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Abstract: The aim of this paper is to present the general structure of nonlinear surjective maps on S(#) preserving the
operator pairs in which their difference is a noninvertible algebraic operator. S(?) represents the real Jordan algebra

of bounded self-adjoint operators acting on an infinite dimensional Hilbert space H.
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1. Introduction

Recently nonlinear preserver problems have been investigated by many authors, see for instance [1,2,3,6]. In [2]
authors proved that if F' is a map from the set of all complex n x n matrices into itself with F(0) = 0 such that

ty~! | for some

F(z)— F(y) and x—y have at least one common eigenvalue then F(z) = uzu™! or F(z)= ux
invertible matrix u. Bourhim, Mashreghi and Stepanyan in 2014 [1] proved that a bicontinuous bijective map
O : B(X) — B(Y) satisfies ¢(®(S) —®(T)) =c¢(S—T) ifand only if ®(T)=UTV+R or ®(T)=UT*V+R,
for some bijective isometries U,V and R € B(Y) where ¢(.) stands either for minimum modulus or surjec-
tivity modulus or the maximun modulus of T'. Also in [4], Oudghiri and Souilah characterized all surjective
maps of @ : B(H) — B(H) that preserve operator pairs whose difference is a noninvertible algebraic operator.
They proved that if ®(I) = I + ®(0), then there exists an invertible either linear or conjugate linear operator
A:H — H such that

O(T) = ATA T +®(0) or ®(T)=AT*A~! + &(0), T eB(H).

In this paper, we attempt to determine the general structure of ® when it is restricted to the real Jordan
algebra S(H).

Through out this paper H stands for an infinite dimensional separable complex Hilbert space. We denote
B(H) the algebra of all bounded linear operators on H and its self-adjoint part by S(#). The set of all finite
rank operators in S(H) will be denoted by F(H). For g,h € H, < g,h > stands for the inner product of g
and h. For every T € B(H), we use the notations rank(T), ker(T), ran(T) and o(T) for the rank, kernel,
range and the spectrum of T', respectively. A conjugate linear bijective operator U on H is called antiunitary,
provided that < Uzx,Uy >=< y,z > for all x,y € H. The identity operator on H will be denoted by I.
Two operators S, T in S(H) are called adjacent, provided that S — T is a rank one operator. It is said that a
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surjective map ¢ : S(H) — S(H) preserves adjacency of operators in both directions, if it preserves adjacent

operators in both directions.

Definition 1.1 The set of all nonzero polynomials of a single variable with real coefficients, will be denoted by
P[R]. An operator S € S(H) is called algebraic if P(S) =0, for some P € P[R].

We denote A(H), NZA(H) and ZA(H), the set of all algebraic, noninvertible algebraic and invertible
algebraic operators in S(H), respectively. A surjective map A : S(H) — S(H) is said to preserve operator

pairs whose difference is a noninvertible algebraic operator, if for every S,T € S(H)
S—TeNTAH) <= A(S) — A(T) e NTA(H).

2. Main results
Before we present the main result, we mention four auxiliary lemmas from [4], with necessary modifications
for self-adjoint operator settings. The first two lemmas follow easily using almost same arguments as in [4].

However, in the second two lemmas some different phenomena take place, hence we prove them in details.

Lemma 2.1 [4, Remark 2.1] Let T € S(H). Then the following statements hold:

(1) Let h € H be a unit vector, A € R and T is invertible. Then T — Ah ® h is noninvertible if and only if
< h,T7lh >= % .

(2) T e A(H), if and only if T+ F € A(H), for every finite rank operator F € S(H).
(3) T € A(H), if and only if U*TU € A(H), for every unitary or antiunitary operator U € S(H).

(4) If T € A(H), then o(T) C R is a finite set.

Lemma 2.2 [4, Lemma 2.3] Let K be a finite dimensional subspace of H and T € S(H) be the operator

represented by

A B

with respect to the decomposition of H = K®KL. Then T is algebraic if and only if C is algebraic. Furthermore,
if B=0, then o(T) = c(A)Jo(C).

Lemma 2.3 Let A,B € S(H). Then A, B are adjacent, if and only if there exists R € S(H) \ {A, B} such
that R — B € NTA(H) and for every T € S(H), T — R, T — B € NTA(H) imply T — A € NTA(H).

Proof Following the idea of [4, Proposition 2.2], we can restrict ourselves to the case where B = 0. If A is
a rank one operator, then A = Ah ® h, for some unit vector h € H and A € R\ {0}.Set R = —A. Then
R e NZTA(H)\{A,0}.

Assume T € NTZA(H) satisfies T — R € NTA(H). We claim T — A is noninvertible. Accordingly, there are
two cases. If ker(T) N {h}+ # {0}, then ker(T — A) # {0} and consequently T — A is noninvertible. If
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ker(T) N {h}*+ = {0}, then T + A is noninjective, as T — R=T+ A€ NTAH).
Let k € ker(T+ A) be a nonzero unit vector. Then Tk = —\ < k,h > h. Hence k ¢ {h}*. As H = {h}+ @ Ch,

it follows that k = ph, for some nonzero scalar u € C. Hence Th = —Ah. Consequently, as

T—A=TU+heh),

by applying the facts that T is noninvertible and I + h ® h is invertible, it follows that T'— A is noninvertible.
Finally, as T'€ NZA(H), from the second part of Lemma 2.1, it follows that T — A € NZA(H).

For the inverse direction, it is assumed that dim ran(A4) > 2. We claim that for every R € NZA(H) \
{A,0}, there exists T € NZA(H) such that T — R € NTA(H) and T — A ¢ NIZA(H). For this, let
R e NTA(H)\ {A,0} be fixed. There are two cases: if A ¢ NZA(H), then it is enough to consider 7" = 0.
If Ae NZTA(H), then A is not injective and there exists some h € H such that (R — A)h # 0, as R # A.
Considering the fact that dim ran(A) > 2, it follows that there exist some k € H such that the vectors
{(R— A)h, Ak} are linearly independent. By replacing k& with k4 6, for some 6 € ker(A) if it is necessary, we
may assume {h, k} are linearly independent. Let K = span{h,k,(R — A)h, Ak}. Then we can write

A [Al Ao

|’ R
A As] and R—[ ],

R} Rs

regarding to the decomposition of H = K @ K+ . Set

S+ A A
T[ Aj CI:|’

where ¢ € R\ 0(A3) and S € S(K) is an invertible operator satisfying Sh = (R; — A1)h and Sk = —A;k.
It follows from Lemma 2.2, that R,T and T — R are algebraic operators. But as Tk = (T'— R)h = 0, hence
T,T — R € NTA(H). On the other hand, since

S 0
T_A_|:O CI—A3:|’
it follows that T'— A is invertible, thus T'— A ¢ NZA(H), which completes the proof. O

Lemma 2.4 Let S,T € S(H). Then S =T, under any of the following conditions.
(i) For every N € S(H), S—N € NIA(H) if and only if T — N € NTA(H).
(ii) For every N €e ZA(H), S— N € ZA(H) if and only if T — N € ZA(H).

Proof (i) We follow the idea of [4, Proposition 2.4]. Since NZA(H) does not contain any invertible operator
and T — S € NTA(H), in order to prove S = T, it is enough to show that T — S is a scalar operator. If this
is not so, then there exists a unit vector h € H such that h, (T — S)h are linearly independent. Regarding to
the decomposition of H = K @ K+, let T — S be represented by

ros=[4 )

B* C
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where K = span{h, (T — S)h} and A = {0 ﬂ . Set

0 -B
)
Then R € S(H) and since Rh = 0, it follows that R is not invertible. Using the fact that T — S € NZA(H),
from Lemma 2.2, it follows that C' and hence R are algebraic. Consequently, if we set N = S — R, then
S — N =ReNIA(H).But since

el

0 I

is invertible, we get a contradiction.

(ii)Following the idea of [4, Lemma 3.3] it follows that ¢(S) = o(T). Hence it is enough to show that S — T is
a scalar operator. However, it is assumed that S — T is not a scalar operator. Then, there exists h € H such

that the vectors h and (S —T')h are linearly independent. There are two cases: either {h,Th} or {h,Sh} is a
linearly independent set. It is enough to consider the first case. Let

Sy S,
Si S

be the representation of S regarding to the decomposition of H = K @ K+, where K = span{h,Th, Sh}. Let

(s;j) be the representation of S7 regarding to the decomposition of K. Considering

0 I 0
1 spa—1 523 |,
0 553 533 — 1

0

when dim(K) = 3 and L 521

], when dim(K) = 2, it follows that there exists an invertible operator,

A € §(K) such that Ah =Th and S; — A is invertible. Now consider

ve[d 5

Sy A
where A € R\ 0(S53). Since A and Sy — A are invertible, it follows from Lemma 2.2 that N and S — N
are invertible algebraic operators. But since (7' — N)h = 0, we conclude that T'— N ¢ ZA(H), which is a

contradiction. O
The main idea for proving this theorem is taken from [4, Theorem B], however, a lot of new phenomena

take place.

Theorem 2.5 Let A : S(H) — S(H) be a surjective map satisfying A(I) = I + A(0). Then A preserves
operator pairs whose difference is a noninvertible algebraic operator if and only if there exists either a unitary
or an antiunitary operator U on H such that A(S) =USU* + A(0) for every S € S(H).

Proof The "if” part is obvious. Conversely, assume A preserves operator pairs whose difference belongs to
NZIA(H). Through a few steps, we show that A has the desired structure.
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Step 1. A is injective and preserves adjacency of operators in both directions.
Let A(S) = A(T), for some S,T € S(H). For every N € S(H) by assumption,

T—NeNTAH) — AT)—AN)=A(S) — A(N) € NTAH),

which is equivalent to S — N € NZA(H). Hence, from the first part of Lemma 2.4 it follows that S =T and
consequently A is injective. We consider that A, B € S(#H) such that rank(A — B) = 1. From Lemma 2.3, it
follows that there exists R € S(H) such that R — B € NZA(H) and for every T € S(H), T— R, T—B¢€
NTA(H) which implies that T — A € NZA(H). As A is injective, we get

A(R) € S(H) \ {A(4), A(B)}.
By assumption A(R) — A(B) €e NZA(H). Let S € S(H) be such that
S—A(R) e NTA(H) and S — A(B) e NTA(H).

Then, there exists T € S(H) that A(T) = S, as A is surjective. Thus, A(T) — A(R) € NZTA(H) and
A(T) — A(B) € NTA(H), which implies T — R € NZA(H) and T — B € NTA(H).
Hence, we have T — A € NZTA(H) and consequently S — A(A) € NZTA(H). By applying Lemma 2.3, we get
rank(A(A) — A(B)) = 1. Similarly, since A~! has the same properties as A, the second assertion follows.

By replacing A with A; = A — A(0), it follows that A; has the same properties as A. Furthermore,
A1(0) =0 and A (I) =1.
Step 2. A; preserves rank one operators and maps F(H) into itself.

Consider a rank one operator F' € S(H). Then, F is adjacent to 0. It follows from step 1 that A;(F') and 0
are adjacent. Consequently, rank(A;(F')) = 1. By using the same argument, it follows that rank(A1(E)) < oo,
for every E € F(H).
Step 3. A; preserves projections of rank one, and there exists either a unitary or antiunitary operator
U :H — H such that A(T) =UTU*, for every T € F(H).

Since Ay : F(H) — F(H) preserves adjacency and satisfies A;1(0) = 0, it follows from [7, Theorem 2.1]
that either

e there exists a rank one operator R € S(H) such that the range of A; is contained in the linear span of

R; or

e there exists an injective linear or conjugate linear operator U : H — H such that Al(zk

=117 ® x5) =

Z?:l t;U(z; ® x;)U*, for every Z;?:l tiz;@x; € F(H); or
o there exists an injective linear or conjugate linear operator U : H — H such that A1(Z.’;:1 tiz; @x;) =
- Z?Zl t;U(x; ® z;)U* for every Z?:l tiz;@x; € F(H).

As A, is bijective, the first case is not happening. Since both A; and Al_1 have the same properties, from above
discussion it follows that there exists either an invertible linear or conjugate linear operator U : H — H and
A € {—1,1} such that

A(T) = \UTU* |, VT € F(H).
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Note that for an arbitrary unit vector f € H, I — f ® f € NZA(H). Hence, by assumption we should have

M -MFRf)=I-ANTfRUf € NTAH).

But this happens precisely when A = 1. Now, consider an arbitrary vector e € H. Then

<ee>=l<s=T-eR@e e NTAH) <=1 -Ue®eU* € NTA(H) =< Ue,Ue >=1.

Consequently, A; preserves projections of rank one. Furthermore, as for every unit vector e € H, ||Ue|| =
V< Ue,Ue > =1, it follows that U is either a unitary or an antiunitary operator on H.

By replacing A; with Ay = U*A;U, in the sequel we may assume Aq(F) = F, for every F € F(H).
Step 4. Ay preserves the difference of ZA(H) in both directions, that is, for every S,T € S(H) we have

ST € TAMH) <= Ao(S) — As(T) € TAH).
Let S,T € S(H) be such that T—S € ZA(H). Then for some unit vectors e € H, < e, (T —S) " le >=1.

Set F' = e ® e. It follows from the first part of Lemma 2.1 that 7" — (S + F) is not invertible. Hence
T —(S+F)e NIZA(H), which implies

As(T) = Ay(S + F) € NTA(H).

On the other hand, since (S + F) — S is rank one then so is A2(S + F) — A2(S). Therefore, since

Ao(T) — Aa(S) = Ao(T) — Ao (S + F) + (A2(S + F) — Aa(9)),

it follows that Ao(T) — A2(S) € A(H). But since by assumption T'— S is invertible, T'— S ¢ NZA(H), which

implies
Ao (T) — Ao (5) E NTAH).

Hence

Similarly, since A; ' satisfies the same properties as Ay, we conclude that Ay preserves the difference of ZA(H)

in both directions.

Step 5. Ax(T) =T for every T € ZA(H) UNTZA(H).

First let assume T € ZA(H) and because of T — 0 € ZA(H), it follows from step 4 that As(T) =
Ao(T) — A2 (0) € ZA(H). If Ao(T) # T, then there exists a unit vector e € H such that T~ te # Ay(T) e,
<e,T7le >=1 while < e, Ay(T)"te ># 1. By considering the first part of Lemma 2.1 that T —e®e ¢ ZA(H)
but

A(T) —e®@e = Ay(T) — Aa(e®e) € ZA(H),

there appears a contradiction. This contradiction shows that Ay(T) = T. Now by considering T' € NZA(H).
Then

As(T) = Ao(T) — Ay (0) € NTA(H).
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For every N € TA(H), from the first part we have As(N) = N and T — N € ZA(H) if and only if
Ao(T) — N € ZA(H). Hence, from the second part of Lemma 2.4, it follows that As(T) =T .

Step 6. Ay(T) =T for every T € S(H).

Temporarily, we denote LA'ZA(H) the real linear span of NZA(H). It follows from [5, Theorem 3] that
the elements of S(H) can be represented by a real linear combination of at most eight projections. Hence by
considering suitable polynomials and applying the fact that every nontrivial projection is noninvertible algebraic,
it follows that LNZA(H) = S(H). Consequently, if we show that Ay [xrz.4() is additive, then the desired result
follows from step 5. This is, let 71,T> € NZA(H) be fixed and consider the map ® : S(H) — S(H) that for
every T € S(H) is defined by

(I)(T) = AQ(T - TQ) - T2.

It follows from previous steps that @ is bijective. It preserves the difference of NZA(H) in both directions,
®(I) =1 and ®(F) = F for every F' € F(H). Hence, for every T' € NTA(H), ®(T) = T'. In particular, we get

Ty =®(Th) = Ao (Ty + Tn) — T,

which implies

Ao(Ty +T3) =Ty + To.
Hence Ag |nzacn) is additive.

Finally, it follows from step 6, that for every T € S(H), A2(T) =T . From this we get
T = Ay (T) =U*A(T)U = U*(A(T) — A0))U

Hence

A(T) = UTU* + A(0)

for every T' € S(H) which is the desired result and it completes the proof. O

References
[1] Bourhim A, Mashreghi J, Stepanyan A. Non-linear maps preserving the minimum and surjectivity moduli. Linear
Algebra and its Applications 2014; 463: 171-189.

[2] Costara C, Repovs D. Non-linear mappings preserving at least one eigenvalue. Studia Mathematica 2010; 200:
79-89.

[3] Havlicek H, Semr] P. From geometry to invertibility preserves. Studia Mathematica 2006; 174: 99-109.

[4] Oudghiri M, Souilah K. Non-linear maps preserving singular algebraic operators. Proyecciones Journal of Mathe-
matics 2016; 35: 301-316.

[5] Pearcy C, Topping D. Sums of small numbers of idempotents. Michigan Mathematical Journal 1967; 14: 453-465.

[6] Petek T, Semrl P. Adjacency preserving maps on matrices and operators. Proceedings of the Royal Society of
Edinburgh, Section A Mathematics 2002; 132: 661-684.

[7] Semrl P. Symmetries on bounded observables: a unified approach based on adjacency preserving maps. Integral
Equations and Operator Theory 2012; 72: 7-66.

623



	Introduction
	Main results

