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Abstract: The purpose of this paper is to investigate the product semisymmetric connection in a locally decomposable
Riemannian space. The curvature tensors of this connection were considered. Some properties of almost product
structure, some properties of torsion tensor of product semisymmetric connection and some relations between curvature
tensors and almost product structure are given. Also, the paper checks a special case of such connection when its

generator is a gradient vector.
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1. Introduction

In the last century, the locally decomposable Riemannian space was investigated by several authors: Tachibana
[20], Yano [21], Prvanovié¢ [12]-[15], etc. In recent years, Pusi¢ has dealt with these spaces, observing various
connections in them [16]-[19].

In [20], Tachibana obtained the product projective curvature tensor and the product conformal curvature
tensor. Later, in [11], Petrovié¢ obtained the product concircular curvature tensor and Prvanovié, in [15],
obtained the product conharmonic curvature tensor. In the aricle [14] relations between these four curvature
tensors were found.

In [12] and [13], Prvanovi¢ defined product semisymmetric metric F-connection using almost product
structure F; and covariant vector 7; and observed some curvature tensors with respect to it. Two curvature
tensors of product semisymmetric connection were examined in article [12] and it has been shown that one
of them is actually the product projective curvature tensor. In [8], the product semisymmetric nonmetric
connection was observed. Very interesting connections are also golden and metallic semisymmetric connection
that have been studied in a locally decomposable golden and metallic Riemannian manifold [1, 2].

These works give us the motivation to study the curvature tensors with respect to product semisymmetric
connection and to examine their properties. Since the product semisymmetric connection is nonsymmetric
connection, we can observe four kinds of covariant derivatives with respect to it, by which twelve curvature
tensors of nonsymmetric connection are obtained. We will begin by looking at curvature tensor in a generalized
form for nonsymmetric connection, and then we will study five linearly independent tensors.

Since the definition of locally decomposable Riemannian space is similar to the definition of generalized

Kahlerian space, here we will show that between almost product structure tensor and curvature tensors, relations

*Correspondence: miroslav.maksimovic@pr.ac.rs
2010 AMS Mathematics Subject Classification: 53C05, 53B20, 53C15, 58J60

96

0 This work is licensed under a Creative Commons Attribution 4.0 International License.



https://orcid.org/ 0000-0002-8997-2812
https://orcid.org/0000-0002-5632-0041

MAKSIMOVIC and STANKOVIC/Turk J Math

similar to those in the generalized Kéhlerian space apply [9, 10].
Finally, we specify the special case of generator 7; when it is a gradient vector and show the properties

obtained in this case for the generalized curvature tensor.

2. Product semisymmetric connection

Let us consider an N -dimensional manifold My which admits a tensor field F’ ; #* (5; of type (1,1) and a positive
definite Riemannian metric ds® = g;;dz*dz? . The manifold My is called a locally decomposable Riemannian

space if the conditions

FiFP =36, (2.1)
Ipa P E] = 9150 GPUFLF] = g, (2:2)
F;;k =0, (2.3)

are satisfied, where 5; is Kronecker symbol and the semicolon ; followed by an index denotes covariant derivative
with respect to the Levi-Civita connection F;k We call the tensor F ]Z the almost product structure tensor.

Based on the above properties for F, it is easy to verify that F;; = F};,

where F}; = g;,F}. Based on
the fact that metric tensor g;; is covariantly constant and based on Equation (2.3), by differentiating expression
9;,F} = F;; we obtain

Fijp = (gipFJp);k = gip;ka + gz‘ijP;k: =0. (2.4)

A locally decomposable space My can be covered by a separating coordinate system which is observed
with respect to the two subspaces My, and My, , where N = N; + Ny. This means that the manifold My
is locally the product of two spaces My, x My, (for more details see [12, 16, 21]).

In the separating coordinate system we have
F?’:[ég O} F.,:[gw 0 }

A N 0 —gy,

where 7,0 =1,2,..., N1, z,y = N1+ 1, N1 + 2,..., N1 + N2 = N. Therefore ¢ = Fl = N; — Ny. We will
assume that Ny, No > 2.
The connection
where
Tj), = 05y, — 047, + FjF7, — FLF!'T, (2.6)

and 7; is a covariant decomposable vector, is called the product semisymmetric connection of the locally
decomposable Riemannian space (full name in [13]: product semisymmetric metric F'-connection, because it
satisfies the conditions g,;, = 0 and F ;k = 0). Tensor T ;k is a torsion tensor of product semisymmetric

connection. Covariant vector 7; is called the generator of the space.
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Theorem 2.1 ([21]) A necessary and sufficient condition for a covariant vector T, in a locally decomposable

Riemannian space to be decomposable is

FiT, = F/T;. (2.7)
From here we see that for decomposable vector also applies the equation
P q _ 4 _
FFir,,=F/FiT, =T (2.8)

Since the product semisymmetric connection is nonsymmetric connection, four kinds of covariant deriva-

tives can be observed with respect to it [4, 5]

A B
P14 4i1..ia i1 da—1Piat1-iala i1..da =P
tjln-jB [k tjlij’k + Z tjl...jB Fpk Z t]’l---jaflpja+1-»-jBFJak’ (2'9)
1 p=1 p=1
A ) B
i1..44 _ 4i1...04 i1 da—1Plat1-tAT e Z i1...04 TP
tjl-ujB |k — tjl---jBJC + Z tjl...jB FkP tjl---ja—1pja+1~-jBFkJa’ (2'1())
2 p:l p:l
A ‘ B
i1...04 _ i1...14 1. la—1Plat1.-.tA T o 11...94 TP
i e = e DT L Lo AR 2 (2.11)
3 p=1 p=1
A 4 B
G1...04 _ 4i1...0a 11 fa—1Plat1-TAT e i1...04 =P
tjl...jB [k — tjl---jB,k + Z tjl--~jB ka : :tjl---ja—lpja+1~»-jBF]ak’ (212)
4 p=1 p=1
where ¢} is an arbitrary tensor. Based on these four kinds of covariant derivatives, using Ricci identities,

twelve curvature tensor are obtained, five of which are linearly independent [6]

Rjmn = Riin + Timin = T + Thn T = T Ty, (2.13)
?;ﬂmn =R — Thon + Thon + T0, T8 — TP T (2.14)
E;imn =R+ Thn + T — T8 T + T8 T3, — 270, T (2.15)
§§mn = Rip + Thn + Thg — T8 T + T5 10+ 2T0 T (2.16)
B = Rl + T o + T Ty (2.17)

5

where R}, denotes Riemannian curvature tensor with respect to the Levi-Civita connection I' .

Theorem 2.2 For the almost product structure F; in the locally decomposable Riemannian space the following

relations

Fi, =0, Fi, =0, (2.18)
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7 _ e o} 7 _ i % sl
ik = 2F T ik = —2F T, (2.19)

are true, where | denoting the operator of covariant derivative of ¥-th kind, ¥ = 1,2,3,4, with respect to the
9

; . i
product semisymmetric connection I .

Proof Using covariant derivative of the first kind with respect to nonsymmetric connection f;» , we have

=P 2.5

Fjp = Fjp FTy = BT = Fiy o+ F/ Ty = BT (2.20)

By direct application of the torsion tensor (2.6) we obtain that

Fi'Ty, = FT%,, (2.21)

applies. Now, by substituting equations (2.3) and (2.21) into (2.20), we obtain F;|k =0.
1

Similarly, we can prove that F;‘ L =0.
2

By covariant derivative of the third and fourth kind and using the equations (2.3) and (2.21) we can
prove that (2.19). O

Multiplying the equation (2.21) with F} and using property (2.1), we have
T4 = F'F{T,, (2.22)

and after substituting the index i — p, p — ¢, ¢ — %, we obtain

ik = I F/ Ty (2.23)
Also, substituting the index j and k in equation (2.21) we obtain that F}’ T]?p = F;Tfk applies, so now
F;’T;k = F,fT;p = F;T;’k. (2.24)

Equation (2.24) means that the torsion tensor of product semisymmetric connection is pure tensor, so

we conclude that also the product semisymmetric connection is pure [7].

Using almost product structure tensor F ; the Nijenhuis tensor can be defined as follows:
o= (Flp = Fyg) FE = (Fiy, = Fpp) FY (2.25)

i.e.
Njy, = F[ij]F/f - F[lk,p]FJP7 (2.26)

where the square brackets [ij] denote alternation without division with respect to the indices ¢ and j.

Theorem 2.3 In a locally decomposable Riemannian space the Nijenhuis tensor vanishes.
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Proof Starting from the fact that in locally decomposable Riemannian space F ;;k = 0 applies, we obtain

Fjy = Fj )+ FIT;, — T8, = 0. (2.27)

Interchanging j and k in the equation (2.27) we get the expression for F,z j and by subtracting the

equations thus obtained, we have the relation
Fiing = —FjTpr + F{ Ty (2.28)
Substituting this equation into (2.26), we get that N}, = 0. O

The following theorem shows that the torsion tensor (2.6) of product semisymmetric connection satisfies

Jacoby’s identity. For Jacoby’s identity you can see the article [3].
Theorem 2.4 For torsion tensor

T}y = 0imy, — S47; + F}FP7, — FiF'T,,
Jacoby’s identity applies, i.e. the following equation is satisfied

T T +TP T! +TP.T! =0. (2.29)

jmTpn mn= pj nj—-pm

Proof The proof is trivial. By directly applying the torsion tensor (2.6) to Equation (2.29), we confirm this

theorem. O

3. Generalization of the curvature tensor

Let us observe the curvature tensor of nonsymmetric connection in a generalized form

) R 5Y) i
ijn - ijn + Uij;n

+oT? T + o' TP T 4 wTP, T (3.1)

mn=pj

+u'T?

Jjn;m jm~*pn jn*pm

where u,u’,v,v’,w € R. Substituting the expression for the torsion tensor Tjk from Equation (2.6) into (3.1),

we have

R} = Rl +u (857, — 0,7 + FjFb7, — FLFI'T)

)

+ (5§Tn — §;Tj + F;F;;Tp — FZFJZ}TP) .

3

+v (6§, — 6b7; + FYFh7, — Fb Fl'7) (6,7, — 0,7, + FyFir, — Fy Fit,)

p-n-gq nTp-q

+ ' (857, — ohT; +FijgTq —F,’:F;]Tq) ((5;Tm —5};”7'p+FiF‘17' — F!Fi1,)

Jn p-m-q m=p-q

+w (88,7, — 0b7,, + Fb Fir, — FYFLT,) (0,7 — 057, + Fy i1, — FiFlT,) .

n n'm m—-n ' q n-—m- q

After the necessary calculation and using (2.1), whereby it is taken into consideration 5§;k = 0 and

F}, =0, we obtain

R = Rl + 05 (U + 0T + (0 +0) (7,7, + FLFT,T,))

n'pq

— & (uTjp + (v —w) (77, + FngTqu))

_ Jfl (u'Tj;m + (v 4+ w) (Tij + FngLTqu))

, (3.2)
+ Fj (uFp ., +u'Fir,.,. + (v+0) (FR 1, + Fi7,)7,)

— F! (qupr;n + (v—w) (Fjan + F}L’Tj) Tp)

—F (u’Fpr;m + (v +w) (Fjme + F,ﬁ’lrj) Tp) )
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Furthermore, it follows that

R§7an = R;'mn + 5; (/an + ’}/n’m) - 6'fnﬁjn - 57iL’Yj’m

’ : : (3.3)
] (FL S+ Firp) ~ FF S~ FoF
where
Bij = utiy; + (v —w) (7 + FY Fj,7,) (3.4)
Vig = U/Ti;j + (U/ + w) (TiTj + FipF]quTq) . (35)
If we take
Q;; = ﬁz] + ’inv Eij = ng + nji’ Cij = Fipﬂpja nij — Flp,yp] (36)

then the generalized curvature tensor R:

imn for product semisymmetric connection in a locally decomposable

Riemannian space can be written in the form
R;mn = R_Z]mn + 6§a7rm - 5'7;n/8]71 - 5:.17jm + F;8mn - F»,iann - FribnjnL- (37)

Below we will list some of the properties for the introduced tensors «,;, 8,;, V5, €;5, ¢;; and 7n,;;, which

ij
we will need to study the properties of curvature tensor of product semisymmetric connection.

Theorem 3.1 The expressions for tensors f3;; and y,; satisfy the following relations

Ffﬁm:prﬁiP’ Ffvpj:Ff’Vip’ (3.8)

and

Proof All relations prove similarly. We will prove that 3;; = F'F/3,,.
By using Equation (3.4), we have

FPFIB,, = uFPFir,  + (v—w) (FPFir 7, + FYFIFI FeT,m,) . (3.10)

Furthermore, given that 7, is a decomposable vector (see Equation (2.8)) and using Equation (2.1), we

obtain equation
P 14 —
Fi Fjﬂpq _627"

O

Theorem 3.2 The expressions for tensors o, B;j. Vi, €55 Cij and n;; satisfy the following relations
Q5 — Bji —Yij = (u— u/)T[i;j]a (3.11)
€ij = Cji — Mij = (u—u)Ffmp,. (3.12)

where the square brackets [ij] denote alternation without division with respect to the indices i and j.
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Proof Based on Equations (3.4)—(3.6) we can easily conclude that the equation (3.11) is valid. Further, by
using the expressions for ¢,,, (;; and n;; we have

€ij = Cji = Mij = (u—u)(FP 7y — Fi 7).

(3.13)

If we take into consideration the decomposability property of vector 7,, i.e. EFF Tpj = FJP T;.p» We get the equation
O

Now, using Equations (3.11) and (3.12), we can generalize the cyclic symmetry property of the curvature
tensors (3.7).

Theorem 3.3 Let (My, g, F) be a locally decomposable Riemannian space endowed with the product semisym-

metric connection (2.5). For curvature tensor Eﬁ-mn the next relation

Cy R, = (= ') Cyel (8371, + Fi Pl ) (3.15)

jmn jmn

is valid, where Cycl is the cyclic sum regarding to j,m,n.
jmn

Proof By using the expression for curvature tensor R’ we obtain

jmn

CyclR:, . =R

e = R + Ripi + R
jmn

jmn mnj njm

jmn

where the cyclic symmetry (the first Bianchi identity) of Riemannian curvature tensor R is taken into

jmn

consideration. Finally, with the help of Equations (3.11) and (3.12) we prove the theorem. O

3.1. First kind of curvature tensor

As noted at the beginning of this paper, with respect to nonsymmetric connection, we can observe five linearly
independent curvature tensors. First, let us consider the curvature tensor of the first kind of nonsymmetric
connection. From Equation (2.13) for this tensor, we have u =1, v/ = -1, v =1, v = =1, w = 0 and by

substituting in Equation (3.4) we get

(3.16)

_ P 4 N
Bij =Ty +Timy + F T = =750

From there we obtain the curvature tensor of the first kind of product semisymmetric connection in the

locally decomposable Riemannian space

}lzzmn = R;'mn + 5;?[77171} - erz?jn + %?m + F;’?l)[ann] B anFjp?Pn + FleJp 1P (3'17)

If we introduce the notations

Qi = Bligys €35 = Bp Ty Gis = VB (3.18)
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then the tensor ]1%;’”" can be written in the form

}lzzmn = R;'mn + 5501["1” - 5:”@?371 + 5fz[13jm + Fjle%m" - FT)Z@§]" + F:zgjm (319)

From Equation (3.18), we can easily conclude that Qyj and g;; are antisymmetric, i.e.

Qij =~ §ij = ~She

(3.20)
3.2. Second kind of curvature tensor

By observing the curvature tensor of the second kind (2.13) of nonsymmetric connection we can see that is
u=-1,u =1, v=1,v = -1, w =0 and by substituting these parameters in Equation (3.4), we have

the expressions for tensor 3;; and that way we obtain the curvature tensor of the second kind of product
2

semisymmetric connection in a locally decomposable Riemannian space

i.e.

where we introduced notations

Sij = g[mv gz‘j =Ty — T — FUF 7, (3.23)
2t Q[U} 2p[n m] 21] i 2pg .

It is clear from these equations that the tensors Qi and £ij are antisymmetric.

3.3. Third kind of curvature tensor

For curvature tensor of the third kind (2.13) of nonsymmetric connection we have u =1, v/ =1, v = -1, v =1,

w = —2 and by replacing in Equations (3.4) and (3.5) we see that 8;; = 8;; and v;; = 8;;. Consequently, we
3 1 3 2

have

]??;'mn = R;’mn + 5;‘ (?mn + gnm) - 5:néijn - 5;§jm

+ F;(Fggpn PR ) anF;’?m _ F;F;’gpm. (3:25)
By introducing the tensors
&g = Bis T Bjin &g = Fffm + F?gm (3.26)
the curvature tensor }32;7% of product semisymmetric connection takes the following form
Ezmn - Rémn + 5;'1012mn - 5%?)'71 - (ﬁugjm + nglezmn - an%’n - Fflg]m (3.27)

The tensors «a;; and €;; are symmetric.
12" 12"
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3.4. Fourth kind of curvature tensor

Now, let us consider the curvature tensor of fourth kind of nonsymmetric connection. From Equation (2.13)
we have u =1, v/ =1, v = =1, v = 1, w = 2 and after substituting these parameters in Equations (3.4)
and (3.5), in the same way as before, we get the curvature tensor of the fourth kind of product semisymmetric

connection in a locally decomposable Riemannian space

4 4 4 4

' . . (3.28)
4 4 4 4
i.e.
where
fij =7, = 3(n7; + F Flr,7,), Zij =7, +3(r7; + FYFir,7.), (3.30)
_ _ _ p _ P
Qij = g” + Z]‘iv Sii = gzj + Zjia gij =F ggj? Zij =F Zpi’ (3.31)

The tensors Qi and gij are symmetric.

3.5. Fifth kind of curvature tensor
For curvature tensor of the fifth kind of nonsymmetric connection from Equation (2.13) we have u =0, v’ =0,
v=1,v =1, w=0 and after replacing in Equations (3.4) and (3.5) we obtain the curvature tensor of the

fifth kind of product semisymmetric connection

where
_ P d _ P
By =7 + BT Giy = Fi By (3.33)
The previous equation shows that the tensors ;; and (,;; are symmetric.
5 5

Now we will observe some properties of the curvature tensors in the locally decomposable Riemannian

space, which are obtained with respect to the covariant derivative of product structure tensor field F j’

Theorem 3.4 Let Rémn ,0=1,2,...,5 be the curvature tensor of the locally decomposable Riemannian space
0

with respect to the product semisymmetric connection (2.5), then the relations

FIR,, = B, 0=1,23, (3.34)
i i _ 7 % P i I al)
§jmn + gjnm =2 ( jmé\ln + T]nl’m + QermTpn - 2T]nTpm> ) (335)

are valid, where | denoting the covariant derivative of ¥-th kind, ¥ = 1,2,3,4, with respect to the product
9

. . . i
semisymmetric connection I';; .
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Proof For the first equation you can see Theorem 18.2 in [9]. By using covariant differentiation of the third
and fourth kind and Equation (2.19), we obtain

7 2&9 7Y 7 o P 1 P 1 2.1) P '3 P 1
FijL" = 2(F; Tpm)ln = 2FjLnT + 2F] Tmln = —AF'TJ. T,  +2F! Tmm (3.36)
4
Similarly
Fj i = —4F)T2, To, — 2FpTZn‘m (3.37)
4 3
By using the eleventh Ricci type identity (equation (56’) in [5]), i.e.
% Pl i DP
Fj‘m|" - ]|n\m = I} Rpmn + FpRjnm (338)
3 4 4 3
and by virtue of Equations (3.36) and (3.37), we have
2F7 ( jmln + Tzn|m + 2ijmT;n — 2TfnTgm> FpR;mn + F;,anm (3.39)
Finally, considering Equation (3.34), we obtain (3.35). O

It can easily be shown that the equation (3.34) also holds for the Riemannian curvature tensor, i.e.

F'R.,, = FiR" (3.40)

pmn prltymn:’

At the end of this section, we can make a connection between 3,; and other introduced tensors:
1

i =273 — Bisy Bis =47, — 3B, Vi =384 — 2T, Bis = Bii — Tyuse 3.41
gm i3j ?J EJ i ?] Z] ?] i fgj ?] i ( )

4. Symmetry properties of curvature tensors

In the continuation of the paper, we will observe the symmetry properties of curvature tensors in a locally
decomposable Riemannian space. By virtue of Equations (3.19) and (3.20), for the first kind of curvature tensor

of product semisymmetric connection, we get
R = =R = 030mm — (&;?m + 5?}1[1?’jn) — Fjenm — <Fi§jm + F&Qn)
= — (R 50m — 3 + 01 + Flgam — EiGom + FiiGn ).

and from there

where the antisymmetry property of Riemannian curvature tensor is taken into consideration. The previous

equation means that the first kind of curvature tensor is antisymmetric with regard to indices m and n.

Based on equation (3.15), for tensor R;mn, we get
Cycl R, =2 Coyel (5 T + FLFT, n]) . (4.2)
jmn jmn
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In a similar manner, the symmetry properties for the other curvature tensors of product semisymmetric

connection can be examined, so we proved the following theorem.

Theorem 4.1 Let R:

Bimn 0 =1,2,...,5, be the curvature tensor of product semisymmetric connection (2.5)

in the locally decomposable Riemannian space. The relations

B = R Cycl Rl = 2Cy (51% It F;F;;LT[W]) : (4.3)
B = s %Z@;‘.m ~2Cy (5 T + FLFRT, n]), (4.4)
]mn #+ :tRjnm, Cycl ijn =0, (4.5)
jmn # iRjnm, Cycl R]mn =0, (4.6)
Jmn #* :N:Rmm, C’ycl ijn =0, (4.7)

are valid.

Based on the previous theorem, we have direct consequences.

Corollary 4.2 The curvature tensors R;mn and R;mn are antisymmetric with respect to the indices m,n,
while the curvature tensors ijn, R;mn and R;mn are not antisymmetric.

Corollary 4.3 The curvature tensors Ez-mn and Eémn are not cyclically symmetric with respect to the indices

Rt and RE

(L jmn s Xjmn [mn are cyclically symmetric.

j,m,n, while the curvature tensors R

5. Special case of vector T,

Depending on the vector 7; and its properties, special cases of product semisymmetric connection can be
observed. We will now look at the case where 7; is a gradient vector and see what happens to the curvature

tensor properties.

Theorem 5.1 Let (My, g, F) be a locally decomposable Riemannian space endowed with the product semisym-

metric connection (2.5). If 7, is a gradient vector field then the curvature tensor ijn is cyclic-symmetric.

Proof As for the gradient vector applies that 7, ; from here it follows that i) = 0, 80 based on (3.15)

Tjsi>
we directly conclude that the claim for cyclic symmetry is valid. O

On the basis of Equation (3.15) it is easy to conclude that curvature tensors R;mn will be cyclically

symmetric also in the case that u = u’.
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Theorem 5.2 Let (My,g, F) be a locally decomposable Riemannian space endowed with the product semisym-

metric connection (2.5).

. . Y _ 71) . .
1. The Ricci tensor R;,, = Ry, is symmetric, and

2. the covariant curvature tensor Eijmn = gl-pﬁﬁ’mn is tnvariant under changing places of the pairs of indices
=R

ij and mn, i.e. R, mnij 1

if and only if T, is a gradient vector field.

Proof
1. By contracting with respect to the indices ¢ and n in Equation (3.7) we obtain

Ejm = ij + amy — ﬂjm = NYjm + Fjpsmp - FTI;Lij — PNjm, (5.1)

where ¢ = N7 — Ns. Using the equations from Theorem 3.1, we can easily conlclude that Ff €ip = 0y; and

Ff@-p = Bij, so the previous equation takes the form

ij = ij + 2amj — Zﬁgm — N'Y]m — PNjim- (52)

Substituting expressions for tensors «;; and B;;, we obtain the form of Ricci tensor of product semisym-

metric connection in the locally decomposable Riemannian space
ﬁjm =R, — 2u7'[j;m] + (2= N)Vjm + —¢Njm- (5.3)

Interchanging j and m in this equation, we obtain

wherefrom, after rearanging, one obtains
Ejm - ij = (2=N)u' - 4u) Tljsm] — @u/FJPT[p;m]. (5.5)

Based on the last equation, we can easily conclude that Ricci tensor is symmetric, i.e. ij = ij, if

and only if 7; is a gradient vector.

2. By lowering the index ¢ in the curvature tensor ﬁ;m we get the form of covariant curvature tensor

n
Eijmn = Rijmn + 95 Qmn — GimBin — JinVjm + Fz‘jffmn = FyCin — Fipjm- (5.6)

If we assume that ﬁijmn = Emmj, we come to the equation

9i5%mn — Imn®ij — GimBPin + ImiPnj = GinVim + GmjTni

(5.7)
+ Fijemn - angij - Fiijn + Fmicnj - Finnjm + ijnni =0.

where it has been taken into account that for the Riemannian tensor applies R,;,,,, = R,,,,;;- By composing

the previous equation with ¢*™ and using the simple calculus as in the previous part of the theorem, we have
((2 — N) 'll/ — 47.L) T[j;m] — QOU/F]PT[p;m] = 0, (58)
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so we conclude that equation R,;,,, = Emmj is valid if and only if 7; is a gradient vector, which proves the
theoreme. O
Based on Equations (5.5) and (5.8) it is easy to conclude that R;,, = R,,; and R, .. = R,,,.; in the

case that u =u' = 0.
The symmetry of the Ricci tensor indicates that equiaffine space, that is, when 7, is a gradient vector,

then locally decomposable Riemannian space is equaffine space with respect to the product semisymmetric
connection.

In case when 7, is a gradient vector, then expressions for curvature tensors ]1%1 and R

7 .
mn B have simpler

form, i.e. the tensors «

Vij> Qijy €ijy Sij vanish.

247 1

6. Conclusion
At the beginning of the paper, we have given some relations that satisfy the almost product structure tensor
and torsion tensor of product semisymmetric connection. We proved that the value of the Nijenhuis tensor in

a locally decomposable Riemannian space is zero, i.e. Nijenhuis tensor vanishes.

We found the generalized form of the curvature tensor Rﬁ-mn for product semisymmetric connection

in a locally decomposable Riemannian space, and then we stated five linearly independent tensors g;-mn,

0=1,2,...,5. It is interesting that tensors é%;mn, 0 =1,2,...,5, which are antisymmetric by index pair m,n

are not cyclically symmetric by j,m,n, and vice versa, which are not antisymmetric by m,n are cyclically

symmetric by j,m,n.
Finally, we observed the special case where the generator of product semisymmetric connection is a
gradient vector and we have shown that in this case, it is possible to generalize the properties for the curvature
i

tensor of this connection, that is, the gradient vector 7; implies cyclic symmetry of the tensor R}, , symmetry

of the Ricci tensor as well as invariance of the covariant curvature tensor R, under interchanging

jm> ymn

index pair 5 with mn.
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