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Abstract: In this paper, we are concerned with the following discrete problem first{
−∆2u(t− 1) = λp(t)f(u(t)), t ∈ [1, N − 1]Z,
∆u(0) = u(N) = 0,

where N > 2 is an integer, λ > 0 is a parameter, p : [1, N−1]Z → R is a sign-changing function, f : [0,+∞) → [0,+∞) is
a continuous and nondecreasing function. ∆u(t) = u(t+1)−u(t) , ∆2u(t) = ∆(∆u(t)) . By using the iterative method and
Schauder’s fixed point theorem, we will show the existence of nonnegative solutions to the above problem. Furthermore,
we obtain the existence of nonnegative solutions for discrete Robin systems with indefinite weights.
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1. Introduction
The boundary value problems with sign-changing weight arise from a selection migration model in population
genetics, see Fleming [7]. The weight changes sign corresponds to the fact that an allele A1 holds an advantage
over a rival allele A2 at the same points and is at a disadvantage at others. Therefore, it is of great significance to
study the existence and multiplicity of positive solutions of the problems with sign-changing weight in continuous
functions, which has attracted the attention of many scholars. They obtain a lot of meaningful results, see, for
example, [1,5,10,11,13] and the references therein.

For the discrete case, many authors have studied the existence of positive solutions to boundary value
problems in various boundary conditions when the weight function is invariant. By using different methods, such
as the Krasnosel’skii’s fixed point theorem in a cone, bifurcation methods, and fixed point theory, the authors
obtain the existence of positive solutions of the boundary value problems for second-order discrete equations.
We refer to [2–4,6,8,9,12] and the references therein.

In [12], Ma et al. study the global structure of positive solutions of the discrete problem{
−∆2u(t− 1) = λp(t)f(u(t)), t ∈ [1, N ]Z,
u(0) = u(N + 1) = 0,

(1.1)

where λ is a positive parameter, p : [0, N + 1] → [0,∞) and f : [0,∞) → [0,∞) is continuous. The authors
obtained the existence of positive solutions of (1.1) by using the Rabinowitz’s global bifurcation theorem.
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There are few studies on the existence of positive solutions for boundary value problems when the weight
function is sign-changing, since the strong maximum principle dose not be applied. In [2], Bai et al. study the
existence of positive solutions of the discrete Neumann boundary value problem{

−∆2u(t− 1) = f(t, u(t)), t ∈ [1, N ]Z,
∆u(0) = ∆u(N) = 0,

(1.2)

where f : [1, N ]Z × R+ → R is a sign-changing function. They first assume that
(C1) there exists a function h : [1, N ]Z → R+ with h(t) ̸≡ 0 on [1, N ]Z , and a constant number L > 0 such

that
f(t, z) + Lz + h(t) ≥ 0, (t, z) ∈ [1, N ]Z × R+.

Furthermore, they use the Guo–Krasnosel’skii fixed point theorem to obtain the existence of positive solutions
to (1.2) under some complex conditions including (C1). In [9], Jiang et al. study the positive solutions for a
discrete system {

−∆2ui(t− 1) = fi(t, u1(t), u2(t)), t ∈ [1, N ]Z,
∆ui(0) = ∆ui(N) = 0, i = (1, 2)

(1.3)

under similar conditions.
However, the conditions in [2] are complex. When we consider the boundary value problem with sign-

changing weight, can we obtain the existence of positive solutions to the boundary value problem under some
simple conditions? It is the purpose of the present paper is to study the existence of nonnegative solutions for
the following Robin boundary value problems{

−∆2u(t− 1) = λp(t)f(u(t)), t ∈ [1, N − 1]Z,
∆u(0) = u(N) = 0,

(1.4)

where N > 2 is an integer, λ > 0 is a parameter, p : [1, N−1]Z → R is a sign-changing function, f : [0,+∞) →
[0,+∞) is a continuous and nondecreasing function. By using the iterative method, we will show the existence of
nonnegative solutions to the above problem. Furthermore, we also obtain the existence of nonnegative solutions
for following discrete coupled systems

−∆2u(t− 1) = λp(t)f(v(t)), t ∈ [1, N − 1]Z,
−∆2v(t− 1) = λq(t)g(u(t)), t ∈ [1, N − 1]Z,
∆u(0) = u(N) = 0,
∆v(0) = v(N) = 0.

(1.5)

Denote

p+ =

{
p(t), p(t) ≥ 0, t ∈ [1, N − 1],
0, p(t) < 0, t ∈ [1, N − 1],

p− =

{
0, p(t) > 0, t ∈ [1, N − 1],
−p(t), p(t) ≤ 0, t ∈ [1, N − 1].

There are similar definitions for q+, q− .
The paper is organized as follows. In Section 2 we introduce some preliminary results. In Section 3 we

state and prove our main results on the existence of nonnegative solution of (1.4). Finally, in Section 4, we will
prove our main results on the existence of nonnegative solution of (1.5).
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2. Preliminary results
Let

X = {u|u : [0, N ]Z → R, ∆u(0) = u(N) = 0}

be a Banach space with the norm ∥u∥ = max
i∈[0,N+1]Z

|u(i)| .

It is easy to see that a solution to (1.4) is a fixed point of the operator

Tθ(t) = λ

N−1∑
s=1

G(t, s)p(s)f(θ(s)), t ∈ [0, N ]Z, (2.1)

where

G(t, s) =

{
T − t, 1 ≤ s ≤ t ≤ N,
T − s, 0 ≤ t ≤ s ≤ N − 1.

It is easy to check that G(t, s) ≥ 0 .
We will make use of the following assumptions:
(H1) p : [1, N − 1]Z → R is a sign-changing function;
(H2) f : [0,+∞) → [0,+∞) is a continuous and nondecreasing function;
(H3) there is an µ > 0 so that

t∑
s=1

p+(s) ≥ (1 + µ)

t∑
s=1

p−(s), t ∈ [1, N − 1]Z.

Lemma 2.1 Assume that (H1) and (H2) hold. Let A = {t|p(t) ≥ 0} and B = {t|p(t) < 0} . Suppose we have
bounded functions φ0(t), ψ0(t), t ∈ [0, N ]Z such that they satisfy

(i)
0 ≤ φ0 ≤ ψ0 on A, 0 ≤ ψ0 ≤ φ0 on B;

(ii)
Tψ0 ≤ ψ0 on A, Tψ0 ≤ φ0 on B;

(iii)
Tφ0 ≥ φ0 on A, Tφ0 ≥ ψ0 on B.

Define
(iv)

φ1(t) =

{
Tφ0(t) on A,
Tψ0(t) on B;

ψ1(t) =

{
Tψ0(t) on A,
Tφ0(t) on B.

Then φ1, ψ1 also satisfy (i), (ii), (iii).

Proof We note that the operator T can be written as

Tφ(t) =λ
∑
s∈A

G(t, s)p+(s)f(φ(s))

− λ
∑
s∈B

G(t, s)p−(s)f(φ(s)).
(2.2)
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For convenience we write
Tφ(t) = T1φ(t)− T2φ(t), (2.3)

where Tiφ, i = 1.2 are both monotone in the sense that φ ≤ ψ implies Tiφ ≤ Tiψ .
According to (i), note that

Tφ0 = T1φ0 − T2φ0 ≤ T1ψ0 − T2ψ0 = Tψ0. (2.4)

From this we can directly get that φ1 and ψ1 satisfies (i).
Using (ii) and (iii), we can get that

Tψ1 = T1(Tψ0)− T2(Tφ0) ≤ T1(ψ0)− T2(ψ0) = Tψ0. (2.5)

For ψ1 , when it satisfies condition (ii), it means that on A , Tψ1 ≤ ψ1 = Tψ0 and on B , Tψ1 ≤ φ1 =

Tψ0 , i.e. Tψ1 ≤ Tψ0 . Obviously, this inequality can be satisfied.
Similarly, conditions (iii) for φ1 is that Tφ1 ≥ φ1 = Tφ0 on A and Tφ1 ≥ ψ1 = T (φ0) on B . Using

(ii) and (iii) again, we can get that

Tφ1 = T1(Tφ0)− T2(Tψ0) ≥ T1(φ0)− T2(φ0) = Tφ0. (2.6)

2

3. Existence of nonnegative solution for (1.4)

Theorem 3.1 Assume (H1)–(H2) hold, and suppose there are functions φ0 , ψ0 that satisfy (i), (ii), and (iii). Then
the problem (1.4) has a solution.

Proof We define

φn+1 =

{
Tφn on A,
Tψn on B,

ψn+1 =

{
Tψn on A,
Tφn on B.

(3.1)

By the Lemma 2.1 and induction, (φn, ψn) satisfies (i), (ii), and (iii). Hence, we can get the following
inequality through (2.4), (2.5), (2.6). i.e.

0 ≤ Tφn ≤ Tφn+1 ≤ Tψn+1 ≤ Tψn ≤ Tψ0.

Thus Tφn ↑ φ and Tψn ↓ ψ pointwise and φ ≤ ψ .
Since

Tφn+1 = T1(Tφn)− T2(Tψn),

we can easily have
φ = T1(φ)− T2(ψ). (3.2)

Similarly,
ψ = T1(ψ)− T2(φ). (3.3)

We have φn+1 → φ on A by definition of φ . On the other hand, from (3.1), φn+1 = Tφn on A , so
φn+1 → Tφ . Thus φ = Tφ on A . On B we have ψn+1 = Tφn → φ by definition of φ . But φn+1 = Tψn on
B , so φn+1 → Tψ on B . Thus Tψ = φ on B . In a similar way we have

φ =

{
Tφ on A,

Tψ on B;
ψ =

{
Tψ on A,
Tφ on B,
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and φ and ψ are fixed points of T 2 .
Now consider the convex region defined by

K = {u(i) ∈ X|φ(i) ≤ u(i) ≤ ψ(i)}.

From (3.3), we have
Tu = T1(u)− T2(u) ≤ T1(ψ)− T2(φ) = ψ.

Similarly, we get
Tu = T1(u)− T2(u) ≥ T1(φ)− T2(ψ) = φ

by (3.2).
These imply that T (K) ⊂ K . Because X is a finite-dimensional space, it is easy to show T restricted

to K is a compact operator. Thus we know that T has a fixed point by Schauder’s fixed point theorem. 2

Remark 3.2 For order interval {u ∈ X|Tφ0 ≤ u ≤ Tψ0} , it is already invariant and we could use Schauder’s
fixed point theorem directly. But the iteration improves the estimates. In general, the functions φ and ψ are
the same. So we could actually construct the solution numerically.

Remark 3.3 If f ≥ 0 and nonincreasing, then we take the following modified versions:
(i)∗

0 ≤ φ ≤ ψ on A, 0 ≤ ψ ≤ φ on B;

(ii)∗

Tφ ≤ ψ on A, Tφ ≤ φ on B;

(iii)∗

Tψ ≥ φ on A, Tψ ≥ ψ on B.

Define
(iv)∗

φ1(t) =

{
Tψ0(t) on A,
Tφ0(t) on B,

ψ1(t) =

{
Tφ0(t) on A,
Tψ0(t) on B.

We can prove the theorem of existence where now Tφn ≥ Tψn , then Tφn ↓ φ and Tψn ↑ ψ . The details
are the same.

Theorem 3.4 If f(0) > 0 , Let (H1)-(H3) hold, then the problem (1.4) has a nonnegative solution for
0 ≤ λ ≤ λ0 , where

λ0 =
α

f(0)[µ
∑N−1

s=1 G(1, s)p−(s) + (1 + µ)
∑N−1

s=1 (N − s)p(s)]

if f(α) ≤ f(0)(1 + µ) .

Proof We will seek φ0 and ψ0 so that (i), (ii), and (iii) are satisfied in Lemma 2.1.
Let φ0(t) = α on B and φ0(t) = 0 on A , ψ0(t) = α on A and ψ0(t) = 0 on B .
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Then condition (i) is satisfied if α ≥ 0 . Now the condition (ii) is

Tψ0 = T1(α)− T2(0) ≤ α

while condition (iii) is
Tφ0 = T1(0)− T2(α) ≥ 0.

Let z+(t) =
∑N−1

s=1 G(t, s)p+(s) and z−(t) =
∑N−1

s=1 G(t, s)p−(s) . Then the conditions become

λ[z+(t)f(α)− z−(t)f(0)] ≤ α (3.4)

and
λ[z+(t)f(0)− z−(t)f(α)] ≥ 0. (3.5)

We consider (3.5) first, and define z(t) = z+(t)− (1 + µ)z−(t) . Then z is a solution of

{
−∆2z(t− 1) = p+(t)− (1 + µ)p−(t), t ∈ [1, N − 1]Z,
∆z(0) = z(N) = 0.

Then

∆z(t) = −
t∑

s=1

[p+(s)− (1 + µ)p−(s)] ≤ 0

by (H3).
Thus z is decreasing and therefore is nonnegative. Then

z+(t) ≥ (1 + µ)z−(t), t ∈ [1, N − 1]Z.

So (3.5) is satisfied if
f(α) ≤ (1 + µ)f(0). (3.6)

We select such an α and argue that (3.4) can now be satisfied for small λ . To prove this we will give an
explicit estimate. Now as above

z+(t)− z−(t) =

N−1∑
s=1

G(t, s)p(s), t ∈ [1, N − 1]Z, (3.7)

and the right-hide side of (3.7) is a decreasing function, therefore

z+(t) ≤ z−(t) +

N−1∑
s=1

G(1, s)p(s).

We note that
N−1∑
s=1

(N − s)p(s) = β.
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Hence
f(α)z+(t)− f(0)z−(t) ≤ [f(α)− f(0)]z−(t) + f(α)β

≤ [f(α)− f(0)]z−(1) + f(α)β

since z− is decreasing (as above for z ).
This is turn is dominated by (3.6)

µf(0)z−(1) + (1 + µ)f(0)β.

Therefore (3.4) is satisfied if

λ ≤ α

f(0)[µz−(1) + (1 + µ)β]
,

where

f(0)[µz−(1) + (1 + µ)β]) = f(0)[µ

N−1∑
s=1

G(1, s)p−(s) + (1 + µ)

N−1∑
s=1

(N − s)p(s)].

2

4. Existence of nonnegative solution for systems
In this part, we still use the iterative method to study the existence of nonnegative solutions for the system
(1.5) under the previous framework.

We will make use of the following assumptions:
(F1) p, q : [1, N − 1]Z → R are sign-changing functions;
(F2) f, g : [0,+∞) → [0,+∞) are continuous and nondecreasing functions;
(F3) there is an µ1 > 0 so that

N−1∑
s=1

G(t, s)p+(s) ≥ (1 + µ1)

N−1∑
s=1

G(t, s)p−(s), t ∈ [1, N − 1]Z;

(F4) there is an µ2 > 0 so that

N−1∑
s=1

G(t, s)q+(s) ≥ (1 + µ2)

N−1∑
s=1

G(t, s)q−(s), t ∈ [1, N − 1]Z.

Let Ω1 = {t ∈ [1, N − 1]Z|p(t) ≥ 0, q(t) ≥ 0} and Ω2 = {t ∈ [1, N − 1]Z|p(t) < 0, q(t) < 0} . Let
T : X ×X → X ×X defined by

T (u, v)(t) =

(
λ

N−1∑
s=1

G(t, s)p(s)f(v(s)), λ

N−1∑
s=1

G(t, s)q(s)g(u(s))

)
.

We note that the operator T can be written as follows:

T (φ,ψ)(t) =

(
λ
∑
s∈Ω1

G(t, s)p+(s)f(ψ(s))− λ
∑
s∈Ω2

G(t, s)p−(s)f(ψ(s)),

λ
∑
s∈Ω1

G(t, s)q+(s)g(φ(s))− λ
∑
s∈Ω2

G(t, s)q−(s)g(φ(s))

)
.
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For convenience we write
T (φ,ψ)(t) = (F1ψ(t)− F2ψ(t), G1φ(t)−G2φ(t)), (4.1)

where F1, F2, G1, G2 are monotone by (F2).

Lemma 4.1 Assume that (F1)–(F2) hold. Suppose we have bounded functions Φ0 = (φ
(1)
0 , φ

(2)
0 ), Ψ0

= (ψ
(1)
0 , ψ

(2)
0 ) such that they satisfy

(I)
(0, 0) ≤ Φ0 ≤ Ψ0 on Ω1, (0, 0) ≤ Ψ0 ≤ Φ0 on Ω2;

(II)
TΨ0 ≤ Ψ0 on Ω1, TΨ0 ≤ Φ0 on Ω2;

(III)
TΦ0 ≥ Φ0 on Ω1, TΦ0 ≥ Ψ0 on Ω2.

Define
(IV)

Φ1(t) =

{
TΦ0(t) on Ω1,
TΨ0(t) on Ω2;

Ψ1(t) =

{
TΨ0(t) on Ω1,
TΦ0(t) on Ω2.

Then Φ1, Ψ1 also satisfy (I), (II), (III).

Proof Note that (I) implies that

TΦ0 = T (φ
(1)
0 , φ

(2)
0 )

= (F1φ
(2)
0 − F2φ

(2)
0 , G1φ

(1)
0 −G2φ

(1)
0 )

≤ (F1ψ
(2)
0 − F2ψ

(2)
0 , G1ψ

(1)
0 −G2ψ

(1)
0 )

= T (ψ
(1)
0 , ψ

(2)
0 )

= TΨ0.

.

This implies that Φ1, Ψ1 satisfy (I).
From (II) and (III), we have

((F1 − F2)ψ
(2)
0 , (G1 −G2)ψ

(1)
0 ) ≤ (ψ

(1)
0 , ψ

(2)
0 ) on Ω1. (4.2)

((F1 − F2)ψ
(2)
0 , (G1 −G2)ψ

(1)
0 ) ≤ (φ

(1)
0 , φ

(2)
0 ) on Ω2. (4.3)

((F1 − F2)φ
(2)
0 , (G1 −G2)φ

(1)
0 ) ≥ (φ

(1)
0 , φ

(2)
0 ) on Ω1. (4.4)

((F1 − F2)φ
(2)
0 , (G1 −G2)φ

(1)
0 ) ≥ (ψ

(1)
0 , ψ

(2)
0 ) on Ω2. (4.5)

From the definition of Φ1 and Ψ1 , we have

(φ
(1)
1 , φ

(2)
1 ) = Φ1 =

{
((F1 − F2)φ

(2)
0 , (G1 −G2)φ

(1)
0 ) on Ω1,

((F1 − F2)ψ
(2)
0 , (G1 −G2)ψ

(1)
0 ) on Ω2.

(4.6)
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(ψ
(1)
1 , ψ

(2)
1 ) = Ψ1 =

{
((F1 − F2)ψ

(2)
0 , (G1 −G2)ψ

(1)
0 ) on Ω1,

((F1 − F2)φ
(2)
0 , (G1 −G2)φ

(1)
0 ) on Ω2.

(4.7)

Then we claim that TΨ1 ≤ Ψ1 on Ω1 and TΨ1 ≤ Φ1 on Ω2 . By (4.2–4.7), we have

TΨ1 = ((F1 − F2)ψ
(2)
1 , (G1 −G2)ψ

(1)
1 )

= (F1(G1 −G2)ψ
(1)
0 − F2(G1 −G2)φ

(1)
0 , G1(F1 − F2)ψ

(2)
0 −G2(F1 − F2)φ

(2)
0 )

≤ (F1ψ
(2)
0 − F2ψ

(2)
0 , G1ψ

(1)
0 −G2ψ

(1)
0 )

= ((F1 − F2)ψ
(2)
0 , (G1 −G2)ψ

(1)
0 )

= Ψ1 on Ω1.

.

Also, TΨ1 ≤ Φ1 on Ω2 .
Now we claim condition (III), TΦ1 ≥ Φ1 on Ω1 and TΦ1 ≥ Ψ1 on Ω2 .

TΦ1 = ((F1 − F2)φ
(2)
1 , (G1 −G2)φ

(1)
1 )

= (F1(G1 −G2)φ
(1)
0 − F2(G1 −G2)ψ

(1)
0 , G1(F1 − F2)φ

(2)
0 −G2(F1 − F2)ψ

(2)
0 )

≥ (F1φ
(2)
0 − F2φ

(2)
0 , G1φ

(1)
0 −G2φ

(1)
0 )

= ((F1 − F2)φ
(2)
0 , (G1 −G2)φ

(1)
0 )

= Φ1 on Ω1.

.

Also, TΦ1 ≥ Ψ1 on Ω2 . This completes the proof of the Lemma 4.1. 2

Theorem 4.2 Assume (F1) and (F2) hold, and suppose there are functions Φ0 , Ψ0 that satisfy (I), (II) and (III). Then
the system(1.5) has a solution.

Proof We define

(φ
(1)
n+1, φ

(2)
n+1) = Φn+1 =

{
TΦn on Ω1,
TΨn on Ω2;

(ψ
(1)
n+1, ψ

(2)
n+1) = Ψn+1 =

{
TΨn on Ω1,
TΦn on Ω2.

These could be written as follows:

(φ
(1)
n+1, φ

(2)
n+1) =

{
((F1 − F2)φ

(2)
n , (G1 −G2)φ

(1)
n ) on Ω1,

((F1 − F2)ψ
(2)
n , (G1 −G2)ψ

(1)
n ) on Ω2,

(4.8)

(ψ
(1)
n+1, ψ

(2)
n+1) =

{
((F1 − F2)ψ

(2)
n , (G1 −G2)ψ

(1)
n ) on Ω1,

((F1 − F2)φ
(2)
n , (G1 −G2)φ

(1)
n ) on Ω2.

(4.9)

By the Lemma 4.1 and induction, (Φn,Ψn) satisfies (I), (II) and (III). Hence, we can get the following
inequality easily. i.e.

(0, 0) ≤ TΦn ≤ TΦn+1 ≤ TΨn+1 ≤ TΨn ≤ TΨ0 ≤ Ψ0.
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Hence,

(0, 0) ≤ ((F1 − F2)φ
(2)
n , (G1 −G2)φ

(1)
n ) ≤ ((F1 − F2)ψ

(2)
n+1, (G1 −G2)ψ

(1)
n+1) ≤ (ψ

(1)
0 , ψ

(2)
0 ).

Thus TΦn ↑ Φ and TΨn ↓ Ψ pointwise, i.e.

((F1 − F2)φ
(2)
n , (G1 −G2)φ

(1)
n ) → (φ(1), φ(2)), ((F1 − F2)ψ

(2)
n , (G1 −G2)ψ

(1)
n ) → (ψ

(1)
, ψ

(2)
).

Also, Φ ≤ Ψ .
Since

TΦn+1 = ((F1 − F2)φ
(2)
n+1, (G1 −G2)φ

(1)
n+1)

by (4.8), we have

TΦn+1 = (F1(G1 −G2)φ
(1)
n − F2(G1 −G2)ψ

(1)
n , G1(F1 − F2)φ

(2)
n −G2(F1 − F2)ψ

(2)
n ).

Then, we can easily have
F1(G1 −G2)φ

(1)
n → F1φ

(2),

similarly, we get

F2(G1 −G2)ψ
(1)
n → F2ψ

(2)
, G1(F1 − F2)φ

(2)
n → G1φ

(1), G2(F1 − F2)ψ
(2)
n → G2ψ

(1)
,

this implies that

(φ(1), φ(2)) = (F1φ
(2) − F2ψ

(2)
, G1φ

(1) −G2ψ
(1)

).

By the similar arguments and using the definition of TΨn+1 ,

TΦn+1 = ((F1 − F2)ψ
(2)
n+1, (G1 −G2)ψ

(1)
n+1),

hence,
TΦn+1 = (F1(G1 −G2)ψ

(1)
n − F2(G1 −G2)φ

(1)
n , G1(F1 − F2)ψ

(2)
n −G2(F1 − F2)φ

(2)
n ),

we get

(ψ
(1)
, ψ

(2)
) = (F1ψ

(2) − F2φ
(2), G1ψ

(1) −G2φ
(1)).

Now consider the convex set defined by

K = {(u, v) ∈ X ×X|(φ(1)(i), φ(2)(i)) ≤ (u(i), v(i)) ≤ (ψ
(1)

(i), ψ
(2)

(i))}.

T (u, v) = (F1v − F2v,G1u−G2u) , where

F1v − F2v ≤ F1ψ
(2) − F2φ

(2) = ψ
(1)
,

F1v − F2v ≥ F1φ
(2) − F2ψ

(2)
= φ(1),

G1v −G2v ≤ G1ψ
(1) −G2φ

(1) = ψ
(2)
,
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G1v −G2v ≥ G1φ
(1) −G2ψ

(1)
= φ(2),

then
(φ(1), φ(2)) ≤ (F1v − F2v,G1u−G2u) ≤ (ψ

(1)
, ψ

(2)
).

This implies that T (K) ⊂ K . Because X is a finite-dimensional space, it is easy to show T restricted to K is
a compact operator. Thus we know that T has a fixed point by Schauder’s fixed point theorem. 2

Theorem 4.3 If f(0) > 0 , g(0) > 0 , Let (F1)–(F4) hold, then ∃λ∗ > 0 depending on f, g, p, q, µ1,

µ2 such that system (1.5) has a nonnegative solution for 0 ≤ λ ≤ λ∗ .

Proof We will seek Φ0 and Ψ0 so that (I), (II), and (III) are satisfied in Lemma 4.1.
Let

Φ0 =

{
(0, 0) on Ω1,
(α1, α2) on Ω2;

Ψ1(t) =

{
(α1, α2) on Ω1,
(0, 0) on Ω2.

Then (I) is satisfied if α1, α2 ≥ (0, 0) . Now condition (II) is

TΨ0 = (F1(α2)− F2(0), G1(α1)−G2(0)) ≤ (α1, α2),

while (III) is
TΦ0 = (F1(0)− F2(α2), G1(0)−G2(α1)) ≥ (0, 0),

Let

w±(t) =

N−1∑
s=1

G(t, s)p±(s), W±(t) =

N−1∑
s=1

G(t, s)q±(s).

Then, the conditions become

λ[w+(t)f(α2)− w−(t)f(0)] ≤ α1, (4.10)

λ[W+(t)g(α1)−W−(t)g(0)] ≤ α2, (4.11)

λ[w+(t)f(0)− w−(t)f(α2)] ≥ 0, (4.12)

λ[W+(t)g(0)−W−(t)g(α1)] ≥ 0. (4.13)

Define γ(t) = w+(t)− (1 + µ1)w
−(t) and Γ(t) =W+(t)− (1 + µ2)W

−(t) . By (F3) and (F4), we have

w+(t) ≥ (1 + µ1)w
−(t), W+(t) ≥ (1 + µ2)W

−(t).

So (4.12) and (4.13) are satisfied if

f(α2) ≤ (1 + µ1)f(0), g(α1) ≤ (1 + µ2)g(0), (4.14)

respectively. We will select α1, α2 and claim that (4.10) and (4.11) can be satisfied. Since we have

w+(t)− w−(t) =

N−1∑
s=1

G(t, s)p(s), W+(t)−W−(t) =

N−1∑
s=1

G(t, s)q(s),

874



ZHU/Turk J Math

so w, W solve the boundary value problems{
−∆2w(t− 1) = p(t), t ∈ [1, N − 1]Z,
∆w(0) = w(N) = 0,

{
−∆2W (t− 1) = q(t), t ∈ [1, N − 1]Z,
∆W (0) =W (N) = 0,

respectively. From this we have

w+(t) ≤ w−(t) + β1, where|
N−1∑
s=1

G(t, s)p(s)| ≤ β1,

W+(t) ≤W−(t) + β2, where|
N−1∑
s=1

G(t, s)q(s)| ≤ β2.

Hence
f(α2)w

+(t)− f(0)w−(t) ≤ (1 + µ1)f(0)w
−(t) + β1(1 + µ1)f(0)− f(0)w−(t)

= µ1f(0)w
−(t) + β1(1 + µ1)f(0)

≤ µ1f(0)β1 + β1(1 + µ1)f(0)

= (1 + 2µ1)f(0)β1.

.

Therefore,
λ[f(α2)w

+(t)− f(0)w−(t)] ≤ λ[(1 + 2µ1)f(0)β1].

If we choose
λ ≤ α1

(1 + 2µ1)f(0)β1
= λ0,

then (4.10) is satisfied. Similarly, we have

g(α1)W
+(t)− g(0)W+(t) ≤ (1 + 2µ2)g(0)β2.

So,
λ[g(α1)W

+(t)− g(0)W−(t)] ≤ λ[(1 + 2µ2)g(0)β2].

If we choose
λ ≤ α2

(1 + 2µ2)g(0)β2
= λ0,

then (4.11) is satisfied. With the choice of 0 ≤ λ ≤ λ∗ = min{λ0, λ0} , then (4.10), (4.11) are satisfied. 2

In fact, we also obtain the existence of nonnegative solutions for n× n system

−∆2u1(t− 1) = λp1(t)f1(u2(t)), t ∈ [1, N − 1]Z,
−∆2u2(t− 1) = λp2(t)f2(u3(t)), t ∈ [1, N − 1]Z,
...
−∆2un−1(t− 1) = λpn−1(t)fn−1(un(t)), t ∈ [1, N − 1]Z,
−∆2un(t− 1) = λpn(t)fn(u1(t)), t ∈ [1, N − 1]Z,
∆u1(0) = u1(N) = 0,
∆u2(0) = u2(N) = 0.
...
∆un−1(0) = un−1(N) = 0,
∆un(0) = un(N) = 0.

(4.15)
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We assume that
(G1) fi : [0,+∞) → [0,+∞) are continuous and nondecreasing functions, i = 1, 2, · · · , n ;
(G2) pi : [1, N − 1]Z → R are sign-changing functions, i = 1, 2, · · · , n ;
(G3) there is an µ1 > 0 so that

N−1∑
s=1

G(t, s)p+1 (s) ≥ (1 + µ1)

N−1∑
s=1

G(t, s)p−1 (s), t ∈ [1, N − 1]Z;

(G4) there is an µ2 > 0 so that

N−1∑
s=1

G(t, s)p+2 (s) ≥ (1 + µ2)

N−1∑
s=1

G(t, s)p−2 (s), t ∈ [1, N − 1]Z;

...

(G(n+1)) there is an µn−1 > 0 so that

N−1∑
s=1

G(t, s)p+n−1(s) ≥ (1 + µn−1)

N−1∑
s=1

G(t, s)p−n−1(s), t ∈ [1, N − 1]Z;

(G(n+2)) there is an µn > 0 so that

N−1∑
s=1

G(t, s)p+n (s) ≥ (1 + µn)

N−1∑
s=1

G(t, s)p−n (s), t ∈ [1, N − 1]Z.

Corollary 4.4 If fi(0) > 0 . Let (G1)–(G(n+2)) hold, then the problem (4.15) has a nonnegative solution for
0 ≤ λ ≤ λ , where λ > 0 depending on fi, pi, µi, i = 1, 2, · · · , n .
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