stands for an infinite dimensional separable complex Hilbert space. We denote $\mathcal{B}(\mathcal{H})$ the algebra of all bounded linear operators on \mathcal{H} and its self-adjoint part by $\mathcal{S}(\mathcal{H})$. The set of all finite rank operators in $\mathcal{S}(\mathcal{H})$ will be denoted by $\mathcal{F}(\mathcal{H})$. For $g, h \in \mathcal{H},<g, h>$ stands for the inner product of g and h. For every $T \in \mathcal{B}(\mathcal{H})$, we use the notations $\operatorname{rank}(T), \operatorname{ker}(T), \operatorname{ran}(T)$ and $\sigma(T)$ for the rank, kernel, range and the spectrum of T, respectively. A conjugate linear bijective operator U on \mathcal{H} is called antiunitary, provided that $<U x, U y>=<y, x>$ for all $x, y \in \mathcal{H}$. The identity operator on \mathcal{H} will be denoted by I. Two operators S, T in $\mathcal{S}(\mathcal{H})$ are called adjacent, provided that $S-T$ is a rank one operator. It is said that a

[^0]surjective map $\psi: \mathcal{S}(\mathcal{H}) \longrightarrow \mathcal{S}(\mathcal{H})$ preserves adjacency of operators in both directions, if it preserves adjacent operators in both directions.

Definition 1.1 The set of all nonzero polynomials of a single variable with real coefficients, will be denoted by $P[\mathbb{R}]$. An operator $S \in \mathcal{S}(\mathcal{H})$ is called algebraic if $P(S)=0$, for some $P \in P[\mathbb{R}]$.

We denote $\mathcal{A}(\mathcal{H}), \mathcal{N} \mathcal{I} \mathcal{A}(\mathcal{H})$ and $\mathcal{I} \mathcal{A}(\mathcal{H})$, the set of all algebraic, noninvertible algebraic and invertible algebraic operators in $\mathcal{S}(\mathcal{H})$, respectively. A surjective map $\Lambda: \mathcal{S}(\mathcal{H}) \longrightarrow \mathcal{S}(\mathcal{H})$ is said to preserve operator pairs whose difference is a noninvertible algebraic operator, if for every $S, T \in \mathcal{S}(\mathcal{H})$

$$
S-T \in \mathcal{N} \mathcal{I} \mathcal{A}(\mathcal{H}) \Longleftrightarrow \Lambda(S)-\Lambda(T) \in \mathcal{N} \mathcal{I} \mathcal{A}(\mathcal{H})
$$

2. Main results

Before we present the main result, we mention four auxiliary lemmas from [4], with necessary modifications for self-adjoint operator settings. The first two lemmas follow easily using almost same arguments as in [4]. However, in the second two lemmas some different phenomena take place, hence we prove them in details.

Lemma 2.1 [4, Remark 2.1] Let $T \in \mathcal{S}(\mathcal{H})$. Then the following statements hold:
(1) Let $h \in \mathcal{H}$ be a unit vector, $\lambda \in \mathbb{R}$ and T is invertible. Then $T-\lambda h \otimes h$ is noninvertible if and only if $<h, T^{-1} h>=\frac{1}{\lambda}$.
(2) $T \in \mathcal{A}(\mathcal{H})$, if and only if $T+F \in \mathcal{A}(\mathcal{H})$, for every finite rank operator $F \in \mathcal{S}(\mathcal{H})$.
(3) $T \in \mathcal{A}(\mathcal{H})$, if and only if $U^{*} T U \in \mathcal{A}(\mathcal{H})$, for every unitary or antiunitary operator $U \in \mathcal{S}(\mathcal{H})$.
(4) If $T \in \mathcal{A}(\mathcal{H})$, then $\sigma(T) \subset \mathbb{R}$ is a finite set.

Lemma $2.2[4, L e m m a 2.3]$ Let K be a finite dimensional subspace of \mathcal{H} and $T \in \mathcal{S}(\mathcal{H})$ be the operator represented by

$$
T=\left[\begin{array}{cc}
A & B \\
B^{*} & C
\end{array}\right]
$$

with respect to the decomposition of $\mathcal{H}=K \oplus K^{\perp}$. Then T is algebraic if and only if C is algebraic. Furthermore, if $B=0$, then $\sigma(T)=\sigma(A) \bigcup \sigma(C)$.

Lemma 2.3 Let $A, B \in \mathcal{S}(\mathcal{H})$. Then A, B are adjacent, if and only if there exists $R \in \mathcal{S}(\mathcal{H}) \backslash\{A, B\}$ such that $R-B \in \mathcal{N} \mathcal{I} \mathcal{A}(\mathcal{H})$ and for every $T \in \mathcal{S}(\mathcal{H}), T-R, T-B \in \mathcal{N} \mathcal{I} \mathcal{A}(\mathcal{H})$ imply $T-A \in \mathcal{N} \mathcal{I} \mathcal{A}(\mathcal{H})$.

Proof Following the idea of [4, Proposition 2.2], we can restrict ourselves to the case where $B=0$. If A is a rank one operator, then $A=\lambda h \otimes h$, for some unit vector $h \in \mathcal{H}$ and $\lambda \in \mathbb{R} \backslash\{0\}$. Set $R=-A$. Then $R \in \mathcal{N I} \mathcal{I}(\mathcal{H}) \backslash\{A, 0\}$.
Assume $T \in \mathcal{N} \mathcal{I} \mathcal{A}(\mathcal{H})$ satisfies $T-R \in \mathcal{N} \mathcal{I} \mathcal{A}(\mathcal{H})$. We claim $T-A$ is noninvertible. Accordingly, there are two cases. If $\operatorname{ker}(T) \cap\{h\}^{\perp} \neq\{0\}$, then $\operatorname{ker}(T-A) \neq\{0\}$ and consequently $T-A$ is noninvertible. If
$\operatorname{ker}(T) \cap\{h\}^{\perp}=\{0\}$, then $T+A$ is noninjective, as $\quad T-R=T+A \in \mathcal{N} \mathcal{I} \mathcal{A}(\mathcal{H})$.
Let $k \in \operatorname{ker}(T+A)$ be a nonzero unit vector. Then $T k=-\lambda<k, h>h$. Hence $k \notin\{h\}^{\perp}$. As $\mathcal{H}=\{h\}^{\perp} \oplus \mathbb{C} h$, it follows that $k=\mu h$, for some nonzero scalar $\mu \in \mathbb{C}$. Hence $T h=-\lambda h$. Consequently, as

$$
T-A=T(I+h \otimes h)
$$

by applying the facts that T is noninvertible and $I+h \otimes h$ is invertible, it follows that $T-A$ is noninvertible. Finally, as $T \in \mathcal{N} \mathcal{I} \mathcal{A}(\mathcal{H})$, from the second part of Lemma 2.1, it follows that $T-A \in \mathcal{N} \mathcal{I} \mathcal{A}(\mathcal{H})$.

For the inverse direction, it is assumed that $\operatorname{dim} \operatorname{ran}(A) \geq 2$. We claim that for every $R \in \mathcal{N} \mathcal{I} \mathcal{A}(\mathcal{H}) \backslash$ $\{A, 0\}$, there exists $T \in \mathcal{N} \mathcal{I} \mathcal{A}(\mathcal{H})$ such that $T-R \in \mathcal{N} \mathcal{I} \mathcal{A}(\mathcal{H})$ and $T-A \notin \mathcal{N} \mathcal{I} \mathcal{A}(\mathcal{H})$. For this, let $R \in \mathcal{N} \mathcal{I} \mathcal{A}(\mathcal{H}) \backslash\{A, 0\}$ be fixed. There are two cases: if $A \notin \mathcal{N} \mathcal{I} \mathcal{A}(\mathcal{H})$, then it is enough to consider $T=0$. If $A \in \mathcal{N} \mathcal{I} \mathcal{A}(\mathcal{H})$, then A is not injective and there exists some $h \in \mathcal{H}$ such that $(R-A) h \neq 0$, as $R \neq A$. Considering the fact that $\operatorname{dim} \operatorname{ran}(A) \geq 2$, it follows that there exist some $k \in \mathcal{H}$ such that the vectors $\{(R-A) h, A k\}$ are linearly independent. By replacing k with $k+\theta$, for some $\theta \in k e r(A)$ if it is necessary, we may assume $\{h, k\}$ are linearly independent. Let $K=\operatorname{span}\{h, k,(R-A) h, A k\}$. Then we can write

$$
A=\left[\begin{array}{ll}
A_{1} & A_{2} \\
A_{2}^{*} & A_{3}
\end{array}\right] \quad \text { and } \quad R=\left[\begin{array}{ll}
R_{1} & R_{2} \\
R_{2}^{*} & R_{3}
\end{array}\right]
$$

regarding to the decomposition of $\mathcal{H}=K \oplus K^{\perp}$. Set

$$
T=\left[\begin{array}{cc}
S+A_{1} & A_{2} \\
A_{2}^{*} & c I
\end{array}\right]
$$

where $c \in \mathbb{R} \backslash \sigma\left(A_{3}\right)$ and $S \in \mathcal{S}(K)$ is an invertible operator satisfying $S h=\left(R_{1}-A_{1}\right) h$ and $S k=-A_{1} k$. It follows from Lemma 2.2, that R, T and $T-R$ are algebraic operators. But as $T k=(T-R) h=0$, hence $T, T-R \in \mathcal{N} \mathcal{I} \mathcal{A}(\mathcal{H})$. On the other hand, since

$$
T-A=\left[\begin{array}{cc}
S & 0 \\
0 & c I-A_{3}
\end{array}\right]
$$

it follows that $T-A$ is invertible, thus $T-A \notin \mathcal{N} \mathcal{I} \mathcal{A}(\mathcal{H})$, which completes the proof.

Lemma 2.4 Let $S, T \in \mathcal{S}(\mathcal{H})$. Then $S=T$, under any of the following conditions.
(i) For every $N \in \mathcal{S}(\mathcal{H}), S-N \in \mathcal{N} \mathcal{I} \mathcal{A}(\mathcal{H})$ if and only if $T-N \in \mathcal{N} \mathcal{I} \mathcal{A}(\mathcal{H})$.
(ii) For every $N \in \mathcal{I} \mathcal{A}(\mathcal{H}), S-N \in \mathcal{I} \mathcal{A}(\mathcal{H})$ if and only if $T-N \in \mathcal{I} \mathcal{A}(\mathcal{H})$.

Proof (i) We follow the idea of [4, Proposition 2.4]. Since $\mathcal{N} \mathcal{I} \mathcal{A}(\mathcal{H})$ does not contain any invertible operator and $T-S \in \mathcal{N} \mathcal{I} \mathcal{A}(\mathcal{H})$, in order to prove $S=T$, it is enough to show that $T-S$ is a scalar operator. If this is not so, then there exists a unit vector $h \in \mathcal{H}$ such that $h,(T-S) h$ are linearly independent. Regarding to the decomposition of $\mathcal{H}=K \oplus K^{\perp}$, let $T-S$ be represented by

$$
T-S=\left[\begin{array}{cc}
A & B \\
B^{*} & C
\end{array}\right]
$$

where $K=\operatorname{span}\{h,(T-S) h\}$ and $A=\left[\begin{array}{ll}0 & 1 \\ 1 & z\end{array}\right]$. Set

$$
R=\left[\begin{array}{cc}
0 & -B \\
-B^{*} & I-C
\end{array}\right]
$$

Then $R \in \mathcal{S}(\mathcal{H})$ and since $R h=0$, it follows that R is not invertible. Using the fact that $T-S \in \mathcal{N} \mathcal{I} \mathcal{A}(\mathcal{H})$, from Lemma 2.2, it follows that C and hence R are algebraic. Consequently, if we set $N=S-R$, then $S-N=R \in \mathcal{N} \mathcal{I} \mathcal{A}(\mathcal{H})$. But since

$$
T-N=\left[\begin{array}{cc}
A & 0 \\
0 & I
\end{array}\right]
$$

is invertible, we get a contradiction.
(ii)Following the idea of [4, Lemma 3.3] it follows that $\sigma(S)=\sigma(T)$. Hence it is enough to show that $S-T$ is a scalar operator. However, it is assumed that $S-T$ is not a scalar operator. Then, there exists $h \in \mathcal{H}$ such that the vectors h and $(S-T) h$ are linearly independent. There are two cases: either $\{h, T h\}$ or $\{h, S h\}$ is a linearly independent set. It is enough to consider the first case. Let

$$
\left[\begin{array}{ll}
S_{1} & S_{2} \\
S_{2}^{*} & S_{3}
\end{array}\right]
$$

be the representation of S regarding to the decomposition of $\mathcal{H}=K \bigoplus K^{\perp}$, where $K=\operatorname{span}\{h, T h, S h\}$. Let ($s_{i j}$) be the representation of S_{1} regarding to the decomposition of K. Considering

$$
\left[\begin{array}{ccc}
0 & I & o \\
1 & s_{22}-I & s_{23} \\
0 & s_{23}^{*} & s_{33}-I
\end{array}\right]
$$

when $\operatorname{dim}(K)=3$ and $\left[\begin{array}{cc}0 & I \\ I & s_{22}\end{array}\right]$, when $\operatorname{dim}(K)=2$, it follows that there exists an invertible operator, $A \in \mathcal{S}(K)$ such that $A h=T h$ and $S_{1}-A$ is invertible. Now consider

$$
N=\left[\begin{array}{cc}
A & S_{2} \\
S_{2}^{*} & \lambda I
\end{array}\right]
$$

where $\lambda \in \mathbb{R} \backslash \sigma\left(S_{3}\right)$. Since A and $S_{1}-A$ are invertible, it follows from Lemma 2.2 that N and $S-N$ are invertible algebraic operators. But since $(T-N) h=0$, we conclude that $T-N \notin \mathcal{I} \mathcal{A}(\mathcal{H})$, which is a contradiction.

The main idea for proving this theorem is taken from [4, Theorem B], however, a lot of new phenomena take place.

Theorem 2.5 Let $\Lambda: \mathcal{S}(\mathcal{H}) \rightarrow \mathcal{S}(\mathcal{H})$ be a surjective map satisfying $\Lambda(I)=I+\Lambda(0)$. Then Λ preserves operator pairs whose difference is a noninvertible algebraic operator if and only if there exists either a unitary or an antiunitary operator U on \mathcal{H} such that $\Lambda(S)=U S U^{*}+\Lambda(0)$ for every $S \in \mathcal{S}(\mathcal{H})$.

Proof The "if" part is obvious. Conversely, assume Λ preserves operator pairs whose difference belongs to $\mathcal{N} \mathcal{I} \mathcal{A}(\mathcal{H})$. Through a few steps, we show that Λ has the desired structure.

Step 1. Λ is injective and preserves adjacency of operators in both directions.
Let $\Lambda(S)=\Lambda(T)$, for some $S, T \in \mathcal{S}(\mathcal{H})$. For every $N \in \mathcal{S}(\mathcal{H})$ by assumption,

$$
T-N \in \mathcal{N} \mathcal{I} \mathcal{A}(\mathcal{H}) \Longleftrightarrow \Lambda(T)-\Lambda(N)=\Lambda(S)-\Lambda(N) \in \mathcal{N} \mathcal{I} \mathcal{A}(\mathcal{H})
$$

which is equivalent to $S-N \in \mathcal{N} \mathcal{I} \mathcal{A}(\mathcal{H})$. Hence, from the first part of Lemma 2.4 it follows that $S=T$ and consequently Λ is injective. We consider that $A, B \in \mathcal{S}(\mathcal{H})$ such that $\operatorname{rank}(A-B)=1$. From Lemma 2.3, it follows that there exists $R \in \mathcal{S}(\mathcal{H})$ such that $R-B \in \mathcal{N} \mathcal{I} \mathcal{A}(\mathcal{H})$ and for every $T \in \mathcal{S}(\mathcal{H}), T-R, \quad T-B \in$ $\mathcal{N} \mathcal{I} \mathcal{A}(\mathcal{H})$ which implies that $T-A \in \mathcal{N} \mathcal{I} \mathcal{A}(\mathcal{H})$. As Λ is injective, we get

$$
\Lambda(R) \in \mathcal{S}(\mathcal{H}) \backslash\{\Lambda(A), \Lambda(B)\}
$$

By assumption $\Lambda(R)-\Lambda(B) \in \mathcal{N} \mathcal{I} \mathcal{A}(\mathcal{H})$. Let $S \in \mathcal{S}(\mathcal{H})$ be such that

$$
S-\Lambda(R) \in \mathcal{N} \mathcal{I} \mathcal{A}(\mathcal{H}) \text { and } S-\Lambda(B) \in \mathcal{N} \mathcal{I} \mathcal{A}(\mathcal{H})
$$

Then, there exists $T \in \mathcal{S}(\mathcal{H})$ that $\Lambda(T)=S$, as Λ is surjective. Thus, $\Lambda(T)-\Lambda(R) \in \mathcal{N} \mathcal{I} \mathcal{A}(\mathcal{H})$ and $\Lambda(T)-\Lambda(B) \in \mathcal{N} \mathcal{I} \mathcal{A}(\mathcal{H})$, which implies $T-R \in \mathcal{N} \mathcal{I} \mathcal{A}(\mathcal{H})$ and $T-B \in \mathcal{N} \mathcal{I} \mathcal{A}(\mathcal{H})$.
Hence, we have $T-A \in \mathcal{N} \mathcal{I} \mathcal{A}(\mathcal{H})$ and consequently $S-\Lambda(A) \in \mathcal{N} \mathcal{I} \mathcal{A}(\mathcal{H})$. By applying Lemma 2.3 , we get $\operatorname{rank}(\Lambda(A)-\Lambda(B))=1$. Similarly, since Λ^{-1} has the same properties as Λ, the second assertion follows.

By replacing Λ with $\Lambda_{1}=\Lambda-\Lambda(0)$, it follows that Λ_{1} has the same properties as Λ. Furthermore, $\Lambda_{1}(0)=0$ and $\Lambda_{1}(I)=I$.
Step 2. Λ_{1} preserves rank one operators and maps $\mathcal{F}(\mathcal{H})$ into itself.
Consider a rank one operator $F \in \mathcal{S}(\mathcal{H})$. Then, F is adjacent to 0 . It follows from step 1 that $\Lambda_{1}(F)$ and 0 are adjacent. Consequently, $\operatorname{rank}\left(\Lambda_{1}(F)\right)=1$. By using the same argument, it follows that $\operatorname{rank}\left(\Lambda_{1}(E)\right)<\infty$, for every $E \in \mathcal{F}(\mathcal{H})$.
Step 3. Λ_{1} preserves projections of rank one, and there exists either a unitary or antiunitary operator $U: \mathcal{H} \rightarrow \mathcal{H}$ such that $\Lambda_{1}(T)=U T U^{*}$, for every $T \in \mathcal{F}(\mathcal{H})$.

Since $\Lambda_{1}: \mathcal{F}(\mathcal{H}) \rightarrow \mathcal{F}(\mathcal{H})$ preserves adjacency and satisfies $\Lambda_{1}(0)=0$, it follows from [7, Theorem 2.1] that either

- there exists a rank one operator $R \in \mathcal{S}(\mathcal{H})$ such that the range of Λ_{1} is contained in the linear span of R; or
- there exists an injective linear or conjugate linear operator $U: \mathcal{H} \rightarrow \mathcal{H}$ such that $\Lambda_{1}\left(\sum_{j=1}^{k} t_{j} x_{j} \otimes x_{j}\right)=$ $\sum_{j=1}^{k} t_{j} U\left(x_{j} \otimes x_{j}\right) U^{*}$, for every $\sum_{j=1}^{k} t_{j} x_{j} \otimes x_{j} \in \mathcal{F}(\mathcal{H})$; or
- there exists an injective linear or conjugate linear operator $U: \mathcal{H} \rightarrow \mathcal{H}$ such that $\Lambda_{1}\left(\sum_{j=1}^{k} t_{j} x_{j} \otimes x_{j}\right)=$ $-\sum_{j=1}^{k} t_{j} U\left(x_{j} \otimes x_{j}\right) U^{*}$ for every $\sum_{j=1}^{k} t_{j} x_{j} \otimes x_{j} \in \mathcal{F}(\mathcal{H})$.

As Λ_{1} is bijective, the first case is not happening. Since both Λ_{1} and Λ_{1}^{-1} have the same properties, from above discussion it follows that there exists either an invertible linear or conjugate linear operator $U: \mathcal{H} \rightarrow \mathcal{H}$ and $\lambda \in\{-1,1\}$ such that

$$
\Lambda_{1}(T)=\lambda U T U^{*} \quad, \forall T \in \mathcal{F}(\mathcal{H})
$$

Note that for an arbitrary unit vector $f \in \mathcal{H}, I-f \otimes f \in \mathcal{N} \mathcal{I} \mathcal{A}(\mathcal{H})$. Hence, by assumption we should have

$$
\Lambda_{1}(I)-\Lambda_{1}(f \otimes f)=I-\lambda U f \otimes U f \in \mathcal{N} \mathcal{I} \mathcal{A}(\mathcal{H})
$$

But this happens precisely when $\lambda=1$. Now, consider an arbitrary vector $e \in \mathcal{H}$. Then

$$
<e, e>=1 \Longleftrightarrow I-e \otimes e \in \mathcal{N} \mathcal{I} \mathcal{A}(\mathcal{H}) \Longleftrightarrow I-U e \otimes e U^{*} \in \mathcal{N} \mathcal{I} \mathcal{A}(\mathcal{H}) \Longleftrightarrow<U e, U e>=1
$$

Consequently, Λ_{1} preserves projections of rank one. Furthermore, as for every unit vector $e \in \mathcal{H},\|U e\|=$ $\sqrt{\langle U e, U e\rangle}=1$, it follows that U is either a unitary or an antiunitary operator on \mathcal{H}.

By replacing Λ_{1} with $\Lambda_{2}=U^{*} \Lambda_{1} U$, in the sequel we may assume $\Lambda_{2}(F)=F$, for every $F \in \mathcal{F}(\mathcal{H})$.
Step 4. Λ_{2} preserves the difference of $\mathcal{I} \mathcal{A}(\mathcal{H})$ in both directions, that is, for every $S, T \in \mathcal{S}(\mathcal{H})$ we have

$$
S-T \in \mathcal{I} \mathcal{A}(\mathcal{H}) \Longleftrightarrow \Lambda_{2}(S)-\Lambda_{2}(T) \in \mathcal{I} \mathcal{A}(\mathcal{H})
$$

Let $S, T \in \mathcal{S}(\mathcal{H})$ be such that $T-S \in \mathcal{I} \mathcal{A}(\mathcal{H})$. Then for some unit vectors $\left.e \in \mathcal{H},<e,(T-S)^{-1} e\right\rangle=1$. Set $F=e \otimes e$. It follows from the first part of Lemma 2.1 that $T-(S+F)$ is not invertible. Hence $T-(S+F) \in \mathcal{N} \mathcal{I} \mathcal{A}(\mathcal{H})$, which implies

$$
\Lambda_{2}(T)-\Lambda_{2}(S+F) \in \mathcal{N} \mathcal{I} \mathcal{A}(\mathcal{H})
$$

On the other hand, since $(S+F)-S$ is rank one then so is $\Lambda_{2}(S+F)-\Lambda_{2}(S)$. Therefore, since

$$
\Lambda_{2}(T)-\Lambda_{2}(S)=\Lambda_{2}(T)-\Lambda_{2}(S+F)+\left(\Lambda_{2}(S+F)-\Lambda_{2}(S)\right)
$$

it follows that $\Lambda_{2}(T)-\Lambda_{2}(S) \in \mathcal{A}(\mathcal{H})$. But since by assumption $T-S$ is invertible, $T-S \notin \mathcal{N} \mathcal{I} \mathcal{A}(\mathcal{H})$, which implies

$$
\Lambda_{2}(T)-\Lambda_{2}(S) \notin \mathcal{N} \mathcal{I} \mathcal{A}(\mathcal{H})
$$

Hence

$$
\Lambda_{2}(T)-\Lambda_{2}(S) \in \mathcal{I} \mathcal{A}(\mathcal{H})
$$

Similarly, since Λ_{2}^{-1} satisfies the same properties as Λ_{2}, we conclude that Λ_{2} preserves the difference of $\mathcal{I} \mathcal{A}(\mathcal{H})$ in both directions.

Step 5. $\Lambda_{2}(T)=T$ for every $T \in \mathcal{I} \mathcal{A}(\mathcal{H}) \bigcup \mathcal{N} \mathcal{I} \mathcal{A}(\mathcal{H})$.
First let assume $T \in \mathcal{I A}(\mathcal{H})$ and because of $T-0 \in \mathcal{I} \mathcal{A}(\mathcal{H})$, it follows from step 4 that $\Lambda_{2}(T)=$ $\Lambda_{2}(T)-\Lambda_{2}(0) \in \mathcal{I} \mathcal{A}(\mathcal{H})$. If $\Lambda_{2}(T) \neq T$, then there exists a unit vector $e \in \mathcal{H}$ such that $T^{-1} e \neq \Lambda_{2}(T)^{-1} e$, $<e, T^{-1} e>=1$ while $<e, \Lambda_{2}(T)^{-1} e>\neq 1$. By considering the first part of Lemma 2.1 that $T-e \otimes e \notin \mathcal{I} \mathcal{A}(\mathcal{H})$ but

$$
\Lambda_{2}(T)-e \otimes e=\Lambda_{2}(T)-\Lambda_{2}(e \otimes e) \in \mathcal{I} \mathcal{A}(\mathcal{H})
$$

there appears a contradiction. This contradiction shows that $\Lambda_{2}(T)=T$. Now by considering $T \in \mathcal{N} \mathcal{I} \mathcal{A}(\mathcal{H})$. Then

$$
\Lambda_{2}(T)=\Lambda_{2}(T)-\Lambda_{2}(0) \in \mathcal{N} \mathcal{I} \mathcal{A}(\mathcal{H})
$$

For every $N \in \mathcal{I} \mathcal{A}(\mathcal{H})$, from the first part we have $\Lambda_{2}(N)=N$ and $T-N \in \mathcal{I} \mathcal{A}(\mathcal{H})$ if and only if $\Lambda_{2}(T)-N \in \mathcal{I} \mathcal{A}(\mathcal{H})$. Hence, from the second part of Lemma 2.4, it follows that $\Lambda_{2}(T)=T$.

Step 6. $\Lambda_{2}(T)=T$ for every $T \in \mathcal{S}(\mathcal{H})$.
Temporarily, we denote $\mathcal{L N} \mathcal{I} \mathcal{A}(\mathcal{H})$ the real linear span of $\mathcal{N} \mathcal{I} \mathcal{A}(\mathcal{H})$. It follows from [5, Theorem 3] that the elements of $\mathcal{S}(\mathcal{H})$ can be represented by a real linear combination of at most eight projections. Hence by considering suitable polynomials and applying the fact that every nontrivial projection is noninvertible algebraic, it follows that $\mathcal{L N} \mathcal{I} \mathcal{A}(\mathcal{H})=\mathcal{S}(\mathcal{H})$. Consequently, if we show that $\left.\Lambda_{2}\right|_{\mathcal{N} \mathcal{A}(\mathcal{H})}$ is additive, then the desired result follows from step 5 . This is, let $T_{1}, T_{2} \in \mathcal{N} \mathcal{I} \mathcal{A}(\mathcal{H})$ be fixed and consider the map $\Phi: \mathcal{S}(\mathcal{H}) \rightarrow \mathcal{S}(\mathcal{H})$ that for every $T \in \mathcal{S}(\mathcal{H})$ is defined by

$$
\Phi(T):=\Lambda_{2}\left(T-T_{2}\right)-T_{2}
$$

It follows from previous steps that Φ is bijective. It preserves the difference of $\mathcal{N} \mathcal{I} \mathcal{A}(\mathcal{H})$ in both directions, $\Phi(I)=I$ and $\Phi(F)=F$ for every $F \in \mathcal{F}(\mathcal{H})$. Hence, for every $T \in \mathcal{N} \mathcal{I} \mathcal{A}(\mathcal{H}), \Phi(T)=T$. In particular, we get

$$
T_{1}=\Phi\left(T_{1}\right)=\Lambda_{2}\left(T_{1}+T_{2}\right)-T_{2}
$$

which implies

$$
\Lambda_{2}\left(T_{1}+T_{2}\right)=T_{1}+T_{2}
$$

Hence $\left.\Lambda_{2}\right|_{\mathcal{N} \mathcal{I A}(\mathcal{H})}$ is additive.
Finally, it follows from step 6 , that for every $T \in \mathcal{S}(\mathcal{H}), \Lambda_{2}(T)=T$. From this we get

$$
T=\Lambda_{2}(T)=U^{*} \Lambda_{1}(T) U=U^{*}(\Lambda(T)-\Lambda(0)) U
$$

Hence

$$
\Lambda(T)=U T U^{*}+\Lambda(0)
$$

for every $T \in \mathcal{S}(\mathcal{H})$ which is the desired result and it completes the proof.

References

[1] Bourhim A, Mashreghi J, Stepanyan A. Non-linear maps preserving the minimum and surjectivity moduli. Linear Algebra and its Applications 2014; 463: 171-189.
[2] Costara C, Repovs D. Non-linear mappings preserving at least one eigenvalue. Studia Mathematica 2010; 200: 79-89.
[3] Havlicek H, Semrl P. From geometry to invertibility preserves. Studia Mathematica 2006; 174: 99-109.
[4] Oudghiri M, Souilah K. Non-linear maps preserving singular algebraic operators. Proyecciones Journal of Mathematics 2016; 35: 301-316.
[5] Pearcy C, Topping D. Sums of small numbers of idempotents. Michigan Mathematical Journal 1967; 14: 453-465.
[6] Petek T, Semrl P. Adjacency preserving maps on matrices and operators. Proceedings of the Royal Society of Edinburgh, Section A Mathematics 2002; 132: 661-684.
[7] Semrl P. Symmetries on bounded observables: a unified approach based on adjacency preserving maps. Integral Equations and Operator Theory 2012; 72: 7-66.

[^0]: *Correspondence: r_soltani@pnu.ac.ir
 2010 AMS Mathematics Subject Classification: 47B49, 47B15

