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Abstract: We generalize the κ -fractional Hilfer–Katugampola derivative and set some properties of the generalized
operator resulting from this. As an application, we demonstrate that the Cauchy problem with this new definition is
equivalent to a second kind of Volterra integral equation. We discuss some specific cases for this problem.
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1. Description

There are a few issues where noninteger order derivatives play a pivotal role [1, 3, 20, 22, 26]. It ought to be
stressed that fractional derivative are introduced from distinct ways, specifically, describing three unmistakable
ways, which we will make reference to so as to build up the work in one of them.

Normally, every typical fractional derivative is defined in respect of a specific integral. Among the most
notable definitions of noninteger order derivatives we may make reference to the Caputo, Grunwald–Letnikov,
Hadamard and Riemann–Liouville derivatives [2, 6], whose details include integrals with singular kernels and
which are utilized to contemplate, for instance, issues including the memory impact [19]. Then again, various
plans of fractional derivatives have appeared in the literature [15], in the year 2010. From a few points of view,
these new formulations vary from the old style ones. For example, classical fractional derivatives are described
so that one recovers the old style derivatives in the sense of Newton and Leibniz in the cutoff, where there is
a whole number in the request for the derivative. A new fractional derivative has also been recently proposed
in [5, 18]. Another fractional derivative with a comparing integral whose kernel can be a nonsingular function,
such as a Mittag–Leffler function [29], was additionally proposed as of late. Integer order derivatives are also
managed to recover in such cases by considering adequate limits for the values of their parameters.

In comparison, there are numerous approaches to acquire a speculation of classical fractional derivatives.
A few authors describe the parameters in classical definitions or in some specific functions [8, 10, 14, 20, 27].
Likewise, in an ongoing paper [13], the authors present a boundary and discuss on two specific spaces, which they
call the generalization of fractional derivative and further propose a Caputo modification of this generalization.

In this paper, we are interested in the κ -fractional Hilfer–Katugampola derivative, which generalize the
Hilfer–Katugampola derivative. Particularly, to study the existence and uniqueness of its solutions and their
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dependence on initial conditions. We propose a new generalization of κ -fractional derivatives and discuss a
general Cauchy problem. We retrieve a broad class of fractional derivatives as a product.

Gauhar et al. [23] presented the extended Caputo fractional derivative operator and by using Mittag–
Leffler function as kernel. They generate the relations for the hypergeometric functions. Martin et al. [4]
establish the extended Riemann–Liouville fractional derivative operator by using the extended beta function
and use the Bessel function as the kernel. They presented some new results like Mellin transform, hypergeo-
metric function and relation Appell’s function of generating functions. Fully extended beta function, extended
hypergeometric function and an extended confluent hypergeometric function were presented by Mubeen et al.
[24] in 2018. Recently, Subashini et al. [28] presented the nonlocal functional integro differential equations by
using the Hilfer fractional derivative. They use the Mönch fixed point theorem and presented some theoretical
results in 2020. Gauhar et al. [21] in 2018 defined a fractional operator and use it to find the Mellin trans-
form and some fascinating results. Gauhar et al. [25] presented the generalized κ -fractional with the help of
κ -Mittag–Leffler function and wright hypergeometric functions.

In this paper, the contents are sorted out in various sections. In Section 2, the definition of the κ -fractional
integrals in the senses of Riemann–Liouville and Hadamard, the spaces and κ -Mittag–Leffler functions which
mainly focus on our work are presented. Some properties of κ -fractional Hilfer–Katugampola derivative are
presented in Section 3. In Section 4, we introduce a generalized κ -fractional Hilfer–Katugampola derivative
and demonstrate that a wide list of definitions of fractional derivatives can be recovered using appropriate
parameters. As an application, introduced using theorems in the previous section, we approach linear fractional
differential equations via study the Cauchy problem, the existence and uniqueness of its solution and its
dependence on the initial conditions in the Sections 5, 6, and 7. In Section 8, concluding remarks are given.

2. Prelude
To present the κ -Mittag–Leffler function, let us present the idea of gamma function, beta function or the
Pochhammer symbol. Diaz et al. [8] were the first to characterize κ -gamma function, κ -beta function and
κ -Pochhammer symbol.

Definition 2.1 The κ-gamma function is defined as

Γκ(z) =

∫ ∞

0

tz−1e−
tκ

κ dt, (2.1)

with z, κ > 0 .
It has the following relationships

Γκ(z) = κ
z
κ−1Γ

( z
κ

)
, and Γκ(κ) = 1, (2.2)

when κ→ 1 then Γκ(z) = Γ(z) .

Definition 2.2 The κ-Pochhammer symbol is defined by

(z)m,κ =

{
1, for m = 0.

z (z + κ) . . . (z + (m− 1)κ) , for m ∈ R, z ∈, κ > 0.
(2.3)
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Or as to a quotient of function κ-gamma,

(z)m,κ =
Γκ (z +mκ)

Γκ (z)
. (2.4)

Definition 2.3 Finally, the function κ-beta is described by

βκ (y, z) =
1

κ

∫ 1

0

u
y
κ−1 (1− u)

z
κ−1

du, y > 0, z > 0, κ > 0, (2.5)

when κ→ 1 then βκ (y, z) = β (y, z) .
In terms of κ-gamma function, the κ-beta function can be written as follows:

βκ (y, z) =
Γκ (y) Γκ (z)

Γκ (y + z)
, and βκ (y, z) =

1

κ
β(
y

κ
,
z

κ
). (2.6)

Mittag–Leffler function plays a very significant role in solving integral equations and linear differential
equation [16, 17].

Definition 2.4 Dorrego and Cerutti [9] defined the so-called κ-Mittag–Leffler function as follows for the
generalization of these functions:

F δ
κ,α,η (x) =

∞∑
m=0

(δ)m,κ

Γκ (αn+ η)

x

m!
, x ∈ R, α > 0, η > 0, (2.7)

where m ∈ N and (δ)m,κ is the κ-Pochhammer symbol defined in equation (2.3).

Definition 2.5 Gupta and Parihar [12] used the following sequence to describe the so-called κ-new generalized
Mittag–Leffler function.

Fκ,β,γ (x) =

∞∑
m=0

xm

Γκ (βm+ γ)
, x ∈ R, β > 0, γ > 0, (2.8)

where m ∈ N .

Until presenting the definition of κ -fractional integrals and their generalization. We characterize the
specific function spaces for such definitions and Lipschitz condition for the function g (z, ψ) .

Definition 2.6 [16] Let [a, b] be a finite or infinite interval on the real axis R = (−∞,∞) . By Mq = (a, b) ,
we denote the set of the complex-valued Lebesgue measurable function ψ on [a, b] ,

Mq (a, b) =

ψ : ψq =
q

√∫ b

a

|ψ (z)|qdz < +∞

 , 1 ≤ q <∞. (2.9)

In case if q = 1 , we have Mq (a, b) =M (a, b) .
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Definition 2.7 [7] Suppose that g (z, ψ) is set to the collection (a, b] × H and H ⊂ R . A function g (z, ψ)

fulfills the condition of Lipschitz with respect to ψ , if ∀z ∈ (a, b] and for ψ1, ψ2 ∈ R then,

|g (z, ψ1)− g (z, ψ2)| ≤ C |ψ1 − ψ2| ,

where C > 0 and it does not depend on z .

Definition 2.8 Katugampola [14] presented the alleged κ-Riemann–Liouville fractional integral, a generaliza-
tion of the Riemann–Liouville fractional integral, got for κ = 1 . Left sided (right sided) integral is defined for
ψ (z) ∈M(a, b) as,

(
ρℑω

a±ψ
)
(z) = ± 1

Γ (ω)

z∫
a

(
zρ − yρ

ρ

)ω−1

yρ−1ψ (y) dy, ω > 0, x > a. (2.10)

Definition 2.9 Recently, Sarikaya et al. [27] presented κ-fractional integral that recovers the κ-Riemann–
Liouville at adequate limits. The left and right sided operator is defined with m− 1 < ω ≤ m , m ∈ N , ρ > 0 ,
κ > 0 as

(
ρ
κℑω

a±ψ
)
(z) = ± 1

κΓκ (ω)

∫ z

a

(
zρ − yρ

ρ

)ω
κ−1

yρ−1ψ (y) dy, ω > 0, x > a. (2.11)

3. Auxiliary results
We currently present a few properties of the fractional integrals characterized in the previous section, so as to
utilize them all through this work. We start by introducing the semigroup property for the κ -fractional integral
and an application to the force work, the two theorems are found in [27].

Theorem 3.1 Let ω > 0 , θ > 0 , κ > 0 and ψ ∈Mq(a, b) , then(
ρ
κℑω

a+
ρ
κℑθ

a+ψ
)
(z) =

(
ρ
κℑω+θ

a+ ψ
)
(z) =

(
ρ
κℑθ

a+
ρ
κℑω

a+ψ
)
(z) .

Theorem 3.2 Let ω > 0 , θ > 0 , κ > 0 and ψ ∈Mq(a, b) , then

ρ
κℑω

a+(z
ρ − aρ)

γ
κ−1

(z) =
Γκ (γ)

ρ
ω
κ Γκ (ω + γ)

(zρ − aρ)
ω+γ
κ −1

.

Lemma 3.3 [27] Let ψ ∈ M(a, b) , the κ-Riemann–Liouville fractional integral of order ω > 0 is bounded in
the space M(a, b) , ∥∥ρ

κℑω
a+ψ

∥∥ ≤ N ∥ψ∥ , (3.1)

where

N =
1

ωΓκ (ω)

(
bρ − aρ

ρ

)ω
κ

.

In terms of some corresponding fractional integral, most fractional differentiation operators are defined.
We now present the definition of Hilfer–Katugampola fractional derivative which is associated with the Riemann–
Liouville fractional integral.
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Definition 3.4 [22] Let m− 1 < ω ≤ m , 0 ≤ θ ≤ 1 , m ∈ N , ρ > 0 , κ > 0 and ψ ∈M (a, b) , where ω is the
order and θ is the type, the Hilfer–Katugampola fractional derivative (left sided and right sided) is defined as,

ρDω,θ
a±ψ (z) = ±

(
ℑθ(m−ω)

a±

(
z1−ρ d

dz

)m
ρℑ(1−θ)(m−ω)

a± ψ

)
(z) (3.2)

= ±
(
ℑθ(m−ω)

a± δmρ
ρℑ(1−θ)(m−ω)

a± ψ
)
(z) , (3.3)

where δmρ =
(
z1−ρ d

dz

)m and ρℑω
a± is the integral defined in Equation (2.10).

4. Generalized k-fractional Hilfer–Katugampola derivative

In this section, generalization of Hilfer–Katugampola derivative is presented. Here we consider that ω ∈ R+

and m − 1 < ω ≤ m and m ∈ N . The fractional integral aligned with this differentiation operator is given in
Equation (2.11).

Definition 4.1 Let m − 1 < ω ≤ m , 0 ≤ θ ≤ 1 , m ∈ N , ρ > 0 , κ > 0 and ψ ∈ Mq (a, b) , the generalized
κ-Hilfer–Katugampola fractional derivative (left sided and right sided) is defined as(

ρ
κD

ω,θ
a±ψ

)
(z) = ±

(
ρ
κℑ

θ(κm−ω)
a±

(
z1−ρ d

dz

)m (
κmρ

κℑ
(1−θ)(κm−ω)
a± ψ

))
(z) (4.1)

= ±
(
ρ
κℑ

θ(κm−ω)
a± δmρ

(
κmρ

κℑ
(1−θ)(κm−ω)
a± ψ

))
(z) , (4.2)

where δmρ =
(
z1−ρ d

dz

)m .

Theorem 4.2 Let ω ∈ R+ and ρ, κ > 0 . For ψ ∈Mq (a, b) and 1 ≤ q <∞ , then we have(
ρ
κD

ω,θ
a+

ρ
κℑω

a+ψ
)
(z) = ψ (z) . (4.3)

Proof To simplify the notation, we define

Ω =
θ(κm− ω)

κ
and Λ = m− Ω. (4.4)

From Definition 4.1 and Theorem 3.1, we have(
ρ
κD

ω,θ
a+

ρ
κℑω

a+ψ
)
(z) =

(
ρ
κℑ

θ(κm−ω)
a+ δmρ

(
κmρ

κℑ
(1−θ)(κm−ω)+ω
a+ ψ

))
(z) (4.5)

=
κm−2ρ2−Ω−Λ

Γκ [kΩ]Γκ [kΛ]

∫ z

a

(zρ − yρ)
Ω−1

yρ−1δmρ

[∫ y

a

(yρ − xρ)
Λ−1

xρ−1ψ (x) dx

]
︸ ︷︷ ︸

G(y)

dy. (4.6)

For the integral within the bracket, let ψ (x) as first term and (yρ − xρ)
Λ−1 as second term and integrate by

parts, we yield

G (y) =
ρ−1

Λ

{
ψ (a) (yρ − aρ)

Λ
+

∫ y

a

(yρ − xρ)
Λ
ψ′ (x) dx

}
. (4.7)
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Now, apply the operator δmρ to the equation (4.7). By mathematical induction, we have the following expression

δmρ G (y) =
ρm−1Γ (Λ + 1)

ΛΓ (Λ−m+ 1)

{
ψ (a) (yρ − aρ)

Λ−m
+

∫ y

a

(yρ − xρ)
Λ−m

ψ′ (x) dx

}
. (4.8)

Substitute Equation (4.8) into Equation (4.6) and utilize the first expression of Equation (2.2), to get(
ρ
κD

ω,θ
a+

ρ
κℑω

a+ψ
)
(z) =

ρ

κκΩ−1Γ [Ω]κ(1−Ω)−1Γ [1− Ω]

{
ψ (a)

∫ z

a

(zρ − yρ)
Ω−1

yρ−1(yρ − aρ)
−Ω
dy

+

∫ z

a

ψ′ (z) dz

∫ z

x

(zρ − yρ)
Ω−1

yρ−1(yρ − xρ)
−Ω
dx

}
.

In the integral from a to z change the variable u = yρ−aρ

zρ−aρ , similarly changing the variable in the integral from
y to z , we get

(
ρ
κD

ω,θ
a+

ρ
κℑω

a+ψ
)
(z) =

ρ

ΓK [κΩ]Γκ [κ (1− Ω)]

{
1

κ

∫ 1

0

(1− u)
Ω−1

u(1−Ω)−1du

}{
ψ (a) +

∫ z

a

ψ′ (z) dz

}
.

Use the expression two of Equation (2.2), we obtain(
ρ
κD

ω,θ
a+

ρ
κℑω

a+ψ
)
(z) =

ρ

ΓK [κΩ]Γκ [κ (1− Ω)]

{
ΓK [κΩ]Γκ [κ (1− Ω)]

ρ

}{
ψ (a) +

∫ z

a

ψ′ (z) dz

}
= ψ (a) +

∫ z

a

ψ′ (z) dz.

Eventually, by fundamental theorem of calculus, from which it immediately follows(
ρ
κD

ω,θ
a+

ρ
κℑω

a+ψ
)
(z) = ψ (z) ,

which shows that ρ
κD

ω,θ
a+ and ρ

κℑω
a+ are inverse operator of each other. 2

Theorem 4.3 Let ω > 0 , m = [ω] + 1 , where m ∈ N . If ψ ∈ Mq (a, b) and
(
ρ
κℑ

(1−θ)(κm−ω)−κ(m−n)
a+ ψ

)
(z) ∈

ACm
δ [a, b] , then

(
ρ
κℑω

a+
ρ
κD

ω,θ
a+ ψ

)
(z) = ψ (z)−

m∑
n=1

(
ρ
κℑ

(1−θ)(κm−ω)−κ(m−n)
a+ ψ

)
(a)

Γκ [κ (∇− n+ 1)]

(
zρ − aρ

ρ

)∇−n

, (4.9)

where

∇ =
θ(κm− ω) + ω

κ
. (A)

and in particular, if 0 < ω < 1 then

(
ρ
κℑω

a+
ρ
κD

ω,θ
a+ ψ

)
(z) = ψ (z)−

(
ρ
κℑ

(1−θ)(κ−ω)−κ(1−n)
a+ ψ

)
(a)

Γκ [θ (κ− ω) + ω − κ (n− 1)]

(
zρ − aρ

ρ

)∇−n

. (4.10)
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Proof We can write from Definition 4.1,(
ρ
κℑω

a+
ρ
κD

ω,θ
a+ ψ

)
(z) =

(
ρ
κℑω

a+
ρ
κℑ

θ(κm−ω)
a+ δmρ

(
κmρ

κℑ
(1−θ)(κm−ω)
a+ ψ

))
(z)

=
(
ρ
κℑ

θ(κm−ω)+ω
a+ δmρ

(
κmρ

κℑ
(1−θ)(κm−ω)
a+ ψ

))
(z)

=
ρ1−∇

Γκ [k∇]

∫ z

a

(zρ − yρ)
∇−1

yρ−1
{
δmρ

(
κmρ

κℑ
(1−θ)(κm−ω)
a+ ψ (y)

)}
dy.

Integrating by parts the last expression, we obtain

(
ρ
κℑω

a+
ρ
κD

ω,θ
a+ ψ

)
(z) =

−ρ1−∇(zρ − aρ)
∇−1

κ∇Γ (∇)

{
δm−1
ρ

(
κmρ

κℑ
(1−θ)(κm−ω)
a+ ψ

)
(a)

}
+
ρ2−∇(zρ − aρ)

∇−1

κ∇Γ (∇− 1)

∫ z

a

(zρ − yρ)
∇−1

yρ−1δmρ

(
κmρ

κℑ
(1−θ)(κm−ω)
a+ ψ

)
(x) dy.

Now integrating by parts (m− 1) -times, we yield

(
ρ
κℑω

a+
ρ
κD

ω,θ
a+ ψ

)
(z) = −

m−1∑
n=1

δm−n−1
ρ

(
κmρ

κℑ
(1−θ)(κm−ω)
a+ ψ

)
(a)

κn+1Γκ [κ (∇− n)]

(
zρ − aρ

ρ

)∇−n−1

+
1

κΓκ [κ (∇−m)]

∫ z

a

(
zρ − yρ

ρ

)∇−m−1

yρ−1
(
ρ
κℑ

(1−θ)(κm−ω)
a+ ψ

)
(y) dy

= −
m−1∑
n=1

δm−n−1
ρ

(
κmρ

κℑ
(1−θ)(κm−ω)
a+ ψ

)
(a)

κn+1Γκ [κ (∇− n)]

(
zρ − aρ

ρ

)∇−n−1

+
(
ρ
κℑ

θ(κm−ω)+ω−mκ
a+ ψρ

κℑ
(1−θ)(κm−ω)
a+ ψ

)
(z)

= ψ (z)−
m∑

n=1

δm−n
ρ

(
κmρ

κℑ
(1−θ)(κm−ω)
a+ ψ

)
(a)

κnΓκ [κ (∇− n+ 1)]

(
zρ − aρ

ρ

)∇−n

= ψ (z)−
m∑

n=1

(
ρ
κℑ

(1−θ)(κm−ω)−κ(m−n)
a+ ψ

)
(a)

Γκ [κ (∇− n+ 1)]

(
zρ − aρ

ρ

)∇−n

.

2

Theorem 4.4 Let ω, θ ∈ R , m− 1 < ω ≤ m , m ∈ N , 0 ≤ θ ≤ 1 and κ > 0 then ∀n = 1, 2, 3, . . . ,m , we have[
ρ
κD

ω,θ
a+ (yρ − aρ)

∇−n
]
(z) = 0. (4.11)

Proof To simplify the notation, we suppose that χ = (1−θ)(κm−ω)
κ , so from Definition 4.1 and Equation (2.11),

we obtain (
κmρ

κℑ
(1−θ)(κm−ω)
a+ (yρ − aρ)

∇−n
)
(z) =

κmρ1−χ

κΓκ [kχ]

∫ z

a

(zρ − yρ)
χ−1

yρ−1(yρ − aρ)
∇−n

dy.

116



NAZ and NAEEM/Turk J Math

Now, change the variable in the above expression by v = yρ−aρ

zρ−aρ and from Equation (2.5), we get

(
κmρ

κℑ
(1−θ)(κm−ω)
a+ (yρ − aρ)

∇−n
)
(z) =

κmρ−χ

Γκ [kχ]
(zρ − aρ)

m−n

{
1

κ

∫ 1

0

(1− v)
χ−1

v∇−ndv

}

=
κmρ−χΓκ [κ (∇− n+ 1)]

Γκ [κ (m− n− 1)]
(zρ − aρ)

m−n
.

Calculating the δmρ
(
κmρ

κℑ
(1−θ)(κm−ω)
a+ (zρ − aρ)

m−n
)
(z) , i.e.,

(
z1−ρ d

dz

)m

(zρ − aρ)
m−n

=

(
z1−ρ d

dz

)m−1 (
z1−ρ d

dz

)
(zρ − aρ)

m−n

= ρ (m− n)

(
z1−ρ d

dz

)m−1

(zρ − aρ)
m−n−1

.

Differentiating (m− 1) -times, we yield(
z1−ρ d

dz

)m

(zρ − aρ)
m−n

= ρm (m− n) (m− n− 1) ... (2− n) (1− n) (zρ − aρ)
−n

= 0. (4.12)

as n = 1, 2, . . . ,m , for each value of n , the product in equation (4.12) in null. Which shows that the generalized

k -fractional Hilfer–Katugampola derivative of order ω of a polynomial (yρ − aρ)
∇−n is null. 2

5. Equivalence between Cauchy problem and Volterra integral equation
In this section, we will show the equivalence between Cauchy problem and Volterra integral equation of second
kind. Following theorem will prove the required result.

Theorem 5.1 Let ω > 0 and m = [ω]+1 , where m ∈ N . Let H is an open set in R such that g : (a, b]×H → R
be a function such that g (z, ψ (z)) ∈M (a, b) for any ψ ∈ H . If ψ ∈ H then H satisfies the relation(

ρ
κD

ω,θ
a+ ψ

)
(z) = g (z, ψ (z)) (5.1)(

ρ
κℑ

(1−θ)(κm−ω)−κ(m−n)
a+ ψ

) (
a+

)
= bn, bn ∈ R, n = 1, 2, . . . ,m. (5.2)

Iff ψ satisfies the Volterra integral equation,

ψ (z) =

m∑
n=1

bn
Γκ [κ (∇− n+ 1)]

(
zρ − aρ

ρ

)∇−n

+
1

κΓκ (ω)

∫ z

a

(
zρ − yρ

ρ

)ω
κ−1

yρ−1g (z, ψ (z)) dy, (5.3)

where ∇ is defined in equation (A).

Proof ⇒ We suppose that ψ ∈ M (a, b) satisfy Equations (5.1) and (5.2). As ψ ∈ M (a, b) exists and(
ρ
κD

ω,θ
a+ ψ

)
(z) ∈M (a, b) , now applying the operator ρ

κℑω
a+ on both sides of Equation (5.1) and utilize Theorem

4.3 and Equation (5.2), we yield (
ρ
κℑω

a+
ρ
κD

ω,θ
a+ ψ

)
(z) =

(
ρ
κℑω

a+g (z, ψ (z))
)
(z)
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ψ (z)−
m∑

n=1

(
κmρ

κℑ
(1−θ)(κm−ω)−κ(m−n)
a+ ψ

)
(a)

Γκ [κ (∇− n+ 1)]

(
zρ − aρ

ρ

)∇−n

=
(
ρ
κℑω

a+g (z, ψ (z))
)
(z)

ψ (z) =

m∑
n=1

(
κmρ

κℑ
(1−θ)(κm−ω)−κ(m−n)
a+ ψ

)
(a)

Γκ [κ (∇− n+ 1)]

(
zρ − aρ

ρ

)∇−n

+
(
ρ
κℑω

a+g (z, ψ (z))
)
(z).

Using Lemma 3.1, the integral
(
ρ
κℑω

a+g (z, ψ (z))
)
(z) ∈M(a, b) , so Equation (5.3) follows.

⇐ Suppose that ψ ∈ M (a, b) satisfies Equation (5.3). Now applying the operator ρ
κD

ω,θ
a+ on both sides of the

Equation (5.3), we have(
ρ
κD

ω,θ
a+ ψ

)
(z) =

m∑
n=1

bn
Γκ [κ (∇− n+ 1)]

[
ρ
κD

ω,θ
a+ (zρ − aρ)

∇−n
]
(z) +

(
ρ
κD

ω,θ
a+

(
ρ
κℑω

a+g (z, ψ (z))
))

(z).

From Theorems 4.2 and 4.4, Equation (5.1) follows, apply the operator ρ
κℑ

(1−θ)(κm−ω)−κ(m−n)
a+ with n = 1, 2, . . . ,m

to prove the validity of Equation (5.2) on both sides of Equation (5.3),(
ρ
κℑ

(1−θ)(κm−ω)−κ(m−n)
a+ ψ

)
(z) =

m∑
n=1

bn
Γκ [κ (∇− n+ 1)]

[
ρ
κℑ

(1−θ)(κm−ω)−κ(m−n)
a+

(
zρ − aρ

ρ

)∇−n
]

+
(
ρ
κℑ

(1−θ)(κm−ω)−κ(m−n)
a+

(
ρ
κℑω

a+g (z, ψ (z))
))

(z)

=

m∑
n=1

bn
Γκ [κ (∇− n+ 1)]

(
zρ − aρ

ρ

)m−n

+
(
ρ
κℑ

κ(n−θm)+ωθ
a+

(
ρ
κℑω

a+g (z, ψ (z))
))

(z).

Let z → aa+ , we have (
ρ
κℑ

(1−θ)(κm−ω)−κ(m−n)
a+ ψ

) (
a+

)
= bn, with n = 1, 2, . . . ,m.

2

6. Linear differential equations of noninteger order

In this section, we discuss some special cases of function g (z, ψ (z)) that appear in Theorem 5.1. As a
consequence, we suggest to apply the method of successive approximations to obtain an empirical solution
for the resulting linear fractional differential equations. Let us first consider g (z, ψ (z)) in Theorem 5.1.

Theorem 6.1 Let ω, η ∈ R+ with m− 1 < ω ≤ m− 1 with m ∈ N . If ψ ∈M (a, b) , then the Cauchy problem(
ρ
κD

ω,θ
a+ ψ

)
(z) = g (z, ψ (z)) (6.1)(

ρ
κℑ

(1−θ)(κm−ω)−κ(m−n)
a+ ψ

) (
a+

)
= bn, bn ∈ R, n = 1, 2, . . . ,m, (6.2)

concedes a unique solution in the space M (a, b) , given by

ψ (z) =

m∑
n=1

(
zρ − aρ

ρ

)∇−n

Fκ,ω,κ(∇−n+1)

[
η

(
zρ − aρ

ρ

)ω
κ

]
, (6.3)
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where Fκ,β,γ is defined in Equation (2.8).

Proof Thus, according to Theorem 5.1, it is only necessary to solve the integral equation of Volterra Equation
(5.1), with g (z, ψ (z)) . The uniqueness of Equation (5.1) is assured, as the Volterra integral equation of second
kind admits a special solution (6.3). We use the form of successive approximations to find the exact solution,
that is to say we consider

ψ0 (z) =

m∑
n=1

bn
Γκ [κ (∇− n+ 1)]

(
zρ − aρ

ρ

)∇−n

(6.4)

ψj (z) = ψ0 (z) +
η

κΓκ (ω)

∫ z

a

(
zρ − yρ

ρ

)ω
κ−1

yρ−1ψj−1 (z) dy. (6.5)

Define the parameter

∇n =
θ(κm− ω) + ωn

k
, with n = 1, 2, . . . , j + 1. (6.6)

When n = 1 , we get ∇1 = ∇ as given by equation (A), so from Equation (6.1), we have

ψ1 (z) = ψ0 (z) +
η

κΓκ (ω)

∫ z

a

(
zρ − yρ

ρ

)ω
κ−1

yρ−1ψ0 (z) dy

= ψ0 (z) +

m∑
n=1

ηbn
Γκ [κ (∇− n+ 1)]

[
ρ
κℑω

a+

(
zρ − aρ

ρ

)∇−n
]
(z).

By using Theorem 5.1, we have

ψ1 (z) =

m∑
n=1

bn
Γκ [κ (∇− n+ 1)]

(
zρ − aρ

ρ

)∇−n

+

m∑
n=1

bn
Γκ [κ (∇2 − n+ 1)]

(
zρ − aρ

ρ

)∇2−n

(6.7)

=

m∑
n=1

bn

2∑
n=1

ηn−1

Γκ [κ (∇n − n+ 1)]

(
zρ − aρ

ρ

)∇n−n

. (6.8)

Likewise, with Equation (6.8) and Theorem 5.2, we get the expression for ψ2 (z) , i.e.

ψ2 (z) = ψ0 (z) +
η

κΓκ (ω)

∫ z

a

(
zρ − yρ

ρ

)ω
κ−1

yρ−1ψ1 (z) dy

= ψ0 (z) + η

m∑
n=1

bn

2∑
n=1

ηn−1

Γκ [κ (∇n − n+ 1)]

[
ρ
κℑω

a+

(
zρ − aρ

ρ

)∇−n
]
(z)

=

m∑
n=1

bn

3∑
n=1

ηn−1

Γκ [κ (∇n − n+ 1)]

(
zρ − aρ

ρ

)∇n−n

.

Continuing the process, we get the expression for ψj (z) for j ∈ N

ψj (z) =

m∑
n=1

bn

j+1∑
n=1

ηn−1

Γκ [κ (∇n − n+ 1)]

(
zρ − aρ

ρ

)∇n−n

.
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Let j → ∞ , the solution for ψ (z) is

ψ (z) =

m∑
n=1

bn

∞∑
n=1

ηn−1

Γκ [κ (∇n − n+ 1)]

(
zρ − aρ

ρ

)∇n−n

.

We have modified the summation index by n = n+ 1

ψ (z) =

m∑
n=1

bn

∞∑
n=1

ηn−1

Γκ [κ (∇n+1 − n+ 1)]

(
zρ − aρ

ρ

)∇n+1−n

.

However, in terms of the κ -new generalized Mittag–Leffler function, we can rewrite this last expression as

ψ (z) =

m∑
n=1

(
zρ − aρ

ρ

)∇−n

Fκ,ω,κ(∇−n+1)

[
η

(
zρ − aρ

ρ

)ω
κ

]
. (6.9)

2

Theorem 6.2 Let ω, µ ∈ R , ω > µ > 0 , m−1 < ω ≤ m , where m ∈ N and η ∈ R . Then the Cauchy problem
is (

ρ
κD

ω,θ
a+ ψ

)
(z) = η

(
ρ
κD

γ,θ
a+ψ

)
(z)(

ρ
κℑ

(1−θ)(κm−ω)−κ(m−n)
a+ ψ

) (
a+

)
= bn, bn ∈ R, n = 1, 2, . . . ,m,

concedes a unique solution in the space M (a, b) , given by

ψ (z) =

m∑
n=1

bn

(
zρ − aρ

ρ

)ζ−n

Fκ,ω,κ(ξ−n+1)

[
η

(
zρ − aρ

ρ

)ω−γ
κ

]
,

where ξ =
ω + θ (mκ− ω + γ)

κ
.

Proof Suppose that the solution ψ(z) =
(
ρ
κℑ

γ
a+f

)
(z) ∈M(a, b) , then we have(

ρ
κD

ω,θ
a+

ρ
κℑ

γ
a+f

)
(z) = η

(
ρ
κD

γ,θ
a+

ρ
κℑ

γ
a+f

)
(z) .

By using Theorem 4.2, we obtain (
ρ
κD

γ,θ
a+

ρ
κℑ

γ
a+f

)
(z) = f (z)(

ρ
κD

ω,θ
a+

ρ
κℑ

γ
a+f

)
(z) =

(
ρ
κD

ω−γ,θ
a+ f

)
(z)(

ρ
κD

ω−γ,θ
a+ f

)
(z) = ηf(z).

So letλn = (ω−γ)+ω+γ+θ(nκ−ω+γ)
κ , when n = 1 , we have λn = λ .

Now let ω → ω − γ in Theorem 6.1, we obtain

g (z) =

m∑
n=1

(
zρ − aρ

ρ

)λ−n

Fκ,ω−γ,κ(λ−n+1)

[
η

(
zρ − aρ

ρ

)ω−γ
κ

]
. (6.10)
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ψ(z) =
(
ρ
κℑ

γ
a+f

)
(z)

Applying the operator ρ
κℑ

γ
a+ on both sides of Equation (6.10), we obtain

(
ρ
κℑ

γ
a+g

)
(z) =

m∑
n=1

bn

∞∑
n=0

ηn

Γκ [κ (λm − n+ 1)]

[
ρ
κℑ

γ
a+

(
zρ − aρ

ρ

)λm−n
]
(z).

By using the Theorem 3.2 and rewriting the expression, we get

ψ (z) =

m∑
n=1

bn

(
zρ − aρ

ρ

)ξ−n

Fκ,ω−γ,κ(ξ−n+1)

[
η

(
zρ − aρ

ρ

)ω−γ
κ

]
.

2

We consider a sequence of linear fractional differential equations of order ωm in the next theorem.

Theorem 6.3 Let ω, µ ∈ R , ω > µ > 0 , m−1 < ω ≤ m , where m ∈ N and η ∈ R . Then the Cauchy problem
is (

ρ
κD

mω,θ
a+ ψ

)
(z) = ηψ (z) (6.11)(

ρ
κℑ

(1−θ)(κm−mω)−κ(m−n)
a+ ψ

) (
a+

)
= bn, bn ∈ R, n = 1, 2, . . . ,m, (6.12)

concedes a unique solution in the space M (a, b) , given by

ψ (z) =

m∑
n=1

bn

(
zρ − aρ

ρ

)∇m−n

Fκ,ωm,κ(ξm−n+1)

[
ηm

(
zρ − aρ

ρ

)ωm
κ

]
, (6.13)

where ∇m = θ(mκ−ωm)+ωm
κ .

Proof ω → ωm in Theorem 6.1, we obtain the solution (6.13). 2

7. Reliance on initial conditions
We present in this section the changes in a solution involving minor changes in initial conditions. Consider
Equation (5.1) with the following modifications in the initial conditions in Equation (5.2),(

ρ
κℑ

(1−θ)(κm−ω)−κ(m−n)
a+ ψ

) (
a+

)
= bn + µn, bn ∈ R, n = 1, 2, . . . ,m, (7.1)

where µn , ∀n = 1, 2, . . . ,m are arbitrary constants.

Theorem 7.1 Assume that hypothesis in Theorem 5.1 is fulfilled. Let ψ (z) and ψ̃ (z) be the initial value
problem solutions of Equations (5.1) and (5.2). Then

∣∣∣ψ (z)− ψ̃ (z)
∣∣∣ ≤ m∑

n=1

|µn|
(
zρ − aρ

ρ

)ω+θ(mκ−ω)
κ −n

Fκ,ω,ω+θ(mκ−ω)−κ(n−1)

[
C

(
zρ − aρ

ρ

)ω
κ

]
,

where z ∈ (a, b] and Fκ,β,γ(z) is defined in Equation (2.8).
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Proof From Theorem 5.1, we have
ψ(z) = lim

j→∞
ψj(z),

where ψ0(x) is given in Equation (6.4) and

ψj (z) = ψ0 (z) +
1

κΓκ (ω)

∫ z

a

(
zρ − aρ

ρ

)ω
κ−1

yρ−1g(z, ψj−1 (z))dy. (7.2)

We have,

ψ̃(z) = lim
j→∞

ψ̃j(z) (7.3)

ψ̃0 (z) =

m∑
n=1

bn + µn

Γκ [κ (∇− n+ 1)]

(
zρ − aρ

ρ

)∇−n

(7.4)

ψ̃j (z) = ψ̃0 (z) +
1

κΓκ (ω)

∫ z

a

(
zρ − yρ

ρ

)ω
κ−1

yρ−1g(z, ψ̃j−1 (z))dy, j = 1, 2, . . . . (7.5)

From Equations (6.4) and (7.4), we have∣∣∣ψ0 (z)− ψ̃0 (z)
∣∣∣ ≤ m∑

n=1

|µn|
Γκ [κ (∇− n+ 1)]

(
zρ − aρ

ρ

)∇−n

. (7.6)

Eventually, we consider Equations (7.2) and (7.5) with j = 1 , the Lipschitz function condition g (z, ψ (z)) ,
Definition 2.2, Equation (7.6) and Theorem 3.2 inequality, in order to obtain∣∣∣ψ1 (z)− ψ̃1 (z)

∣∣∣ ≤ m∑
n=1

|µn|
Γκ [κ (∇− n+ 1)]

(
zρ − aρ

ρ

)∇−n

+
C

κΓκ (ω)

∫ z

a

(
zρ − yρ

ρ

)ω
κ−1

yρ−1
[
g (z, ψ0 (z))− g

(
z, ψ̃0 (z)

)]
dy

≤
m∑

n=1

|µn|
Γκ [κ (∇− n+ 1)]

(
zρ − aρ

ρ

)∇−n

+
C

κΓκ (ω)

∫ z

a

(
zρ − yρ

ρ

)ω
κ−1

yρ−1
∣∣∣ψ0 (z)− ψ̃0 (z)

∣∣∣ dy
≤

m∑
n=1

|µn|
Γκ [κ (∇− n+ 1)]

(
zρ − aρ

ρ

)∇−n

+
C

κΓκ (ω)

∫ z

a

(
zρ − yρ

ρ

)ω
κ−1

yρ−1

(
yρ − aρ

ρ

)∇−n

dy

=

m∑
n=1

|µn|
2∑

n=1

Cn−1

Γκ [κ (∇n − n+ 1)]

(
zρ − aρ

ρ

)∇n−n

,

where ∇n is defined in Equation (6.6), repeating the process we have,∣∣∣ψj (z)− ψ̃j (z)
∣∣∣ ≤ m∑

n=1

|µn|
j+1∑
n=1

Cn−1

Γκ [κ (∇n − n+ 1)]

(
zρ − aρ

ρ

)∇n−n

.
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Now let j → ∞ and n→ n+ 1 , so it follow that∣∣∣ψ (z)− ψ̃ (z)
∣∣∣ ≤ m∑

n=1

|µn|
(
zρ − aρ

ρ

)∇−n

Fκ,ω,κ(∇−n+1)

[
C

(
zρ − aρ

ρ

)ω
κ

]
.

2

8. Conclusion
For a fractional derivative recently discussed in [20], we proposed a generalization obtained by introducing
a new parameter in its definition. This generalization retrieves a wide collection of definitions of classical
fractional derivatives for adequate values of its parameters. We introduced a few properties of this generalized
κ -fractional Hilfer–Katugampola derivative. We also discussed the equivalence between a Cauchy problem,
using this fractional differentiation operator and a second kind of Volterra integral equation. We have found
several particular cases for this Cauchy problem and have shown that minor changes to initial conditions require
minor changes in the solution of the problem.
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