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1. Introduction
Let n ∈ N , n ≥ 5 . For α ∈ (n− 1, n] , consider the singular fractional differential equation

Dα
0+u = f(t, u), t ∈ (0, 1), (1.1)

satisfying the boundary conditions

u(i)(0) = 0, i = 0, . . . , n− 4, Dα−2
0+ u(0) = 0, Dα−2

0+ u(1) = 0, Dβ
0+u(1) = 0, (1.2)

or
u(i)(0) = 0, i = 0, . . . , n− 4, Dα−2

0+ u(0) = 0, Dα−1
0+ u(1) = 0, Dβ

0+u(1) = 0, (1.3)

where β ∈ [1, n − 3] , and Dα
0+ , Dβ

0+ are the Riemann–Liouville fractional derivatives of order α and β ,
respectively, and f(t, u) is singular at t = 0, t = 1 , and u = 0. Here, we assume

(H1) f(t, u) : (0, 1)× (0,∞) → (0,∞) is continuous;

(H2) f(t, u) is decreasing in u for each t ; and

(H3) lim
u→0+

f(t, u) = ∞ and lim
u→∞

f(t, u) = 0, uniformly on compact subsets of (0, 1).

The main purpose of this paper is to show that by writing the associated Green’s function of each these
problems as a convolution of Green’s functions of lower order problems, we attain properties that allow us to
show existence of positive solutions of (1.1), (1.2) and (1.1), (1.3). Since the Green’s function of the higher
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order problem inherits some properties of the Green’s function of the lower order problem, similar arguments to
ones showing the existence of solutions of the lower order problem can be used to show the existence of positive
solutions of (1.1), (1.2) and (1.1), (1.3).

The study of singular fractional boundary value problems has been extensive and growing in recent years.
Several authors have used a range of fixed point theorems to establish the existence of positive solutions for
various types of problems [1, 10, 12, 16–19]. As a specific recent example, we point the reader to Henderson
and Luca [7] for their study of the singular fractional problem

Dα
0+u(t) + λf(t, u(t)) = 0, t ∈ (0, 1),

u(i)(0) = 0, i = 0, 1, . . . , n− 2, Dp
0+u(1) =

m∑
i=1

aiD
q
0+u(ξi),

where λ is a positive parameter, α ∈ R, α ∈ (n− 1, n], n ∈ N, n ≥ 3, ξi ∈ R for all i = 1, . . . ,m, m ∈ N, 0 <

ξ1 < · · · < ξm < 1, p, q ∈ R, p ∈ [1, n− 2], q ∈ [0, p]. The function f may be singular and the nonlinearity of f

may change sign at t = 0 or t = 1. Here the authors employed Krasnosel’skii’s fixed point theorem [9].
Of primary interest to this work are the techniques employed by Cui [2] and then Neugebauer in [14] in

seeking positive solutions for a singular fractional two-point boundary value problem using the Gatica, Oliker,
Waltman fixed point theorem. We will follow the convolution procedure outlined by Lyons and Neugebauer in
[11] to construct the associated Green’s functions for (1.1), (1.2) and (1.1), (1.3).

Section two establishes background information and states the Gatica, Oliker, Waltman fixed point
theorem. The following section introduces the lower order problem and associated Green’s function found in
[4]. Next, we present the main result over two sections. We conclude with an example.

2. Preliminary definitions and the fixed point theorem
Definition 2.1 Let ν > 0 . The Riemann–Liouville fractional integral of a function u of order ν , denoted
Iν0+u , is defined as

Iν0+u(t) =
1

Γ(ν)

∫ t

0

(t− s)ν−1u(s)ds,

provided the right-hand side exists. Moreover, let n denote a positive integer and assume n− 1 < α ≤ n . The
Riemann–Liouville fractional derivative of order α of the function u : [0, 1] → R , denoted Dα

0+u , is defined as

Dα
0+u(t) =

1

Γ(n− α)

dn

dtn

∫ t

0

(t− s)n−α−1u(s)ds = DnIn−α
0+ u(t),

provided the right-hand side exists.

For a detailed view of fractional calculus, see the books by Diethelm [3], Kilbas, Srivastava, and Trujillo
[8], Miller and Ross [13], or Podlubny [15].

Definition 2.2 Let B be a Banach space over R . A closed nonempty subset P of B is said to be a cone
provided

(i) αu+ βv ∈ P for all u, v ∈ P and all α, β ≥ 0 , and
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(ii) u ∈ P and −u ∈ P implies u = 0 .

Given a cone P over a Banach space B , u ≤ v for u, v ∈ B if v − u ∈ P .
If u, v ∈ B with u ≤ v , let ⟨u, v⟩ , the closed order interval between u and v , be defined by

⟨u, v⟩ = {w ∈ B : u ≤ w ≤ v}.

Definition 2.3 A cone P is normal in B if there exists a δ > 0 such that ∥e1 + e2∥ ≥ δ for all e1, e2 ∈ P
with ∥e1∥ = ∥e2∥ = 1 .

If P being a normal cone, then closed order intervals are norm bounded.
The following theorem, due to Gatica, Oliker, and Waltman [6] is used to show the existence of a positive

solution of (1.1), (1.2) and (1.1), (1.3).

Theorem 2.4 Let B be a Banach space, P a normal cone, J a subset of P such that if u, v ∈ J with u ≤ v ,
then ⟨u, v⟩ ⊂ J , and let T : J → P be a continuous decreasing mapping which is compact on any closed order
interval contained in J . Suppose there exists a u0 ∈ J such that T 2u0 is defined, and furthermore, Tu0 and
T 2u0 are order comparable to u0 . Then T has a fixed point in J provided that, either

1. Tu0 ≤ u0 and T 2u0 ≤ u0 , or Tu0 ≥ u0 and T 2u0 ≥ u0 ; or

2. the complete sequence of iterates {Tnu0}∞n=0 is defined, and there exists a v0 ∈ J such that v0 ≤ Tnu0

for every n .

We define the Banach space B by B = C[0, 1] with the norm

∥u∥ = max
0≤t≤1

|u(t)|.

Define the cone P ⊂ B by
P = {u ∈ B : u(t) ≥ 0 for all t ∈ [0, 1]}.

Notice P is normal.

3. The lower order problem

In the process of obtaining the existence of positive solutions of (1.1), (1.2) and (1.1), (1.3), we will require
properties of the Green’s function associated with the following lower order fractional boundary value problem.
The details and results of this section are found in [14].

Let m ∈ N , m ≥ 3 . For µ ∈ (m− 1,m] ,

Dµ
0+u+ f(t, u) = 0, 0 < t < 1, (3.1)

satisfying the boundary conditions

u(i)(0) = 0, i = 0, . . . ,m− 2, Dβ
0+u(1) = 0, (3.2)

where β ∈ [1,m − 1] , and Dµ
0+ , Dβ

0+ are the Riemann–Liouville fractional derivatives of order µ and β ,
respectively.
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The Green’s function for −Dµ
0+u = 0 satisfying the boundary conditions (3.2) is given by (see [4])

G(t, s) =


tµ−1(1−s)µ−1−β

Γ(µ) − (t−s)µ−1

Γ(µ) , 0 ≤ s < t ≤ 1,

tµ−1(1−s)µ−1−β

Γ(µ) , 0 ≤ t ≤ s < 1.

(3.3)

Therefore, u is a solution of (3.1), (3.2) if and only if

u(t) =

∫ 1

0

G(t, s)f(s, u(s))ds, 0 ≤ t ≤ 1.

Define g : [0, 1] → [0, 1] by
g(t) = tα−1.

For θ > 0 , define
gθ(t) = θg(t).

Now g(t) > 0 on (0, 1] and max
t∈[0,1]

g(t) = 1 . This implies max
t∈[0,1]

gθ(t) = θ .

We note that the properties in the following two lemmas are carried over in a similar fashion to the higher
order problem, and hence, we present the results here.

Lemma 3.1 Let G be defined as in (3.3).

1. G(t, s) ∈ C ([0, 1]× [0, 1)) with G(t, s) > 0 .

2. g(t)G(1, s) ≤ G(t, s) ≤ G(1, s) for (t, s) ∈ [0, 1]× [0, 1) .

Lemma 3.2 Suppose Dα
0+u ∈ C[0, 1] . If −Dα

0+u(t) ≥ 0 for all t ∈ [0, 1] and u satisfies (1.2), then

g(t)u(1) ≤ u(t) ≤ u(1), for t ∈ [0, 1].

Finally, we make the following additional assumption.

(H4)
∫ 1

0

G(1, s)f(s, gθ(s))ds < ∞ for all θ > 0 .

Theorem 3.3 If f satisfies (H1)-(H4), then (3.1), (3.2) has at least one positive solution u ∈ D .

4. Existence result for (1.1), (1.2)

Now, consider the fractional boundary value problem (1.1), (1.2). We use methods similar to the ones used in
[5] and [11] to construct the associated Green’s function. For completeness, the construction is given here.

Recall that we have n ∈ N with n ≥ 5 and α ∈ (n− 1, n] . To apply the results in the previous section,
we set m = n− 2 so m ∈ N with m ≥ 3 . Thus, α− 2 ∈ (m− 1,m] .

Let h be a continuous function on [0, 1] and consider the linear fractional differential equation

Dα
0+u = h(t), t ∈ (0, 1), (4.1)
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satisfying (1.2). Make the change of variable v(t) = Dα−2
0+ u(t) . By the definition of the fractional integral,

D2v(t) = D2Dα−2
0+ u(t) = D2DmI

m−(α−2)
0+ u(t) = Dm+2In−α

0+ u(t) = DnIn−α
0+ u(t) = Dα

0+u(t).

Using the boundary conditions Dα−2
0+ u(0) = 0 , Dα−2

0+ u(1) = 0 , we see that v satisfies the differential equation

v′′ = h(t), t ∈ (0, 1),

and the Dirichlet boundary conditions
v(0) = 0, v(1) = 0.

Thus,

v(t) =

∫ 1

0

Gconj(t, s)(−h(s))ds,

where Gconj(t, s) has the form

Gconj(t, s) =

{
t(1− s), 0 ≤ t < s ≤ 1,
s(1− t), 0 ≤ s < t ≤ 1.

Now u satisfies the boundary value problem

Dα−2
0+ u = v(t), t ∈ (0, 1),

u(i)(0) = 0, i = 0, . . . ,m− 2, Dβ
0+u(1) = 0.

The Green’s function is given by (3.3) (with µ = α− 2), which has the form

G(α− 2; t, s) =


tα−3(1−s)α−3−β

Γ(α−2) − (t−s)α−3

Γ(α−2) , 0 ≤ s < t ≤ 1,

tα−3(1−s)α−3−β

Γ(α−2) , 0 ≤ t ≤ s < 1.

(4.2)

Thus,

u(t) =

∫ 1

0

G(α− 2; t, s)(−v(s))ds

=

∫ 1

0

G(α− 2; t, s)

(
−
∫ 1

0

Gconj(s, r)(−h(r))dr

)
ds

=

∫ 1

0

∫ 1

0

(G(α− 2; t, s)Gconj(s, r)ds)h(r)dr.

Therefore,

u(t) =

∫ 1

0

G(t, s)h(s)ds, t ∈ [0, 1],

where

G(t, s) =
∫ 1

0

G(α− 2; t, r)Gconj(r, s)dr, (t, s) ∈ [0, 1]× [0, 1]. (4.3)
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So the Green’s function for Dα
0+u = 0 satisfying (1.2) is given by (4.3). Thus, u is a solution of (1.1), (1.2) if

and only if

u(t) =

∫ 1

0

G(t, s)f(s, u(s))ds.

Define a : [0, 1] → [0, 1] by
a(t) = tα−3.

For θ > 0 , define
aθ(t) = θa(t).

Now, a(t) > 0 and max
t∈[0,1]

a(t) = 1 . This implies max
t∈[0,1]

aθ(t) = θ . The next two lemmas are proven in [11].

Lemma 4.1 Let G(t, s) be defined as in (4.3). Then

1. G(t, s) ∈ C ([0, 1]× [0, 1)) with G(t, s) > 0 for (t, s) ∈ (0, 1]× (0, 1) .

2. a(t)G(1, s) ≤ G(t, s) ≤ G(1, s) for (t, s) ∈ [0, 1]× [0, 1] .

Lemma 4.2 Suppose Dα
0+u ∈ C[0, 1] . If Dα

0+u(t) ≥ 0 for all t ∈ [0, 1] and u satisfies (1.2), then

a(t)u(1) ≤ u(t) ≤ u(1) for t ∈ [0, 1].

We make the following additional assumption.

(G 4)
∫ 1

0

G(1, s)f(s, aθ(s))ds < ∞ for all θ > 0 .

Remark 4.3 We note here that while G(t, s) would be difficult to calculate, it is not difficult to calculate G(1, s) .
In fact, notice

G(1, s) =
∫ 1

0

G(α− 2; 1, r)Gconj(r, s)dr

=

∫ s

0

(1− r)α−3−β − (1− r)α−3

Γ(α− 2)
r(1− s)dr

+

∫ 1

s

(1− r)α−3−β − (1− r)α−3

Γ(α− 2)
s(1− r)dr

=
1

(α− 1− β)(α− 2− β)Γ(α)

(
(1− s)α−1(α− 1 + β)(α− 2 + β)

−(1− s)α−1−β(α− 2)(α− 1) + (1− s)β(2α− 3− β)
)

Therefore, checking condition (G 4) is not difficult.

Define a subset D ⊂ P by

D = {u ∈ P : there exists a θ(u) > 0 so aθ(t) ≤ u(t) for all t ∈ [0, 1]}.
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Notice if u is a positive solution of (1.1), (1.2), then, by Lemma 4.2,

au(1)(t) ≤ u(t), for all t ∈ [0, 1],

implying u ∈ D .
Define an integral operator T : D → P by

(Tu)(t) =

∫ 1

0

G(t, s)f(s, u(s))ds, u ∈ D.

The singularity in f at u = 0 means we cannot define T on all of P . Thus, we define T on D instead.

Lemma 4.4 The operator T is well-defined, decreasing, and T : D → D .

Proof
Let u, v ∈ D with v(t) ≤ u(t) for all t ∈ [0, 1] . Then there exists a θ(v) > 0 such that aθ(t) ≤ v(t) .

Assumptions (H2) and (G 4) and the positivity of G give that

0 ≤
∫ 1

0

G(t, s)f(s, u(s))ds

≤
∫ 1

0

G(t, s)f(s, v(s))ds

≤
∫ 1

0

G(t, s)f(s, aθ(s))ds

< ∞.

Thus T is well-defined on D , and T is a decreasing operator.
Now, for u ∈ D , Dα

0+(Tu)(t) = f(t, u(t)) > 0 for all t ∈ (0, 1) , and Tu satisfies the boundary conditions
(1.2). So by Lemma 4.2, Tu ∈ D . 2

In the next two lemmas, we show the existence of a priori bounds of solutions of (1.1), (1.2).

Lemma 4.5 If f satisfies (H1)-(H3) and (G 4), then there exists an S > 0 such that if u ∈ D is a solution of
(1.1), (1.2), then ∥u∥ ≤ S .

Proof Assume by way contradiction that the conclusion is false. So there exists a sequence {un}∞n=1 of
solutions of (1.1), (1.2) in D such that un(t) > 0 for all 0 < t ≤ 1 , and

∥un∥ ≤ ∥un+1∥ and lim
n→∞

∥un∥ = ∞.

Now, for n ∈ N , ∥un∥ = un(1) ,

un(t) ≥ a∥un∥(t) ≥ a∥u1∥(t) = for all t ∈ [0, 1].
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So, for n ∈ N and t ∈ [0, 1] , by assumptions (H2), (G 4) and by Lemma 4.1,

un(t) = Tun(t)

=

∫ 1

0

G(t, s)f(s, un(s))ds

≤
∫ 1

0

G(1, s)f(s, a∥u1∥(s))ds := N < ∞.

Thus, ∥un∥ ≤ N for all n ≥ 1 , which is a contradiction. 2

Lemma 4.6 If f satisfies (H1)-(H3) and (G 4), then there exists an R > 0 such that if u ∈ D is any solution
of (1.1), (1.2), then ∥u∥ ≥ R .

Proof Assume by way of contradiction that the conclusion is false. Then, there exists a sequence {un}∞n=1 of
solutions of (1.1), (1.2) in D such that un(t) > 0 for all 0 < t ≤ 1 , and

∥un+1∥ ≤ ∥un∥ and lim
n→∞

∥un∥ = 0 on [0, 1].

Since G(t, s) > 0 for (t, s) ∈ (0, 1)× (0, 1) ,

M := inf{G(t, s) : (t, s) ∈ [1/4, 3/4]× [1/4, 3/4]} > 0.

By assumption (H3), lim
u→0+

f(t, u) = ∞ uniformly on compact subsets of (0, 1) . So there exists a δ > 0 such

that for t ∈ [1/4, 3/4] and u ∈ (0, δ) , f(t, u) ≥ 2
M . However, since lim

n→∞
∥un∥ = 0 on [0, 1] , there exists an

n0 ∈ N such that if n ≥ n0 ,

0 < un(t) <
δ

2
for all t ∈ [1/4, 3/4].

So, for t ∈ [1/4, 3/4] and n ≥ n0 ,

un(t) = (Tun)(t)

=

∫ 1

0

G(t, s)f(s, un(s))ds

≥
∫ 3/4

1/4

G(t, s)f(s, un(s))ds

≥ M

∫ 3/4

1/4

f

(
s,

δ

2

)
ds

≥ M

∫ 3/4

1/4

2

M
ds

= 1,

which is a contradiction. 2
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Theorem 4.7 If f satisfies (H1)–(H3) and (G 4), then (1.1), (1.2) has at least one positive solution u ∈ D .

Proof For each n ≥ 1 , define un : [0, 1] → [0,∞) by

un(t) =

∫ 1

0

G(t, s)f(s, n)ds.

By condition (H2),
0 < un+1(t) < un(t) for all t ∈ (0, 1).

By (H3),
lim
n→∞

un(t) = 0 uniformly on [0, 1].

Next, define fn(t, u) : (0, 1)× [0,∞) → [0,∞) by

fn(t, u) = f(t,max{u, un(t)}).

Then, fn is continuous, and fn does not have a singularity at u = 0 . Also, for (t, u) ∈ (0, 1)× (0,∞) ,

fn(t, u) ≤ f(t, u),

and
fn(t, u) ≤ f(t, un(t)).

Now, define a sequence of operators Tn : P → P , n ≥ 1 , by

Tnu(t) =

∫ 1

0

G(t, s)fn(s, u(s))ds, t ∈ [0, 1].

Since fn is continuous and does not have a singularity at u = 0 , each Tn is well-defined. A standard
application of the Arzelà–Ascoli theorem gives that each Tn is compact.

Next, notice that, for u0 = 0 ∈ P ,

Tn(0)(t) =

∫ 1

0

G(t, s)fn(s, 0)ds

=

∫ 1

0

G(t, s)f(s,max{0, un(s)})ds

=

∫ 1

0

G(t, s)f(s, un(s))ds

≥ 0.

This implies Tn(0) ∈ P (or 0 ≤ Tn(0)), which implies T 2
n(0)(t) = Tn(Tn(0))(t) ≥ 0 . Thus, 0 ≤ T 2

n(0) .
By Theorem 2.4, with u0 = 0 , for each n ∈ N , Tn has a fixed point φn ∈ P . This implies φn satisfies the
boundary conditions (1.2) and, for t ∈ [0, 1] ,

Tnφn(t) =

∫ 1

0

G(t, s)fn(s, φn(s))ds

≤
∫ 1

0

G(t, s)f(s, un(s))ds

= Tun(t).
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Arguments similar to those in the proofs of Lemmas 4.5 and 4.6 give the existence of R > 0 , S > 0 such
that

R ≤ ∥φn∥ ≤ S

for each n . Since for each n ∈ N , Dα
0+φn(t) = fn(t, φ(t)) ≥ 0 and φn satisfies (1.2), the conclusions of Lemma

4.2 hold for φn . Thus for t ∈ [0, 1] ,

φn(t) ≥ a(t)φn(1) ≥ Ra(t) = aR(t) for all n ∈ N.

Therefore, the sequence {φn} is contained in the closed order interval ⟨aR, S⟩ . So {φn} ⊂ D . Since T : D → D

is a compact mapping, there is a subsequence of {Tφn} which converges to some φ∗ ∈ D . We assume without
loss of generality that lim

n→∞
Tφn = φ∗ .

Finally, we show φ∗ is a solution of (1.1), (1.2). By assumption (G 4), there exists a δ ∈ (0, 1) such that

∫ δ

0

G(1, s)f(s, aR(s))ds <
ϵ

2
.

Since lim
n→∞

un(t) = 0 uniformly on [0, 1] , there exists an n0 such that for all n ≥ n0 ,

un(t) ≤ aR(t) for all t ∈ [δ, 1].

This implies
un(t) ≤ aR(t) ≤ φn(t) for all t ∈ [δ, 1].

For t ∈ [δ, 1] and n ≥ n0 ,

fn(t, φn(t)) = f(t,max{φn(t), un(t)}) = f(t, φn(t)).

Thus, for t ∈ [0, 1] ,

|Tφn(t)− φn(t)| ≤
∫ δ

0

G(t, s)f(s, φn(s))ds+

∫ δ

0

G(t, s)f(s, un(s))ds

≤
∫ δ

0

G(t, s)f(s, φn(s))ds+

∫ δ

0

G(t, s)f(s, φn(s))ds

≤ 2

∫ δ

0

G(1, s)f(s, aR(s))ds

< ϵ.

Thus, ∥Tφn − φn∥ ≤ ϵ for all n ≥ n0 . Hence, lim
n→∞

(Tφn(t)− φn(t)) = 0 uniformly on [0, 1] . So for t ∈ [0, 1] ,

Tφ∗(t) = T
(
lim

n→∞
Tφn(t)

)
= T

(
lim

n→∞
φn(t)

)
= lim

n→∞
Tφn(t) = φ∗(t).

Therefore, φ∗ ∈ D is a solution of (1.1), (1.2). 2
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5. Existence result for (1.1), (1.3)

Now, consider the fractional boundary value problem (1.1), (1.3). Again, we use methods similar to the ones
used in [5] and [11] to construct the associated Green’s function. For completeness, the construction is given
here.

Recall that we have n ∈ N with n ≥ 5 and α ∈ (n − 1, n] . Similar to the previous section, we set
m = n− 2 so m ∈ N with m ≥ 3 . Thus, α− 2 ∈ (m− 1,m] .

Let h be a continuous function on [0, 1] and consider the linear fractional differential equation

Dα
0+u = h(t), t ∈ (0, 1), (5.1)

satisfying (1.3). Make a change of variable v(t) = Dα−2
0+ u(t) . By the definition of the fractional integral,

D2v(t) = D2Dα−2
0+ u(t) = D2DmI

m−(α−2)
0+ u(t) = Dm+2In−α

0+ u(t) = DnIn−α
0+ u(t) = Dα

0+u(t).

Using only the boundary conditions Dα−2
0+ u(0) = 0 , Dα−1

0+ u(1) = 0 , v satisfies the differential equation

v′′ = h(t), t ∈ (0, 1),

and the right focal boundary conditions
v(0) = 0, v′(1) = 0.

Thus,

v(t) =

∫ 1

0

Gfoc(t, s)(−h(s))ds,

where Gfoc(t, s) is well-known and has the form

Gfoc(t, s) =

{
t, 0 ≤ t < s ≤ 1,
s, 0 ≤ s < t ≤ 1.

The function u satisfies the boundary value problem

Dα−2
0+ u = v(t), t ∈ (0, 1),

u(i)(0) = 0, i = 0, . . . ,m− 2, Dβ
0+u(1) = 0.

The Green’s function is given by (3.3). Thus,

u(t) =

∫ 1

0

G(α− 2; t, s)(−v(s))ds

=

∫ 1

0

G(α− 2; t, s)

(
−
∫ 1

0

Gfoc(s, r)(−h(r))dr

)
ds

=

∫ 1

0

∫ 1

0

(G(α− 2; t, s)Gfoc(s, r)ds)h(r)dr.

Therefore,

u(t) =

∫ 1

0

H(t, s)h(s)ds, t ∈ [0, 1],
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where

H(t, s) =

∫ 1

0

G(α− 2; t, r)Gfoc(r, s)dr, (t, s) ∈ [0, 1]× [0, 1]. (5.2)

So the Green’s function for Dα
0+u = 0 satisfying (1.3) is given by (5.2). Thus, u is a solution of (1.1), (1.3) if

and only if

u(t) =

∫ 1

0

H(t, s)f(s, u(s))ds.

Recall that a : [0, 1] → [0, 1] where a(t) = tα−3, and for θ > 0 , that aθ(t) = θa(t). Thus, a(t) > 0 and
max
t∈[0,1]

a(t) = 1 which implies max
t∈[0,1]

aθ(t) = θ . The next two lemmas are proven in [11].

Lemma 5.1 Let H(t, s) be defined as in (5.2). Then

1. H(t, s) ∈ C ([0, 1]× [0, 1)) with H(t, s) > 0 for (t, s) ∈ (0, 1]× (0, 1) .

2. a(t)H(1, s) ≤ H(t, s) ≤ H(1, s) for (t, s) ∈ [0, 1]× [0, 1] .

Lemma 5.2 Suppose Dα
0+u ∈ C[0, 1] . If Dα

0+u(t) ≥ 0 for all t ∈ [0, 1] and u satisfies (1.3), then

a(t)u(1) ≤ u(t) ≤ u(1) for t ∈ [0, 1].

We make the following additional assumption.

(H4)
∫ 1

0

H(1, s)f(s, aθ(s))ds < ∞ for all θ > 0 .

Remark 5.3 Similar to G(t, s), H(t, s) would be difficult to calculate. However, one can easily obtain a result
for H(1, s) similar to that of G(1, s) from the previous section.

Define a subset D ⊂ P as before by

D = {u ∈ P : there exists a θ(u) > 0 so aθ(t) ≤ u(t) for all t ∈ [0, 1]}.

Notice if u is a positive solution of (1.1), (1.3), then, by Lemma 5.2,

au(1)(t) ≤ u(t), for all t ∈ [0, 1],

implying u ∈ D .
Define an integral operator T : D → P by

(Tu)(t) =

∫ 1

0

H(t, s)f(s, u(s))ds, u ∈ D.

Because of the singularity in f at u = 0 , we cannot define T on all of P . Hence, we define T on D instead.
A similar argument to the previous section provides that T is well-defined, decreasing, and T : D → D .

The next two lemmas provide the existence of a priori bounds of solutions of (1.1), (1.3). The proofs are
similar to the analogues of the previous section, and therefore, are omitted.
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Lemma 5.4 If f satisfies (H1)–(H3) and (H4), then there exists an S > 0 such that if u ∈ D is a solution
of (1.1), (1.3), then ∥u∥ ≤ S .

Lemma 5.5 If f satisfies (H1)–(H3) and (H4), then there exists an R > 0 such that if u ∈ D is any solution
of (1.1), (1.3), then ∥u∥ ≥ R .

Finally, we present an existence result for (1.1), (1.3). Again, the proof is similar to that of the previous
section and is omitted.

Theorem 5.6 If f satisfies (H1)–(H3) and (H4), then (1.1), (1.3) has at least one positive solution u ∈ D .

6. An example

Let α = 11
2 , β = 3

2 . Define f(t, u) : (0, 1)× (0,∞) → (0,∞) by

f(t, u) =
1

((1− t)u)1/11(1− (1− t)3/2)
.

Then (H1)–(H3) are satisfied. Also for θ > 0 ,

∫ 1

0

G(1, s)f(s, θs5/2)ds ≈ 0.0209001θ11,

so (G 4) is satisfied. Notice that for θ > 0

∫ 1

0

H(1, s)f(s, θs5/2)ds ≈ 0.0548925θ11.

Thus, (G 4) and (H4) are satisfied. So, under the conditions above, (1.1), (1.2), and (1.1), (1.3) each have at
least one positive solution.
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