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Abstract: Intensive studies aiming to extend the gamma and beta functions and to establish some properties for these
extensions have been recently carried out. In this paper, we first introduce a generalized gamma function in n variables.
Afterwards, two generalized beta functions in several variables are introduced and their properties are discussed. Among
others, we investigate recurrence relationships, Mellin transform properties, and partial differential equations involving
these generalized functions. At the end, some results about partial derivatives of these extended functions are presented
as well.
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1. Introduction

Throughout this paper, we set C+∗ =:
{
z ∈ C : <e(z) > 0

}
. The Euler’s beta and gamma functions are,

respectively, defined by

∀x, y ∈ C+∗ B(x, y) =:

∫ 1

0

tx−1(1− t)y−1dt,

∀x ∈ C+∗ Γ(x) =:

∫ +∞

0

tx−1e−tdt.

Such functions have wide applications in various contexts of mathematical analysis as well as in physics like the
quantum mechanics. An interesting relationship expressing a connection between B and Γ is given by

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
. (1.1)

On the other hand, it is well-known that Γ(x + 1) = xΓ(x) for any x ∈ C+∗ . For further properties and
applications of the beta and gamma functions, we refer the interested reader to [2–6, 9, 11–14, 17, 18] for
instance.
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The previous functions B and Γ have been extended in the literature, see [7, 8, 16]. Let a ∈ C+∗ .
Chaudhry et al. [7] introduced the following extended beta function

B(x, y; a) =:

∫ 1

0

tx−1(1− t)y−1e−a/t(1−t)dt (1.2)

and the extended gamma function as well

Γa(x) =:

∫ ∞

0

tx−1e−te−a/tdt. (1.3)

Another extension of B(x, y) was introduced by Choi et al. in [8] as follows:

B(x, y; a, b) =:

∫ 1

0

tx−1e−a/t(1− t)y−1e−b/(1−t)dt, (1.4)

where a, b ∈ C+∗ . It is clear that

B(x, y; 0) =: lim
a→0

B(x, y; a) = B(x, y), Γ0(x) =: lim
a→0

Γa(x) = Γ(x)

for any x, y ∈ C+∗ . Obviously, B(x, y; a, a) = B(x, y; a) . For the properties of B(x, y; a) and Γa(x) , see [7, 16]
and for those of B(x, y; a, b) , see [8].

Further extensions of the beta and gamma functions have been investigated in the literature. For instance,
Özergin et al. [16] introduced the generalized beta and gamma functions defined, respectively, by

B(c,d)
p (x, y) =:

∫ 1

0

tx−1(1− t)y−1
1F1

(
c; d;

−p

t(1− t)

)
dt, (1.5)

Γ(c,d)
p (x) =:

∫ ∞

0

tx−1
1F1

(
c; d;−t− p

t

)
dt, (1.6)

where c, d ∈ C and p ∈ C+∗ . Here the notation 1F1(a; b; z) refers to the confluent hypergeometric function
(CHF) defined through [15]

1F1(a; b; z) =:

∞∑
m=1

(a)m
(b)m

zm

m!
, (1.7)

provided that this series is well-defined and convergent. As usual, the notation (λ)m , if λ ∈ C is nonnegative
integer, stands for the Pochhammer symbol defined by

(λ)m = λ(λ+ 1)...(λ+m− 1), with (λ)0 = 1.

Note that 1F1(a; b; 0) = 1 . If, moreover, a, b− a ∈ C+∗ then we have, [16]

1F1(a; b; z) =
Γ(b)

Γ(a)Γ(b− a)

∫ 1

0

ua−1(1− u)b−a−1ezudu. (1.8)

Making the substitution t = 1− u in this latter integral formula it is easy to check that

1F1(a; b; z) = ez1F1(b− a; b;−z). (1.9)
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The importance of CHF arises from the fact that it contributes as a good tool for solving many mathematical
problems. It also appears as a solution of some partial differential equations playing an important role in various
mathematical areas. See [6, 15] for instance. See also Section 4 of the current manuscript.

Remark 1.1 The formula (1.8) brings us some interesting results when the assumptions a > 0 and b− a > 0

are satisfied. For instance, we have the following assertions:
(i) The real-map z 7−→ 1F1(a; b; z) is strictly increasing and strictly convex on R .
(ii) It follows that 1F1(a; b; z) ≥ 1F1(a; b; 0) = 1 for any z ≥ 0 and by (1.9), 0 ≤ 1F1(a; b; z) ≤ 1 for any z ≤ 0 .

These properties are not simple to deduce from (1.7).

The extension of the beta function from two variables to n variables was introduced in the literature
[1, 2, 6]. For n ≥ 3 integer, let En−1 be the standard (n− 1) -simplex of Rn−1 defined by

En−1 =
{
(t1, ..., tn−1) ∈ Rn−1 :

n−1∑
i=1

ti ≤ 1; ti ≥ 0, for i = 1, ..., n− 1
}
.

The beta function in n variables x1, ..., xn ∈ C+∗ is defined by

B
(
x1, ..., xn

)
=:

∫
En−1

n∏
i=1

txi−1
i dt1...dtn−1, (1.10)

where we set tn =: 1 −
∑n−1

i=1 ti . Throughout the following, we set σ(x) =:
∑n

i=1 xi for the sake of simplicity.
The following formula

B
(
x1, ..., xn

)
=

∏n
i=1 Γ(xi)

Γ
(
σ(x)

) (1.11)

holds for any x1, ..., xn ∈ C+∗ . Other properties of the beta function in n variables can be found in the
literature. Among these properties we mention the following [6]:

B
(
x1, ..., xn

)
= B

(
xτ(1), ..., xτ(n)

)
, (1.12)

where τ is any permutation of the set {1, 2, ..., n} , and

B
(
x1 + 1, x2, ..., xn

)
+ ...+B

(
x1, ..., xn−1, xn + 1

)
= B

(
x1, ..., xn

)
. (1.13)

Recently, the authors have extended the previous functions B(x, y; a) and B(x, y; a, b) for n variables.
For any x1, ..., xn ∈ C, a1, ..., an ∈ C+∗ and a ∈ C+∗ , they defined the two following extensions

B(x1, ..., xn; a) =:

∫
En−1

n∏
i=1

txi−1
i e−a/π(t)dt1...dtn−1, (1.14)

B
(
x1, ..., xn; a1, ..., an

)
=:

∫
En−1

n∏
i=1

txi−1
i e−ai/tidt1...dtn−1, (1.15)

where, as before, tn =: 1−
∑n−1

i=1 ti , and π(t) =:
∏n

i=1 ti .
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This paper will be organized as follows: in Section 2, we introduce a generalized gamma function in n

variables in a simple setting. Section 3 is devoted to introduce the first generalized beta function that extends
(1.5) from two variables to n variables. Section 4 displays some partial differential equations satisfied by this
generalized beta function. In Section 5, another generalized beta function in n variables of the second kind
is also investigated. Section 6 deals with some partial derivatives of the second generalized beta function. All
the previous generalized gamma and beta functions, in definitions as well as in properties, involve the confluent
hypergeometric function which plays an important place in special functions theory.

2. Generalized gamma function in n variables

In this section we will discuss some extensions of (1.3) and (1.6) from one variable to n variables. Let x =:

(x1, ..., xn) ∈
(
C+∗

)n . We define the gamma function in n variables x1, ..., xn as follows: Γ(x) =:
∏n

i=1 Γ(xi) .

The extended gamma function in n variables may be defined as well: for p = (p1, ..., pn) ∈
(
C+∗

)n we set

Γp(x) =:

∫
(0,∞)n

n∏
i=1

txi−1
i e−tie−pi/tidt =

n∏
i=1

Γpi
(xi), (2.1)

where dt =: dt1...dtn and Γpi
(xi) is defined by (1.3). We also introduce the following definition.

Definition 2.1 Let x =: (x1, ..., xn) ∈
(
C+∗

)n , α =: (α1, ..., αn) ∈ Cn, β =: (β1, ..., βn) ∈ Cn and p =

(p1, ..., pn) ∈
(
C+∗

)n . The generalized gamma function in n variables is defined by

Γ(α,β)
p (x) =:

n∏
i=1

Γ(αi,βi)
pi

(xi) =

∫
(0,∞)n

n∏
i=1

txi−1
i 1F1

(
αi;βi;−ti −

pi
ti

)
dt, (2.2)

where dt =: dt1...dtn and Γ
(αi,βi)
pi (xi) is defined following (1.6).

Clearly, if α = β then (2.2) coincides with (2.1). Otherwise, Γ0(x) = Γ(x) for any x = (x1, ..., xn) ∈(
C+∗

)n , and we also set

Γ(α,β)(x) =:

n∏
i=1

Γ(αi,βi)(xi) =

∫
(0,∞)n

n∏
i=1

txi−1
i 1F1

(
αi;βi;−ti

)
dt = Γ

(α,β)
0 (x). (2.3)

The previous definition means that the generalized gamma function in n variables is defined as the
product, in the habitual way, of the n components of the generalized gamma functions in one variable. Therefore,

the properties of Γ(α,β)
p (x) can be immediately deduced from those of Γ(αi,βi)

pi (xi) for i = 1, ..., n . As an example,
the following relationship

Γ(α,β)
p (x) = Γ(α,β)

p (−x)

n∏
i=1

pxi
i (2.4)

holds for any x =: (x1, ..., xn) ∈
(
C+∗

)n , α =: (α1, ..., αn) ∈ Cn, β =: (β1, ..., βn) ∈ Cn and p = (p1, ..., pn) ∈(
C+∗

)n .
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Remark 2.2 (i) The generalized gamma function previously defined will appear when studying the properties
of the generalized beta functions in n variables of the first kind and the second kind introduced in Sections 3
and 5, respectively.

(ii) We left to the reader the routine task for formulating other relationships for Γ
(α,β)
p (x) , as done in (2.4).

3. Generalized beta function of the first kind
We preserve the same notations as in the previous sections. In the ongoing section we will introduce generalized
beta functions in n variables of the first kind as recited in the following.

Definition 3.1 Let x =: (x1, ..., xn) ∈
(
C+∗

)n
; c, d, r ∈ C and q ∈ C+∗ . The generalized beta function, of the

first kind, is defined by:

B(c,d)
r (x; q) =:

∫
En−1

n∏
i=1

txi−1
i 1F 1

(
c; d;− q

π(t)
− r

π(t)

q

)
dt, (3.1)

where we set dt =: dt1...dtn−1 and π(t) =:
∏n

i=1 ti , with tn =: 1−
∑n−1

i=1 ti .

It is clear that if n = 2 and r = 0 then (3.1) yields (1.5). Furthermore, if c = d and r = 0 then (3.1)
coincides with (1.14). Remark that (3.1) presents a singularity at q = 0 if r 6= 0 . The first properties of

B
(c,d)
r (x; q) , analogous to (1.12) and (1.13), are embodied in the following result.

Proposition 3.2 Let x, c, d, r , and q be as in the previous definition.
(i) The following relationship holds:

B(c,d)
r (x; q) = B(c,d)

r (x∗; q),

where we set x∗ =: (xτ(1), ..., xτ(n)) for any permutation τ of the set {1, 2, ..., n} .
(ii) We have

n∑
j=1

B(c,d)
r (x+ ej ; q) = B(c,d)

r (x; q),

where (e1, ..., en) refers to the canonical basis of Rn .

Proof (i) Let y =: (x1, ..., xj , ..., xk, ..., xn) and z =: (x1, ..., xk, ..., xj , ..., xn) . It is enough to show that

B
(c,d)
r (y; q) = B

(c,d)
r (z; q) for any j, k such that 1 ≤ j < k ≤ n . We consider the following change of variables

t1 = u1, ..., tj = uk, ..., tk = uj , ..., tn = un

First, it is obvious that π(t) =: t1...tn = u1...un =: π(u) . Furthermore, it is clear that (t1, ..., tn) ∈ En−1 if and
only if (u1, ..., un) ∈ En−1 . Moreover, it is easy to see that the absolute value of the Jacobian J of the previous
transformation (t1, ..., tn) 7−→ (u1, ..., un) is given by |J | = 1 . By (3.1), with the standard rules of Calculus, we
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get

B(c,d)
r (y; q) =

∫
En−1

n∏
i=1,i̸=j,k

txi−1
i t

xj−1
j txk−1

k 1F 1

(
c; d;− q

π(t)
− r

π(t)

q

)
dt

=

∫
En−1

n∏
i=1,i̸=j,k

uxi−1
i uxk−1

j u
xj−1
k 1F 1

(
c; d;− q

π(u)
− r

π(u)

q

)
du = B(c,d)

r (z; q)

and hence the desired result.
(ii) By (3.1) we have

n∑
j=1

B(c,d)
r (x+ ej ; q) =

∫
En−1

n∑
j=1

n∏
i=1,i̸=j

txi−1
i t

xj

j 1F 1

(
c; d;− q

π(t)
− r

π(t)

q

)
dt,

or, equivalently,

n∑
j=1

B(c,d)
r (x+ ej ; q) =

∫
En−1

n∏
i=1

txi−1
i

 n∑
j=1

tj


1F 1

(
c; d;− q

π(t)
− r

π(t)

q

)
dt.

Since
∑n

j=1 tj = 1 we then get the desired equality, so the proof is completed. 2

For r = 0 , we set throughout the following

B(c,d)(x; q) =: B
(c,d)
0 (x; q) =:

∫
En−1

n∏
i=1

txi−1
i 1F 1

(
c; d;− q

π(t)

)
, (3.2)

where the singularity at q = 0 has been escaped. As first property of B(c,d)(x; q) we have the following result.

Theorem 3.3 Let x, c, d , and q be as above. Assume that c, d− c ∈ C+∗ . Then there holds

B(c,d)(x; q) =
Γ(d)

Γ(c)Γ(d− c)

∫ 1

0

uc−1(1− u)d−c−1B
(
x; qu

)
du, (3.3)

where B(x; qu) is defined by (1.14).

Proof By (3.2) and (1.8), we have

B(c,d)(x; q) =

∫
En−1

n∏
i=1

txi−1
i 1F 1

(
c; d;− q

π(t)

)
dt

=
Γ(d)

Γ(c)Γ(d− c)

∫
En−1

{
n∏

i=1

txi−1
i

∫ 1

0

uc−1(1− u)d−c−1e−
qu
π(t) du

}
dt,

where, as before, dt = dt1...dtn−1 and π(t) = t1...tn . By virtue of the uniform convergence of the involved
integrals we can interchange their orders for obtaining

B(c,d)(x; q) =
Γ(d)

Γ(c)Γ(d− c)

∫ 1

0

uc−1(1− u)d−c−1

(∫
En−1

n∏
i=1

txi−1
i e−

qu
π(t) dt

)
du,
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which, when combined with (1.14), immediately implies (3.3). 2

We have the following result as well.

Theorem 3.4 Let c, d, q, r be as in Definition 3.1. Assume that c, d−c ∈ C+∗ . Then the following relationship
holds:

B(c,d)
r (x; q) =

∞∑
m=0

(c)m
(d)m

(−r/q)m

m!
B(c+m,d+m)(x+me; q), (3.4)

where B(c+m,d+m)(x+me; q) is defined following (3.2) and e =: (1, 1, ..., 1) .

Proof By (1.8) we have

1F 1

(
c; d;− q

π(t)
− r

π(t)

q

)
=

Γ(d)

Γ(c)Γ(d− c)

∫ 1

0

uc−1(1− u)d−c−1e−uq/π(t)e−urπ(t)/qdt.

This, with the expansion series

e−urπ(t)/q =

∞∑
m=0

(−r/q)m

m!
um
(
π(t)

)m
,

and the uniform convergence of this latter power series, implies that

1F 1

(
c; d;− q

π(t)
− r

π(t)

q

)
=

Γ(d)

Γ(c)Γ(d− c)

∞∑
m=0

(−r/q)m

m!

(
π(t)

)m ∫ 1

0

uc+m−1(1− u)d−c−1e−uq/π(t)du. (3.5)

Again by (1.8) we can write∫ 1

0

uc+m−1(1− u)d−c−1e−uq/π(t)du =
Γ(c+m)Γ(d− c)

Γ(d+m)
1F 1

(
c+m; d+m;− q

π(t)

)
.

On the other hand, it is not hard to check that Γ(c +m) = (c)mΓ(c) . Substituting these in (3.5), we deduce
that

1F 1

(
c; d;− q

π(t)
− r

π(t)

q

)
=

∞∑
m=0

(c)m
(d)m

(−r/q)m

m!

(
π(t)

)m
1F 1

(
c+m; d+m;− q

π(t)

)
.

Multiplying this equality by
∏n

i=1 t
xi−1
i and then integrating over En−1 with respect to (t1, ..., tn−1) , we get,

by virtue of the uniform convergence of the involved series sum,

B(c,d)
r (x; q) =

∞∑
m=0

(c)m
(d)m

(−r/q)m

m!

∫
En−1

n∏
i=1

txi+m−1
i 1F 1

(
c+m; d+m;− q

π(t)

)
.

This, when combined with (3.2), yields the desired result, so the proof is completed. 2

The preceding theorem has many interesting consequences. Particulary, we mention the following corol-
laries.

Corollary 3.5 Assume that q, r > 0 , d > c > 0 , and x ∈ (0,∞)n . If, moreover, the sequence
(
(d)m/(c)m

)
m

is upper bounded then we have

B(c,d)
r (x; q) ≤ sup

m≥0

(d)m
(c)m

B(c,d)(x; q) 1F 1

(
c; d;

r

q

)
.
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Proof By (3.3) we immediately deduce that B(c,d)(x; q) ≥ 0 for any d > c > 0 and x ∈ (0,∞)n . Furthermore,
we can write

B(c+m,d+m)(x+me; q) =
Γ(d+m)

Γ(c+m)Γ(d− c)

∫ 1

0

uc+m−1(1− u)d−c−1B
(
x+me; qu

)
du.

This, with the fact that Γ(d+m) = (d)mΓ(d) , um ≤ 1 for any u ∈ [0, 1] and B(x+me; q) ≤ B(x; q) for any
m ≥ 0 , implies that

B(c+m,d+m)(x+me; q) ≤ (d)m
(c)m

Γ(d)

Γ(c)Γ(d− c)

∫ 1

0

uc−1(1− u)d−c−1B
(
x; qu

)
du,

which, with (3.3) again, yields

B(c+m,d+m)(x+me; q) ≤ sup
m≥0

(d)m
(c)m

B(c,d)(x; q). (3.6)

Taking the absolute value of (3.4) side by side, with the standard triangular inequality, and using (3.6) with
the help of (1.7), we deduce the desired inequality. 2

Corollary 3.6 Let c, d, q, r be as in Definition 3.1. Then, for any k = 0, 1, ... , we have

∂k

∂rk
B(c,d)

r (x; q)|r=0 =
(c)k
(d)k

(−1)k

qk
B(c+k,d+k)(x+ ke; q). (3.7)

Proof Expansion (3.4) can be considered to be a Taylor series of B
(c,d)
r (x; q) in a neighborhood of r = 0 .

The desired result immediately follows. 2

We now state the following result.

Theorem 3.7 Let c, d, q, r be as in Definition 3.1. Assume that |r| < |q|2 . Then the following formula

B
(c,d)
r (x; q)

B(x)
=

∞∑
m,k=0

(
m

k

)
(c)m
(d)m

(−q)m

m!

( r

q2

)k (1− σ(x)− 2nk
)
nm∏n

i=1(1− xi − 2k)m
, (3.8)

holds for any nonintegers x1, ..., xn ∈ C+∗ such that σ(x) is noninteger.
In particular, if r = 0 , then one has

B(c,d)(x; q)

B(x)
=

∞∑
m=0

(c)m
(d)m

(−q)m

m!

(
1− σ(x)

)
nm∏n

i=1(1− xi)m
. (3.9)

Proof By (3.1) and (1.7), and a simple algebraic operation, we have

B(c,d)(x; q) =

∫
En−1

n∏
i=1

txi−1
i

∞∑
m=0

(c)m
(d)m

(−q)m

m!

1

(π(t))m

(
1 + r

(π(t)
q

)2)m

dt. (3.10)
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Since π(t) =: t1...tn < 1 for any (t1, ..., tn−1) ∈ En−1 then the condition |r| < |q|2 leads to the expansion series(
1 + r

(π(t)
q

)2)m

=

∞∑
k=0

(
m

k

)( r

q2

)k(
π(t)

)2k
.

Substituting this in (3.10) and interchanging the order of the integral with the series sum (which is uniformly
convergent), we get

B(c,d)
r (x; q) =

∞∑
m,k=0

(
m

k

)
(c)m
(d)m

(−q)m

m!

( r

q2

)k ∫
En−1

n∏
i=1

txi+2k−m−1
i dt. (3.11)

According to (1.10) and (1.11), we have

∫
En−1

n∏
i=1

txi+2k−m−1
i dt = B

(
x1 + 2k −m, ..., xn + 2k −m

)
=

∏n
i=1 Γ(xi + 2k −m)

Γ
(
σ(x) + 2nk − nm

) ,
provided that x,..., xn and σ(x) are noninteger complex numbers. Otherwise, it is not hard to check that, for
any non-integer x ∈ C , we have

Γ(x−m) =
(−1)m

(1− x)m
Γ(x).

Applying this formula we obtain

n∏
i=1

Γ(xi + 2k −m) =

n∏
i=1

(−1)m

(1− xi − 2k)m
Γ(xi) = (−1)nm

∏n
i=1 Γ(xi)∏n

i=1(1− xi − 2k)m

Γ
(
σ(x) + 2nk − nm

)
=

(−1)nm(
1− σ(x)− 2nk

)
nm

Γ
(
σ(x)

)
.

Substituting these in (3.11) and then in (3.10), and using (1.11) again, we get (3.8) after a simple manipulation.
Taking r = 0 in (3.8) we deduce (3.9) after simple manipulations, so the proof is completed. 2

Remark 3.8 We can write (3.9) in the following form:

B(c,d)(x; q)

B(x)
=

∞∑
m=0

(c)m
(d)m

(−q)m

m!

n∏
i=1

(
1− σ(x) + (i− 1)m

)
m

(1− xi)m
.

Indeed, it is not hard to check that (x)nm =
∏n

i=1

(
x+ (i− 1)m

)
m

, which when substituted in (3.9), yields the
desired equality.

From Theorem 3.7 we may deduce many interesting consequences. In particular, we cite the following
corollaries.

Corollary 3.9 With the same hypotheses as previous, for any j = 0, 1, ... we have

d

drj
B(c,d)

r (x; q) |r=0=

∞∑
m

(m− j + 1)j
(c)m
(d)m

(−q)m−2j

m!

(
1− σ(x)− 2nj

)
nm∏n

i=1(1− xi − 2j)m
B(x).
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Proof The expansion (3.8) when considered to be a Taylor series of B
(c,d)
r (x; q) at r = 0 immediately yields

the desired result. The details are simple and therefore omitted here. 2

Note that B(c,d)(x; q) has no singularity at q = 0 and so (3.9) presents a Taylor expansion of B(c,d)(x; q)

at q = 0 . Then we can immediately deduce the following corollary.

Corollary 3.10 With the same hypotheses as previous, for any j = 0, 1, ... we have

d

dqj
B(c,d)(x; q) |q=0= B(x)(−1)j

(c)j
(d)j

n∏
i=1

(
1− σ(x) + (i− 1)j

)
j

(1− xi)j
. (3.12)

Remark 3.11 Following (3.8), B
(c,d)
r (x; q) presents a singularity at q = 0 provided that r 6= 0 . Therefore, an

analog of (3.12) for B
(c,d)
r (x; q) when r 6= 0 does not hold.

The following result gives a relationship between B
(c,d)
r (x; q) , Γ

(c,d)
r (u) and the usual beta function in n

variables.

Theorem 3.12 Let x ∈
(
C+∗

)n
, c, d, r ∈ C and u ∈ C+∗ . Then we have

∫ ∞

0

qu−1B(c,d)
r (x; q) dq = Γ(c,d)

r (u)B(x+ ue), (3.13)

where we set, as above e =: (1, 1, ..., 1) , and B(x+ ue) = B(x1 + u, ..., xn + u) .

Proof Multiplying (3.1) by qu−1 and then integrating with respect to q ∈ (0,∞) we get

∫ ∞

0

qu−1B(c,d)
r (x; q) dq =

∫ ∞

0

(∫
En−1

n∏
i=1

txi−1
i qu−1

1F 1

(
c; d;− q

π(t)
− r

π(t)

q

)
dt

)
dq.

By virtue of the uniform convergence of the involved integrals we can interchange their orders for obtaining

∫ ∞

0

qu−1B(c,d)
r (x; q) dq =

∫
En−1

n∏
i=1

txi−1
i

(∫ ∞

0

qu−1
1F 1

(
c; d;− q

π(t)
− r

π(t)

q

)
dq

)
dt. (3.14)

Now, for the right integral over q ∈ (0,∞) we use the change of variables q = π(t)s and we get, after
simple algebraic operations,

∫ ∞

0

qu−1
1F 1

(
c; d;− q

π(t)
− r

π(t)

q

)
dq =

(
π(t)

)u ∫ ∞

0

su−1
1F 1

(
c; d;−s− r

s

)
ds,

which, with (1.6), implies that

∫ ∞

0

qu−1
1F 1

(
c; d;− q

π(t)
− r

π(t)

q

)
dq =

(
π(t)

)u
Γ(c,d)
r (u).
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Substituting this in (3.14) and taking into account that π(t) =: t1t2...tn we get, with the help of (1.10),

∫ ∞

0

qu−1B(c,d)
r (x; q) dq = Γ(c,d)

r (u)

∫
En−1

n∏
i=1

txi+u−1
i dt = Γ(c,d)

r (u)B
(
x1 + u, ..., xn + u

)
.

The proof is finished. 2

Taking u = 1 in (3.13), we immediately obtain the following formula

∫ ∞

0

B(c,d)
r (x; q)dq = Γ(c,d)

r (1)B(x+ e).

In particular, if n = 2 and r = 0 , we get the following corollary which gives a relationship expressing a
connection between (1.5) and (1.6).

Corollary 3.13 Assume that n = 2 . Then the following relationship

∫ ∞

0

B(c,d)
p (x, y)dp = Γ

(c,d)
0 (1)B(x+ 1, y + 1)

holds for any c, d ∈ C and x, y ∈ C+∗ .

With the aim to state another interesting result, we need to recall the following lemma about the so-called
Mellin transform representation and its inverse, see [10] for instance.

Lemma 3.14 Let f : (0,∞) −→ R . Assume that the following integral

g(s) =:

∫ ∞

0

f(x)xs−1dx

exists. Then we have

f(x) =
1

2πi

∫ c+i∞

c−i∞
g(s)x−sds.

By using the previous lemma, the following result may be stated.

Theorem 3.15 Let x ∈
(
C+∗

)n
, c, d, r ∈ C and q ∈ C+∗ . Then we have

B(c,d)
r (x; q) =

1

2πi

∫ c+i∞

c−i∞
q−uB(x+ ue)Γ(c,d)

r (u)du. (3.15)

Proof Applying the previous lemma to (3.13), with appropriate manipulations, we immediately deduce the
desired result. The details are simple and therefore omitted here for the reader. 2
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4. Partial differential equations involving B
(c,d)
r (x; q)

Since all involved sum series and integrals in this paper are uniformly convergent we can therefore differentiate
under the sum sign and under the integral sign. As an example, we can check that

d

dz
1F1(a; b; z) =

a

b
1F1(a+ 1; b+ 1; z), (4.1)

which is a well-known result in the literature, see [15] for instance.
We have the following results as well.

Proposition 4.1 Let B
(c,d)
r (x; q) be the generalized beta function of the first kind. For any integer k = 1, ...

we have
∂k

∂rk
B(c,d)

r (x; q) =
(c)k
(d)k

(−1)k

qk
B(c+k,d+k)

r (x+ ke; q) (4.2)

Proof By differentiating (3.1) with respect to r , and with the help of (4.1), we obtain

∂

∂r
B(c,d)

r (x; q) =

∫
En−1

n∏
i=1

txi−1
i

c

d
1F1

(
c+ 1; d+ 1;− q

π(t)
− r

π(t)

q

)(
− π(t)

q

)
dt

or, equivalently,
∂

∂r
B(c,d)

r (x; q) = − c

dq
B(c+1,d+1)

r (x+ e; q). (4.3)

Hence, the desired result for k = 1 . We then deduce (4.2) by a simple mathematical induction. 2

Remark 4.2 (i) Assume that c, d − c, q > 0 , r ≥ 0 , and x ∈ (0,∞)n . Then (4.2), with k = 1 and k = 2 ,

implies that the real-map r 7−→ B
(c,d)
r (x; q) is strictly decreasing and strictly convex. This can be also deduced

from Remark 1.1, since r 7−→ − q
π(t) − r π(t)

q is a strictly decreasing linear affine function.

(ii) From (4.2), we immediately get again (3.7).

Proposition 4.3 The generalized beta function B
(c,d)
r (x; q) satisfies the following:

q2d
∂

∂q
B(c,d)

r (x; q) + q2cB(c+1,d+1)
r (x− e; q) = rcB(c+1,d+1)

r (x+ e; q). (4.4)

In particular, if r = 0 we get

d
∂

∂q
B(c,d)(x; q) + cB(c+1,d+1)(x− e; q) = 0. (4.5)

Proof By differentiating (3.1) with respect to q , again with the help of (4.1), we get

∂

∂q
B(c,d)

r (x; q) =
c

d

∫
En−1

n∏
i=1

txi−1
i 1F1

(
c+ 1; d+ 1;− q

π(t)
− r

π(t)

q

)(
− 1

π(t)
+ r

π(t)

q2

)
dt
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or, equivalently,
∂

∂q
B(c,d)

r (x; q) = − c

d
B(c+1,d+1)

r (x− e; q) +
rc

q2d
B(c+1,d+1)

r (x+ e; q),

whence the desired result, after simple algebraic operations. 2

Remark 4.4 (i) By a mathematical induction, we can generalize (4.5) as follows: for k ≥ 1 one has

∂k

∂qk
B(c,d)(x; q) = (−1)k

(c)k
(d)k

B(c+k,d+k)(x− ke; q).

(ii) From this latter equality we can deduce again (3.12).

We have the following result as well.

Proposition 4.5 The generalized beta function B
(c,d)
r (x; q) satisfies:

q3
∂2

∂r∂q
B(c,d)

r (x; q) + r
(c)2
(d)2

B(c+2,d+2)
r (x+ 2e; q) = q

c

d
B(c+1,d+1)

r (x+ e; q) + q2
(c)2
(d)2

B(c+2,d+2)
r (x; q). (4.6)

Proof Differentiating (4.4) with respect to r we get

q2d
∂2

∂r∂q
B(c,d)

r (x; q) + q2c
∂

∂r
B(c+1,d+1)

r (x− e; q) = cB(c+1,d+1)
r (x+ e; q) + rc

∂

∂r
B(c+1,d+1)

r (x+ e; q). (4.7)

In another part, (4.3) gives

∂

∂r
B(c+1,d+1)

r (x− e; q) = − c+ 1

q(d+ 1)
B(c+2,d+2)

r (x; q),

∂

∂r
B(c+1,d+1)

r (x+ e; q) = − c+ 1

q(d+ 1)
B(c+2,d+2)

r (x+ 2e; q).

Substituting these in (4.8), we get

q2d
∂2

∂r∂q
B(c,d)

r (x; q)− q
c(c+ 1)

d+ 1
B(c+2,d+2)

r (x; q) = cB(c+1,d+1)
r (x+ e; q)− rc(c+ 1)

q(d+ 1)
B(c+2,d+2)

r (x+ 2e; q).

Hence, (4.6) after simple algebraic operations. The proof is finished. 2

In order to give more results we need the next lemma.

Lemma 4.6 Let u =: 1F1

(
c; d;−q

s

)
, with s 6= 0 is fixed. Then we have:

(i) u is a solution of

qs
d2u

dq2
+ (ds+ q)

du

dq
+ cu = 0. (4.8)

(ii) w := 1F1

(
c; d;− q

π(t)

)
is a solution of

qπ(t)
d2w

dq2
+ (dπ(t) + q)

dw

dq
+ cw = 0.
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Proof (i) If we set v =: 1F1

(
c; d; z) , it is well-known that [15] v is a solution of the differential equation

z
d2v

dz2
+ (d− z)

dv

dz
− cv = 0.

Now, setting z = −q/s and using the classical chain rule we get the desired result after simple algebraic
operations.
(ii) Setting s = π(t) , the desired result follows from (4.8). 2

Now, we can state the following result.

Theorem 4.7 The generalized beta function B(c,d)(x; q) satisfies

q
d2

dq2
B(c,d)(x+ 3e; q)− d

d

dq
B(c,d)(x+ 2e; q)− q

d

dq
B(c,d)(x+ e; q) + cB(c,d)(x; q) = 0. (4.9)

Proof Let us set w =: 1F1

(
c; d;− q

π(t)

)
, with π(t) =: t1...tn . Differentiating (3.2), once and twice, with

respect to q we get
d

dq
B(c,d)(x; q) = −

∫
En−1

n∏
i=1

txi−2
i

dw

dq
dt, (4.10)

d2

dq2
B(c,d)(x; q) =

∫
En−1

n∏
i=1

txi−3
i

d2w

dq2
dt. (4.11)

According to (4.11), we can write

d2

dq2
B(c,d)(x+ 3e; q) =

∫
En−1

n∏
i=1

txi−1
i π(t)

d2w

dq2
dt. (4.12)

Now, according to (4.10), we can write

d

dq
B(c,d)(x+ 2e; q) = −

∫
En−1

n∏
i=1

txi−1
i π(t)

dw

dq
dt, (4.13)

and
d

dq
B(c,d)(x+ e; q) = −

∫
En−1

n∏
i=1

txi−1
i

dw

dq
dt. (4.14)

We can also write

B(c,d)(x; q) =

∫
En−1

n∏
i=1

txi−1
i w dt. (4.15)

Now, multiplying (4.12), (4.13), (4.14), and (4.15) by q,−d,−q , and c , respectively, and summing we get

M =

∫
En−1

n∏
i=1

txi−1
i

{
qπ(t)

d2w

dq2
+
(
dπ(t) + q

)dw
dq

+ cw

}
dt,
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where M denotes the left hand-side of (4.9). Thanks to Lemma 4.6 (ii), the desired result (4.9) follows, so the
proof is completed. 2

We also need the following lemma.

Lemma 4.8 Let u =: 1F1

(
c; d;−q

s
− r

s

q

)
. Then we have:

q(q2 + rs2)
∂2u

∂r2
+ s(q2 + dqs+ rs2)

∂u

∂r
+ cs3u = 0.

Proof As already pointed before, v =: 1F1

(
c; d; z) is a solution of the differential equation

z
d2v

dz2
+ (d− z)

dv

dz
− cv = 0.

Now, setting z = −q/s− rs/q and differentiating with respect to r by using the classical chain rule we deduce
the desired result after simple algebraic operations. The details are simple and therefore omitted here. 2

Now, we are in the position to state the following result.

Theorem 4.9 The generalized beta function of the first kind satisfies

q5
∂2

∂r2
B(c,d)

r (x− 2e; q) + q3r
∂2

∂r2
B(c,d)

r (x; q)− q3
∂

∂r
B(c,d)

r (x; q)

− dq2
∂

∂r
B(c,d)

r (x+ e; q)− rq
∂

∂r
B(c,d)

r (x+ 2e; q) + cB(c,d)
r (x+ 3e; q) = 0. (4.16)

Proof For the sake of simplicity, we set

B(c,d)
r (x; q) =

∫
En−1

n∏
i=1

txi−1
i θ dt, with θ =: 1F1

(
c; d;− q

π(t)
− r

π(t)

q

)
.

Differentiating B
(c,d)
r (x; q) with respect to r , once and twice, we get

∂

∂r
B(c,d)

r (x; q) = −1

q

∫
En−1

n∏
i=1

txi
i

∂θ

∂r
dt, (4.17)

∂2

∂r2
B(c,d)

r (x; q) =
1

q2

∫
En−1

n∏
i=1

txi+1
i

∂2θ

∂r2
dt. (4.18)

From (4.18), we can write

∂2

∂r2
B(c,d)

r (x− 2e; q) =
1

q2

∫
En−1

n∏
i=1

txi−1
i

∂2θ

∂r2
dt (4.19)

and
∂2

∂r2
B(c,d)

r (x; q) =
1

q2

∫
En−1

n∏
i=1

txi−1
i

(
π(t)

)2 ∂2θ

∂r2
dt. (4.20)
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In another part, by (4.17) we can write

∂

∂r
B(c,d)

r (x; q) = −1

q

∫
En−1

n∏
i=1

txi−1
i

(
π(t)

)∂θ
∂r

dt, (4.21)

∂

∂r
B(c,d)

r (x+ e; q) = −1

q

∫
En−1

n∏
i=1

txi−1
i

(
π(t)

)2 ∂θ
∂r

dt (4.22)

and

∂

∂r
B(c,d)

r (x+ 2e; q) = −1

q

∫
En−1

n∏
i=1

txi−1
i

(
π(t)

)3 ∂θ
∂r

dt. (4.23)

We can also write

B(c,d)
r (x+ 3e; q) =

∫
En−1

n∏
i=1

txi−1
i

(
π(t)

)3
θ dt. (4.24)

Now, multiplying (4.19), (4.20), (4.21), (4.22), (4.23), and (4.24), respectively, by q5, q3r,−q3,−q2d,−qr , and
c , and summing, we get

L =

∫
En−1

n∏
i=1

txi−1
i

(
q(q2 + rs2)

∂2θ

∂r2
+ s(q2 + dqs+ rs2)

∂θ

∂r
+ cs3θ

)
dt,

where s =: π(t) and L denotes the left side of (4.16). According to Lemma 4.8, we then obtain (4.16), so the
proof is completed. 2

Finally, we will state a result about the partial derivatives of B(c,d)
r (x; q) as a function in the multivariate

x =: (x1, ..., xn) . As previous, we set

θ(t) =: 1F 1

(
c; d;− q

π(t)
− r

π(t)

q

)
.

We have the following result.

Proposition 4.10 Let c, d, q, r ∈ C and x ∈ (0,∞)n . For any j, k = 1, ..., n , we have the following equalities

∂k

∂xk
j

B(c,d)
r (x; q) =

∫
En−1

n∏
i=1

txi−1
i

(
log tj

)k
θ(t) dt.

∂n

∂x1...∂xn
B(c,d)

r (x; q) =

∫
En−1

n∏
i=1

(
txi−1
i log ti

)
θ(t) dt.

Proof It is straightforward and the details are therefore omitted here. 2
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5. Generalized beta function of the second kind
This section deals with another generalized beta function in n variables. In what follows, we need to lighten
the writing by putting

x =: (x1, ..., xn), a =: (a1, ..., an), α =: (α1, ..., αn), β =: (β1, ..., βn), p =: (p1, ..., pn).

Another central definition is given in what follows.

Definition 5.1 Let x ∈ (C+∗)
n , α, β ∈ Cn and a, p ∈

(
C+∗

)n . The generalized beta function, of the second
kind, is defined by:

B(α, β)
p

(
x; a
)
=

∫
En−1

n∏
i=1

txi−1
i 1F 1

(
αi;βi;−

ai
ti

− pi
ti
ai

)
dt, (5.1)

where we set dt =: dt1...dtn−1 and tn =: 1−
∑n−1

i=1 ti .

The basic properties of B
(α,β)
p (x; a) , analogous to those of Proposition 3.2, are embodied in the following

result.

Proposition 5.2 Let x, α, β, a, p be as in the previous definition.
(i) We have the following relationship

B(α,β)
p (x; a) = B

(α∗,β∗)
p∗ (x∗; a∗),

where τ is any permutation of the set {1, 2, ..., n} and p∗ =: (pτ(1), ..., pτ(n)) , with similar settings for
α∗, β∗, x∗, a∗ .
(ii) The following relation holds:

n∑
i=1

B(α,β)
p (x+ ei; a) = B(α,β)

p (x; a),

where (e1, ..., en) refers to the canonical basis of Rn .

Proof Similar to that of Proposition 3.2. The details are omitted here as an interesting exercise for the reader.
2

Following the uniform convergence of the series (1.7), we can interchange in (5.1) the sum series and
the integral. This shows that (5.1) is well-defined, i.e. the involved integral is convergent. Furthermore, such
integral is uniformly convergent in any compact set included in the interior of En−1 . This implies that we can
take limits and differentiation under the integral sign of (5.1). In particular, we have

lim
p→0

B(α, β)
p

(
x; a
)
= B(α, β)

(
x; a
)
, (5.2)

where

B(α, β)
(
x; a
)
=:

∫
En−1

n∏
i=1

txi−1
i 1F 1

(
αi;βi;−

ai
ti

)
dt (5.3)

It is easy to see that if n = 2 and α = β then (5.3) yields (1.4). Otherwise, the following result justifies

that B
(α; β)
p

(
x; a
)

is a generalization of the extended beta function B(x; a) in n variables defined by (1.15).
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Proposition 5.3 For any α ∈ Cn and x, a ∈
(
C+∗

)n we have

B(x; a) = lim
p→0

B(α; α)
p (x; a) =: B(α, α)

(
x; a
)
.

Proof By (1.7), with the help of (5.2) and (5.3), we have for any i = 1, 2, ..., n ,

1F1

(
αi;αi;−

ai
ti

)
=

∞∑
m=0

(−ai/ti)
m

m!
= e−ai/ti .

This, with (1.15) and (5.1), yields the desired result. 2

We have the following result as well.

Theorem 5.4 Let x, a, p, α, β be as above. Assume that |pi| < |ai|2 for any i = 1, ..., n . Then the following
relation

B
(α, β)
p

(
x; a
)

B(x)
=

∞∑
m,k=0

(αi)mi

(βi)mi

(−1)mi

mi!

(
mi

ki

)
pki
i (ai)

mi−2ki

(
1− σ(x)− 2σ(k)

)
σ(m)∏n

i=1(1− xi − ki)mi

, (5.4)

where under the sigma summation we set m =: (m1, ...,mn) and k =: (k1, ..., kn) for the sake of simplicity. In
particular, if p = 0 one has

B(α, β)
(
x; a
)

B(x)
=

∞∑
m=0

(αi)mi

(βi)mi

(−ai)
mi

mi!

(
1− σ(x)

)
σ(m)∏n

i=1(1− xi)mi

(5.5)

holds true for any x ∈
(
C+∗

)n such that x1, ..., xn and σ(x) are nonintegers.

Proof By (1.7) we can write, for any i = 1, ..., n ,

1F 1

(
αi;βi;−

ai
ti

− pi
ti
ai

)
=

∞∑
mi=0

(αi)mi

(βi)mi

(−1)mi

mi!

(ai
ti

)mi
(
1 + pi

t2i
a2i

)mi

. (5.6)

Since 0 ≤ ti ≤ 1 for any i = 1, ..., n , the condition |pi| < |ai|2 allows us to write the expansion series

(
1 + pi

t2i
a2i

)mi

=

∞∑
ki=0

(
mi

ki

)
pki
i

( ti
ai

)2ki

.

Substituting these in (5.6) we get, for any i = 1, ..., n ,

1F 1

(
αi;βi;−

ai
ti

− pi
ti
ai

)
=

∞∑
mi=0,ki=0

(αi)mi

(βi)mi

(−1)mi

mi!

(
mi

ki

)
pki
i

( ti
ai

)2ki−mi

.

Multiplying this latter equality by
∏n

i=1 t
xi−1
i and then substituting in (5.1), we get

B(α, β)
p

(
x; a
)
=

∫
En−1

∞∑
m,k=0

(αi)mi

(βi)mi

(−1)mi

mi!

(
mi

ki

)
pki
i (ai)

mi−2kitxi+2ki−mi−1
i dt,
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where under the sigma summation we set m =: (m1, ...,mn) and k =: (k1, ..., kn) . Due to similar arguments
as previous, we can interchange the orders of the integral and the sum series for obtaining

B(α, β)
p

(
x; a
)
=

∞∑
m,k=0

(αi)mi

(βi)mi

(−1)mi

mi!

(
mi

ki

)
pki
i (ai)

mi−2ki

∫
En−1

txi+2ki−mi−1
i dt

=

∞∑
m,k=0

(αi)mi

(βi)mi

(−1)mi

mi!

(
mi

ki

)
pki
i (ai)

mi−2kiB(xi + 2ki −mi).

By similar way as in the proof of Theorem 3.7, we have

B
(
xi + 2ki −mi

)
=

(
1− σ(x)− 2σ(k)

)
σ(m)∏n

i=1(1− xi − ki)mi

B(x),

and (5.4) is obtained. Taking p = 0 in (5.4) we get (5.5). The proof is finished. 2

The following result is also of interest.

Theorem 5.5 Let x, a, p, α, β − α ∈
(
C+∗

)n . Then we have

B(α, β)
p

(
x; a
)
=

∞∑
m=0

(αi)mi

(βi)mi

(
− pi/ai

)mi

mi!
B(α+m,β+m)

(
x+m; a

)
, (5.7)

where B(α+m,β+m)
(
x+m; a

)
is defined through (5.3) and m =: (m1, ...,mn) .

Proof It is similar to the proof of Theorem 3.4 by the same way and using analogous arguments. We omit
the details to the reader. 2

The following result gives a relationship between B
(α,β)
p (x; a) , Γ

(α,β)
p (u) and the standard beta function

in n variables.

Theorem 5.6 Let x ∈
(
C+∗

)n and u = (u1, u2, ..., un) ∈
(
C+∗

)n . Then we have

∫
(0,∞)n

n∏
i=1

aui−1
i B(α;β)

p

(
x; a
)
da = Γ(α;β)

p (u)B(x+ u), (5.8)

where we set da =: da1...dan, B(x + u) =: B(x1 + u1, ..., xn + un) and Γ
(α;β)
p (u) is the generalized gamma

function defined by (2.2).

Proof If we multiply (5.1) by
∏n

i=1 a
ui−1
i and we integrate over (0,∞)n with respect to a =: (a1, a2, ..., an) ,

we obtain

∫
(0,∞)n

n∏
i=1

aui−1
i B(α;β)

p

(
x; a
)
da =

∫
(0,∞)n

{
n∏

i=1

aui−1
i

∫
En−1

n∏
i=1

txi−1
i 1F1

(
αi;βi;−

ai
ti

− pi
ti
ai

)
dt

}
da,
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with tn = 1−
∑n−1

i=1 ti . Due to an argument of uniform convergence of the involved integrals, we can interchange
the order of the integrals, so

∫
(0,∞)n

n∏
i=1

aui−1
i B(α;β)

p

(
x; a
)
da =

∫
En−1

{
n∏

i=1

txi−1
i

n∏
i=1

(∫ ∞

0

aui−1
i 1F1

(
αi;βi;−

ai
ti

− pi
ti
ai

)
dai

}
dt. (5.9)

Making a simple change of variables, we can easily check that∫ ∞

0

aui−1
i 1F1

(
αi;βi;−

ai
ti

− pi
ti
ai

)
dai = tui

i Γ(αi;βi)
pi

(ui), 1 ≤ i ≤ n.

This, with (5.9), yields

∫
(0,∞)n

n∏
i=1

aui−1
i B(α;β)

p

(
x; ; a

)
da =

n∏
i=1

Γ(αi;βi)
pi

(ui)

∫
En−1

n∏
i=1

txi+ui−1
i dt = B(x+ u)

n∏
i=1

Γ(αi;βi)
pi

(ui);

hence, (5.8) is proven. 2

Remark 5.7 Setting u = e =: (1, 1..., 1) in (5.8), we immediately obtain the following relationship.

∫
(0,∞)n

n∏
i=1

B(α;β)
p

(
x; a
)
da = B(x+ e)

n∏
i=1

Γ(αi;βi)
pi

(1).

6. Partial derivatives of B
(α,β)
p (x; a)

As a function of the variable p = (p1, ..., pn) , B
(α,β)
p (x; a) satisfies the following result.

Proposition 6.1 We have:

( n∏
i=1

ai

) ∂n

∂p1...∂pn
B(α,β)

p (x; a) = (−1)n
( n∏

i=1

αi

βi

)
B(α+e,β+e)

p (x+ e; a). (6.1)

Proof Let j = 1, 2, ..., n . Differentiating (5.1) with respect to pj , we get

∂

∂pj
B(α,β)

p (x; a) =

∫
En−1

n∏
i=1

txi−1
i

n∏
i=1,i̸=j

1F1

(
αi;βi;−

ai
ti

− pi
ti
ai

)

× αj

βj

(
− tj

aj

)
1F1

(
αj + 1;βj + 1;−aj

tj
− pj

tj
aj

)
dt. (6.2)

Now, differentiating (5.1) n -times with respect to pn, pn−1, ..., p1 and utilizing (6.2), we get

∂n

∂p1...∂pn
B(α,β)

p (x; a) =
(−1)n∏n
i=1 ai

α1...αn

β1...βn

∫
En−1

n∏
i=1

txi
i 1F1

(
αi + 1;βi + 1;−ai

ti
− pi

ti
ai

)
dt.

Hence, (6.1). The proof is complete. 2

The previous proposition can be generalized as follows.
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Proposition 6.2 Let m ≥ 1 be an integer. Then we have

( n∏
i=1

ai

)m ∂mn

∂pm1 ...∂pmn
B(α,β)

p (x; a) = (−1)mn
n∏

i=1

(αi)m
(βi)m

B(α+me,β+me)
p (x+me; a).

Proof It follows from (6.1) with a simple mathematical induction on m ≥ 1 . The details are straightforward
and therefore omitted here. 2

Now, let us set

ω(t) =:

n∏
i=1

1F 1

(
αi;βi;−

ai
ti

− pi
ti
ai

)
.

The function x 7−→ B
(α,β)
p (x; a) , i.e. with the multivariate x =: (x1, ..., xn) ∈ (0,∞)n , satisfies the

following result.

Proposition 6.3 For any j, k = 1, ..., n , we have the following

∂k

∂xk
j

B(α,β)
p (x; a) =

∫
En−1

n∏
i=1

txi−1
i

(
log tj

)k
ω(t) dt.

∂n

∂x1...∂xn
B(α,β)

p (x; a) =

∫
En−1

n∏
i=1

(
txi−1
i log ti

)
ω(t) dt.

Proof It is immediate. The details are simple and therefore omitted here. 2

As a function of the multivariate a =: (a1, ..., an) , B
(α,β)
p (x; a) satisfies the following result.

Proposition 6.4 The following relation holds:

∂n

∂a1...∂an
B(α,β)

p (x; a) =

n∏
i=1

(
αi

a2iβi

)
×
∫
En−1

n∏
i=1

{
txi−2
i

(
pit

2
i − a2i

)
1F 1

(
αi + 1;βi + 1;−ai

ti
− pi

ti
ai

)}
dt. (6.3)

Proof Let j = 1, 2, ..., n . By differentiating (5.1) with respect to aj we obtain

∂

∂aj
B(α,β)

p (x; a) =

∫
En−1

n∏
i=1

txi−1
i

n∏
i=1,i̸=j

1F1

(
αi;βi;−

ai
ti

− pi
ti
ai

)

× αj

βj

(
− 1

tj
+ pj

tj
a2j

)
1F1

(
αj + 1;βj + 1;−aj

tj
− pj

tj
aj

)
dt. (6.4)

Differentiating (5.1) n -times with respect to an, an−1, ..., a1 and using (6.4), we get (6.3) after simple algebraic
operations and manipulations. 2

7. Conclusion
Special functions arise in various contexts and contribute as tools for solving many scientific problems. They
attract the attention of many researchers by their nice properties and interesting applications. It has been
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proven in a lot of studies that special function theory is useful in theoretical point of view as well as in practical
purposes. Since special functions have extensive applications in pure mathematics, as well as in some applied
areas such as acoustics, fluid dynamics, heat conduction, electrical current, solutions of wave equations, and
quantum mechanics, an enormous amount of effort has been devoted by many researchers to understanding some
extended special functions. In this paper, we investigated a contribution in such direction by introducing some
generalized gamma and beta functions with a systematic study of their properties such as recurrence relations,
Mellin transform properties and partial differential equations of them. Since the univariate versions of these
extended functions have already many applications in the literature, our definitions will have many potential
applications in probability theory and special functions theory, and as a result, they will have many potential
applications in physical and engineering problems. Furthermore, our extended functions presented here involve
the confluent hypergeometric function which constitutes a primordial interest in special functions theory. Thus,
a new horizon for scientific research is open and many questions are generated as subjects for future research.
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