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Abstract: Let Jν be the Bessel function of the first kind of index ν ≥ 1/2 , p ∈ R and (ρk)k∈N be a sequence of distinct
nonzero complex numbers. Sufficient conditions for the completeness of the system

{
x−p−1√xρkJν(xρk) : k ∈ N

}
in

the weighted space L2((0; 1);x2pdx) are found in terms of an entire function with the set of zeros coinciding with the
sequence (ρk)k∈N .
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1. Introduction
Let γ ∈ R and L2((0; 1); tγdt) be the weighted Lebesgue space of all measurable functions f : (0; 1) → C ,
satisfying ∫ 1

0

tγ |f(t)|2 dt < +∞.

Let

Jν(z) =

∞∑
k=0

(−1)k(z/2)ν+2k

k!Γ(ν + k + 1)
, z = x+ iy = reiφ,

be the Bessel function of the first kind of index ν ∈ R . It is well known that (see [5, p. 94], [7, p. 350]),
for ν > −1 the function Jν has an infinite set

{
ρk : k ∈ Z

}
of real roots, among which ρk , k ∈ N , are the

positive roots and ρ−k := −ρk , k ∈ N , are the negative roots. All roots are simple except, perhaps, the root
ρ0 = 0 . A system of elements

{
ek : k ∈ N

}
in a separable Hilbert space H is called complete ([6, p. 131]) if

span
{
ek : k ∈ N

}
= H .

Various approximation properties of the systems of Bessel functions has been studied in many papers (see,
for instance, [1–5, 7–13]). In particular, it is well known that the system

{√
xJν(xρk) : k ∈ N

}
is an orthogonal

basis for the space L2(0; 1) if ν > −1 and (ρk)k∈N is a sequence of positive zeros of Jν (see [1, 3], [7, pp.
355-357]). From this, it follows that if ν > −1 and (ρk)k∈N is a sequence of positive zeros of Jν , then the system
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{
x−νJν(xρk) : k ∈ N

}
is complete and minimal in L2((0; 1);x2ν+1dx) . The system

{√
xJν(xρk) : k ∈ N

}
is

also complete ([7, pp. 347, 356]) in L2(0; 1) if (ρk)k∈N is a sequence of zeros of the function J ′
ν . Besides, from

[2] it follows that if ν > −1/2 and (ρk)k∈N is a sequence of distinct positive numbers such that ρk ≤ π(k+ν/2)

for all sufficiently large k ∈ N , then the system
{√

xJν(xρk) : k ∈ N
}

is complete in L2(0; 1) .
Basis properties of the above systems of Bessel functions with an arbitrary sequence of complex numbers

(ρk)k∈N has been studied in [4, 8–13]. In particular, in [9] the authors obtained the necessary and sufficient
conditions for the completeness and minimality of system

{√
xρkJν(xρk) : k ∈ N

}
in the space L2(0; 1) if

ν ≥ −1/2 and (ρk)k∈N is a sequence of distinct nonzero complex numbers. In [12], it was proven that if the
system

{√
xρkJν(xρk) : k ∈ N

}
is complete and minimal in L2(0; 1) , then its biorthogonal system is also

complete and minimal in L2(0; 1) , where ν ≥ −1/2 and (ρk)k∈N is a sequence of nonzero complex numbers
such that ρ2k ̸= ρ2m for k ̸= m . In addition, in [13] (see also [10]) the authors found a criterion of unconditional
basicity of the system

{√
xρkJν(xρk) : k ∈ N

}
in L2(0; 1) , where ν ≥ −1/2 and (ρk)k∈N is a sequence of

distinct nonzero complex numbers. Moreover, in [11] has been established a criterion for the completeness
and minimality of more general system

{
Θk,ν,p : k ∈ N

}
, Θk,ν,p(x) := x−p−1√xρkJν(xρk) , in the space

L2((0; 1);x2pdx) , where ν ≥ 1/2 , p ∈ R and (ρk)k∈N is a sequence of distinct nonzero complex numbers.
Besides, in [4] it was proven that the system

{
Θk,ν,p : k ∈ N

}
is complete in L2((0; 1);x2pdx) if and only if∑∞

k=1 1/|ρk| = +∞ , where ν ≥ 1/2 , p ∈ R and (ρk)k∈N is a sequence of distinct nonzero complex numbers
such that | Im ρk| ≥ δ|ρk| for all k ∈ N and some δ > 0 . Those results are formulated in terms of sequences of
zeros of functions from certain classes of entire functions.

The aim of this paper is to prove Theorems 3.1–3.4, where we obtained some other sufficient conditions
for the completeness of system

{
Θk,ν,p : k ∈ N

}
in the space L2((0; 1);x2pdx) in terms of entire functions. This

complements the results of papers [4] and [8–13].

2. Preliminaries
An entire function G is said to be of exponential type σ ∈ [0;+∞) ([6, p. 4]) if for any ε > 0 there exists
a constant c(ε) such that |G(z)| ≤ c(ε) exp((σ + ε)|z|) for all z ∈ C . To prove our main results, we need the
following auxiliary lemmas.

Lemma 2.1 ([11]) Let ν ≥ 1/2 and p ∈ R . An entire function Ω has the representation

Ω(z) = z−ν

∫ 1

0

√
tJν(tz)t

p−1q(t) dt (2.1)

with some function q ∈ L2((0; 1);x2pdx) if and only if it is an even entire function of exponential type σ ≤ 1

such that z−ν+1/2(z2νΩ(z))′ ∈ L2(0;+∞) . In this case,

q(t) = t−p

∫ +∞

0

√
tzJν−1(tz)z

−ν+1/2(z2νΩ(z))′ dz.

Let Ẽp,2 be the class of the entire functions Ω that can be represented in the form (2.1), and let Ep,2

be the class of even entire functions Ω of exponential type σ ≤ 1 such that z−ν+1/2(z2νΩ(z))′ ∈ L2(0;+∞) .

In view of Lemma 2.1, we remark that Ẽp,2 = Ep,2 .
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Lemma 2.2 ([11]) Let ν ≥ 1/2 , p ∈ R and (ρk)k∈N be a sequence of nonzero complex numbers such that
ρ2k ̸= ρ2n for k ̸= n . For a system

{
Θk,ν,p : k ∈ N

}
to be incomplete in the space L2((0; 1);x2pdx) it is necessary

and sufficient that a sequence (ρk)k∈Z\{0} , where ρ−k := −ρk , k ∈ N , is a subsequence of zeros of some nonzero
entire function Ω ∈ Ep,2 .

Lemma 2.3 ([11]) Let ν ≥ 1/2 , p ∈ R and an entire function Ω be defined by the formula (2.1). Then for all
z = x+ iy = reiφ ∈ C , we have (here and so on by Cj we denote positive constants)

|Ω(z)| ≤ C1(1 + |z|)−ν exp(| Im z|).

Let n(t) be the number of points of the sequence (ρk)k∈N ⊂ C satisfying the inequality |ρk| ≤ t , i.e.
n(t) :=

∑
|ρk|≤t

1 , and let

N(r) :=

∫ r

0

n(t)

t
dt, r > 0.

Lemma 2.4 ([4]) Let ν ≥ 1/2 , p ∈ R and (ρk)k∈N be a sequence of distinct nonzero complex numbers. If

lim sup
r→+∞

(
N(r)− 2r

π
+ ν log(1 + r)

)
= +∞,

then the system
{
Θk,ν,p : k ∈ N

}
is complete in L2((0; 1);x2pdx) .

3. Main results
Theorem 3.1 Let ν ≥ 1/2 , p ∈ R and (ρk)k∈N be a sequence of distinct nonzero complex numbers such that
ρ2k ̸= ρ2m for k ≠ m . Let a sequence (ρk)k∈Z\{0} , where ρ−k := −ρk , be a sequence of zeros of some even entire
function G of exponential type σ ≤ 1 for which on the rays {z : arg z = φj} , j ∈ {1; 2; 3; 4} , φ1 ∈ [0;π/2) ,
φ2 ∈ [π/2;π) , φ3 ∈ (π; 3π/2] , φ4 ∈ (3π/2; 2π) , we have

|G(z)| ≥ C2(1 + |z|)−α exp(| Im z|), (3.1)

with some α < ν . Then the system
{
Θk,ν,p : k ∈ N

}
is complete in L2((0; 1);x2pdx) .

Proof Assume the converse. Then, according to Lemma 2.2, there exists a nonzero even entire function
Ω ∈ Ep,2 for which the sequence (ρk)k∈Z\{0} is a subsequence of zeros. Let V (z) = Ω(z)/G(z) . Then V is an
even entire function of order τ ≤ 1 , for which by Lemmas 2.1 and 2.3, we obtain

|V (z)| ≤ C3(1 + |z|)α−ν , arg z = φj , j ∈ {1; 2; 3; 4}. (3.2)

Therefore, according to the Phragmén–Lindelöf theorem (see [6, p. 39]), we get V (z) ≡ 0 . Hence, Ω(z) ≡ 0 .
This contradiction proves the theorem. 2

Theorem 3.2 Let ν ≥ 1/2 , p ∈ R and (ρk)k∈N be a sequence of distinct nonzero complex numbers such that
ρ2k ̸= ρ2m for k ̸= m . Let a sequence (ρk)k∈Z\{0} , where ρ−k := −ρk , be a sequence of zeros of some even
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entire function G /∈ Ep,2 of exponential type σ ≤ 1 for which on the rays {z : arg z = φj} , j ∈ {1; 2; 3; 4} ,
φ1 ∈ [0;π/2) , φ2 ∈ [π/2;π) , φ3 ∈ (π; 3π/2] , φ4 ∈ (3π/2; 2π) , the inequality (3.1) holds with α < 5/2 . Then
the system

{
Θk,ν,p : k ∈ N

}
is complete in L2((0; 1);x2pdx) .

Proof Assume the converse. Then, according to Lemma 2.2, there exists a nonzero even entire function
Ω ∈ Ep,2 for which the sequence (ρk)k∈Z\{0} is a subsequence of zeros. Let V (z) = Ω(z)/G(z) . Then V is an
even entire function of order τ ≤ 1 , satisfying (3.2) (see the proof of Theorem 3.1). Since α− ν ≤ α− 1/2 < 2

and V is an even entire function, then, according to the Phragmén–Lindelöf theorem, the function V is a
constant. Hence, Ω(z) = C4G(z) and Ω /∈ Ep,2 . Thus, we have a contradiction and the proof of the theorem
is completed. 2

Theorem 3.3 Let ν ≥ 1/2 , p ∈ R and (ρk)k∈N be a sequence of distinct nonzero complex numbers such that
ρ2k ̸= ρ2m for k ≠ m . Let a sequence (ρk)k∈Z\{0} , where ρ−k := −ρk , be a sequence of zeros of some even entire
function F /∈ Ep,2 of exponential type σ ≤ 1 such that for some α < 2 and h ∈ R

|F (x+ ih)| ≥ δ|x|−α, δ > 0, |x| > 1. (3.3)

Then the system
{
Θk,ν,p : k ∈ N

}
is complete in L2((0; 1);x2pdx) .

Proof Let F /∈ Ep,2 and the inequality (3.3) is true. Suppose, to the contrary, that the system
{
Θk,ν,p : k ∈ N

}
is not complete in L2((0; 1);x2pdx) . Then, by Lemma 2.2, there exists a nonzero even entire function Ω ∈ Ep,2

which vanishes at the points ρk . However, the sequence (ρk)k∈Z\{0} is a sequence of zeros of an entire function
F (z) /∈ Ep,2 of exponential type σ ≤ 1 . Therefore, E(z) = Ω(z)/F (z) is an even entire function of order τ ≤ 1 .
Since Ω ∈ Ep,2 , then taking into account Lemma 2.3, we obtain

|Ω(x+ ih)| ≤ C5(1 +
√

x2 + h2)−νe|h| ≤ C6 < +∞, x ∈ R.

Using (3.3), we get
|E(x+ ih)| ≤ C7(1 + |x|)α, x ∈ R.

In view of this, we have that E(z) is a polynomial of degree α < 2 . Furthermore, since E is an even entire
function, then E(z) = C8 . Furthermore, F (z) = C9Ω(z) and F (z) ∈ Ep,2 . This contradiction concludes the
proof of the theorem. 2

Theorem 3.4 Let ν ≥ 1/2 , p ∈ R and (ρk)k∈N be a sequence of distinct nonzero complex numbers. Let
|ρk| ≤ ∆k + β + αk for 0 < ∆ ≤ π/2 , −∆ < β < ∆(ν − 1/2) , and the sequence (αk)k∈N such that αk ≥ 0 ,
αk = O(1) as k → +∞ and

∞∑
k=1

|αk+1 − αk| < +∞,

∞∑
k=1

αk

k
< +∞. (3.4)

Then the system
{
Θk,ν,p : k ∈ N

}
is complete in L2((0; 1);x2pdx) .

Proof Let µk = ∆k + β + αk , k ∈ N , and

n1(t) =
∑
µk≤t

1, N1(r) =

∫ r

0

n1(t)

t
dt, r > 0.
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Then n(t) ≥ n1(t) , N(r) ≥ N1(r) and n1(t) = m for ∆m+ β+αm ≤ t < ∆(m+1)+ β+αm+1 (n1(t) = 0 on
(0;µ1)). Let r ∈ [µs;µs+1) . Then s = r

∆ +O(1) as r → +∞ . Therefore, by analogy with [4, p. 9], we obtain
as r → +∞

N1(r) =

s−1∑
k=1

∫ µk+1

µk

n1(t)

t
dt+

∫ r

µs

n1(t)

t
dt

=

s−1∑
k=1

k

∫ µk+1

µk

dt

t
+

∫ r

µs

s

t
dt =

s−1∑
k=1

k log
µk+1

µk
+ s log

r

µs

=

s−1∑
k=1

k log
∆(k + 1) + β + αk+1

∆k + β + αk
+ s log

r

∆s+ β + αs

=

s−1∑
k=1

k

(
log

∆(k + 1) + β + αk+1

∆k + β + αk
− log

∆(k + 1) + β

∆k + β

)
+

s−1∑
k=1

k log
∆(k + 1) + β

∆k + β
+O(1).

(3.5)

Furthermore (see [4, p. 9]),

s−1∑
k=1

k log
∆(k + 1) + β

∆k + β
=

r

∆
−

(
1

2
+

β

∆

)
log r +O(1), r → +∞. (3.6)

Furthermore, using the Lagrange theorem, we get

log
∆(k + 1) + β + αk+1

∆k + β + αk
− log

∆(k + 1) + β

∆k + β

= log

(
1 +

∆+ αk+1 − αk

∆k + β + αk

)
− log

(
1 +

∆

∆k + β

)
=

1

1 + Ck

(
∆+ αk+1 − αk

∆k + β + αk
− ∆

∆k + β

)
=

1

1 + Ck

(
(∆k + β)(αk+1 − αk)− αk∆

(∆k + β + αk)(∆k + β)

)
, Ck > 0.

Therefore, ∣∣∣∣k(log ∆(k + 1) + β + αk+1

∆k + β + αk
− log

∆(k + 1) + β

∆k + β

)∣∣∣∣ ≤ C
(
|αk+1 − αk|+

αk

k

)
, C > 0.

Hence, ∣∣∣∣∣
s−1∑
k=1

k

(
log

∆(k + 1) + β + αk+1

∆k + β + αk
− log

∆(k + 1) + β

∆k + β

)∣∣∣∣∣
≤

s−1∑
k=1

C
(
|αk+1 − αk|+

αk

k

)
≤

∞∑
k=1

C
(
|αk+1 − αk|+

αk

k

)
.

(3.7)

Thus, combining relations (3.4)–(3.7), we obtain

N1(r) ≥
r

∆
−
(
1

2
+

β

∆

)
log r +O(1), r → +∞.
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In view of this, for 0 < ∆ ≤ π/2 and −∆ < β < ∆(ν − 1/2) , we have

lim sup
r→+∞

(
N(r)− 2r

π
+ ν log(1 + r)

)
≥ lim sup

r→+∞

(
N1(r)−

2r

π
+ ν log(1 + r)

)

≥ lim sup
r→+∞

(
r

∆
−
(
1

2
+

β

∆

)
log r − 2r

π
+ ν log r +O(1)

)
= +∞.

Finally, according to Lemma 2.4, we obtain the required proposition. The proof of theorem is completed. 2

Corollary 3.5 ([4]) Let ν ≥ 1/2 , p ∈ R and (ρk)k∈N be a sequence of distinct nonzero complex numbers. If
|ρk| ≤ ∆k + β for 0 < ∆ ≤ π/2 , −∆ < β < ∆(ν − 1/2) and all sufficiently large k ∈ N , then the system{
Θk,ν,p : k ∈ N

}
is complete in L2((0; 1);x2pdx) .

Indeed, this corollary follows directly from Theorem 3.4, because the sequence αk = 0 satisfies its
conditions.
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