Completeness conditions of systems of Bessel functions in weighted L^{2}-spaces in terms of entire functions

Ruslan KHATS ${ }^{*}$ * ${ }^{\text {(D) }}$
Department of Mathematics, Institute of Physics, Mathematics, Economics and Innovation Technologies, Drohobych Ivan Franko State Pedagogical University, Drohobych, Ukraine

| Received: 18.01 .2021 | Accepted/Published Online: 14.02 .2021 | Final Version: 26.03 .2021 |
| :--- | :--- | :--- | :--- | :--- |

Dedicated to the memory of Professor Bohdan V. Vynnyts'kyi

Abstract

Let J_{ν} be the Bessel function of the first kind of index $\nu \geq 1 / 2, p \in \mathbb{R}$ and $\left(\rho_{k}\right)_{k \in \mathbb{N}}$ be a sequence of distinct nonzero complex numbers. Sufficient conditions for the completeness of the system $\left\{x^{-p-1} \sqrt{x \rho_{k}} J_{\nu}\left(x \rho_{k}\right): k \in \mathbb{N}\right\}$ in the weighted space $L^{2}\left((0 ; 1) ; x^{2 p} d x\right)$ are found in terms of an entire function with the set of zeros coinciding with the sequence $\left(\rho_{k}\right)_{k \in \mathbb{N}}$.

Key words: Bessel function, entire function, complete system, minimal system, basis, weighted space

1. Introduction

Let $\gamma \in \mathbb{R}$ and $L^{2}\left((0 ; 1) ; t^{\gamma} d t\right)$ be the weighted Lebesgue space of all measurable functions $f:(0 ; 1) \rightarrow \mathbb{C}$, satisfying

$$
\int_{0}^{1} t^{\gamma}|f(t)|^{2} d t<+\infty
$$

Let

$$
J_{\nu}(z)=\sum_{k=0}^{\infty} \frac{(-1)^{k}(z / 2)^{\nu+2 k}}{k!\Gamma(\nu+k+1)}, \quad z=x+i y=r e^{i \varphi}
$$

be the Bessel function of the first kind of index $\nu \in \mathbb{R}$. It is well known that (see [5, p. 94], [7, p. 350]), for $\nu>-1$ the function J_{ν} has an infinite set $\left\{\rho_{k}: k \in \mathbb{Z}\right\}$ of real roots, among which $\rho_{k}, k \in \mathbb{N}$, are the positive roots and $\rho_{-k}:=-\rho_{k}, k \in \mathbb{N}$, are the negative roots. All roots are simple except, perhaps, the root $\rho_{0}=0$. A system of elements $\left\{e_{k}: k \in \mathbb{N}\right\}$ in a separable Hilbert space H is called complete ([6, p. 131]) if $\overline{\operatorname{span}}\left\{e_{k}: k \in \mathbb{N}\right\}=H$.

Various approximation properties of the systems of Bessel functions has been studied in many papers (see, for instance, $[1-5,7-13])$. In particular, it is well known that the system $\left\{\sqrt{x} J_{\nu}\left(x \rho_{k}\right): k \in \mathbb{N}\right\}$ is an orthogonal basis for the space $L^{2}(0 ; 1)$ if $\nu>-1$ and $\left(\rho_{k}\right)_{k \in \mathbb{N}}$ is a sequence of positive zeros of J_{ν} (see [1, 3], [7, pp. 355-357]). From this, it follows that if $\nu>-1$ and $\left(\rho_{k}\right)_{k \in \mathbb{N}}$ is a sequence of positive zeros of J_{ν}, then the system

[^0]$\left\{x^{-\nu} J_{\nu}\left(x \rho_{k}\right): k \in \mathbb{N}\right\}$ is complete and minimal in $L^{2}\left((0 ; 1) ; x^{2 \nu+1} d x\right)$. The system $\left\{\sqrt{x} J_{\nu}\left(x \rho_{k}\right): k \in \mathbb{N}\right\}$ is also complete $\left(\left[7\right.\right.$, pp. 347, 356]) in $L^{2}(0 ; 1)$ if $\left(\rho_{k}\right)_{k \in \mathbb{N}}$ is a sequence of zeros of the function J_{ν}^{\prime}. Besides, from [2] it follows that if $\nu>-1 / 2$ and $\left(\rho_{k}\right)_{k \in \mathbb{N}}$ is a sequence of distinct positive numbers such that $\rho_{k} \leq \pi(k+\nu / 2)$ for all sufficiently large $k \in \mathbb{N}$, then the system $\left\{\sqrt{x} J_{\nu}\left(x \rho_{k}\right): k \in \mathbb{N}\right\}$ is complete in $L^{2}(0 ; 1)$.

Basis properties of the above systems of Bessel functions with an arbitrary sequence of complex numbers $\left(\rho_{k}\right)_{k \in \mathbb{N}}$ has been studied in [4, 8-13]. In particular, in [9] the authors obtained the necessary and sufficient conditions for the completeness and minimality of system $\left\{\sqrt{x \rho_{k}} J_{\nu}\left(x \rho_{k}\right): k \in \mathbb{N}\right\}$ in the space $L^{2}(0 ; 1)$ if $\nu \geq-1 / 2$ and $\left(\rho_{k}\right)_{k \in \mathbb{N}}$ is a sequence of distinct nonzero complex numbers. In [12], it was proven that if the system $\left\{\sqrt{x \rho_{k}} J_{\nu}\left(x \rho_{k}\right): k \in \mathbb{N}\right\}$ is complete and minimal in $L^{2}(0 ; 1)$, then its biorthogonal system is also complete and minimal in $L^{2}(0 ; 1)$, where $\nu \geq-1 / 2$ and $\left(\rho_{k}\right)_{k \in \mathbb{N}}$ is a sequence of nonzero complex numbers such that $\rho_{k}^{2} \neq \rho_{m}^{2}$ for $k \neq m$. In addition, in [13] (see also [10]) the authors found a criterion of unconditional basicity of the system $\left\{\sqrt{x \rho_{k}} J_{\nu}\left(x \rho_{k}\right): k \in \mathbb{N}\right\}$ in $L^{2}(0 ; 1)$, where $\nu \geq-1 / 2$ and $\left(\rho_{k}\right)_{k \in \mathbb{N}}$ is a sequence of distinct nonzero complex numbers. Moreover, in [11] has been established a criterion for the completeness and minimality of more general system $\left\{\Theta_{k, \nu, p}: k \in \mathbb{N}\right\}, \Theta_{k, \nu, p}(x):=x^{-p-1} \sqrt{x \rho_{k}} J_{\nu}\left(x \rho_{k}\right)$, in the space $L^{2}\left((0 ; 1) ; x^{2 p} d x\right)$, where $\nu \geq 1 / 2, p \in \mathbb{R}$ and $\left(\rho_{k}\right)_{k \in \mathbb{N}}$ is a sequence of distinct nonzero complex numbers. Besides, in [4] it was proven that the system $\left\{\Theta_{k, \nu, p}: k \in \mathbb{N}\right\}$ is complete in $L^{2}\left((0 ; 1) ; x^{2 p} d x\right)$ if and only if $\sum_{k=1}^{\infty} 1 /\left|\rho_{k}\right|=+\infty$, where $\nu \geq 1 / 2, p \in \mathbb{R}$ and $\left(\rho_{k}\right)_{k \in \mathbb{N}}$ is a sequence of distinct nonzero complex numbers such that $\left|\operatorname{Im} \rho_{k}\right| \geq \delta\left|\rho_{k}\right|$ for all $k \in \mathbb{N}$ and some $\delta>0$. Those results are formulated in terms of sequences of zeros of functions from certain classes of entire functions.

The aim of this paper is to prove Theorems 3.1-3.4, where we obtained some other sufficient conditions for the completeness of system $\left\{\Theta_{k, \nu, p}: k \in \mathbb{N}\right\}$ in the space $L^{2}\left((0 ; 1) ; x^{2 p} d x\right)$ in terms of entire functions. This complements the results of papers [4] and [8-13].

2. Preliminaries

An entire function G is said to be of exponential type $\sigma \in[0 ;+\infty)([6, \mathrm{p} .4])$ if for any $\varepsilon>0$ there exists a constant $c(\varepsilon)$ such that $|G(z)| \leq c(\varepsilon) \exp ((\sigma+\varepsilon)|z|)$ for all $z \in \mathbb{C}$. To prove our main results, we need the following auxiliary lemmas.

Lemma 2.1 ([11]) Let $\nu \geq 1 / 2$ and $p \in \mathbb{R}$. An entire function Ω has the representation

$$
\begin{equation*}
\Omega(z)=z^{-\nu} \int_{0}^{1} \sqrt{t} J_{\nu}(t z) t^{p-1} q(t) d t \tag{2.1}
\end{equation*}
$$

with some function $q \in L^{2}\left((0 ; 1) ; x^{2 p} d x\right)$ if and only if it is an even entire function of exponential type $\sigma \leq 1$ such that $z^{-\nu+1 / 2}\left(z^{2 \nu} \Omega(z)\right)^{\prime} \in L^{2}(0 ;+\infty)$. In this case,

$$
q(t)=t^{-p} \int_{0}^{+\infty} \sqrt{t z} J_{\nu-1}(t z) z^{-\nu+1 / 2}\left(z^{2 \nu} \Omega(z)\right)^{\prime} d z
$$

Let $\widetilde{E}_{p, 2}$ be the class of the entire functions Ω that can be represented in the form (2.1), and let $E_{p, 2}$ be the class of even entire functions Ω of exponential type $\sigma \leq 1$ such that $z^{-\nu+1 / 2}\left(z^{2 \nu} \Omega(z)\right)^{\prime} \in L^{2}(0 ;+\infty)$. In view of Lemma 2.1, we remark that $\widetilde{E}_{p, 2}=E_{p, 2}$.

Lemma 2.2 ([11]) Let $\nu \geq 1 / 2, p \in \mathbb{R}$ and $\left(\rho_{k}\right)_{k \in \mathbb{N}}$ be a sequence of nonzero complex numbers such that $\rho_{k}^{2} \neq \rho_{n}^{2}$ for $k \neq n$. For a system $\left\{\Theta_{k, \nu, p}: k \in \mathbb{N}\right\}$ to be incomplete in the space $L^{2}\left((0 ; 1) ; x^{2 p} d x\right)$ it is necessary and sufficient that a sequence $\left(\rho_{k}\right)_{k \in \mathbb{Z} \backslash\{0\}}$, where $\rho_{-k}:=-\rho_{k}, k \in \mathbb{N}$, is a subsequence of zeros of some nonzero entire function $\Omega \in E_{p, 2}$.

Lemma 2.3 ([11]) Let $\nu \geq 1 / 2, p \in \mathbb{R}$ and an entire function Ω be defined by the formula (2.1). Then for all $z=x+i y=r e^{i \varphi} \in \mathbb{C}$, we have (here and so on by C_{j} we denote positive constants)

$$
|\Omega(z)| \leq C_{1}(1+|z|)^{-\nu} \exp (|\operatorname{Im} z|)
$$

Let $n(t)$ be the number of points of the sequence $\left(\rho_{k}\right)_{k \in \mathbb{N}} \subset \mathbb{C}$ satisfying the inequality $\left|\rho_{k}\right| \leq t$, i.e. $n(t):=\sum_{\left|\rho_{k}\right| \leq t} 1$, and let

$$
N(r):=\int_{0}^{r} \frac{n(t)}{t} d t, \quad r>0
$$

Lemma 2.4 ([4]) Let $\nu \geq 1 / 2, p \in \mathbb{R}$ and $\left(\rho_{k}\right)_{k \in \mathbb{N}}$ be a sequence of distinct nonzero complex numbers. If

$$
\limsup _{r \rightarrow+\infty}\left(N(r)-\frac{2 r}{\pi}+\nu \log (1+r)\right)=+\infty
$$

then the system $\left\{\Theta_{k, \nu, p}: k \in \mathbb{N}\right\}$ is complete in $L^{2}\left((0 ; 1) ; x^{2 p} d x\right)$.

3. Main results

Theorem 3.1 Let $\nu \geq 1 / 2, p \in \mathbb{R}$ and $\left(\rho_{k}\right)_{k \in \mathbb{N}}$ be a sequence of distinct nonzero complex numbers such that $\rho_{k}^{2} \neq \rho_{m}^{2}$ for $k \neq m$. Let a sequence $\left(\rho_{k}\right)_{k \in \mathbb{Z} \backslash\{0\}}$, where $\rho_{-k}:=-\rho_{k}$, be a sequence of zeros of some even entire function G of exponential type $\sigma \leq 1$ for which on the rays $\left\{z: \arg z=\varphi_{j}\right\}, j \in\{1 ; 2 ; 3 ; 4\}, \varphi_{1} \in[0 ; \pi / 2)$, $\varphi_{2} \in[\pi / 2 ; \pi), \varphi_{3} \in(\pi ; 3 \pi / 2], \varphi_{4} \in(3 \pi / 2 ; 2 \pi)$, we have

$$
\begin{equation*}
|G(z)| \geq C_{2}(1+|z|)^{-\alpha} \exp (|\operatorname{Im} z|) \tag{3.1}
\end{equation*}
$$

with some $\alpha<\nu$. Then the system $\left\{\Theta_{k, \nu, p}: k \in \mathbb{N}\right\}$ is complete in $L^{2}\left((0 ; 1) ; x^{2 p} d x\right)$.
Proof Assume the converse. Then, according to Lemma 2.2, there exists a nonzero even entire function $\Omega \in E_{p, 2}$ for which the sequence $\left(\rho_{k}\right)_{k \in \mathbb{Z} \backslash\{0\}}$ is a subsequence of zeros. Let $V(z)=\Omega(z) / G(z)$. Then V is an even entire function of order $\tau \leq 1$, for which by Lemmas 2.1 and 2.3, we obtain

$$
\begin{equation*}
|V(z)| \leq C_{3}(1+|z|)^{\alpha-\nu}, \quad \arg z=\varphi_{j}, \quad j \in\{1 ; 2 ; 3 ; 4\} \tag{3.2}
\end{equation*}
$$

Therefore, according to the Phragmén-Lindelöf theorem (see $[6$, p. 39]), we get $V(z) \equiv 0$. Hence, $\Omega(z) \equiv 0$. This contradiction proves the theorem.

Theorem 3.2 Let $\nu \geq 1 / 2, p \in \mathbb{R}$ and $\left(\rho_{k}\right)_{k \in \mathbb{N}}$ be a sequence of distinct nonzero complex numbers such that $\rho_{k}^{2} \neq \rho_{m}^{2}$ for $k \neq m$. Let a sequence $\left(\rho_{k}\right)_{k \in \mathbb{Z} \backslash\{0\}}$, where $\rho_{-k}:=-\rho_{k}$, be a sequence of zeros of some even
entire function $G \notin E_{p, 2}$ of exponential type $\sigma \leq 1$ for which on the rays $\left\{z: \arg z=\varphi_{j}\right\}, j \in\{1 ; 2 ; 3 ; 4\}$, $\varphi_{1} \in[0 ; \pi / 2), \varphi_{2} \in[\pi / 2 ; \pi), \varphi_{3} \in(\pi ; 3 \pi / 2], \varphi_{4} \in(3 \pi / 2 ; 2 \pi)$, the inequality (3.1) holds with $\alpha<5 / 2$. Then the system $\left\{\Theta_{k, \nu, p}: k \in \mathbb{N}\right\}$ is complete in $L^{2}\left((0 ; 1) ; x^{2 p} d x\right)$.

Proof Assume the converse. Then, according to Lemma 2.2, there exists a nonzero even entire function $\Omega \in E_{p, 2}$ for which the sequence $\left(\rho_{k}\right)_{k \in \mathbb{Z} \backslash\{0\}}$ is a subsequence of zeros. Let $V(z)=\Omega(z) / G(z)$. Then V is an even entire function of order $\tau \leq 1$, satisfying (3.2) (see the proof of Theorem 3.1). Since $\alpha-\nu \leq \alpha-1 / 2<2$ and V is an even entire function, then, according to the Phragmén-Lindelöf theorem, the function V is a constant. Hence, $\Omega(z)=C_{4} G(z)$ and $\Omega \notin E_{p, 2}$. Thus, we have a contradiction and the proof of the theorem is completed.

Theorem 3.3 Let $\nu \geq 1 / 2, p \in \mathbb{R}$ and $\left(\rho_{k}\right)_{k \in \mathbb{N}}$ be a sequence of distinct nonzero complex numbers such that $\rho_{k}^{2} \neq \rho_{m}^{2}$ for $k \neq m$. Let a sequence $\left(\rho_{k}\right)_{k \in \mathbb{Z} \backslash\{0\}}$, where $\rho_{-k}:=-\rho_{k}$, be a sequence of zeros of some even entire function $F \notin E_{p, 2}$ of exponential type $\sigma \leq 1$ such that for some $\alpha<2$ and $h \in \mathbb{R}$

$$
\begin{equation*}
|F(x+i h)| \geq \delta|x|^{-\alpha}, \quad \delta>0, \quad|x|>1 \tag{3.3}
\end{equation*}
$$

Then the system $\left\{\Theta_{k, \nu, p}: k \in \mathbb{N}\right\}$ is complete in $L^{2}\left((0 ; 1) ; x^{2 p} d x\right)$.
Proof Let $F \notin E_{p, 2}$ and the inequality (3.3) is true. Suppose, to the contrary, that the system $\left\{\Theta_{k, \nu, p}: k \in \mathbb{N}\right\}$ is not complete in $L^{2}\left((0 ; 1) ; x^{2 p} d x\right)$. Then, by Lemma 2.2, there exists a nonzero even entire function $\Omega \in E_{p, 2}$ which vanishes at the points ρ_{k}. However, the sequence $\left(\rho_{k}\right)_{k \in \mathbb{Z} \backslash\{0\}}$ is a sequence of zeros of an entire function $F(z) \notin E_{p, 2}$ of exponential type $\sigma \leq 1$. Therefore, $E(z)=\Omega(z) / F(z)$ is an even entire function of order $\tau \leq 1$. Since $\Omega \in E_{p, 2}$, then taking into account Lemma 2.3, we obtain

$$
|\Omega(x+i h)| \leq C_{5}\left(1+\sqrt{x^{2}+h^{2}}\right)^{-\nu} e^{|h|} \leq C_{6}<+\infty, \quad x \in \mathbb{R}
$$

Using (3.3), we get

$$
|E(x+i h)| \leq C_{7}(1+|x|)^{\alpha}, \quad x \in \mathbb{R}
$$

In view of this, we have that $E(z)$ is a polynomial of degree $\alpha<2$. Furthermore, since E is an even entire function, then $E(z)=C_{8}$. Furthermore, $F(z)=C_{9} \Omega(z)$ and $F(z) \in E_{p, 2}$. This contradiction concludes the proof of the theorem.

Theorem 3.4 Let $\nu \geq 1 / 2, p \in \mathbb{R}$ and $\left(\rho_{k}\right)_{k \in \mathbb{N}}$ be a sequence of distinct nonzero complex numbers. Let $\left|\rho_{k}\right| \leq \Delta k+\beta+\alpha_{k}$ for $0<\Delta \leq \pi / 2,-\Delta<\beta<\Delta(\nu-1 / 2)$, and the sequence $\left(\alpha_{k}\right)_{k \in \mathbb{N}}$ such that $\alpha_{k} \geq 0$, $\alpha_{k}=O(1)$ as $k \rightarrow+\infty$ and

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left|\alpha_{k+1}-\alpha_{k}\right|<+\infty, \quad \sum_{k=1}^{\infty} \frac{\alpha_{k}}{k}<+\infty \tag{3.4}
\end{equation*}
$$

Then the system $\left\{\Theta_{k, \nu, p}: k \in \mathbb{N}\right\}$ is complete in $L^{2}\left((0 ; 1) ; x^{2 p} d x\right)$.
Proof Let $\mu_{k}=\Delta k+\beta+\alpha_{k}, k \in \mathbb{N}$, and

$$
n_{1}(t)=\sum_{\mu_{k} \leq t} 1, \quad N_{1}(r)=\int_{0}^{r} \frac{n_{1}(t)}{t} d t, \quad r>0
$$

KHATS'/Turk J Math

Then $n(t) \geq n_{1}(t), N(r) \geq N_{1}(r)$ and $n_{1}(t)=m$ for $\Delta m+\beta+\alpha_{m} \leq t<\Delta(m+1)+\beta+\alpha_{m+1}\left(n_{1}(t)=0\right.$ on $\left.\left(0 ; \mu_{1}\right)\right)$. Let $r \in\left[\mu_{s} ; \mu_{s+1}\right)$. Then $s=\frac{r}{\Delta}+O(1)$ as $r \rightarrow+\infty$. Therefore, by analogy with [4, p. 9], we obtain as $r \rightarrow+\infty$

$$
\begin{align*}
N_{1}(r) & =\sum_{k=1}^{s-1} \int_{\mu_{k}}^{\mu_{k+1}} \frac{n_{1}(t)}{t} d t+\int_{\mu_{s}}^{r} \frac{n_{1}(t)}{t} d t \\
& =\sum_{k=1}^{s-1} k \int_{\mu_{k}}^{\mu_{k+1}} \frac{d t}{t}+\int_{\mu_{s}}^{r} \frac{s}{t} d t=\sum_{k=1}^{s-1} k \log \frac{\mu_{k+1}}{\mu_{k}}+s \log \frac{r}{\mu_{s}} \tag{3.5}\\
& =\sum_{k=1}^{s-1} k \log \frac{\Delta(k+1)+\beta+\alpha_{k+1}}{\Delta k+\beta+\alpha_{k}}+s \log \frac{r}{\Delta s+\beta+\alpha_{s}} \\
& =\sum_{k=1}^{s-1} k\left(\log \frac{\Delta(k+1)+\beta+\alpha_{k+1}}{\Delta k+\beta+\alpha_{k}}-\log \frac{\Delta(k+1)+\beta}{\Delta k+\beta}\right)+\sum_{k=1}^{s-1} k \log \frac{\Delta(k+1)+\beta}{\Delta k+\beta}+O(1)
\end{align*}
$$

Furthermore (see [4, p. 9]),

$$
\begin{equation*}
\sum_{k=1}^{s-1} k \log \frac{\Delta(k+1)+\beta}{\Delta k+\beta}=\frac{r}{\Delta}-\left(\frac{1}{2}+\frac{\beta}{\Delta}\right) \log r+O(1), \quad r \rightarrow+\infty \tag{3.6}
\end{equation*}
$$

Furthermore, using the Lagrange theorem, we get

$$
\begin{aligned}
& \log \frac{\Delta(k+1)+\beta+\alpha_{k+1}}{\Delta k+\beta+\alpha_{k}}-\log \frac{\Delta(k+1)+\beta}{\Delta k+\beta} \\
& =\log \left(1+\frac{\Delta+\alpha_{k+1}-\alpha_{k}}{\Delta k+\beta+\alpha_{k}}\right)-\log \left(1+\frac{\Delta}{\Delta k+\beta}\right) \\
& =\frac{1}{1+C_{k}}\left(\frac{\Delta+\alpha_{k+1}-\alpha_{k}}{\Delta k+\beta+\alpha_{k}}-\frac{\Delta}{\Delta k+\beta}\right) \\
& =\frac{1}{1+C_{k}}\left(\frac{(\Delta k+\beta)\left(\alpha_{k+1}-\alpha_{k}\right)-\alpha_{k} \Delta}{\left(\Delta k+\beta+\alpha_{k}\right)(\Delta k+\beta)}\right), \quad C_{k}>0
\end{aligned}
$$

Therefore,

$$
\left|k\left(\log \frac{\Delta(k+1)+\beta+\alpha_{k+1}}{\Delta k+\beta+\alpha_{k}}-\log \frac{\Delta(k+1)+\beta}{\Delta k+\beta}\right)\right| \leq C\left(\left|\alpha_{k+1}-\alpha_{k}\right|+\frac{\alpha_{k}}{k}\right), \quad C>0
$$

Hence,

$$
\begin{align*}
& \left|\sum_{k=1}^{s-1} k\left(\log \frac{\Delta(k+1)+\beta+\alpha_{k+1}}{\Delta k+\beta+\alpha_{k}}-\log \frac{\Delta(k+1)+\beta}{\Delta k+\beta}\right)\right| \tag{3.7}\\
& \leq \sum_{k=1}^{s-1} C\left(\left|\alpha_{k+1}-\alpha_{k}\right|+\frac{\alpha_{k}}{k}\right) \leq \sum_{k=1}^{\infty} C\left(\left|\alpha_{k+1}-\alpha_{k}\right|+\frac{\alpha_{k}}{k}\right)
\end{align*}
$$

Thus, combining relations (3.4)-(3.7), we obtain

$$
N_{1}(r) \geq \frac{r}{\Delta}-\left(\frac{1}{2}+\frac{\beta}{\Delta}\right) \log r+O(1), \quad r \rightarrow+\infty
$$

In view of this, for $0<\Delta \leq \pi / 2$ and $-\Delta<\beta<\Delta(\nu-1 / 2)$, we have

$$
\begin{aligned}
\limsup _{r \rightarrow+\infty}\left(N(r)-\frac{2 r}{\pi}+\nu \log (1+r)\right) & \geq \limsup _{r \rightarrow+\infty}\left(N_{1}(r)-\frac{2 r}{\pi}+\nu \log (1+r)\right) \\
& \geq \limsup _{r \rightarrow+\infty}\left(\frac{r}{\Delta}-\left(\frac{1}{2}+\frac{\beta}{\Delta}\right) \log r-\frac{2 r}{\pi}+\nu \log r+O(1)\right)=+\infty
\end{aligned}
$$

Finally, according to Lemma 2.4, we obtain the required proposition. The proof of theorem is completed.

Corollary 3.5 ([4]) Let $\nu \geq 1 / 2, p \in \mathbb{R}$ and $\left(\rho_{k}\right)_{k \in \mathbb{N}}$ be a sequence of distinct nonzero complex numbers. If $\left|\rho_{k}\right| \leq \Delta k+\beta$ for $0<\Delta \leq \pi / 2,-\Delta<\beta<\Delta(\nu-1 / 2)$ and all sufficiently large $k \in \mathbb{N}$, then the system $\left\{\Theta_{k, \nu, p}: k \in \mathbb{N}\right\}$ is complete in $L^{2}\left((0 ; 1) ; x^{2 p} d x\right)$.

Indeed, this corollary follows directly from Theorem 3.4, because the sequence $\alpha_{k}=0$ satisfies its conditions.

References

[1] Abreu LD. Completeness, special functions and uncertainty principles over q-linear grids. Journal of Physics A: Mathematical and General 2006; 39 (47): 14567-14580. doi: 10.1088/0305-4470/39/47/004
[2] Boas RP, Pollard H. Complete sets of Bessel and Legendre functions. Annals of Mathematics 1947; 48 (2): 366-384. doi: 10.2307/1969177
[3] Hochstadt H. The mean convergence of Fourier-Bessel series. SIAM Review 1967; 9: 211-218. doi: 10.1137/1009034
[4] Khats' RV. On conditions of the completeness of some systems of Bessel functions in the space $L^{2}\left((0 ; 1) ; x^{2 p} d x\right)$. Azerbaijan Journal of Mathematics 2021; 11 (1): 3-10.
[5] Korenev BG. Bessel Functions and their Applications. London, UK: Taylor Francis, Inc., 2002.
[6] Levin BYa. Lectures on Entire Functions. Translations of Mathematical Monographs. Providence, RI, USA: American Mathematical Society, 1996.
[7] Vladimirov VS. Equations of Mathematical Physics. Moscow, Russia: Nauka, 1981. (in Russian)
[8] Vynnyts'kyi BV, Khats' RV. Some approximation properties of the systems of Bessel functions of index $-3 / 2$. Matematychni Studii 2010; 34 (2): 152-159.
[9] Vynnyts'kyi BV, Khats' RV. Completeness and minimality of systems of Bessel functions. Ufa Mathematical Journal 2013; 5 (2): 131-141. doi: 10.13108/2013-5-2-131
[10] Vynnyts'kyi BV, Khats' RV. A remark on basis property of systems of Bessel and Mittag-Leffler type functions. Journal of Contemporary Mathematical Analysis 2015; 50 (6): 300-305. doi: 10.3103/S1068362315060060
[11] Vynnyts'kyi BV, Khats' RV. On the completeness and minimality of sets of Bessel functions in weighted L^{2}-spaces. Eurasian Mathematical Journal 2015; 6 (1): 123-131.
[12] Vynnyts'kyi BV, Khats' RV. Complete biorthogonal systems of Bessel functions. Matematychni Studii 2017; 48 (2): 150-155. doi:10.15330/ms.48.2.150-155
[13] Vynnyts'kyi BV, Khats' RV, Sheparovych IB. Unconditional bases of systems of Bessel functions. Eurasian Mathematical Journal 2020; 11 (4): 76-86. doi: 10.32523/2077-9879-2020-11-4-76-86

[^0]: *Correspondence: khats@ukr.net
 2010 AMS Mathematics Subject Classification: 42A65, 42C30, 33C10, 30B60, 30D20, 44A15

