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Abstract: We generalize the r-fractional Hilfer—-Katugampola derivative and set some properties of the generalized
operator resulting from this. As an application, we demonstrate that the Cauchy problem with this new definition is

equivalent to a second kind of Volterra integral equation. We discuss some specific cases for this problem.
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1. Description

There are a few issues where noninteger order derivatives play a pivotal role [1, 3, 20, 22, 26]. It ought to be
stressed that fractional derivative are introduced from distinct ways, specifically, describing three unmistakable
ways, which we will make reference to so as to build up the work in one of them.

Normally, every typical fractional derivative is defined in respect of a specific integral. Among the most
notable definitions of noninteger order derivatives we may make reference to the Caputo, Grunwald—Letnikov,
Hadamard and Riemann-Liouville derivatives [2, 6], whose details include integrals with singular kernels and
which are utilized to contemplate, for instance, issues including the memory impact [19]. Then again, various
plans of fractional derivatives have appeared in the literature [15], in the year 2010. From a few points of view,
these new formulations vary from the old style ones. For example, classical fractional derivatives are described
so that one recovers the old style derivatives in the sense of Newton and Leibniz in the cutoff, where there is
a whole number in the request for the derivative. A new fractional derivative has also been recently proposed
in [5, 18]. Another fractional derivative with a comparing integral whose kernel can be a nonsingular function,
such as a Mittag—Leffler function [29], was additionally proposed as of late. Integer order derivatives are also
managed to recover in such cases by considering adequate limits for the values of their parameters.

In comparison, there are numerous approaches to acquire a speculation of classical fractional derivatives.
A few authors describe the parameters in classical definitions or in some specific functions [8, 10, 14, 20, 27].
Likewise, in an ongoing paper [13], the authors present a boundary and discuss on two specific spaces, which they
call the generalization of fractional derivative and further propose a Caputo modification of this generalization.

In this paper, we are interested in the k-fractional Hilfer—Katugampola derivative, which generalize the

Hilfer-Katugampola derivative. Particularly, to study the existence and uniqueness of its solutions and their
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dependence on initial conditions. We propose a new generalization of x-fractional derivatives and discuss a
general Cauchy problem. We retrieve a broad class of fractional derivatives as a product.

Gauhar et al. [23] presented the extended Caputo fractional derivative operator and by using Mittag—
Leffler function as kernel. They generate the relations for the hypergeometric functions. Martin et al. [4]
establish the extended Riemann-Liouville fractional derivative operator by using the extended beta function
and use the Bessel function as the kernel. They presented some new results like Mellin transform, hypergeo-
metric function and relation Appell’s function of generating functions. Fully extended beta function, extended
hypergeometric function and an extended confluent hypergeometric function were presented by Mubeen et al.
[24] in 2018. Recently, Subashini et al. [28] presented the nonlocal functional integro differential equations by
using the Hilfer fractional derivative. They use the Monch fixed point theorem and presented some theoretical
results in 2020. Gauhar et al. [21] in 2018 defined a fractional operator and use it to find the Mellin trans-
form and some fascinating results. Gauhar et al. [25] presented the generalized s-fractional with the help of
k-Mittag—Leffler function and wright hypergeometric functions.

In this paper, the contents are sorted out in various sections. In Section 2, the definition of the x-fractional
integrals in the senses of Riemann—Liouville and Hadamard, the spaces and x-Mittag—Leffler functions which
mainly focus on our work are presented. Some properties of x-fractional Hilfer—Katugampola derivative are
presented in Section 3. In Section 4, we introduce a generalized k-fractional Hilfer—-Katugampola derivative
and demonstrate that a wide list of definitions of fractional derivatives can be recovered using appropriate
parameters. As an application, introduced using theorems in the previous section, we approach linear fractional
differential equations via study the Cauchy problem, the existence and uniqueness of its solution and its

dependence on the initial conditions in the Sections 5, 6, and 7. In Section 8, concluding remarks are given.

2. Prelude
To present the k-Mittag—Leffler function, let us present the idea of gamma function, beta function or the
Pochhammer symbol. Diaz et al. [8] were the first to characterize k-gamma function, k-beta function and

k-Pochhammer symbol.

Definition 2.1 The k-gamma function is defined as

Fﬁ(z):/ tzflef%dt, (2.1)

0

with z,k > 0.
It has the following relationships
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Or as to a quotient of function k-gamma,

Ty (z +mk)

(D = T T2 (2.4)

Definition 2.3 Finally, the function k-beta is described by

1t z_
B,{(y,z):;/ we (1 —w)* tdu, y>0, z2>0, k>0, (2.5)
0

when k — 1 then By (y,2) = B (y,2).

In terms of k-gamma function, the k-beta function can be written as follows:

z

and By (y,2) = %ﬁ(%, n)' (2.6)

Br (y,2) = = (ZZ

)Lw (2)
To(y+2) '

Mittag—Leffler function plays a very significant role in solving integral equations and linear differential
equation [16, 17].

Definition 2.4 Dorrego and Cerutti [9] defined the so-called k-Mittag—Leffler function as follows for the

generalization of these functions:

ad 5
Fg)am(x)zzr(#%, zeR, a>0, n>0, (2.7)

where m € N and (9) is the k-Pochhammer symbol defined in equation (2.3).

m,K

Definition 2.5 Gupta and Parihar [12] used the following sequence to describe the so-called k-new generalized
Mittag—Leffler function.

reR, B>0, v>0, (2.8)

where m € N.

Until presenting the definition of k-fractional integrals and their generalization. We characterize the

specific function spaces for such definitions and Lipschitz condition for the function g (z, ).

Definition 2.6 [16] Let [a,b] be a finite or infinite interval on the real azis R = (—o0,00). By M, = (a,b),

we denote the set of the complex-valued Lebesgue measurable function ¥ on |a,b],

[ b
M, (a,b) = 1/):1/Jq:q/|1/1(z)|qdz<+oo , 1<g<oo. (2.9)

In case if ¢ =1, we have My (a,b) = M (a,b).
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Definition 2.7 [7] Suppose that g (z,v) is set to the collection (a,b] x H and H C R. A function g (z,v)
fulfills the condition of Lipschitz with respect to 1, if Vz € (a,b] and for 1,193 € R then,

19 (z,91) — g (2,92)| < Ol — ol ,

where C' > 0 and it does not depend on z.

Definition 2.8 Katugampola [14] presented the alleged k-Riemann—Liowville fractional integral, a generaliza-
tion of the Riemann—Liouville fractional integral, got for k = 1. Left sided (right sided) integral is defined for
Y (z) € M(a,b) as,

W 2) = 1] @ -y p—1 w z>a
o) (= 2r [ (F22) v teman wx0 o (2.10)

a

Definition 2.9 Recently, Sarikaya et al. [27] presented k-fractional integral that recovers the k-Riemann—
Liowville at adequate limits. The left and right sided operator is defined with m —1 <w <m, me N, p>0,
k>0 as

z _ -1
ez o= [ (F28) vteean w0 esa (2.11)

3. Auxiliary results

We currently present a few properties of the fractional integrals characterized in the previous section, so as to
utilize them all through this work. We start by introducing the semigroup property for the r-fractional integral

and an application to the force work, the two theorems are found in [27].
Theorem 3.1 Let w >0, 6 >0, k>0 and ¢ € My(a,b), then
(ﬁg‘éﬁgﬁ ) (2) = (Ié%‘;iel/’) (2) = <£%Z+£%Z)+ ) (2).

Theorem 3.2 Let w >0, § >0, k>0 and ¥ € M,(a,b), then

2 r (’y) wty
w 1 K 1
ESar (2 —af)= 7 (2) = m@p —a’) " .

Lemma 3.3 [27] Let ¢ € M(a,b), the k-Riemann—Liouville fractional integral of order w > 0 is bounded in
the space M (a,b),

1285wl < Nl (3.1)

1 b —af\ *
N = .
wl's (w) ( p )

In terms of some corresponding fractional integral, most fractional differentiation operators are defined.

where

We now present the definition of Hilfer—Katugampola fractional derivative which is associated with the Riemann—

Liouville fractional integral.
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Definition 3.4 [22/ Let m —1<w<m,0<0<1, meN, p>0, k>0 and ¥ € M (a,b), where w is the
order and 0 is the type, the Hilfer—Katugampola fractional derivative (left sided and right sided) is defined as,

m-) [ 1-p A\ pa1=0)(m—w
PDZf¢(z)=i<%Z(i )(zl ”dz> Py )(z) (3.2)
=& (SU sy (2), (3:3)

where 6" = (zl’p%)m and PSY, is the integral defined in Equation (2.10).

4. Generalized k-fractional Hilfer—Katugampola derivative

In this section, generalization of Hilfer-Katugampola derivative is presented. Here we consider that w € RT
and m —1 <w <m and m € N. The fractional integral aligned with this differentiation operator is given in
Equation (2.11).

Definition 4.1 Let m —1<w <m, 0< 6 <1, meN, p>0, k>0 and ¢ € M, (a,b), the generalized
k -Hilfer-Katugampola fractional derivative (left sided and right sided) is defined as

(0500 ) = = (287 (30 ) (wmasls " =4) ) ) (@)
== (f9et™ ey (ki) ) (@), (42)

where 5;” = (zl’pﬁ)m.

Theorem 4.2 Let w € RT and p,k > 0. For ¢ € M, (a,b) and 1 < q < 0o, then we have

(2Ds052,0) () = (). (4.3)
Proof To simplify the notation, we define
Qze(nm—w) and A=m-—Q. (4.4)
K

From Definition 4.1 and Theorem 3.1, we have

(25898, (2) = (800 op (el ey )) (z) (4.5)
Hm72p2707A z a—1 Yy A
— P _ P p—1gm p_ pp A1 -1 4
e | @ | [ e et @ ad a0
G(y)

For the integral within the bracket, let v (x) as first term and (y” — :v")A_l as second term and integrate by

parts, we yield

cwy="" s -+ [T - e @ acf. (17)

a
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Now, apply the operator J," to the equation (4.7). By mathematical induction, we have the following expression

mfl Y
o = Lo v @ e e [ oty @) asf (1)

Substitute Equation (4.8) into Equation (4.6) and utilize the first expression of Equation (2.2), to get

(20528%0) (2) = —m a o T {¢ (a)/a (22— gy — )y

+ /a U’ (2) dz /x (= =)y - w’))Qdﬂc} :

In the integral from a to z change the variable u = v=

ﬁ, similarly changing the variable in the integral from

y to z, we get

(202025220 0= g ey (e, 40 (v o).

Use the expression two of Equation (2.2), we obtain

(:022920) 9 = ey L @+ [ e

+/:¢'(z)dz

Eventually, by fundamental theorem of calculus, from which it immediately follows

(2D5fa98,0) (2) =¥ (=),

which shows that ﬁD:’;jf and £, are inverse operator of each other. O

Theorem 4.3 Let w >0, m = [w] + 1, where m € N. If ¥ € M, (a,b) and (p“(ﬂ_ 0)(wm—w)—r(m— ")w) (z) €
ACY [a,b], then

px(1=0)(km—w)—K(m—n) _
w w, m (m a+ w) (a) 2P — aPf V-n
(28¢,2080%) (2) ) T ( ; ) , (4.9)

n=

—

where

V= (4)
and in particular, if 0 <w < 1 then
p(1=0)(k—w)—r(1—n)
yw w,0 _ ( Sat 1/}) (a‘) 2P — aPf V—n
(s92.8D200) () =¥ () - F G o R D) ( - ) | (4.10)
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Proof We can write from Definition 4.1,
(29w.2D50w) (2) = (6926800 g (eSO ) (2)

- ot (et )
o [ (s )

Integrating by parts the last expression, we obtain

(e2,2570) (5) = L& (_chp)v_l {571 (a2 0) (a)}

PV —a)"

it [ =Ty (el ) (@) .

Now integrating by parts (m — 1)-times, we yield

—

(292,2050) () == 3

=1

4 1 2P _yp V—m-1 o1 (p%ufe)(mmfw)w)( )d
k(Y —m)]Js \ p Ve v

o7t (e SETO ) () /e ey T
KHIT, [k (V —n)] p

3

ot (eSO ey (a) ( - )v

m—1 §
; KT [k (V —n)] p

+ (£%Z$m7w)+w7mn zgt(lifﬁ)(nmfw)w) (Z)

m op (5 O) (a) £ oy T
=9 () =) k"D [5(V —n+1)] ( p >

n=1

(2887 (@) oy T
e T

=P(z) -

n=1

Theorem 4.4 Let w,0 e R, m—1<w<m, meN, 0<0<1 and kK >0 then Yn=1,2,3,...,m, we have
2Dy = a7 () =0, (4.11)

Proof To simplify the notation, we suppose that y = % , so from Definition 4.1 and Equation (2.11),
we obtain

m ,1—x z
m 1-0)(km—w V—n R -1 p— V—n
(H £ Ty — af) ) ) = i /a (= =)y Y —a”) My,
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_ y’—a”
T zPp—qP

m o — 1
mpa(1=0)(km—w), p  5\V-n _ KT L, pymen l/ 1 — o1,V -ng
(kestly (v —a)"") (2) g &~ ) ol AL A

_ KM~ XTy [k (V —n + 1)) (2 — aP) ",

Ty[k(m—n—1)

Now, change the variable in the above expression by v and from Equation (2.5), we get

Calculating the 47" (nmﬁ%&__e)(“m_w)(zp — ap)m_n) (2), i.e.,

m m—1
(zlpjz> (2P —a”)" " = (zlpjz> (zlpjz> (2P —a”)" "

d m—1
=p(m—n) (ledz> (z° —a”)™ "L,
Differentiating (m — 1)-times, we yield
1— d " m—n m —n
z p@ (2° —a”) =p"(m-n)(m-n—-1)...2—-n)(1—n)(z —a”)"" =0. (4.12)
as n=1,2,...,m, for each value of n, the product in equation (4.12) in null. Which shows that the generalized
k-fractional Hilfer—Katugampola derivative of order w of a polynomial (y” — ap)vfn is null. O

5. Equivalence between Cauchy problem and Volterra integral equation

In this section, we will show the equivalence between Cauchy problem and Volterra integral equation of second

kind. Following theorem will prove the required result.

Theorem 5.1 Let w > 0 and m = [w]|+1, where m € N. Let H is an open set in R such that g : (a,b]x H — R
be a function such that g (z,v (2)) € M (a,b) for any v € H. If v € H then H satisfies the relation

(2050 (2) = 9 (2.0 (=) (5.1)
(gsf:‘”(“m*”)*“(mf"w) (@*) =bn, bo€R, n=1,2,...,m. (5.2)

Iff ¥ satisfies the Volterra integral equation,

where V is defined in equation (A).

Proof = We suppose that ¢ € M (a,b) satisfy Equations (5.1) and (5.2). As ¢ € M (a,b) exists and
(ﬁfow) (2) € M (a,b), now applying the operator £3%, on both sides of Equation (5.1) and utilize Theorem
4.3 and Equation (5.2), we yield

(282 2020%) (2) = (29219 (2 (2)) (2)
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) [ AN e
( + ) (zP ap) = (°9%, 9 (2,9 (2))) (2)

w(z)_; To[5(V —n+t1) P

Kmﬁg((ll—e)(mm—w)—&(m—n)w (a) _ V_n
i ) (F57) T estoGue) ©.

m
i P T S ;
Using Lemma 3.1, the integral (£S%, g (z,v (2))) (2) € M(a,b), so Equation (5.3) follows.

< Suppose that ¥ € M (a,b) satisfies Equation (5.3). Now applying the operator QD;Jf on both sides of the
Equation (5.3), we have

= b _
w,0 n w,0 V—n w,0 w
(8050%) () = X iy L0A G = )T )+ (805 (29540 (5 () (2)
n=1""
From Theorems 4.2 and 4.4, Equation (5.1) follows, apply the operator g%aa__e)(ﬁm_w)_ﬁ(m_n) withn=1,2,...,m

to prove the validity of Equation (5.2) on both sides of Equation (5.3),

(1-0)(km—w)—k(m—n) < bn (1-6)(km—w)—r(m—n) 2P —a” von
(& ¥) =3 f ey | (p)

i (gsgl_:@)(nm—w)—n(m—n) (Q%Z)_;_g (Z, ¥ (Z)))) (Z)

S e (5E)

+ (B85 (097 0 (5,0 () (2).

Let z — aq4, we have

(gsgi‘f’)(”m‘“)‘“(m‘")w) (a*) =b,, with n=1,2 .. m.

6. Linear differential equations of noninteger order

In this section, we discuss some special cases of function g (z,® (z)) that appear in Theorem 5.1. As a
consequence, we suggest to apply the method of successive approximations to obtain an empirical solution

for the resulting linear fractional differential equations. Let us first consider ¢ (z,% (z)) in Theorem 5.1.
Theorem 6.1 Let w,n € RY with m—1<w <m—1 with m € N. If ) € M (a,b), then the Cauchy problem
(205%) () = 9 (2, (2)) (6.1)
(g%gi”(“m*”)*“(m*"w) (@*) =bn, bn€R, n=1,2..,m, (6.2)

concedes a unique solution in the space M (a,b), given by

P (z) = Zm: (Zp - ap>v_nFn,w,n(Vn+1) [U(ZP — ap) 1 ) (6.3)

P P
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where F; g is defined in Equation (2.8).

Proof Thus, according to Theorem 5.1, it is only necessary to solve the integral equation of Volterra Equation
(5.1), with g (2,7 (2)). The uniqueness of Equation (5.1) is assured, as the Volterra integral equation of second
kind admits a special solution (6.3). We use the form of successive approximations to find the exact solution,

that is to say we consider

- by, 2 —aqP\V "
%(Z)‘,;rn[nw—nﬂ)]( p > o4
Y, (2) = o (2) + ,ﬂ“:(w) /Z (zﬂ ; yp) " yP b1 (2) dy (6.5)

Define the parameter

O(km — w) + wn

v, = : . with n=1,2,...,5+1. (6.6)

When n =1, we get V1 =V as given by equation (A), so from Equation (6.1), we have

Y1 (2) = o (2) + HF,:](LL)) /: (Zp ; yp) %_131”_11&0 (z) dy

- nbn P Cyw zP —a” von
:wo(szm[n(V—nH)] ”J”( p ) ](Z).

n=1

By using Theorem 5.1, we have

Y <prap)v_n - i T, [n(v:n— n+ 1) <Zp p ap>V2_n (6.7)

n=1

i n—1n+1>1 (;>v (6.8)

=L
>

Likewise, with Equation (6.8) and Theorem 5.2, we get the expression for ¢ (2), i.e.

nE=nE+ ol (22 y) T G

(40t ZF — z%(’zpp“p)v_n] )

2P — ap>v"n

Vn—n+1)]< p

n—1

m 3
LT

Continuing the process, we get the expression for ; (z) for j € N

m Jj+1 Van—n
P aP) n

Zb ZF —n+1)]< p
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Let j — oo, the solution for v (z) is

Zb Zr o)

We have modified the summation index by n =n+1

e n 1

m 2P qf Vapgs1—n
g ; Vi1 —n+1)] ( p ) .

However, in terms of the k-new generalized Mittag—Leffler function, we can rewrite this last expression as

P _gP\V " 2P gP\ ®
Z ( ) Fn,w,n(v—n+l) [77( ) ‘| . (69)

p

O

Theorem 6.2 Let w,p € R, w>pu>0, m—1<w<m, where m € N and n € R. Then the Cauchy problem

s
(2050 (2) = (2070 (2)
(g%gi”(“m*”)*“(m*"w) (@*) =bn, bn€R, n=1,2..,m,

concedes a unique solution in the space M (a,b), given by

m ¢—n =
2P _ P zP—af\ *
Z) = Z bn( ) Fﬁ,gj,ﬁ(f*ﬂ‘#l) |f7< ) ‘| )
n=1 P P

w0 (mrk—w+7)
- .

where & =

Proof Suppose that the solution 9 (z) = (237, f) (z) € M(a,b), then we have
(2050297, £) (2) = 0 (4D200S7,£) (=),
By using Theorem 4.2, we obtain
(2030497, 0) (2) = 1 (2)
at+ kSa+
(2D50857,7) (2) = (80277 (2)
(2D257°F) (2) = nf(2).

So let A\, = (“’77”‘”720(””7“”7) , when n =1, we have \, = \.

Now let w — w — v in Theorem 6.1, we obtain

m 2P _ g A—n - w;'y
g(Z) = Z < p ) Fn,wf'y,n()\fn+1) 77( P) ) . (610)
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U(2) = (2S04 1) (2)

Applying the operator 23, on both sides of Equation (6.10), we obtain

(9%0) ()= X Y- ey z%(”;a’))M_"] )

By using the Theorem 3.2 and rewriting the expression, we get

m E—n w—y
2P — aPf 2P —af\ *
Z) = Z bn( ) Ffi,wf'y,n(ﬁfnle) |j7< p ) ] .

n=1
We consider a sequence of linear fractional differential equations of order wm in the next theorem.

Theorem 6.3 Let w,p € R, w>pu>0, m—1<w<m, where m € N and n € R. Then the Cauchy problem
18

(2057 (2) = o (2) (6.11)

(P3<1+‘9)(“m"”“>"‘(’”‘”)¢) (%) =bn, bp€R, n=12..m, (6.12)

K> a

concedes a unique solution in the space M (a,b), given by

m Y, —n wm
2P — af m 2P — aP "
Z) = § bn( P ) Fn,wm,ﬁ(fm—n-&-l) |j7m< P) ) ‘| ) (6]—3)
n=1

0 —
where V,, = duma—wm)tom im)wm )

Proof w — wm in Theorem 6.1, we obtain the solution (6.13). O

7. Reliance on initial conditions
We present in this section the changes in a solution involving minor changes in initial conditions. Consider

Equation (5.1) with the following modifications in the initial conditions in Equation (5.2),

(gg((larfe)(ﬁmfw)*n(mfn)w) (a-‘r) =by+pn, bpeR, n=12...,m, (7.1)
where u,, Vn=1,2,...,m are arbitrary constants.

Theorem 7.1 Assume that hypothesis in Theorem 5.1 is fulfilled. Let v (z) and 1/;(2) be the initial value
problem solutions of Equations (5.1) and (5.2). Then
75))
p

wHb(mrk—w)

2P —af B "
Z |,un ( ) Fm,w,w-{-@(mm—w)—m(n—l)

where z € (a,b] and F, g~(2) is defined in Equation (2.8).

¥ (2)
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Proof From Theorem 5.1, we have

where 1y(z) is given in Equation (6.4) and

e =ne+ o [ () gt (i

We have,

d(z) = lim (=)

J—)OO
Z b +,Uzn (Z”a”)v_"
Fpx(V—n+1) p

z N “—1 B
P (2) = o (2) + ;@I‘l(w)/ <Zp P yp) Yl g(z, 050 (2)dy, §=1,2,....

From Equations (6.4) and (7.4), we have

Yo (2) — do (2 ‘gi |uin+1)]<zp;ap>v_n.

Eventually, we consider Equations (7.2) and (7.5) with j = 1, the Lipschitz function condition g (z

Definition 2.2, Equation (7.6) and Theorem 3.2 inequality, in order to obtain

i e (=)

+ /@F,ic(w) /az <zﬂ ; yﬂ> %71y971 [g (z,%0(2)) — g (z,dN)O (Z)ﬂ dy

Y1 (2)

+ wa’w)/lz (zp;yp>:_lyp_l ‘1/)0 (2) — o (Z)‘dy
PR ] AN
‘;FN[F»(V—HI)]( p )

C z P yp w1 p—1 yp — aPf v-n

— z d
Hrn(w)/tz( ) > Y ) Y
Y e (5
T T (Va1 g ’

where V,, is defined in Equation (6.6), repeating the process we have,

j+1

U () =, ()] < ZWZF _Hl)](z”;“”)w_".
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Now let j — oo and n — n+ 1, so it follow that

V—n

" 2P —af
< Z |Nn| <> Fn,w,fi(v—n+1)
n=1 p

e

) (2) = (2)

=52y

8. Conclusion

For a fractional derivative recently discussed in [20], we proposed a generalization obtained by introducing
a new parameter in its definition. This generalization retrieves a wide collection of definitions of classical
fractional derivatives for adequate values of its parameters. We introduced a few properties of this generalized
r-fractional Hilfer—Katugampola derivative. We also discussed the equivalence between a Cauchy problem,
using this fractional differentiation operator and a second kind of Volterra integral equation. We have found
several particular cases for this Cauchy problem and have shown that minor changes to initial conditions require

minor changes in the solution of the problem.
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