Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/
Research Article

Turk J Math
(2021) 45: $856-863$
© TÜBİTAK
doi:10.3906/mat-1910-111

The Lebesgue constants on projective spaces

Alexander KUSHPEL* ${ }^{\text {(}) ~}$
Department of Mathematics, Faculty of Art and Sciences, Çankaya University, Ankara, Turkey

Received: 30.10.2019 • Accepted/Published Online: 08.02.2021 • Final Version: 26.03 .2021

Abstract

We give the solution of a classical problem of Approximation Theory on sharp asymptotic of the Lebesgue constants or norms of the Fourier-Laplace projections on the real projective spaces $\mathrm{P}^{d}(\mathbb{R})$. In particular, these results extend sharp asymptotic found by Fejer [2] in the case of \mathbb{S}^{1} in 1910 and by Gronwall [4] in 1914 in the case of \mathbb{S}^{2}. The case of spheres, \mathbb{S}^{d}, complex and quaternionic projective spaces, $\mathrm{P}^{d}(\mathbb{C}), \mathrm{P}^{d}(\mathbb{H})$ and the Cayley elliptic plane $\mathrm{P}^{16}($ Cay $)$ was considered by Kushpel [8].

Key words: Lebesgue constant, Fourier-Laplace projection, Jacoby polynomial

1. Introduction

Let $\mathbb{P}^{d}(\mathbb{R})$ be the real d-dimensional projective space, ν its normalized volume element, Δ its LaplaceBeltrami operator. It is well-known that the eigenvalues $\theta_{m}, m=2 k, k=0,1,2, \cdots$ of Δ are discrete, nonnegative, and form an increasing sequence $0 \leq \theta_{0} \leq \theta_{2} \leq \cdots \leq \theta_{2 k} \leq \cdots$ with $+\infty$ as the only accumulation point. Corresponding eigenspaces $\mathrm{H}_{2 k}$, are finite dimensional, $d_{2 k}=\operatorname{dimH}_{2 k}<\infty$, orthogonal, and $L_{2}\left(\mathbb{P}^{d}(\mathbb{R}), \nu\right)=\oplus_{2 k=0}^{\infty} \mathrm{H}_{2 k}$. Let $\left\{Y_{j}^{2 k}\right\}_{j=1}^{d_{2 k}}$ be an orthonormal basis of $\mathrm{H}_{2 k}$. Let φ be a continuous function on $\mathbb{P}^{d}(\mathbb{R})$, $\varphi \in C\left(\mathbb{P}^{d}(\mathbb{R})\right)$ with the formal Fourier expansion

$$
\varphi \sim c_{0}+\sum_{k \in \mathbb{N}} \sum_{j=1}^{d_{2 k}} c_{2 k, j}(\varphi) Y_{j}^{2 k}, \quad c_{2 k, j}(\varphi)=\int_{\mathbb{P}^{d}(\mathbb{R})} \varphi \overline{Y_{j}^{2 k}} d \nu
$$

Consider the sequence of Fourier sums

$$
S_{2 n}(\varphi, x)=c_{0}+\sum_{k=1}^{n} \sum_{j=1}^{d_{2 k}} c_{2 k, j}(\varphi) Y_{j}^{2 k}(x), n \in \mathbb{N} .
$$

The main aim of this article is to establish sharp asymptotic for the sequence of Lebesgue constants defined as

$$
L_{2 n}\left(\mathbb{P}^{d}(\mathbb{R})\right):=\left\|S_{2 n} \mid C\left(\mathbb{P}^{d}(\mathbb{R})\right) \rightarrow C\left(\mathbb{P}^{d}(\mathbb{R})\right)\right\|, n \rightarrow \infty
$$

In the case of the circle, \mathbb{S}^{1}, the following result has been found by Fejer [2] in 1910

$$
L_{n}\left(\mathbb{S}^{1}\right)=\frac{1}{\pi} \int_{-\pi}^{\pi}\left|D_{n}(t)\right| d t=\frac{4}{\pi^{2}} \ln n+O(1), n \rightarrow \infty
$$

[^0]
KUSHPEL/Turk J Math

where $D_{n}(t)=1 / 2+\sum_{k=1}^{n} \cos k t$ is the Dirichlet kernel. In the case of \mathbb{S}^{2}, the two-dimensional unit sphere in \mathbb{R}^{3}, the estimates of $L_{n}\left(\mathbb{S}^{2}\right)$ have been established by Gronwall [4]. Namely, it was shown that

$$
\begin{aligned}
L_{n}\left(\mathbb{S}^{2}\right) & =n^{1 / 2} \frac{2}{\pi^{3 / 2}} \int_{0}^{\pi} \sqrt{\cot \left(\frac{\eta}{2}\right)} d \eta+O(1) \\
& =n^{1 / 2} \frac{2^{3 / 2}}{\pi^{1 / 2}}+O(1), n \rightarrow \infty
\end{aligned}
$$

Lebesgue constants on more general manifolds, \mathbb{M}^{d}, were considered by Kushpel [8]. Namely, in the case of the real spheres $\mathbb{S}^{d}, d \geq 3$, complex and quaternionic projective spaces, $\mathrm{P}^{d}(\mathbb{C})$ and $\mathrm{P}^{d}(\mathbb{H})$ respectively, and the Cayley elliptic plain P^{16} (Cay) it was shown that

$$
L_{n}\left(\mathbb{M}^{d}\right)=\mathcal{K}\left(\mathbb{M}^{d}\right) n^{(d-1) / 2}+O\left\{\begin{array}{cc}
1, & d=2,3 \\
n^{(d-3) / 2}, & d \geq 4
\end{array}\right\}
$$

where

$$
\begin{gathered}
\mathcal{K}\left(\mathbb{S}^{d}\right)=\frac{2 \Gamma\left(\frac{d-1}{4}\right) \Gamma\left(\frac{d+1}{4}\right)}{\pi^{3 / 2}\left(\Gamma\left(\frac{d}{2}\right)\right)^{2}}, d=2,3,4, \cdots \\
\mathcal{K}\left(\mathrm{P}^{d}(\mathbb{C})\right)=\frac{2 \Gamma\left(\frac{d-1}{4}\right) \Gamma\left(\frac{3}{4}\right)}{\pi^{3 / 2} \Gamma\left(\frac{d}{2}\right) \Gamma\left(\frac{d+2}{4}\right)}, d=4,6,8, \cdots \\
\mathcal{K}\left(\mathrm{P}^{d}(\mathbb{H})\right)=\frac{\Gamma\left(\frac{d-1}{4}\right)}{\pi \Gamma\left(\frac{d}{2}\right) \Gamma\left(\frac{d+5}{4}\right)}, d=8,12,16, \cdots \\
\mathcal{K}\left(\mathrm{P}^{16}(\text { Cay })\right)=\frac{11 \cdot 2^{1 / 2}}{2949120 \cdot \pi^{1 / 2}}
\end{gathered}
$$

2. Elements of harmonic analysis

The real projective spaces $\mathbb{P}^{d}(\mathbb{R})$ can be obtained by identifying the antipodal points on \mathbb{S}^{d}. This quotient space of the sphere is homeomorphic with the collection of all lines passing through the origin in \mathbb{R}^{d}. Also, $\mathbb{P}^{d}(\mathbb{R})$ can be defined as the cosets of the orthogonal group $\mathbf{O}(d+1)$, i.e.

$$
\mathbb{P}^{d}(\mathbb{R})=\frac{\mathbf{O}(d+1)}{\mathbf{O}(1) \times \mathbf{O}(d)}
$$

Let

$$
\pi: \mathbf{O}(d+1) \rightarrow \frac{\mathbf{O}(d+1)}{\mathbf{O}(1) \times \mathbf{O}(d)}
$$

be the natural mapping and e be the identity of $\mathbf{O}(d+1)$. The point $\mathbf{o}=\pi(\mathbf{e})$, which is invariant under all motions of $\mathbf{O}(1) \times \mathbf{O}(d)$ is called the pole (or the north pole) of $\mathbb{P}^{d}(\mathbb{R})$. On $\mathbb{P}^{d}(\mathbb{R})$ there is an invariant Riemannian metric $d(\cdot, \cdot)$, an invariant Haar measure $d \nu$ and an invariant second order differential operator, the Laplace-Beltrami operator Δ. A function $Z(\cdot): \mathbb{P}^{d}(\mathbb{R}) \rightarrow \mathbb{R}$ is called zonal if $Z\left(h^{-1} \cdot\right)=Z(\cdot)$ for any $h \in \mathbf{O}(1) \times \mathbf{O}(d)$. For more details see, e.g., Cartan [1], Gangolli [3], and Helgason [5, 6].

KUSHPEL/Turk J Math

A function on $\mathbb{P}^{d}(\mathbb{R})$ is invariant under the left action of $\mathbf{O}(1) \times \mathbf{O}(d)$ on $\mathbb{P}^{d}(\mathbb{R})$ if and only if it depends only the distance of its argument from \mathbf{o}. Since the distance of any point of $\mathbb{P}^{d}(\mathbb{R})$ from \mathbf{o} is at most $\pi / 2$, it follows that a spherical function Z on $\mathbb{P}^{d}(\mathbb{R})$ can be identified with a function \tilde{Z} on $[0, \pi / 2]$. Let θ be the distance of a point from \mathbf{o}. We may choose a geodesic polar coordinate system (θ, \mathbf{u}), where \mathbf{u} is an angular parameter. In this coordinate system, the radial part Δ_{θ} of the Laplace-Beltrami operator Δ has the expression

$$
\Delta_{\theta}=\frac{1}{A(\theta)} \frac{d}{d \theta}\left(A(\theta) \frac{d}{d \theta}\right)
$$

where $A(\theta)$ is the area of the sphere of radius θ in $\mathbb{P}^{d}(\mathbb{R})$. It is interesting to remark that an explicit form the function $A(\theta)$ can be computed using methods of Lie algebras (see Helgason [6], p.251, [5], p. 168 for the details). It can be shown that

$$
A(\theta)=\omega_{d}(\sin \theta)^{d-1}
$$

where ω_{d} is the area of the unit sphere in \mathbb{R}^{d}. Now we can write the operator Δ_{θ} (up to some numerical constant) in the form

$$
\Delta_{\theta}=\frac{1}{(\sin \theta)^{d-1}} \frac{d}{d \theta}(\sin \theta)^{d-1} \frac{d}{d \theta}
$$

Using a simple change of variables $t=\cos \theta$, this operator takes the form (up to a positive multiple),

$$
\begin{equation*}
\Delta_{t}=\left(1-t^{2}\right)^{-(d-2) / 2} \frac{d}{d t}\left(1-t^{2}\right)^{d / 2} \frac{d}{d t} \tag{2.1}
\end{equation*}
$$

We will need the following statement Szegö [9], p.60:
Lemma 2.1 The Jacobi polynomials $y=P_{k}^{(\alpha, \beta)}$ satisfy the following linear homogeneous differential equation of the second order:

$$
\frac{d}{d t}\left((1-t)^{\alpha+1}(1-t)^{\beta+1} y^{\prime}\right)+k(k+\alpha+\beta+1)(1-t)^{\alpha}(1+t)^{\beta} y=0
$$

Hence, the eigenfunctions of the operator Δ_{t}, which has been defined in (2.1) are well-known Jacobi polynomials $P_{k}^{(\alpha, \beta)}(t)$, and the corresponding eigenvalues are $\theta_{k}=-k(k+\alpha+\beta+1)$, where $\alpha=\beta=(d-2) / 2$. In this way, zonal functions on $\mathbb{P}^{d}(\mathbb{R})$ can be easily identified since the elementary zonal functions are eigenfunctions of the Laplace-Beltrami operator. Note that, on the real projective spaces, $\mathbb{P}^{d}(\mathbb{R})$, the only polynomials of even degree, appear because, due to the identification of antipodal points on \mathbb{S}^{d}, only the even order polynomials $P_{2 k}^{(\alpha, \alpha)}, k=0,1,2, \cdots$ can be lifted to be functions on $\mathbb{P}^{d}(\mathbb{R})$. Let $Z_{2 k}, k \in \mathbb{N}$, with $Z_{0} \equiv 1$ be a zonal function corresponding to the eigenvalue $\theta_{2 k}=-2 k(2 k+d-1)$ and $\tilde{Z}_{2 k}$ be the corresponding functions induced on $[0, \pi / 2]$ by $Z_{2 k}$. Then, Koornwinder [7],

$$
\begin{equation*}
\tilde{Z}_{2 k}(\theta)=C_{2 k}\left(\mathbb{P}^{d}(\mathbb{R})\right) P_{2 k}^{((d-2) / 2,(d-2) / 2)}(\cos \theta) \tag{2.2}
\end{equation*}
$$

Remark that, for any $k \in \mathbb{N}$, the polynomial $P_{k}^{((d-2) / 2,(d-2) / 2)}$ is just a multiple of the Gegenbauer polynomial $P_{k}^{(d-1) / 2}$. A detailed treatment of the Jacobi polynomials can be found in Szegö [9]. In particular, the Jacobi
polynomials $P_{k}^{(\alpha, \beta)}(t), \alpha>-1, \beta>-1$ are orthogonal with respect to $\omega^{\alpha, \beta}(t)=c^{-1}(1-t)^{\alpha}(1+t)^{\beta}$ on $(-1,1)$. The above constant c can be found using the normalization condition $\int_{\mathbb{P}^{d}(\mathbb{R})} d \nu=1$ for the invariant measure $d \nu$ on $\mathbb{P}^{d}(\mathbb{R})$ and a well-known formula for the Euler integral of the first kind

$$
\begin{equation*}
\mathrm{B}(p, q)=\int_{0}^{1} \xi^{p-1}(1-\xi)^{q-1} d \xi=\frac{\Gamma(p) \Gamma(q)}{\Gamma(p+q)}, p>0, q>0 \tag{2.3}
\end{equation*}
$$

Applying (2.3) and a simple change of variables we get

$$
1=\int_{\mathbb{P}^{d}(\mathbb{R})} d \nu=\int_{0}^{1} \omega^{(d-2) / 2,(d-2) / 2}(t) d t=c^{-1} \int_{0}^{1}\left(1-t^{2}\right)^{(d-2) / 2} d t,
$$

so that,

$$
\begin{equation*}
c=\int_{0}^{1}\left(1-t^{2}\right)^{(d-2) / 2} d t=2^{d-2} \frac{(\Gamma(d / 2))^{2}}{\Gamma(d)} . \tag{2.4}
\end{equation*}
$$

We normalize the Jacobi polynomials as follows:

$$
P_{k}^{(\alpha, \beta)}(1)=\frac{\Gamma(k+\alpha+1)}{\Gamma(\alpha+1) \Gamma(k+1)} .
$$

This way of normalization is coming from the definition of Jacoby polynomials using the generating function Szegö [9], p.69. In particular,

$$
P_{2 k}^{((d-2) / 2,(d-2) / 2)}(1)=\frac{\Gamma(2 k+d / 2)}{\Gamma(d / 2) \Gamma(2 k+1)} .
$$

The Hilbert space $L_{2}\left(\mathbb{P}^{d}(\mathbb{R})\right)$ with usual scalar product

$$
\langle f, g\rangle=\int_{\mathbb{P}^{d}(\mathbb{R})} f(x) \overline{g(x)} d \nu(x)
$$

has the decomposition

$$
L_{2}\left(\mathbb{P}^{d}(\mathbb{R})\right)=\bigoplus_{k=0}^{\infty} \mathrm{H}_{2 k}
$$

where $\mathrm{H}_{2 k}$ is the eigenspace of the Laplace-Beltrami operator corresponding to the eigenvalue $\theta_{2 k}=-2 k(2 k+$ $\alpha+\beta+1)$. Let $\left\{Y_{j}^{2 k}\right\}_{j=1}^{d_{2 k}}$ be an orthonormal basis of $H_{2 k}$. The following addition formula is known, Koornwinder [7],

$$
\begin{equation*}
\sum_{j=1}^{d_{2 k}} Y_{j}^{2 k}(x) \overline{Y_{j}^{2 k}(y)}=\tilde{Z}_{2 k}(\cos \theta) \tag{2.5}
\end{equation*}
$$

where $\theta=d(x, y)$ or comparing (2.5) with (2.2) we get

$$
\begin{equation*}
\sum_{j=1}^{d_{2 k}} Y_{j}^{2 k}(x) \overline{Y_{j}^{k}(y)}=\tilde{Z}_{k}(\cos \theta)=C_{2 k}\left(\mathbb{P}^{d}(\mathbb{R})\right) P_{2 k}^{(\alpha, \beta)}(\cos \theta) \tag{2.6}
\end{equation*}
$$

See Helgason [5, 6], Cartan [1], Koornwinder [7], and Gangolli [3] for more information concerning the harmonic analysis on homogeneous spaces.

KUSHPEL/Turk J Math

3. The result

Theorem 3.1 In our notations

$$
L_{2 n}\left(\mathbb{P}^{d}(\mathbb{R})\right)=n^{(d-1) / 2} \frac{2 \Gamma\left(\frac{d-1}{4}\right)}{\pi \Gamma\left(\frac{d}{2}\right) \Gamma\left(\frac{d+1}{4}\right)}+O\left\{\begin{array}{cc}
n^{(d-2) / 2}, & d=2 \\
n^{(d-3) / 2}, & d \geq 3
\end{array}\right\}, d=2,3,4, \cdots
$$

Proof We will need an explicit representation for the constant $C_{2 k}\left(\mathbb{P}^{d}(\mathbb{R})\right)$ defined in (2.6). Putting $y=x$ in (2.6) and then integrating both sides with respect to $d \nu(x)$ we get

$$
\begin{align*}
d_{2 k} & =\operatorname{dim} \mathrm{H}_{2 k}=\sum_{j=1}^{d_{2 k}} \int_{\mathbb{P}^{d}(\mathbb{R})}\left|Y_{j}^{2 k}(x)\right|^{2} d \nu(x) \\
& =C_{2 k}\left(\mathbb{P}^{d}(\mathbb{R})\right) P_{2 k}^{((d-2) / 2,(d-2) / 2)}(1) \tag{3.1}
\end{align*}
$$

Taking the square of both sides of (2.6) and then integrating with respect to $d \nu(x)$ we find

$$
\begin{equation*}
\sum_{j=1}^{d_{2 k}}\left|Y_{j}^{2 k}(y)\right|^{2}=C_{2 k}^{2}\left(\mathbb{P}^{d}(\mathbb{R})\right) \int_{\mathbb{P}^{d}(\mathbb{R})}\left(P_{2 k}^{((d-2) / 2,(d-2) / 2)}(\cos d(x, y))\right)^{2} d \nu(x) \tag{3.2}
\end{equation*}
$$

Since $d \nu$ is shift invariant then

$$
\int_{\mathbb{P}^{d}(\mathbb{R})}\left(P_{2 k}^{((d-2) / 2,(d-2) / 2)}(\cos (d(x, y)))\right)^{2} d \nu(x)=c^{-1}\left\|P_{2 k}^{((d-2) / 2,(d-2) / 2)}\right\|_{2}^{2}
$$

where the constant c is defined by (2.4) and (see Szegö [9], p.68)

$$
\begin{gathered}
\left\|P_{2 k}^{((d-2) / 2,(d-2) / 2)}\right\|_{2}^{2}=\int_{0}^{1}\left(P_{2 k}^{((d-2) / 2,(d-2) / 2)}(t)\right)^{2}\left(1-t^{2}\right)^{(d-2) / 2} d t \\
=\frac{2^{d-2}}{4 k+d-1} \frac{(\Gamma(2 k+d / 2))^{2}}{\Gamma(2 k+1) \Gamma(2 k+d-1)}
\end{gathered}
$$

So that, (3.2) can be written in the form

$$
\sum_{j=1}^{d_{2 k}}\left|Y_{j}^{2 k}(y)\right|^{2}=c^{-1} C_{2 k}^{2}\left(\mathbb{P}^{d}(\mathbb{R})\right)\left\|P_{2 k}^{((d-2) / 2,(d-2) / 2)}\right\|_{2}^{2}
$$

Integrating the last line with respect to $d \nu(y)$ we obtain

$$
d_{2 k}=c^{-1} C_{2 k}^{2}\left(\mathbb{P}^{d}(\mathbb{R})\right)\left\|P_{2 k}^{(\alpha, \beta)}\right\|_{2}^{2}
$$

It is sufficient to compare this with (3.1) to obtain

$$
\begin{equation*}
C_{2 k}\left(\mathbb{P}^{d}(\mathbb{R})\right)=\frac{c P_{2 k}^{((d-2) / 2,(d-2) / 2)}(1)}{\left\|P_{2 k}^{((d-2) / 2,(d-2) / 2)}\right\|_{2}^{2}} \tag{3.3}
\end{equation*}
$$

KUSHPEL/Turk J Math

We get now an integral representation for the Fourier sums $S_{2 n}(\varphi, x)$ of a function $\varphi \in L_{\infty}\left(\mathbb{P}^{d}(\mathbb{R})\right)$,

$$
\begin{gather*}
S_{2 n}(\varphi, x)=c_{0}(\varphi)+\sum_{k=1}^{n} \sum_{j=1}^{d_{2 k}} c_{2 k, j}(\varphi) Y_{j}^{2 k}(x) \\
=\int_{\mathbb{P}^{d}(\mathbb{R})} \varphi(y) \overline{Y_{1}^{0}(y)} d \nu(y)+\sum_{k=1}^{n} \sum_{j=1}^{d_{2 k}}\left(\int_{\mathbb{P}^{d}(\mathbb{R})} \varphi(y) \overline{Y_{j}^{2 k}(y)} d \nu(y)\right) Y_{j}^{2 k}(x) \\
=\int_{\mathbb{P}^{d}(\mathbb{R})} \sum_{k=0}^{n}\left(\sum_{j=1}^{d_{2 k}} \overline{Y_{j}^{2 k}(y)} Y_{j}^{2 k}(x)\right) \varphi(y) d \nu(y) \\
=\int_{\mathbb{P}^{d}(\mathbb{R})} \sum_{k=0}^{n} Z_{2 k}^{x}(y) \varphi(y) d \nu(y) \\
=\int_{\mathbb{P}^{d}(\mathbb{R})} K_{2 n}(x, y) \varphi(y) d \nu(y) \tag{3.4}
\end{gather*}
$$

where

$$
\begin{equation*}
K_{2 n}(x, y)=\sum_{k=0}^{n} Z_{2 k}^{x}(y) \tag{3.5}
\end{equation*}
$$

By (2.2) and (3.3) we have

$$
K_{2 n}(x, y)=c \sum_{k=0}^{n} \frac{P_{2 k}^{((d-2) / 2,(d-2) / 2)}(1)}{\left\|P_{2 k}^{((d-2) / 2,(d-2) / 2)}\right\|_{2}^{2}} P_{2 k}^{((d-2) / 2,(d-2) / 2)}(\cos d(x, y))
$$

Let us denote

$$
G_{n}^{(\alpha, \beta)}(\gamma, \delta)=\sum_{k=0}^{n} \frac{P_{k}^{(\alpha, \beta)}(\gamma) P_{k}^{(\alpha, \beta)}(\delta)}{\left\|P_{k}^{(\alpha, \beta)}\right\|_{2, *}^{2}}
$$

where

$$
\left\|P_{k}^{(\alpha, \beta)}\right\|_{2, *}^{2}=\int_{-1}^{1}\left(P_{k}^{(\alpha, \beta)}(t)\right)^{2}(1-t)^{\alpha}(1+t)^{\beta} d t
$$

Then by Szegö [9], p.71,

$$
\begin{gather*}
G_{n}^{(\alpha, \beta)}(\gamma, 1)=\sum_{k=0}^{n} \frac{P_{k}^{(\alpha, \beta)}(\gamma) P_{k}^{(\alpha, \beta)}(1)}{\left\|P_{k}^{(\alpha, \beta)}\right\|_{2, *}^{2}} \\
=2^{-\alpha-\beta-1} \frac{\Gamma(n+\alpha+\beta+2)}{\Gamma(\alpha+1) \Gamma(n+\beta+1)} P_{n}^{(\alpha+1, \beta)}(\gamma) . \tag{3.6}
\end{gather*}
$$

Remark that, Szegö [9],

$$
\begin{equation*}
P_{k}^{(\alpha, \beta)}(\gamma)=(-1)^{k} P_{k}^{(\beta, \alpha)}(-\gamma) \tag{3.7}
\end{equation*}
$$

KUSHPEL/Turk J Math

for any $\gamma \in \mathbb{R}$ and $k \in \mathbb{N}$. By the definitions of the norms $\|\cdot\|_{2}$ and $\|\cdot\|_{2, *}$

$$
\begin{equation*}
\left\|P_{2 k}^{((d-2) / 2,(d-2) / 2)}\right\|_{2, *}^{2}=2\left\|P_{2 k}^{((d-2) / 2,(d-2) / 2)}\right\|_{2}^{2}, \tag{3.8}
\end{equation*}
$$

for any $k \in \mathbb{N}$ since $P_{2 k}^{((d-1) / 2,(d-1) / 2)}$ is an even function. Comparing (3.6)-(3.8) we get an explicit representation for the kernel function (3.5) in the integral representation (3.4), i.e.,

$$
\begin{align*}
& K_{2 n}(x, y)=c 2^{-\alpha-\beta-1} 2 \frac{\Gamma(2 n+\alpha+\beta+2)}{\Gamma(\alpha+1) \Gamma(2 n+\beta+1)} \times \frac{P_{2 n}^{(\alpha+1, \beta)}(\cos d(x, y))+P_{2 n}^{(\beta, \alpha+1)}(\cos d(x, y))}{2} \\
& \quad=c 2^{-d+1} \frac{\Gamma(2 n+d)}{\Gamma(d / 2) \Gamma(2 n+d / 2)} \times\left(P_{2 n}^{(d / 2,(d-2) / 2)}(\cos d(x, y))+P_{2 n}^{((d-2) / 2, d / 2)}(\cos d(x, y))\right) \tag{3.9}
\end{align*}
$$

since $\alpha=\beta=(d-2) / 2$. It is known, Szegö [9], p.196, that for $0<\eta<\pi$,

$$
\begin{equation*}
P_{n}^{(\alpha, \beta)}(\cos \eta)=n^{-1 / 2} \kappa^{(\alpha, \beta)}(\eta) \cos (N \eta+\gamma)+O\left(n^{-3 / 2}\right), \tag{3.10}
\end{equation*}
$$

where

$$
\begin{aligned}
\kappa^{(\alpha, \beta)}(\eta) & =\pi^{-1 / 2}\left(\sin \frac{\eta}{2}\right)^{-\alpha-1 / 2}\left(\cos \frac{\eta}{2}\right)^{-\beta-1 / 2}, \\
N & =n+\frac{\alpha+\beta+1}{2}=n+\frac{d-1}{2},
\end{aligned}
$$

and

$$
\gamma=-\frac{\alpha+1 / 2}{2} \pi .
$$

Let $\eta=d(x, y)$ and \mathbf{o} be the north pole of $\mathbb{P}^{d}(\mathbb{R})$, then from (3.9), (3.10) and since $K_{2 n}$ is a zonal function and $d \nu$ is shift invariant we get

$$
\begin{gathered}
\left\|S_{2 n} \mid C\left(\mathbb{P}^{d}(\mathbb{R})\right) \rightarrow C\left(\mathbb{P}^{d}(\mathbb{R})\right)\right\|=\sup \left\{\int_{\mathbb{P}^{d}(\mathbb{R})}\left|K_{2 n}(x, y)\right| d \nu(y): x \in \mathbb{P}^{d}(\mathbb{R})\right\} \\
=\int_{\mathbb{P}^{d}(\mathbb{R})}\left|K_{2 n}(\mathbf{o}, y)\right| d \nu(y) \\
=\frac{c 2^{-d+1} \Gamma(2 n+d)}{\Gamma(d / 2) \Gamma(2 n+d / 2)} \times \int_{\mathbb{P}^{d}(\mathbb{R})}\left|P_{2 n}^{(d / 2,(d-2) / 2)}(\cos (d(\mathbf{o}, y)))+P_{2 n}^{((d-2) / 2, d / 2)}(\cos (d(\mathbf{o}, y)))\right| d \nu(y) \\
=\frac{2^{-d+1} \Gamma(2 n+d)}{\Gamma(d / 2) \Gamma(2 n+d / 2)} I_{n}
\end{gathered}
$$

where

$$
\begin{aligned}
& I_{n}:=\int_{0}^{1}\left|P_{2 n}^{(d / 2,(d-2) / 2)}(t)+P_{2 n}^{((d-2) / 2, d / 2)}(t)\right|\left(1-t^{2}\right)^{(d-2) / 2} d t \\
& =\int_{0}^{\pi / 2}\left|P_{2 n}^{(d / 2,(d-2) / 2)}(\cos \eta)+P_{2 n}^{((d-2) / 2, d / 2)}(\cos \eta)\right|(\sin \eta)^{d-1} d t
\end{aligned}
$$

$$
=\frac{2^{d / 2+1 / 2}}{\pi^{1 / 2}(2 n)^{1 / 2}} \int_{0}^{\pi / 2}(\sin \eta)^{(d-3) / 2}\left|\cos \left(\left(2 n+\frac{d-1}{2}\right) \eta-\frac{(d+1) \pi}{4}\right)\right| d \eta+O\left(n^{-3 / 2}\right)
$$

Applying a simple Tylor series arguments and an elementary estimates of the derivative of the function $(\sin \eta)^{(d-3) / 2}$, we get

$$
I_{n}=\frac{2^{d / 2+1}}{\pi^{3 / 2} n^{1 / 2}} \int_{0}^{\pi / 2}(\sin \eta)^{(d-3) / 2} d \eta+\left\{\begin{array}{cc}
O\left(n^{-1 / 2}\right), & d=2 \\
O\left(n^{-1}\right), & d \geq 3
\end{array}\right\}
$$

References

[1] Cartan E. Sur la determination d'un systeme orthogonal complet dans un espace de Riemann symetrique clos. Rendiconti del Circolo Matematico di Palermo 1929; 53: 217-252 (in French).
[2] Fejer L. Lebesguesche Konstanten und divergente Fourierreihen. Journal für die reine und angewandte Mathematik 1910; 138: 22-53 (in German).
[3] Gangolli R. Positive definite kernels on homogeneous spaces and certain stochastic processes related to Lévy's Browian motion of several parameters. Annales de l'Institut Henri Poincaré 1967; 3: 121-225.
[4] Gronwall TH. On the degree of convergence of Laplace series, Transactions of the American Mathematical Society 1914; 15: 1-30.
[5] Helgason S. The Radon Transform on Euclidean spaces, compact two-point homogeneous spaces and Grassmann manifolds. Acta Matematica 1965; 113: 153-180.
[6] Helgason S. Differential Geometry and Symmetric Spaces. New York, NY, USA: Academic Press, 1962.
[7] Koornwinder T. The addition formula for Jacobi polynomials and spherical harmonics. SIAM Journal of Applied Mathematics 1973; 25: 236-246.
[8] Kushpel A. On the Lebesgue constants. Ukrainian Mathematical Journal 2019; 71: 1073-1081.
[9] Szegö G. Orthogonal Polynomials. New York, NY, USA: American Mathematical Society, 1939.

[^0]: *Correspondence: kushpel@cankaya.edu.tr
 2010 AMS Mathematics Subject Classification: 41A60, 41A10, 41A35

