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Abstract: In this paper, we revisit the bounds of the mixed exponential sums introduced by Lv and Zhang (2020).
Moreover, we give some estimations for some new hybrid exponential sums related to Kloosterman sums over finite fields

of odd characteristic by using the properties of Jacobi sums and Gaussian sums.
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1. Introduction
As usual, let 9 be a canonical additive character of F, where ¢ = p® with p is an odd prime and s is a positive

integer. For any integers m and n, the two-term exponential sum K(m,n,k, h;q) is defined as follows:

K(m,n,k, h;q) = Z Y(ma® + nah),
zeF;
where k and h are integers with k > h, and Fj = F,\{0} which is a cyclic group consisting of ¢ — 1 elements.
If k=1 and h=—1, then K(m,n,1,—1;q) becomes the famous Kloosterman sum, which is defined by

K(¢;a,b) = Z Y(ac+be™h).

celF?

It is clear that these exponential sums over finite fields are important topics because their extensive
applications in finite fields [2, 12], coding theory [6, 8] and the designing of sequences [5]. Meanwhile, numerous
results about the properties of K(m,n,k, h;q) and K(v;a,b) have been reported. By way of example, Zhang

et al. [15] obtained an equation about K(m,n,3,1;p) as follows:

4
20 —p?, i 3{(p—1);
> | X vtmat +na)| ={ 2L HA P

mEFs |ackF,

where p is an odd prime and n is an integer with (n,p) = 1.
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In [7], Liu and Li used the properties of Gaussian sums to prove the following result about two-term

exponential sums relate to K(m,n,3,1;p) of F,

2 2

Z Z x(ma® + a) Z P(mb® +b)| = 2p® + E(p),

meFy |a€Fy belFy
where x denotes a multiplicative character of F, and E(p) satisfies the inequality
—12p® —2p < E(p) < 4p° — 2p.

In this paper, we mainly focus on calculating the values of some hybrid exponential sums related to

K(m,n,k, h;q) and Kloosterman sums, which are defined as:

2

SN xta+b+mab)| | > w(meto)| (1.1)

meEF; |a,beF ceF;

2

Z Z x(a + b + mab) Zw(mcs—kc) , (1.2)

meF; |a,beF?, cEF:
2 2
Z Z x(a+ b+ ¢+ mabe) Z P(md +d)| (1.3)
mG]Fj; a,b,cEIF:; dGIFZ
2 2
oI Y. xta+b+c+mabe)| | D ¢(md* +d)| . (1.4)
mGJF; a,b,cE]Fj; dEIFZ

About these kinds of hybrid exponential sums, Di [3] and Lv and Zhang [11] also obtained some related

contents, the first one reads:

2 2

- 2% + O(|k|p?), if 2| k;
> |5 tmata™)| | Y vttt +an) = { S OUE
meFy |acFy beFs 2p° + O(|klp2), if 21k,

where x is a multiplicative character of F,, and % a canonical additive character of F,. Lv and Zhang [11]
introduced the bounds of Summations (1.1) and (1.2) over prime fields. Summations (1.1) and (1.2) have been
studied over prime fields, we use the properties of Jacobi sums and Gaussian sums to obtain the bounds of
summations (1.1) and (1.2) over general finite fields of odd characteristic. Then by using a similar method, we
can also obtain some estimations of summations (1.3) and (1.4), respectively. The main results of this paper
are stated as the following theorems. We denote a multiplicative character x of F, as a power-d character, if

there exists a multiplicative character x; of F, such that x = x{ in the sequel.
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Theorem 1.1 Assume that ¢ is a canonical additive character of Fq with 3| (¢ —1). Then

Z x(a + b+ mab)

a,bE]F;

does not vanish if x is a power-three character, in which case we have

2

Z Z x(a + b+ mab) Zw(mc—&-é)

=3¢*(¢* —q—1)+ T,
meF}y |a,beFy

ceFy

and

Z Zx(a+b+m65) Zw(mc3+c)

=3¢*(¢" =3¢ — 1)+ T»,
meFy |a,beFy

celFy
where |Ty| < 6q% and |Ty| < 6¢ + 12¢% .
Theorem 1.2 Assume that ¢ is a canonical additive character of Fq with 31 (¢ —1). Then

2

Z Zx(a—&-b—kmag) Zw(mc—i—é)

= —q-1),
meF; |a,beF; cel;
and
2 2
Z Z x(a + b+ mab) Zz/)(mc?’—FC) = (P —q-1).
meF? |a,beFy

celF?

Theorem 1.3 Assume that ¢ is a canonical additive character of Fy with 4| (¢ —1). Then

(1) if x s a power-four multiplicative character of F,, we have

2

1> xa+b+c+mabe)| | > p(md+d)

meFy |a,b,ceF}

2

=4¢*(¢* —q— 1) + T3,
deF;

where |Ts| < 4v/6q% . Moreover, if 8| (¢ — 1), it follows that

2

S > xa+b+c+mabe)| | > d(md* +d)

mE]F;; mb,cEF;

2

=4¢*(q> —4q — 1) + Ty,
deF:

and if 81 (¢ — 1), it follows that

2 2

> d(md* +d)| =4¢* (4> —4g—1) + T,

deF;

Z Z x(a+ b+ ¢+ mabe)

meF} |a,b,c€F?
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where |Ty| < (8V/3 +8V6)(¢* + ¢7) and |Ts| < 8V3(¢* + ¢7);

(it) if x is not a power-four multiplicative character, then

2 2
1Y xa+b+ct+mabe)| | > ¢p(md +d)| =0,
meF; |a,b,cEF; deF;
and
2 2
S Y. xta+b+c+mabe)| | > ¢p(md*+d)| =0.
mE]F:; a,b,cEIFj; dGJF;

Theorem 1.4 Assume that v is a canonical additive character of Fy with 41 (¢ —1). Then

(1) if x is a power-two multiplicative character of Fy, we get

2 2
Z Z x(a+ b+ ¢+ mabe) Zw(md+8) =2¢°(¢* —q— 1),
mEF; a,b,cE]F; dEIF:;
and
2 2
1> xa+bv+ct+mabe)| | > d(md+d)| =2¢°(¢> —2q - 1);
meFy |a,b,ceF; deFy
(ii) if x is not a power-two multiplicative character, then
2 2
S Y xta+b+ct+mabe)| | w(md+d)| =0,
mEF: a,b,cE]F; dE]FZ
and
2 2
Z Z x(a + b+ ¢ + mabe) Zz/)(md4+d) =0.
meFy |a,b,ceF; deFy

2. Preliminaries

Suppose that ¢ = p™ for an odd prime p and a positive integer n. Let I, be the finite field with ¢ elements.
Then the group of units of F,, denote by Fy, is a cyclic group consisting of ¢—1 elements. For a fixed primitive
element o of F, and every integer i with 0 < i < g — 2, the function y;(a?) = C;j_ ;1 give a multiplicative
character of Fy, where 0 < j < ¢—2 and (, is a complex primitive p-th root of unity. For convenience later,
X1 is written as x. And we set x(0) = 0. Meanwhile, the additive character ¢ is a homomorphism from the

finite field F; to the multiplicative group C* of the complex field C, which can be defined as:
Um(n) = 0 for alln € F,
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where Tr is a trace function from F, to IF, and ¢, is a complex primitive p-th root of unity. For convenience,

yn is written as v, which is called the canonical additive character of ;. And the Gaussian sum G(x,) of
F, is defined by

GOGv) = > x(@)tm(2).

z€lF?y

In this paper, we only focus on G(x, 1), which is denoted by G(x) for convenience. A crucial role in the present

paper is played by the notion of the Jacobi sum, which is understood according to the following definition.

Definition 2.1 [8] Let Ay,--- , A\, be nontrivial multiplicative characters of Fy. The sum

T ) = > M) M),

z1+-tzEp=1
where x1,--- ,xy are elements of F,, which satisfying ©1 +---+x =1, is called a Jacobi sum of IF,.

Then we provide some lemmas about Jacobi sums, which will be used to prove our main results in the sequel.

Lemma 2.2 [8] Let A\1,---, A\ be nontrivial multiplicative characters of Fy. Then

G(A1)--- G

J()\la"'a)‘k): G()\l)\k)

if A\ Mg 1s a nontrivial multiplicative character, and otherwise,

T, A) = —éa(xl) - G(A).

Lemma 2.3 [8] Let \q,---, A be nontrivial multiplicative characters of Fy. Then

k—1

|J(>‘17"' 7>‘k)| =q 7,

if A\ Mg 1s a nontrivial multiplicative character and

k=2

|[J( AL, ) =¢q 2,

if A1+ Mg s a trivial multiplicative character.

3. The proofs of main results

In this section, we will prove the main results of this paper, namely, Theorems 1.1-1.4. For convenience, we

denote

A(m,q) = Y xla+b+mab),
a,bG]Fj;

B(x,m,q) = > xla+b+c+mabe),
a,b,cG]FZ
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C(¥,m,q) = Y W(ma+7),

a€lFy

D(¢,m,q) = Y ¥(ma® +a),

ae]F*

and

E(Y,m,q) = Zz/)ma +a),

a€lFy

where 1) is a canonical additive character of F,, x is a nonprincipal multiplicative character in F,, and m € F.

3.1. The proofs of Theorems 1.1 and 1.2

The proofs of Theorems 1.1 and 1.2 are very complicated. Hence, we divide our proofs into the following

preparatory works. For convenience, we denote

1

Ao== 3" Xlabe) > (1 +7(f)+7(f)(da®be — 1) + e(ab®c — 1) + defm(c — 1)),
q a,bc,;fF;; d.e, feF?
A= > x(ab) Y (d(a’d—1) + e(ab® — 1)),
a,beF? d,e€F:
Ay = - Z X (abc) Z Y(d(a®be — 1) 4 e(ab*c — 1) + defm(c — 1)),
a,b,c€FY d,e feIE‘*
c#1
AS% > Xlabe) Y T(f)e(d(a*be —1) + e(ab’c — 1) + defm(c - 1),
abL;fL;; d,e,fEIF;
A4:é > Xlabe) Y T(H)v(da’be — 1)+ e(ab’e — 1) + defm(c — 1)),
a,b,cer? d,e,feIFj;
c#1

where X is a nonprincipal multiplicative character in Fy, 1 is a canonical additive character of Fy, and m € Fy.

Lemma 3.1 Assume that x is a nonprincipal multiplicative character in F, with 3| (¢ —1), and m € Fy. If

X 15 not a power-three multiplicative character in F,, we have
A(x,m,q) = 0.

If x is a power-three multiplicative character in Fy, then

a,b,cG]F*
3 ga—
+ 0 ) T Rabe)r(e - Vr(a?be — 1yr(abe 1), (3.1)
q a,b,ceF

where T is a multiplicative character of Fy of order three.
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Proof If x is not a power-three multiplicative character in I, then there exists an element r € F; such that

r3 =1 and x(r) # 1, which implies

A(x,m,q) = Y x(ar+br + mr2ab)
a,bE]F;;

= x(r)A(x,m,q).

Due to x(r) # 1, it follows that
A(x,m, q) = 0.

If x is a power-three multiplicative character in Fy, by |G(x)| = ¢2, it follows that

Ama)l =1 | 32 xa+ b+ mab(ciie)

a,b,ceFy

==| > X(o)(cla+b+mab))

a,b,cE]F;;

=L ST x(abe)(e(a?s + ab? +m))

q a,lch]F;
1

== Z X (abc) Z Y(df (a®be — 1) 4+ ef(ab’c — 1) + fdem(c — 1))
q a,b,ceF d.e, feF?

-1 Z X (abe) Z Y(d(a®be — 1) 4 e(ab’c — 1) + def>m(c — 1)).
q

a,b,ceFy; d.e, fEF}

According to 3| (¢ — 1), we can obtain the following equation

> x(@®m) = (1 + 7(a) + 7(a))x(am), (3.2)
aEJFZ
which implies that
—1
ACem ) = 1= 3" x(ab) Y w(d(a—1) + e(ab® — 1)) + Aq
a,bGIF* d EEIF*
q

—1
ZTA1+A2+A3+A4~

From the properties of the nontrivial additive character, we have the following equation

S vt = { & 00 3)

melF,
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which yields

Ay=—= )" X(abc) Y w(d(a’be— 1)+ e(ab’c — 1))
q a,b,ceF} d,ee]F;
c#1
1 1
=== > Xabe) Y w(d(a’be 1) +e(ab’c 1)) + ~ A
a,b,ceFy d,ecFy ¢

=—q Z x(abc) + 2 Z X (abc) + éAl

a,b‘celFS a,b,ceF(’;
a2be=ab2c=1 a2be=1

Hence, |A(x, m,q)|> can be written as

|A(X,m7Q)\2 =A; + Az + Ay

Similarly, we can also get

a,bEFfl‘ a.bE]F;
a2b=ab2=1 aZb=1
2
=q x(a)
a€Fy
ad=1

So that A; = 3¢?. Finally, from the definition of Gaussian sums, it follows that

A= % xlabe) S r(defmle— D)ld(abe - 1) + e(ab?c — 1) + f)
ab,ceFy; d.e, fEF?
37‘
_Gq( Jrm) 3 Klaber(c — 1)7(a?he — r(abPe - 1).

a,b,cEIFj;
Analogue to the calculation of A3, we also have

37
Ay = ¢ q( )T(m) Z X(abe)t(c — 1)1 (a’be — 1)1 (ab’c — 1).
a,b,cGIF:;

So we can obtain Equation (3.1). O

Lemma 3.2 Suppose that x is a nonprincipal multiplicative character in Fy with 31 (¢ —1), and m € F5.
Then we have
2
1A m, q)” = ¢
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Proof Note that 31 (¢—1). So if f runs through F,, so does f3. According to a similar method of Lemma
3.1, we have

|A(x,m, q)° = é Z X (abe) Z Y(d(a®be — 1) + e(ab®c — 1) + def>m(c — 1))

a,b,ceF; d.e, fEF}

Z X(abc) Z Y(d(a?be — 1) + e(ab’c — 1) + defm(c — 1))

a,b,cequ d,e fE]F*

Q| =

::r>

2
=4 Z
a€Fy
a3:1

As 31 (q—1), then we have

|A(x, m, q))* = ¢

Lemma 3.3 Suppose that 1 is a canonical additive character of F,. Then we can obtain the following identities

> Cw,m g =¢*—q-1,

mG]F;
2_3¢g—1, if3](¢g—1);
D ,m, 2: q v )
mzeg*l (%, m, q)| {(f—q—l, if 31 (¢ —1),

and

> ewomal ={ G0 Y

i ¢ —2q—1, ifd4f(¢g—1).
Proof From Equation (3.3), we can get

Yo lCWmagf= Y W(m(a—b)+(@-0b)

mE]Fj; a,b,mEIFj;
= > D> wma=b)+@-b))- Y W@-b
a,beFy; meF, a,beFy
=¢>—q—1.
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Analogue to the calculation of >’

mE]F;

C (¢, m, q)|2, we can also obtain

Y IDW,m, P = Y d(m(a® =)+ (a—b))
mEIFj; a,b,mEIF;;
= Y D wm@®-bY)+(a—b)— Y dla—b)
abE]F meF, abEF"
=q Y Yla—b) -1
{q —3¢—1, if3]|(¢g—-1)
¢ —q-1, if3f(¢—1).

Similarly, we can also get

> IE@W,m,q)

meFy

_f P —4q-1,if 4|(¢g—1)
Sl #2010 41 (g—1).

Lemma 3.4 Let 3| (¢ — 1) and assume that T is a multiplicative character of Fy of order three and v is a

canonical additive character of F,. Then

and

Z T(m> |D(¢>maq)|2 <qg+ 2\/6'

meFy
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Proof Due to the fact that 7(—1) =1 and 72 = 7, we have

Yo rm)Cw,m = Y T(m)(m(a—b)+(@-b))

meF; a,b,meFy
=G(7) Z T(a — b)y(a—b)
a,bEIF;
=G(r) > 7(ab—b)(ab —b)
a,bGIFj;
=G(r) Y Tb)T(a— (b 1))
a,bEIF;;
=G ()Y 7Tla—-1)7F@-1)
a€lFy
= G*(1) Z 7(a)T(1 — a)
acly

From Lemma 2.3, it follows that |J(7,7)| = ¢ . Then combining with |G(T)| = ¢, we can easily check that

Z 7(m) C(w,m,q)lz‘ =gq2.

melFy

Similarly, by Equation (3.2), we can also obtain

Yo rm) D, mg) = Y r(m)y(m(a® —b*) + (a—b))

mEF; a,b,mEle;

= > 7(m)p(mb*(a® — 1)+ b(a—1))

a,b,melF?

=G(r) Y 7(b*(a® - 1))¢(b(a — 1))

a,beF;

=G(r) Y 7(a® = 1(bla—1))

a,bGIF;

=-G(r) > 7(a®-1)

aclFy

= —-G(1) Z (1+7(a)+7(a))7(a—1)

a€Fy

=G(1) - G(n)J(T,T) — G(1)J (1, 7).
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Therefore, from Lemma 2.3 and |G(7)| = ¢2, we have

Y T(m)[D(,mq)l*| < |G(r)| + G| (7, 7)| + |G(r)]| T (7,7)]

melFy
=q+24q.

O

Lemma 3.5 Assume that x is a power-three multiplicative character in F, with 3 | (¢ —1). Then, for any

multiplicative character T of Fy of order three, it follows that
Z X(abe)T(c — 1)7(a?be — 1)7(ab’c — 1)| < 3¢2.
a,b,cG]Fj;
Proof From 3| (g — 1), it implies that there exists an element ¢ € F; such that
1+ 7(t) +7(t) = 0.

Then according to Equation (3.1), we can obtain

2 2
Aam. )P+ D x(a+b+mtab)| +| > x(a+b+mt*ab)| = 9¢%
a,beFy a,beFy
which yields
4 4
|A(x, m, q)|* + Z x(a+ b+ mtab)| + Z x(a+b+mt*ab)| < 8lg*. (3.4)
a,bE]F; a,be]F;
On the other hand, by Equation (3.1), it follows that
4 4
ACem, gt + | Y x(a+b+mtab)| +| > x(a+ b+ mt*ab)
a,beFy a,beFy
2
= 27¢" +6¢| Y X(abc)r(c — 1)r(a’be — V)r(ab’c —1)| . (3.5)

a,b,cEF;

Hence, from Equations (3.4) and (3.5), we have

Z X(abe)T(c — 1) 1(a’be — D)7 (ab’c — 1)| < 3q3.

a,b,ceFy
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Now we use the lemmas above to complete the proofs of Theorems 1.1 and 1.2. Firstly, we prove Theorem 1.1.

Proof By Equation (3.1) and Lemma 3.3, we have

> AGGm @)D dlme+e)

mE]F; CE]FZ;

=3¢°(* —q—1)+ & (r) Z 7(m) Z Y(md + d) Z X(abe)7(c — 1)7(a’be — 1)7(ab*c — 1)

meFR* deF: a,b,cEF:

2

3(7 _
+ &0 > orm)| Y wmd+d)| > xlabe)r(c—1)7(a’be — 1)7(ab’c — 1).

meFs deFs; a,b,cEF:

Then from Lemmas 3.4 and 3.5, it follows that

2

> F(m) | w(md+d)| | =gz,

mGJF:; dG]F;;

e

and

Z X(abe)t(c — 1)1(a’be — 1)7(ab’c —1)| < 3q3.

a,b,ceFy

And due to |G(7)| = q2, it follows that

> 1AGGm, @1 | Y d(me+72)| =3¢* (¢ —q— 1)+ Ty,

mEIFj; CEF;

where |T7| < Gq%.

Analogue to the proof above, according to Lemmas 3.1 and 3.3-3.5, we can also get
2

o IAGm @ | Y dme® +0)| =3¢°(¢ =3¢ — 1)+ T,

mGFZ CGIFZ

where |T| < 6¢3 + 1245 .
Theorem 1.2 can be checked by Lemmas 3.2 and 3.3. O
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3.2. The proofs of Theorems 1.3 and 1.4

In order to prove Theorems 1.3 and 1.4, we need the following lemmas. For convenience, we denote

By = é > X(abed) D" (14 A(h) + n(h) + X(h)¥(e(a’bed — 1) + f(ab®ed — 1) + g(abe®d — 1)

a,b,c,d€Fy e, f,9,h€F}
d#1

+efghm(d — 1),
Bi= Y Xlabe) > wle(a®be—1)+ fabc — 1)+ g(abe® — 1)),

a,b,cE]F; e,f,gE]F;

) _
By== Y X(abed) D w(e(abed —1) + f(ab’cd — 1) + g(abc®d — 1) + &fghm(d — 1)),
ab,e.deFs e.f,9,h€F;

d#1

L)

Bs 1 > X(abed) > Ah)(e(a’bed — 1) + f(ab’ed — 1) + g(abc®d — 1) + efghm(d — 1)),

q a,b,c,deﬂ"é e,f,g,hG]F;
d#1
) -
Bi=- Y X(abed) Y n(h)i(e(a’bed — 1) + f(ab’ed — 1) + g(abc*d — 1) + efghm(d — 1)),
q a,b‘c‘dETF‘z e,f,g,he€F*

d#1

Bs=~ 3 Xlabed) Y MWywlelabed — 1)+ flabed — 1) + glabeld — 1)+ &Fghm(d — 1)),
ab,c,deF) e, f,9,h€F}
d#1

where x is a nonprincipal multiplicative character in Fy, ¢ is a canonical additive character of F,, and m € F}.

Lemma 3.6 Assume that x is a nonprincipal multiplicative character in Fy with 4 | (¢ — 1), and m is an

element in IFZ. We denote that

S1 = Z X(abed)n(d — 1)n(a®bed — 1)n(ab’ed — 1)n(abc®d — 1),
a,b,c,deIF(’;

Sy = Z X(abed)\(d — 1)A(a®bed — 1) A(ab’cd — 1)A\(abc’d — 1),
a,b,c,dEle;

and

Ss= > xlabed)N(d — )X(a%bed — DA(ab%ed — DN (ab*d — 1),

a,b,c,dEIF;

where A\ is a multiplicative character of Fy of order four and n is the quadratic character of Fy. If x is not a

power-four multiplicative character in ¥y, then we have

Otherwise,

Gt

——n(m)S + A(m)Ss. (3.6)
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Proof If x is not a power-four multiplicative character of I, then there exists an element r € IF, such that

r* =1 and x(r) # 1, then

B(x.m.q)= > xlar+br+cr +mrabe)
a,b,cEF;

= x(r)B(x,m, q).

Due to x(r) # 1, it follows that
B(x,m,q) = 0.

If x is a power-four multiplicative character in F,, then analogue to Lemma 3.1, we also have

1 _
IBOx.m. )P == > X(abed) > w(e(abed — 1) + f(ab*cd — 1) + g(abc®d — 1) + &fgh*m(d — 1)).
a,b,c,dE]F; e,f,gﬁEF;

Since 4 | (¢ — 1), we can obtain the following equation

Z x(a*m) = (14 A(a) + n(a) + X(a))x(am). (3.7)
a€ly
Hence we have
—1
|B(x,m,q))* = qT Z X (abe) Z Y(e(a?be — 1) + f(ab*c — 1) + g(abc* — 1)) + By
a,b,cGIF; e, f, gE]F*

1
:qTBl+BQ+B3+B4+B5.

From Equation (3.3), we have

B, = ! Z X(abed) Z ¥(e(a®bed — 1) + f(ab®ed — 1) + g(abc®d — 1))

a,b,c,deF} e, f,g€Fy
d#1
1 1
=—= > Xlabed) > (e(abed — 1)+ f(ab’*ed — 1) + g(abc*d — 1)) + =B,
mb,c,dE]F;‘ e f,qE]F* q
1
= —¢ Z X(abed) + 3¢ Z X(abed) — 3 Z X(abed) + =By
a,b,u,dE]F; a,b,c,dE]FZ; a,b,c,dE]FZ q
a2bcd=ab2cd=abc2d=1 a2bcd=ab2cd=1 aZbed=1
1
= -Bs.

q

Hence, |B(x,m,q)|° can be written as
|B(x,m,q)|” = By + Bs + By + Bs,
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The next thing to do in the proof is to compute Bj. Similarly to the calculation of By, we have

By =¢ Z X (abc) — 3¢* Z X(abc) + 3¢ Z X(abc)

a,b,ceFZ a,b,cE]FZ aTb,celFZ
a2bc=ab2c=abc2=1 a2be=ab2c=1 a2be=1
3
=q x(a).
*
ae]Fq
at=1

So that By = 4¢>. Finally, by the property of Gaussian sums, we can obtain

By=1 3 abed) 3 Aefohmid —D)le(a’bed — 1) + flabed ~ 1) + glab’d — 1) + h)
a,b,c,d€Fy e, f,g,he€F}

G

Analogue to the calculation of B3, we also have By = G4(1(")77(m)51 and By = G4q(X)A(m)SQ. Hence, the proof

is completed. O

Lemma 3.7 Suppose that x is a nonprincipal multiplicative character in Fy with 41 (¢ —1), and m € Fo. If

X 15 not a power-two multiplicative character in Fq, then

|B(x,m,q)| = 0.
Otherwise,

Blom,a)f* =2 +anim) S Xlabed)n(d — n(a*bed — 1)y(ab?ed — 1)n(abed — 1),
a,b,c,d€F?

where 1 is the quadratic character of F.

Proof Analogue to the proof of Lemma 3.6, we also have
|B(x,m, q)| =0,

when x is not a power-two multiplicative character in F,. And if x is a power-two multiplicative character in
F,, then

|B(x,m,q)|* = 1 Z X (abed) Z Y(e(a*bed — 1) + fab*cd — 1) + g(abc*d — 1) +efgh*m(d — 1)).

a,b,c,deFy e, f,9,heF;
From 41 (q—1), it follows that ged(4,q—1) = 2. Therefore, if h* runs through F,, then h? also runs through
F,, which yields
1

|B(x,m,q)|” = = Z X (abed) Z Y(e(a*bed — 1) + fab*cd — 1) + g(abc*d — 1) +efgh’*m(d — 1)).
a,b,c,deFy e, f,9,h€F;
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According to the method of Lemma 3.6, we also have
-1 1
BOem.q)f =T== %" Xabe) Y v(ela’be—1)+ flab’e—1)+glab® — 1))+~ > X(abed)

q a,b,ceF e, f,g€Fy; a,b,c,d€F?

> @+ n(h)(e(a®bed — 1) + f(ab’ed — 1) + g(abe®d — 1) + efgh®m(d — 1))
e, f,9,h€F;

= B1+ By

=2¢° + qn(m) Z X(abed)n(d — 1)n(a*bed — 1)n(ab®cd — 1)n(abc®d — 1).
a,b,c,dEFy

O

Lemma 3.8 Assume that X\ is a multiplicative character of F, of order four, n is the quadratic character of

F, and 1 is the canonical additive character of Fy. Then
> Am) [C(p,m,q) | = q2,
mely
and
> nm) [C(w,m, q)|* = 0.
mely

Proof By the property of Gaussian sums, we have

Z)\ Y|C @, m, q)? Z A(m)(m(a —b) + (@ — b))

mE]F* a,b,mE]F*
=G\ Y. Na—b)p(@—b)
a,bG]FZ
) > Mab—b)(ab—b)
a,bE]Fz
A) D AB)Aa - Dy(b@— 1))
a, bE]F*
2N Y Xa-1)X@-1)
a€Fy
= GWA=1) Y Ma)n(a—1)
aEF;

= G*(NA(=D)n(=1)J (A, n).

On the other hand, from Lemma 2.3, we have the following equation

1

[T m)] = g2
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Combining with |G(\)] = ¢2 , we can obtain

7 Am)[C,m,q)P| = ¢*|G2(N)| = ¢*.

meFy

Similarly, we also have

> 0m) |[C(,m,q)l> = G(n) Y nla—b)(@—b

meF; a,beF

= G*(mn(=1) Y n(a)

a€ly

=0.

Lemma 3.9 Suppose that A is a multiplicative character of F, of order four, n is the quadratic character of

F, and 1 is a canonical additive character of Fy. Then:

(1) for the quadratic character n over Fq, we have

> n(m) [E(,m.q)]?| < 2q+ 24,

mekF?

if4](¢—1), and

> nm) [E(w,m, q)|* =0,

mekFy

U‘4f+(q'_ 1);

(ii) for any character X over Fy of order four, we can obtain

Y Mm)|E(@,m,q)f*| < 2¢+2va,

mekF?

> Am) [E(,m,q)* =0,

nzeF;

if 81(g—1).
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Proof (i). By the property of Gaussian sums and 7(a*) = 1, it follows that

S nm) [E@,m,q)l* = > nim)pim(a® = b*) + (a — b))

mEF; a,b,mE]F;‘

Y n(m)yp(mb(a* = 1)+ bla - 1))

a,b,mE]F;

=G Y nb*(a* = 1)y(ba—1))

a,bGIFZ

=G(n) Y nla* = y(bla—1))

a,be]F;

=-G(n) Y _ nla*-1).

aeF(’;

If 4| (¢ — 1), then by Equation (3.7) and n(—1) = 1, we have

~G(n) Y mla* = 1) ==G(n) Y (1+Aa) +n(a) + Xa))n(1 - a)
a€lFy aclFy

=G(n) —Gn)JN\n) —Gm)J(n,n) —Gn)J(\n).

And by Lemma 2.3 and |G(n)| = /g, we can get

> n(m)|E@W,m,q)|?

melry

< Va+valJ A+ vald () + Val ()]

<2q+24q.

Note that 4 (¢ — 1). If a* runs through F,, so does a®. Then according to n(—1) = —1, G*(n) = n(—1)q

and Lemma 2.2, we have

Y n(m) [E(,m,q)l* = =G(n) Y nla" - 1)

meFy; a€ly
=-G(n) Y _ nla®-1)
aeIFj;
=G(n) Y_ (1 +n()n(l-a)
aE]F;
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(ii). By similar method of (i), it follows that

Y Am)|E(@,m,q)* = ~GR)X=1)(1+ A(a) +n(a) + Ma))X(1 - a)

meFy

By Lemma 2.2 and G(A\)G(A) = A(—1)q, we have

S Am) B, m, ) :Gw—m;Gw—ncmcm—G<A>A<—1>G<g>g;">
mGJF
e @MGM) s, GCRG)
= GO+ X(-1)) ~ GEON-D G - GmR-n T

When 81 (g — 1), we have A\(—1) = —1, which yields

meFy

When 8| (¢ — 1), we have A(—1) = 1. Hence by |G(\)| = ¢2 it follows that

Y Am) |E(p,m,q)* G*(N)G(n)

meFy

'QG(A)

Q\l\?

<2/GN)|+ = IG( )PIG()]

=2/q+2q.

Lemma 3.10 Assume that x is a power-four multiplicative character in Fy with 4| (¢ —1). Then, according
to the definitions of S1, Sy and Ss in Lemma 3.6, we have

|S1] < 4v/3¢? and |S,| = |S5] < 2v/6¢%.

Proof If 4| (g — 1), there exists an element h € F, such that

1+ A(h) +n(h) + A(h) = 0.
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Since Equation (3.6), we can obtain

2 2
|B(x,m,q)|” + Z x(a+ b+ c+mhabe)| + Z x(a + b+ ¢ + mh*abe)
a,b,ceFy a,b,ceFy
2
+ Z x(a+b+c+mh®abe)| = 164>,
a,b,ceF;
which yields
4 4
|B(x,m,q)|* + Z x(a+b+ c+ mhabe)| + Z x(a + b+ ¢ + mh*abc)
a,b,ceFy a,b,ceFy
4
+| > xla+b+c+mhiabe)| < 2564°.
a,b,ceF;
By a direct calculation and Equation (3.6), it follows that
4 4
|B(x,m,q)|* + Z x(a+ b+ c+ mhabe)| + Z x(a + b+ ¢ + mh*abc)
a,b,ceFy a,b,ceFy

4

+ Y xla+b+c+mhabe)| =64¢° + 447 |S1]* + 467 [Saf® + 4¢* |S5|*.
a,b,ceF;

From the definition of Sy and S, it follows that |Ss| = |S5|, which yields |S;|*> + 2]9:|> < 48¢*. Due to
151> > 0, we have |Ss| = |S5| < 2v/64¢2. On the other hand, by |S;|*> > 0, we can also obtain |S;| < 4v/3¢%. O

Now we complete the proofs of our results by using the lemmas in this section. Firstly, we give the proof

of Theorem 1.3.

Proof By Equation (3.6), Lemmas 3.3 and 3.8, we can obtain
2
> IBOGm@)* | D w(md+d)
meFs deF;
2 2

=44° Z Zw(me—i—é) +G4()\) Z A(m) Zw(me—i-é) S3

mG]FZ eG]Fj; q mEIF:; eEIFj;

2 2

n G*(n) Z n(m) Zw(me+§) 5’14_04(]()\) Z A(m) Zw(me—i—é) Sy

q mE]F; eE]F; me]F; eE]F;

2

2

=4¢%(¢* —q—1) + SHOY Z A(m) Z (me+e)| Ss+ G4q<)\) Z A(m) Z (me+€)| Ss.

q , ’ . ;
mE]Fq eE]Fq mE]Fq eE]Fq
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Then by Lemma 3.8, we have

Z Am) [C(p,m, q)]*| = ¢5.

meFy

And from Lemma 3.10, we can obtain

> Xlabed)A(d — 1)A(abed — 1)A(ab’ed — 1)A(abc’d — 1)| < 2V64>.
a,b,c,delFy

Therefore, due to |G(N)| = ¢2 , we can get

> BOem g | D d(md+d)| =4*(¢> —q— 1)+ T,
’n’LE]F:; dG]F{*I

where |T3| < 4\/6(]% . Similarly, from Lemmas 3.3, 3.9 and 3.10, we can also obtain

2
Y IBOGm )l | D w(md* +d)| =4¢°(¢> —dg— 1) + T,
mE]F; de]F;
if 8| (¢—1), and
2
Y IBOamg)l* | D w(md* +d)| =44°(¢> —dg— 1) + T,
mGF; dE]F(’;
if 81 (q—1), where |Ty| < (8v3 +8V6)(¢* + ¢%) and |T5| < 8v3(¢* + ¢7). O

Moreover, we can also obtain Theorem 1.4, by similar method of the proof of Theorem 1.3.
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