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Abstract: In this paper, we characterize closed and strongly closed subsets of convergence approach spaces and introduce
two notions of closure in the category of convergence approach spaces which satisfy idempotent, productive and (weakly)
hereditary properties. Furthermore, we explicitly characterize each of Ti convergence approach spaces, i = 0, 1, 2 with
respect to these closure operators and show that each of these subcategories of Ti convergence approach spaces, i = 0, 1, 2

are epireflective as well as we investigate the relationship among these subcategories. Finally, we characterize connected
convergence approach spaces.
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1. Introduction
There is absolutely no doubt that metric spaces occupy a dominant place in mathematics but it behaves badly
with respect to infinite products and coproducts. To address this issue, approach spaces have been introduced
by Lowen [18] which are based upon point to set distance. Since approach spaces are the generalization of metric
and topological spaces, several applications in different areas of mathematics including probability theory [15],
domain theory [16], group theory [20] and vector spaces [21] naturally exist. However, App (category of
approach spaces and contraction maps) fails to enjoy some convenience categorical properties such as cartesian
closedness. As a remedy to this, a bigger category CApp (category of convergence approach spaces and
contraction maps) has been introduced by Lowen et al. [17]in 1989 which is a topological quasitopos.

In 1991, Baran [2, 4] introduced the notion of closed and strongly closed objects in set-based topological
categories to generalize the notion of connectedness [8], compactness [5], perfectness and Hausdorffness [7] in a
topological category. In addition to, these notion of (strongly) closedness form appropriate closure operators in
the sense of Dikranjan and Giuli [12] in convergence spaces [6], preordered spaces [9], semiuniform convergence
spaces [10] and constant filter convergence spaces [14].

The aim of this paper is to characterize of both closed and strongly closed subsets of convergence
approach spaces and to show that they form appropriate closure operators which enjoy the basic properties like
idempotency, productivity and (weak) hereditariness in the category of convergence approach spaces. Moreover,
we characterize each of Ti convergence approach spaces, i = 0, 1, 2 with respect to these closure operators
and show that each of these subcategories of Ti convergence approach spaces, i = 0, 1, 2 are epireflective
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and investigate the relationship among these subcategories. Finally, we characterize connected and strongly
connected convergence approach spaces.

2. Preliminaries
Let E and B be two categories. The functor U : E → B is said to be a topological functor if (i) U is concrete
(i.e. amnestic and faithful) (ii) U consists of small fibers and (iii) every U -source has a unique initial lift or
equivalently, each U -sink has a unique final lift [1, 23, 24].

Let X be a set, A ⊆ X , F (X) be the set of all filters and A be collection of subsets of X . The stack
of A and the indicator map θA : X → [0,∞] are defined by [A] = {B ⊆ X|∃A ∈ A : A ⊆ B} and

θA(x) =

{
0, x ∈ A

∞, x /∈ A

respectively.

Definition 2.1 (cf. [17, 19, 22]) A map λ : F (X) −→ [0,∞]X is called a convergence approach structure on
X if it fulfills the following properties:

(i) ∀x ∈ X : λ[x](x) = 0 ,

(ii) ∀α, β ∈ F (X) : α ⊂ β ⇒ λβ ≤ λα ,

(iii) ∀α, β ∈ F (X) : λ(α ∩ β) = sup{λ(α), λ(β)} .

The pair (X,λ) is called a convergence approach space.

Definition 2.2 (cf. [17, 19, 22]) Let (X,λ) and (X ′, λ′) be convergence approach spaces. The map f :

(X,λ) −→ (X ′, λ′) is called a contraction map if λ′(f(α)) ◦ f ≤ λα for any α ∈ F (X) .

Let CApp denote the category with convergence approach spaces as objects and contraction maps as
morphisms. Note that it is a cartesian closed topological category over Set , the category of sets and functions
[17, 19, 22].

Lemma 2.3 (cf. [17, 19]) Let X be a nonempty set and (Xi, λi) be the class of convergence approach spaces.

(i) A source {fi : X → (Xi, λi)} in CApp is initial lift iff for all α ∈ F (X) , λα = sup
i∈I

λi(fi(α)) ◦ fi , where

fi(α) is a filter generated by {fi(Ai), i ∈ I} .

(ii) A sink {fi : (Xi, λi) → X} in CApp is final lift iff for all α ∈ F (X) and x ∈ X ,

λ(α)(x) =


0, α = [x]

inf
i∈I

inf
y∈f−1

i (x)
inf

β∈F (Xi)
[fi(β)]⊂α

λi(β)(y), α ̸= [x]
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(iii) The discrete structure (X,λdis) on X in CApp is defined by for all α ∈ F (X) and x ∈ X ,

λdis(α) =

{
θ{x}, α = [x]

∞, α ̸= [x]

Lemma 2.4 (cf. [3]) Let ∅ ̸= M ⊂ X , β ∈ F (X) , x ∈ X with x /∈ M , and q : X → X/M be the identification
map identifying M to a point ∗ .

(i) For x /∈ M , qβ ⊂ [x] iff β ⊂ [x]

(ii) qβ ⊂ [∗] iff β ∪ [M ] is proper.

3. Closed subsets of convergence approach space

Let X be a set, p ∈ X and X ∨p X be the wedge product of X . A point x in X ∨p X is denoted by x1 (resp.
x2 ) if it is in first (resp. second component).

Definition 3.1 (cf. [2]) A map Sp : X ∨p X → X2 is called a skewed p axis map if

Sp(xi) =

{
(x, x), i = 1

(p, x), i = 2

Definition 3.2 (cf. [2]) A map ∇p : X ∨p X → X is called a folding map at p if ∇(xi) = x for i = 1, 2 .

The infinite wedge product ∨∞
p X is constructed by taking countably many disjoint copies of X and

identifying them at the point p .
A point x in ∨∞

p X is denoted as xi if it lies in the i -th component.

Definition 3.3 (cf. [4]) Let X∞ = X ×X × ... be the countable Cartesian product of X .

(i) The infinite principle axis map at p , A∞
p : ∨∞

p X −→ X∞ is defined by A∞
p (xi) = (p, p, ...., p, xi, p, ...) .

(ii) The infinite fold map at p , ∇∞
p : ∨∞

p X −→ X is defined by ∇∞
p (xi) = x for all i ∈ I .

Definition 3.4 (cf. [4]) Let U : E −→ Set be a topological functor, B ∈ Ob(E) with U(B) = X and p ∈ X .

(i) X is local T1 (i.e. T1 at p) iff initial lift of the U -source {Sp : X ∨p X → U(B2) = X2 and
∇p : X ∨p X → UD(X) = X} is discrete, where D is the discrete functor.

(ii) {p} is closed iff the initial lift of the U -source {A∞
p : ∨∞

p X −→ X∞ and ∇∞
p : ∨∞

p X −→ UD(X∞) = X}
is discrete.

(iii) M ⊂ X is closed iff {∗} , the image of M , is closed in X/M or M = ∅ .

(iv) M ⊂ X is strongly closed iff if X/M is T1 at {∗} or M = ∅ .

(v) If X = M = ∅ , then we define M to be both closed and strongly closed.
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Remark 3.5 Let α , β ∈ F (X) , γ ∈ F (Y ) , and f : X → Y be a function. Then,

(i) f(α ∩ β) = f(α) ∩ f(β) .

(ii) f(α ∪ β) ⊃ f(α) ∪ f(β) .

(iii) γ ⊂ ff−1γ .

(iv) f−1fα ⊂ α .

Theorem 3.6 (cf. [11]) A convergence approach space (X,λ) is T1 at p iff for all x ∈ X with x ̸= p ,
λ([x])(p) = ∞ = λ([p])(x) .

Theorem 3.7 Let (X,λ) be a convergence approach space. {p} is closed iff for any x ∈ X with x ̸= p ,
λ([x])(p) = ∞ or λ([p])(x) = ∞ .

Proof Suppose {p} is closed, and x ∈ X with x ̸= p . Let α = [(x, p, p, ...)] ∈ F (∨∞
p X) and w =

(p, x, p, p, ...) ∈ ∨∞
p X . Note that

λ(π1A
∞
p α)(π1A

∞
p u) = λ([x])(p),

λ(π2A
∞
p α)(π2A

∞
p w) = λ([p])(x)

and for j ≥ 3 ,

λ(πjA
∞
p α)(πjA

∞
p w) = λ([p])(p) = 0

and

λdis(∇∞
p α)(∇∞

p w) = λdis([x])(x) = 0.

Since λdis is the discrete convergence approach structure on X and πj is the projection map for j ∈ I . By
Definition 3.4 (i),

∞ = sup{λdis(∇∞
p α)(∇∞

p w), λ(πjA
∞
p α)(πjA

∞
p w) : j ∈ I}

= sup{λ([x])(p), λ([p])(x)}.

It follows that λ([x])(p) = ∞ or λ([p])(x) = ∞ .

Conversely, let λ be the initial convergence approach structure on ∨∞
p X induced by A∞

p : ∨∞
p X −→

U(X∞, λ∗) = X∞ and ∇∞
p : ∨∞

p X −→ U(X,λdis) = X where λ∗ is the product convergence approach
structure on X∞ induced by πj : X∞ → X (j ∈ I) projection maps and λdis is the discrete convergence
approach structure on X . Suppose α ∈ F (∨∞

p X) and w ∈ ∨∞
p X . Note that

λdis(∇∞
p α)(∇∞

p w) =

{
θ{x}∇∞

p w, ∇∞
p α = [x]

∞, ∇∞
p α ̸= [x]
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=


0, ∇∞

p α = [x] and ∇∞
p w = x

∞, ∇∞
p α = [x] and ∇∞

p w ̸= x

∞, ∇∞
p α ̸= [x] and ∇∞

p w ̸= x

Case I: If x = p , then ∇∞
p w = x = p and it follows that w = (p, p, ...) and ∇∞

p α = [x] = [p] implies
α = [(p, p, ...)] . Note that

λ(πjA
∞
p α)(πjA

∞
p w) = λ([p])(p) = 0,

consequently,

λ(α)(w) = sup{λdis(∇∞
p α)(∇∞

p w), λ(πjA
∞
p α)(πjA

∞
p w) : j ∈ I} = 0.

Suppose x ̸= p , ∇∞
p w = x and ∇∞

p α = [x] , it follows that w = xi for i ∈ I and α contains either a
finite set in the form of U = {xi1 , xi2 , ..., xin} or an infinite set in the form of U = {x1, x2, x3, ...} .

If U = {xi1 , xi2 , ..., xin} ∈ α , then α contains a finite set and it follows that there exists some M0 ∈ α

such that α = [M0] . If M0 = {xk} , a singleton set, then α = [xk] for some k ∈ {i1, i2, ..., in} .
Let w = xi and α = [xk] .

λdis(∇∞
p [xk])(∇∞

p w) = λdis([x])(x) = 0.

For i ̸= j = k , we get

λ(πjA
∞
p [xk])(πjA

∞
p w) = λ([x])(p),

and for k ̸= j = i , we have

λ(πjA
∞
p [xk])(πjA

∞
p w) = λ([p])(x),

and for i ̸= j ̸= k , we have

λ(πjA
∞
p [xk])(πjA

∞
p w) = λ([p])(p) = 0.

It follows that

λ(α)(w) = sup{λdis(∇∞
p α)(∇∞

p w), λ(πjA
∞
p α)(πjA

∞
p w) : j ∈ I}

= sup{λ([x])(p), λ([p])(x)} = ∞.

By the assumption that λ([x])(p) = ∞ or λ([p])(x) = ∞ .
If cardM0 ≥ 2 , then [M0] = [{xi1 , xi2 , ..., xim}] for m ≤ n . Note that

λdis(∇∞
p [M0])(∇∞

p w) = λdis([x])(x) = 0,

and for i ̸= j ,

λ(πjA
∞
p [M0])(πjA

∞
p w) = λ([{x, p}])(p)
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and for i = j ,

λ(πjA
∞
p [M0])(πjA

∞
p w) = λ([{x, p}])(x).

Note that [{x, p}] ⊂ [p] and [{x, p}] ⊂ [x] . Since λ is a convergence approach structure, we get λ([p])(x) ≤
λ([{x, p}])(x) and λ([x])(p) ≤ λ([{x, p}])(p) . By the assumption that λ([p])(x) = ∞ (resp. λ([x])(p) = ∞), we
get λ([{x, p}])(x) = ∞ (resp. λ([{x, p}])(p) = ∞). It follows that

λ(α)(w) = sup{λdis(∇∞
p [M0])(∇∞

p w), λ(πjA
∞
p [M0])(πjA

∞
p w) : j ∈ I}

= sup{0, λ([{x, p}])(x), λ([{x, p}])(p)} = ∞.

If U = {x1, x2, ...} , then α contains an infinite set M ′
0 such that α = [M ′

0] . Note that λ(πjA
∞
p [M ′

0])(πjA
∞
p w) =

λ([{x, p}])(x) for i = j , otherwise λ(πjA
∞
p [M ′

0])(πjA
∞
p w) = λ([{x, p}])(p) , and it follows that

λ(α)(w) = sup{λdis(∇∞
p [M ′

0])(∇∞
p w), λ(πjA

∞
p [M ′

0])(πjA
∞
p w) : j ∈ I}

= sup{0, λ([{x, p}])(x), λ([{x, p}])(p)} = ∞

since λ([{x, p}])(x) = ∞ (resp. λ([{x, p}])(p) = ∞).
Case II: Let p = ∇∞

p w ̸= x and ∇∞
p α = [x] . It follows that λdis(∇∞

p α)(∇∞
p (p, p, ...)) = λdis([x])(p) = ∞

since λdis is a discrete convergence approach structure and x ̸= p . It follows that

λ(α)(w) = sup{λdis(∇∞
p α)(∇∞

p w), λ(πjA
∞
p α)(πjA

∞
p w) : j ∈ I}

= sup{∞, λ(πjA
∞
p α)(πjA

∞
p w) : j ∈ I} = ∞.

Case III: If y = ∇∞
p w ̸= x with x ̸= y ̸= p and ∇∞

p α ̸= [x] , then λdis(∇∞
p α)(∇∞

p w) = λdis(∇∞
p α)(y) = ∞

since λdis is a discrete convergence approach structure.
It follows that

λ(α)(w) = sup{λdis(∇∞
p α)(∇∞

p w), λ(πjA
∞
p α)(πjA

∞
p w) : j ∈ I}

= sup{∞, λ(πjA
∞
p α)(πjA

∞
p w) : j ∈ I} = ∞.

Hence, for all α ∈ F (∨∞
p X) and v ∈ ∨∞

p X , we get

λ(α) =

{
θ{v}, α = [v]

∞, α ̸= [v]

i.e. by Lemma 2.3 (iii), λ(α) is a discrete convergence approach structure on ∨∞
p X . By Definition 3.4 (i), {p}

is closed. 2

Theorem 3.8 Let (X,λ) be a convergence approach space and M ⊂ X . M is strongly closed if and only if
the following conditions hold.

(i) For any x ∈ X with x /∈ M and for any y ∈ M , λ([x])(y) = ∞
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(ii) For any x ∈ X , β ∈ F (X) with x /∈ M and β ∪ [M ] is a proper filter, then λ(β)(x) = ∞ .

Proof Suppose M is strongly closed, x ∈ X with x /∈ M and y ∈ M . Note that q(x) = x , q(y) = ∗ and
x ̸= ∗ . Since (X/M,λ′) is T1 at ∗ , where λ′ is the quotient convergence approach structure on X/M , by
Theorem 3.6, λ′([x])(∗) = ∞ and λ′([∗])(x) = ∞ . By Lemmas 2.3 and 2.4,

∞ = λ′([x])(∗) = inf
y∈q−1(∗)=M

{λ(β)(y) : β ∈ F (X), qβ ⊂ [x]}

= inf
y∈M

{λ(β)(y);β ⊂ [x]},

and consequently, λ(β)(y) = ∞ for all y ∈ M , x /∈ M and β ⊂ [x] . In particular, λ([x])(y) = ∞ for all y ∈ M

and x /∈ M .
Suppose x ∈ X with x /∈ M and β ∪ [M ] is proper for β ∈ F (X) . Note that q(x) = x /∈ q(M) = ∗ . By

Lemmas 2.3 and 2.4,
∞ = λ′([∗])(x) = inf

x∈q−1(x)=x
{λ(β)(x) : β ∈ F (X), qβ ⊂ [∗]}

= inf{λ(β)(x);β ∈ F (X) and β ∪ [M ] is proper} . It follows that λ(β)(x) = ∞ for all β ∈ F (X) with
β ∪ [M ] is proper.

Conversely, suppose the conditions hold and x ∈ X/M with x ̸= ∗ . Note that x /∈ M , and by Lemmas
2.3 and 2.4,

λ′([x])(∗) = inf
y∈q−1(∗)=M

{λ(β)(y) : β ∈ F (X), qβ ⊂ [x]}

= inf
y∈M

{λ(β)(y);β ∈ F (X), β ⊂ [x]}

Since β ⊂ [x] and λ([x])(y) = ∞ for all y ∈ M , it follows that λ(β)(y) = ∞ for all β ∈ F (X) with β ⊂ [x]

and y ∈ M . Hence, λ′([x])(∗) = ∞ .
By Lemmas 2.3 and 2.4,
λ′([∗])(x) = inf

x∈q−1(x)=x
{λ(β)(x) : β ∈ F (X), qβ ⊂ [∗]}

= inf{λ(β)(x);β ∈ F (X) and β∪[M ] is proper} = ∞ by assumption. Hence, by Theorem 3.6, (X/M,λ′)

is T1 at ∗ , and by Definition 3.4 (iii), M is strongly closed.
2

Theorem 3.9 Let (X,λ) be a convergence approach space. M ⊂ X is closed iff for any x ∈ X with x /∈ M

and y ∈ M , λ([x])(y) = ∞ or for any x ∈ X , β ∈ F (X) with x /∈ M and β ∪ [M ] is a proper filter, then
λ(β)(x) = ∞ .

Proof The proof is similar to the proof of Theorem 3.8 by using Definition 3.4 (ii) and Theorem 3.4. 2

Theorem 3.10 (1) Let f : (X,λ) → (Y, λ′) be in CApp . If A ⊂ Y is strongly closed, so is f−1(A) ⊂ X .

(2) Let (X,λ) be a convergence approach space. If M ⊂ N and N ⊂ X are strongly closed, so is M ⊂ X .

Proof (1) (i) Suppose for any x ∈ X , x /∈ f−1(A) and b ∈ f−1(A) . It follows that f(x) /∈ A and f(b) ∈ A .
Since A is strongly closed, λ′([f(x)])(f(b)) = ∞ . Since f is contraction map, λ′([f(x)])(f(b)) ≤ λ([x])(b) , and
consequently, λ([x])(b) = ∞ .
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(ii) Suppose x ∈ X with x /∈ f−1(A) and β ∈ F (X) with β ∪ [f−1(A)] a proper filter. Note that, by
Remark 3.5,

f(β) ∪ [A] ⊂ f(β) ∪ [ff−1(A)] ⊂ f(β ∪ [f−1(A)]).

Since β ∪ [f−1(A)] is proper, f(β ∪ [f−1(A)]) is proper [otherwise, ∃U ∈ β such that f(U ∩ f−1(A)) = ∅ and
consequently, U ∩ f−1(A) = ∅ , a contradiction], and consequently, f(β) ∪ [A] is proper. Since A is strongly
closed, by Theorem 3.8, λ′(f(β))(f(x)) = ∞ . Since f is a contraction map, λ′(f(β))(f(x)) ≤ λ(β)(x) , it
follows that λ(β)(x) = ∞ . Thus, by Theorem 3.8, f−1(A) is strongly closed.

(2) Let λN be the subspace structure on N induced by the inclusion map i : N → (X,λ) . Suppose λM

is the subconvergence approach structure on M which is induced by the inclusion map i : M → (N,λN ) .
(i) Let a ∈ X , a /∈ M and b ∈ M . If a /∈ N , λ([a])(b) = ∞ since N ⊂ X is strongly closed. Suppose

a ∈ N and it follows that λM ([a])(b) = λN (i([a]))(i(b)) = λN ([a])(b) = λ([a])(b) . Since M ⊂ N is strongly
closed, λM ([a])(b) = ∞ for a ∈ N and a /∈ M , and consequently, λ([a])(b) = ∞ .

(ii) Let a ∈ X with a /∈ M , β ∪ [M ] is a proper filter with β ∈ F (X) . Suppose a /∈ N . Since β ∪ [M ]

is proper filter and M ⊂ N , so is β ∪ [N ] , and consequently, λ(β)(a) = ∞ since N ⊂ X is strongly closed.
Suppose a ∈ N , it follows that λM (β)(a) = λN (i(β))(i(a)) = λN (β)(a) = λ(β)(a) . Since M ⊂ N is strongly
closed, λM (β)(a) = ∞ , and consequently, λ(β)(a) = ∞ . Thus, by Theorem 3.8, M ⊂ X is strongly closed. 2

Theorem 3.11 (1) Let f : (X,λ) → (Y, λ′) be in CApp . If A ⊂ Y is closed, so is f−1(A) ⊂ X .

(2) Let (X,λ) be a convergence approach space. If M ⊂ N and N ⊂ X are closed, so is M ⊂ X .

Proof It is analogous to the proof of Theorem 3.10 by using Theorem 3.9 instead of Theorem 3.8. 2

4. Closure Operators
Let E be a set based topological category, X be an object in E and C be the closure operator of E in sense of
[12, 13].

Definition 4.1 Let (X,λ) be a convergence approach space and M ⊂ X .

(i) clCApp(M) = ∩{U ⊂ X : M ⊂ U and U is closed} is called the closure of M .

(ii) sclCApp(M) = ∩{U ⊂ X : M ⊂ U and U is strongly closed} is called the strong closure of M .

Theorem 4.2 clCApp and sclCApp are (weakly) hereditary, productive and idempotent closure operators of
CApp .

Proof Combine Theorems 3.10 and 3.11, Definition 4.1, and Exercise 2.D, Theorems 2.3 and 2.4 and
Proposition 2.5 of [13]. 2

Let E be a topological category and C be a closure operator of E .
(i) E0C = {X ∈ E : x ∈ C({y}) and y ∈ C({x}) =⇒ x = y with x, y ∈ X} [13].
(ii) E1C = {X ∈ E : C({x}) = {x} for each x ∈ X} [13].
(iii) E2C = {X ∈ E : C(△) = △ , the diagonal} [13].

146



QASIM et al/Turk J Math

Remark 4.3 For E = Top , and C = K , the ordinary closure, TopiC reduce to the class of Ti spaces for
i = 0, 1, 2 .

Theorem 4.4 (X,λ) ∈ CApp0cl iff for any x, y ∈ X with x ̸= y , ∃M ⊂ X closed subset such that x /∈ M

and y ∈ M or ∃N ⊂ X closed subset such that x ∈ N and y /∈ N .

Proof Suppose (X,λ) ∈ CApp0cl and x, y ∈ X with x ̸= y . It follows that x /∈ cl({y}) or y /∈ cl({x}) .
Suppose x /∈ cl({y}) . It follows that ∃M ⊂ X closed such that y ∈ M and x /∈ M . Similarly, if y /∈ cl({x}) .
It follows that ∃N ⊂ X closed such that x ∈ N and y /∈ N .

Conversely, suppose for any x, y ∈ X with x ̸= y , ∃M ⊂ X closed subset such that x /∈ M and y ∈ M

or ∃N ⊂ X closed subset such that x ∈ N and y /∈ N . If the first case holds, then x /∈ cl({y}) . If the second
case holds, then y /∈ cl({x}) . Hence, (X,λ) ∈ CApp0cl .

2

Theorem 4.5 (X,λ) ∈ CApp0scl iff for any x, y ∈ X with x ̸= y , ∃M ⊂ X strongly closed subset such that
x /∈ M and y ∈ M or ∃N ⊂ X strongly closed subset such that x ∈ N and y /∈ N .

Proof It is similar to the proof of Theorem 4.4. 2

Theorem 4.6 (X,λ) ∈ CApp1cl if and only if for any x, y ∈ X with x ̸= y , λ([x])(y) = ∞ or λ([y])(x) = ∞ .

Proof Suppose (X,λ) ∈ CApp1cl and x, y ∈ X with x ̸= y . We have cl{x} = {x} for all x ∈ X , i.e., {x}
is closed. By Theorem 3.7, for any y ∈ X with y ̸= x , λ([x])(y) = ∞ or λ([y])(x) = ∞ .

Conversely, suppose for any x, y ∈ X with x ̸= y , λ([x])(y) = ∞ or λ([y])(x) = ∞ . By Theorem 3.7,
{x} is closed, i.e. cl{x} = {x} , and consequently, (X,λ) ∈ CApp1cl . 2

Theorem 4.7 (X,λ) ∈ CApp1scl if and only if for any x, y ∈ X with x ̸= y , λ([x])(y) = ∞ = λ([y])(x) .

Proof It is similar to the proof of Theorem 4.6. 2

Theorem 4.8 (X,λ) ∈ CApp2scl if and only if the following conditions hold.

(i) For any x, y ∈ X with x ̸= y , λ([x])(y) = ∞ = λ([y])(x) .

(ii) For any x, y ∈ X with x ̸= y and for any α, β ∈ F (X) if α ∪ β is proper, then λ(α)(x) = ∞ or
λ(β)(y) = ∞ .

Proof Suppose (X,λ) ∈ CApp2scl and x, y ∈ X with x ̸= y . Note that (x, y) /∈ △ . Since △ is
strongly closed, by Theorem 3.8, in particular, λ2([(x, y)])(y, y) = ∞ = λ2([(x, y)])(x, x) where λ2 is the
product convergence approach structure on X2 . By Lemma 2.3 (i), ∞ = λ2([(x, y)])(y, y) = λ([x])(y) and
∞ = λ2([(x, y)])(x, x) = λ([y])(x) .

Suppose x, y ∈ X with x ̸= y , α, β ∈ F (X) and α ∪ β is proper. Let σ = π−1
1 α ∪ π−1

2 β . Note that
σ ∈ F (X2) , π1σ = α and π2σ = β and σ ∪ [△] is proper. Indeed, if W ∈ σ , then there exists U ∈ α and
V ∈ β such that W ⊃ U × V . Since α ∪ β is proper, U ∩ V ̸= ∅ . It follows that (U × V ) ∩ △ ̸= ∅ and
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W ∩△ ̸= ∅ . Thus, σ ∪ [△] is a proper filter. Since △ is strongly closed, by Theorem 3.8, λ2(σ)(x, y) = ∞ and
by Lemma 2.3, λ(α)(x) = ∞ or λ(β)(y) = ∞ .

Conversely, suppose that the conditions hold and for any (x, y) ∈ X2 with (x, y) /∈ △ . It follows
that x ̸= y and by assumption, λ([x])(y) = ∞ = λ([y])(x) , and for any (a, a) ∈ △ , λ2([(x, y)])(a, a) =

sup{λ([x])(a), λ([y])(a)} = ∞ .
Suppose (x, y) ∈ X2 with (x, y) /∈ △ , σ ∈ F (X2) such that σ ∪ [△] is a proper filter. Let σ0 =

π−1
1 π1σ ∪ π−1

2 π2σ . By Remark 3.5 (iii), σ0 ⊂ σ , πiσ0 = πiσ for i = 1, 2 and σ0 ∪ [△] is proper. It follows that
x, y ∈ X with x ̸= y , πiσ0 = πiσ ∈ F (X) for i = 1, 2 and π1σ0 ∪ π2σ0 is proper since σ0 ∪ [△] is proper. By
assumption, λ(π1σ)(x) = ∞ or λ(π2σ)(y) = ∞ . Thus, by Theorem 3.8, △ is strongly closed, i.e. scl(△) = △ ,
i.e. (X,λ) ∈ CApp2scl . 2

Theorem 4.9 (X,λ) ∈ CApp2cl iff any of the following conditions hold.

(i) For any x, y ∈ X with x ̸= y , λ([x])(y) = ∞ or λ([y])(x) = ∞ .

(ii) For any x, y ∈ X with x ̸= y and for any α, β ∈ F (X) if α ∪ β is proper, then λ(α)(x) = ∞ or
λ(β)(y) = ∞ .

Proof The proof is similar to the proof of Theorem 4.8 by using Theorem 3.9. 2

Let U : E −→ Set be a topological functor, B be an object in E with U(B) = X .
(i) If the initial lift of the U -source {A : X2∨△X2 → U(B3) = X3 and ∇ : X2∨△X2 → UD(X2) = X2}

is discrete, then X is called T0 [2].
(ii) If the initial lift of the U -source {S : X2∨△X2 → U(B3) = X3 and ∇ : X2∨△X2 → UD(X2) = X2}

is discrete, then X is called T1 [2], where A , ∇ and S are principal axis map, folding map and skewed axis
map respectively defined in [2].

Theorem 4.10 (i) A convergence approach space (X,λ) is T0 iff for all x, y ∈ X with x ̸= y , λ([x])(y) = ∞
or λ([y])(x) = ∞ .

(ii) A convergence approach space (X,λ) is T1 iff for any x, y ∈ X with x ̸= y , λ([x])(y) = ∞ = λ([y])(x) .

Proof (i) It is given in [25].
(ii) The proof is similar to the part (i) by using skewed axis map S instead of principal axis map A . 2

Remark 4.11 T0CApp (resp. T1CApp) is the full subcategory of CApp whose objects consist of T0

convergence approach spaces (resp. T1 convergence approach spaces).

Theorem 4.12 Let (X,λ) be a convergence approach space. The following are equivalent.

(i) (X,λ) ∈ CApp1cl .

(ii) For any x, y ∈ X with x ̸= y , λ([x])(y) = ∞ or λ([y])(x) = ∞ .

(iii) (X,λ) ∈ T0CApp
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Proof It follows from Theorems 4.6 and 4.10 (i). 2

Theorem 4.13 Let (X,λ) be a convergence approach space. The following are equivalent.

(i) (X,λ) ∈ CApp1scl .

(ii) For any x, y ∈ X with x ̸= y , λ([x])(y) = ∞ = λ([y])(x) .

(iii) (X,λ) ∈ T1CApp

Proof It follows from Theorems 4.7 and 4.10 (ii). 2

Theorem 4.14 Each of subcategories CAppkC for k = 0, 1, 2 and C = cl or scl are epireflective subcategory
of CApp .

Proof It is quite easy to see that these subcategories are full and isomorphism-closed. We just need to prove
that these are closed under subspaces and products.

(i) Suppose (X,λ) ∈ CApp1cl and A ⊂ X , and let λA be the subconvergence approach structure on A

induced by the inclusion map i : A → (X,λ) . Suppose λA([x])(y) < ∞ and λA([y])(x) < ∞ for some x, y ∈ A

with x ̸= y . By Lemma 2.3 (i), λA([x])(y) = λ(i([x]))(i(y)) = λ([x])(y) and λA([x])(y) = λ([x])(y) . Since
λA([x])(y) < ∞ and λA([y])(x) < ∞ , λ([x])(y) < ∞ and λ([y])(x) < ∞ for some x, y ∈ X with x ̸= y , a
contradiction. Thus, λA([x])(y) = ∞ or λA([y])(x) = ∞ . By Theorem 4.6, (A, λA) ∈ CApp1cl .

Let (Xj , λj) ∈ CApp1cl for all j ∈ I and X =
∏
j∈I

Xj . We show that (X,λ) ∈ CApp1cl , where λ is

the product convergence approach structure on X . Suppose x = (x1, x2, ...) , y = (y1, y2, ...) ∈ X and x ̸= y .
It follows that ∃n ∈ I such that xn ̸= yn . Since (Xn, λn) ∈ CApp1cl , by Theorem 4.6, λn([xn])(yn) = ∞ or
λn([yn])(xn) = ∞ . By Lemma 2.3 (i), λ([x])(y) = sup

j∈I
λj([xj ])(yj) = ∞ or λ([y])(x) = sup

j∈I
λj([yj ])(xj) = ∞ ,

and by Theorem 4.6, (X,λ) ∈ CApp1cl . Hence, CApp1cl is an epireflective subcategory of CApp .
(ii) Suppose (X,λ) ∈ CApp2scl , A ⊂ X and x, y ∈ A with x ̸= y . By argument above λA([x])(y) =

∞ = λA([y])(x) , where λA is the subconvergence approach structure on A . Suppose for any x, y ∈ A with
x ̸= y and α∪β is proper for any α, β ∈ F (A) . Note that x, y ∈ X , i(α), i(β) ∈ F (X) and i(α∪β) = i(α)∪i(β)
is proper. Since (X,λ) ∈ CApp2scl , by Theorem 4.8, λ(i(α))(x) = ∞ or λ(i(β))(y) = ∞ . By Lemma 2.3 (i),
λA(α)(x) = λ(i(α))(x) = ∞ or λA(β)(y) = λ(i(β))(y) = ∞ and by Theorem 4.8, (A, λA) ∈ CApp2scl .

Suppose for i ∈ I , (Xi, λi) ∈ CApp2scl and X =
∏
i∈I

Xi . We show that (X,λ) ∈ CApp2scl . By the same

argument used in (i), λ([x])(y) = ∞ = λ([y])(x) . Suppose for any x, y ∈ X with x ̸= y and α∪ β is proper for
any α, β ∈ F (X) . Let α0 = {U ⊂ X : U ⊃

∏
i∈I

Ai, Ai ∈ πiα} and β0 = {V ⊂ X : V ⊃
∏
i∈I

Bi, Bi ∈ πiβ} . Note

that πiα0 = πiα and πiβ0 = πiβ for all i ∈ I . Indeed, suppose A ∈ πiα0 . It follows that ∃W ∈ α0 such that
W ⊃

∏
i∈I

Ai , Ai ∈ πiα and A ⊃ πiW ⊃ πi

∏
i∈I

Ai = Ai ∈ πiα . Therefore, A ∈ πiα . Now, let Ai ∈ πiα . It follows

that
∏
i∈I

Ai ∈ α0 and πi(
∏
i∈I

Ai) = Ai ∈ πiα0 . Thus, Ai ∈ πiα0 . Hence, πiα0 = πiα for all i ∈ I . Since α ∪ β

is proper, πi(α∪β) = πi(α0 ∪β0) are proper for all i ∈ I and it follows that α0 ∪β0 is proper. If not, ∃U ∈ α0

and ∃V ∈ β0 such that ∅ = U ∩ V ⊃
∏
i∈I

Ai ∩
∏
i∈I

Bi =
∏
i∈I

(Ai ∩ Bi) implies
∏
i∈I

(Ai ∩ Bi) = ∅ , i.e. ∃k ∈ I such
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that Ak ∩Bk = ∅ and therefore, πkα ∪ πkβ is improper. It follows that πkα0 ∪ πkβ0 = πkα ∪ πkβ ⊂ πk(α ∪ β)

is improper. (Xi, λi) ∈ CApp2scl implies λi(πiα0)(xi) = ∞ or λi(πiβ0)(xi) = ∞ . By Lemma 2.3 (i),
λ(α0)(x) = sup

i∈I
λi(πiα0)(πi(x)) = ∞ or λ(β0)(y) = sup

i∈I
λi(πiβ0)(πi(y)) = ∞ , and consequently, λ(α)(x) = ∞

or λ(β)(y) = ∞ . Therefore, by Theorem 4.8, (X,λ) ∈ CApp2scl . Hence, CApp2scl is an epireflective
subcategory of CApp .

The proof for other cases is similar.
.

2

Remark 4.15 (i) In Top (category of topological spaces and continuous maps), Top2scl = Top2cl ⊂
Top1scl = Top1cl ⊂ Top0scl = Top0cl .

(ii) In Born (category of bornological spaces and bounded maps), by Lemma 2.11 of [6], Bornkcl ⊂ Bornkscl

for k = 0, 1, 2 .

(iii) In Prord (category of preordered spaces and order preserving maps), by Theorem 4.5 of [9], Prordkscl =

Prordkcl ⊂ Prord0scl = Prord0cl for k = 1, 2 .

(iv) In FCO (category of filter convergence spaces and filter convergence maps), by Theorem 2.9 of [6],
FCO2scl ⊂ FCO2cl = FCO1scl = FCO1cl ⊂ FCO0scl = FCO0cl .

(v) In ConFCO (category of constant filter convergence spaces and filter convergence maps), by Theorems
4.3, 4.4 and 4.5 of [14], ConFCO2scl = ConFCO2cl ⊂ ConFCOkscl = ConFCOkcl for k = 0, 1 .

(vi) By Theorems 4.8, 4.9, 4.12 and 4.13, we have CApp2scl ⊂ CApp1scl ⊂ CApp0scl and CApp2cl ⊂
CApp1cl ⊂ CApp0cl .

5. Connected convergence approach spaces

Definition 5.1 (cf. [8]) Let E be a set based topological category, X be an object in E and M be a nonempty
subset of X .

(i) M is open iff M c , the complement of M , is closed in X .

(ii) M is strongly open iff M c is strongly closed in X .

Definition 5.2 (cf. [8]) Let U : E −→ Set be a topological functor, B be an object of E with U(B) = X .

(i) B is connected iff the only subsets of B both strongly open and strongly closed are B and ∅ .

(ii) B is strongly connected iff the only subsets of B both open and closed are B and ∅ .

Remark 5.3 For Top , the notion of strongly connectedness coincides with the usual connectedness. Moreover,
if a topological space is T1 , then the notions of connectedness and strongly connectedness coincide.

Theorem 5.4 A convergence approach space (X,λ) is connected iff there exists a proper subset M of X such
that either the statement (I) or (II) holds, where
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(I) λ([x])(y) < ∞ for some x ∈ X , x /∈ M and y ∈ M or λ(β)(x) < ∞ for some β ∈ F (X) with β ∪ [M ]

is proper and x /∈ M .

(II) λ([x])(y) < ∞ for some x ∈ M and y ∈ M or λ(β)(x) < ∞ for some β ∈ F (X) with β ∪ [M c] is proper
and x ∈ M .

Proof It follows from Definition 5.2 and Theorem 3.8. 2

Theorem 5.5 A convergence approach space (X,λ) is strongly connected iff there exists a proper subset M of
X such that either the statement (I) or (II) holds, where

(I) λ([x])(y) < ∞ for some x ∈ X , x /∈ M and y ∈ M and λ(β)(x) < ∞ for some β ∈ F (X) with β ∪ [M ]

is proper and x /∈ M .

(II) λ([x])(y) < ∞ for some x ∈ M and y ∈ M and λ(β)(x) < ∞ for some β ∈ F (X) with β ∪ [M c] is
proper and x ∈ M .

Proof It follows from Definition 5.2 and Theorem 3.9. 2

Lemma 5.6 Let (X,λ) be a convergence approach space. If (X,λ) is strongly connected, then (X,λ) is
connected.

Proof It follows from Theorems 5.4 and 5.5. 2
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