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Abstract: Suppose that M is a strictly convex and closed hypersurface in En+1 with the origin o in its interior. We
consider the homogeneous function g of positive degree d satisfying M = g−1(1) . Then, for a positive number h the
level hypersurface g−1(h) of g is a homothetic hypersurface of M with respect to the origin o . In this paper, for tangent
hyperplanes Φh to g−1(h) (0 < h < 1), we study the (n + 1) -dimensional volume of the region enclosed by Φh and
the hypersurface M , etc.. As a result, with the aid of the theorem of Blaschke and Deicke for proper affine hypersphere
centered at the origin, we establish some characterizations for ellipsoids in En+1 . As a corollary, we extend Schneider’s
characterization for ellipsoids in E3 . Finally, for further study, we raise a question for elliptic paraboloids which was
originally conjectured by Golomb.

Key words: Ellipsoid, proper affine hypersphere, volume, cone, strictly convex, homothetic hypersurface, Gauss-
Kronecker curvature

1. Introduction
We will say that a convex hypersurface in the (n+ 1) -dimensional Euclidean space En+1 is strictly convex if
the hypersurface is of positive Gauss-Kronecker curvature K with respect to the inward unit normal.

Suppose that M is a strictly convex and closed hypersurface in the (n+1) -dimensional Euclidean space
En+1 . We assume that the origin o lies in the interior of M . Then, for any point p ∈M the ray −→op emanating
from the origin o through the point p meets the hypersurface M only at the point p and passes through it
transversally. We consider the family of homothetic hypersurfaces Mt of M with respect to the origin for
positive number t , which is given by

Mt = {tp|p ∈M}. (1.1)

For a positive real number d , let us denote by g = gd the homogeneous function of degree d defined by
g(tp) = td, p ∈ M on the open set U = {tp|t > 0, p ∈ M} = En+1 \ {0} . Then for each t > 0 the homothetic
hypersurface Mt of M is the level hypersurface g−1(td) of the homogeneous function g = gd . The homogeneous
function g = gd of degree d (> 0) determined by the strictly convex and closed hypersurface M is said to be
the homogeneous function of M of degree d . Since M is strictly convex, for each t (> 0) the homothetic
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hypersurface Mt of M is also strictly convex because the Gauss-Kronecker curvature K(tp) of Mt at tp is
given by

K(tp) = t−nK(p), (1.2)

where K(p) denotes the Gauss-Kronecker curvature of M at p .
Note that the origin o lies in the interior of M . For a fixed point p ∈M and a positive number h with

h < 1 , we consider the closest tangent hyperplane Φh of the homothetic hypersurface g−1(h) = Mt, h = td at
some point v ∈ Mt which is parallel to the tangent hyperplane Φ of M at p ∈ M . Then, the homogeneity of
the function g = gd shows that we have

∇g(hp) = hd−1∇g(p), (1.3)

where ∇g(hp) denotes the gradient of g at hp , and so on. Hence, we get v = tp ∈Mt with t = h1/d .
We denote by A∗

p(h), V
∗
p (h) and C∗

p (h) the n -dimensional area of the section in Φh enclosed by Φh∩M ,
the (n+1) -dimensional volume of the region bounded by M and the hyperplane Φh and the (n+1) -dimensional
volume of the cone with base the section in Φh enclosed by Φh ∩M and with vertex the origin, respectively
(Figure 1). Then, for the outward unit normal N(p) to M at the point p the height of the cone is given by
th(p) with t = h1/d , where h(p) = ⟨p,N(p)⟩ denotes the support function of M at p . Hence, we have

C∗
p (h) =

t

n+ 1
h(p)A∗

p(h), t = h1/d. (1.4)

Figure 1. V ∗
p (h) and C∗

p (h) of M with the homogeneous function g = gd .

Finally, we consider the (n+1) -dimensional volume I∗p (h) of the ice cream cone-shaped domain which is
the convex hull of the origin o and the region of M cut off by the hyperplane Φh (cf. [19]). Then, one obtains

I∗p (h) = C∗
p (h) + V ∗

p (h). (1.5)

Now, we consider the following four conditions.
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(V ∗) V ∗
p (h) with p ∈M and h ∈ (0, 1) is a nonnegative function α(h) , which depends only on h .

(A∗) A∗
p(h)/|∇g(p)| with p ∈M and h ∈ (0, 1) is a nonnegative function β(h) , which depends only on h .

(C∗) C∗
p (h) with p ∈M and h ∈ (0, 1) is a nonnegative function γ(h) , which depends only on h .

(I∗) I∗p (h) with p ∈M and h ∈ (0, 1) is a nonnegative function δ(h) , which depends only on h .

In this paper, we study strictly convex and closed hypersurfaces in the (n + 1) -dimensional Euclidean
space En+1 which satisfies one of the conditions (V ∗) , (A∗) , (C∗) , and (I∗) .

As a result, first of all, we show that a strictly convex and closed hypersurface in the (n+1) -dimensional
Euclidean space En+1 satisfying one of the conditions (V ∗) , (A∗) , (C∗) , and (I∗) is an ellipsoid centered at
the origin as follows.

Theorem A. Let M denote a strictly convex and closed hypersurface in the (n + 1) -dimensional Euclidean
space En+1 with the origin in its interior and the homogeneous function g = gd of degree d . Then M satisfies
one of the following conditions if and only if M is an ellipsoid in the (n+1) -dimensional Euclidean space En+1

centered at the origin.

(1) M satisfies (V ∗) .

(2) M satisfies (A∗) .

(3) M satisfies (C∗) .

(4) M satisfies (I∗) .

(5) K(p) = αh(p)n+2 for a nonzero constant α , where K(p) is the Gauss-Kronecker curvature of M at p
and h(p) denotes the support function of M at p .

(6) K(p)|∇g(p)|n+2 is a nonzero constant on M, where ∇g(p) denotes the gradient of g at p .

When n = 1 , it was shown that a plain curve X with nonvanishing curvature satisfies the condition (5)
in Theorem A if and only if X is an open arc of an ellipse or a hyperbola centered at the origin ([7]). See also
[13] for the condition (6) in Theorem A. When n = 2 , it is well-known that 2-dimensional ellipsoids satisfy the
condition (5) in Theorem A ([18]).

In Theorem 6 of [2], it was shown that among the smooth ovaloids M lying inside an ellipsoid E ⊂ En+1

centered at the origin, the ellipsoids centered at the origin which are homothetic to the ellipsoid E with respect
to the origin are the only ones such that the volume of the (n+ 1) -dimensional compact set of smaller volume
cut off from the ellipsoid E by any hyperplane tangent to M is constant.

Suppose that M is a strictly convex and closed hypersurface in the (n+1) -dimensional Euclidean space
En+1 with the origin in its interior and with the outward unit normal N . For a fixed point p ∈M , the support
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function h(p) = ⟨p,N(p)⟩ of M at p is nothing but the distance from the origin to the tangent hyperplane
Φ to M at the point p . For a constant t ∈ (0, h(p)] , we consider the hyperplane Φt parallel to the tangent
hyperplane Φ and passing through the point q = p − tN(p) . Then, t is the distance from the point q to the
hyperplane Φ .

We denote by Ap(t) , Vp(t) , and Cp(t) the n -dimensional area of the section in Φt enclosed by Φt ∩M ,
the (n+1) -dimensional volume of the region bounded by M and the hyperplane Φt , and the (n+1) -dimensional
volume of the cone with base the section in Φt enclosed by Φt ∩M and with vertex the origin o , respectively.
We also denote by Ip(t) the (n + 1) -dimensional volume of the ice cream cone-shaped domain which is the
convex hull of the origin o and the region of M cut off by the hyperplane Φt . Then, we have ([10])

d

dt
Vp(t) = Ap(t). (1.6)

It follows from definitions that

Cp(t) =
1

n+ 1
Ap(t) (h(p)− t) (1.7)

and
Ip(t) = Cp(t) + Vp(t). (1.8)

For a constant t (> h(p)) such that the hyperplane Φt intersects M , Ap(t) , Vp(t) , Cp(t) , and Ip(t) are
also well-defined. In this case, (1.7) shows that Cp(t) < 0 , which is (−1) times the volume of the corresponding
cone with vertex the origin. Hence, (1.8) implies that Ip(t) is the volume of a concave domain in En+1 (Figure
2).

Figure 2. Ip(t) with t < h(p) and Ip(t) with t > h(p) .

As a corollary of Theorem A, we prove the following characterization theorem, which is originally due to
R. Schneider ([19]).

Theorem B. Suppose that the centrally symmetric convex body B centered at the origin o in the (n + 1) -
dimensional Euclidean space En+1 has smooth boundary M which is of positive Gauss-Kronecker curvature.
Then, for a positive constant β and a positive function ϕ defined on M , M satisfies Ip(t) = ϕ(p)tβ if and only
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if β = 1, n = 2 and M is a 2-dimensional ellipsoid centered at the origin in the 3 -dimensional Euclidean space
E3 . In this case, we have Ip(t) = αt/h(p) for some positive constant α .

For a convex body B ⊂ En+1 which is not necessarily centrally symmetric, with the help of Theorem A
we prove the following characterization theorem for n -dimensional ellipsoids.

Theorem C. Suppose that a convex body B ⊂ En+1 with the origin o in its interior has smooth boundary
M with positive Gauss-Kronecker curvature and the homogeneous function g = gd of degree d . Then, for a
positive function ϕ , one of Vp(t) , Ap(t)/|∇g(p)| , Cp(t) , and Ip(t) is a function of the form ϕ (t/h(p)) , where
h(p) is the support function of M at p if and only if M is an n -dimensional ellipsoid centered at the origin in
the Euclidean space En+1 .

Note that Theorem C is an ellipsoidal analogue of the characterization theorem for n -dimensional round
spheres in [9, 10].

If B ⊂ En+1 is a closed convex body with smooth boundary M which is of positive Gauss-Kronecker
curvature, then it is obvious that the boundary M cannot satisfy neither Vp(t) = ϕ(p)tβ nor Ap(t) = ϕ(p)tβ ,
where β is a positive constant and ϕ(p) is a positive function of p ∈ M . On the other hand, every elliptic
paraboloid M ⊂ En+1 satisfies Vp(t) = ϕ(p)(

√
t)n+2 and Ap(t) = ψ(p)(

√
t)n for some functions ϕ and ψ on

M . For this, see the proof of Theorem 5 in [10].
Let us denote by Kp(t) the volume of the compact (n+1) -dimensional cone whose base is the region in

Φt enclosed by Φt ∩M and whose vertex is the point p . Then we have

Kp(t) =
t

n+ 1
Ap(t). (1.9)

Using (1.6) and Lemma 2.1, one obtains

Proposition D. Let M denote a strictly convex smooth hypersurface in the (n + 1) -dimensional Euclidean
space En+1 . Then the following conditions are equivalent.

(1) Vp(t) = ϕ(p)(
√
t)n+2 for a function ϕ on M .

(2) Ap(t) = ψ(p)(
√
t)n for a function ψ on M .

(3) Kp(t)/Vp(t) is a constant.

Finally, for further study, we raise a question which was originally conjectured by M. Golomb [4]. See
the last paragraph of [4], where Vp(t) and Kp(t) were denoted by S(p; t) and T (p; t) , respectively. See also
Question B in [10].

Question E. Let M denote a strictly convex smooth hypersurface in the (n+1) -dimensional Euclidean space
En+1 . Is it an elliptic paraboloid if M satisfies one of the conditions in Proposition D?

In [11], Question E was answered affirmatively for n = 1 .
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A lot of properties of conic sections (especially, parabolas) have been proved to be characteristic ones
[7, 11, 13, 15].

Some characterization theorems for hyperplanes, circular hypercylinders, hyperspheres, ellipsoids, elliptic
paraboloids, and elliptic hyperboloids in the Euclidean space En+1 were established in [5, 6, 8–10, 12, 16, 19, 20].
For some characterizations of hyperbolic space in the Minkowski space En+1

1 , we refer to [14].
Throughout this article, all objects are smooth (C3 ) and connected, unless otherwise mentioned.

2. Preliminaries
In order to prove our theorems, first of all, we need the following.

Lemma 2.1. Suppose that M is a strictly convex and closed smooth hypersurface of the (n+ 1) -dimensional
Euclidean space En+1 with the origin in its interior and g the homogeneous function of M . Then we have the
following:

(1)

lim
t→0

1

(
√
t)n

Ap(t) =
(
√
2)nωn√
K(p)

, (2.1)

(2)

lim
t→0

1

(
√
t)n+2

Vp(t) =
(
√
2)n+2ωn

(n+ 2)
√
K(p)

, (2.2)

(3)

lim
t→0

1

(
√
t)n

Cp(t) =
(
√
2)nωn

(n+ 1)
√
K(p)

h(p), (2.3)

(4)

lim
t→0

1

(
√
t)n

Ip(t) =
(
√
2)nωn

(n+ 1)
√
K(p)

h(p), (2.4)

where ωn denotes the volume of the n -dimensional unit ball in the n -dimensional Euclidean space En and
h(p) the support function of M at p ∈M .

Proof. For proofs of (1) and (2), see Lemma 8 of [10]. Together with (1) and (2), it follows from (1.7) and
(1.8) that (3) and (4) hold. □

Lemma 2.2. Let M denote a strictly convex and closed smooth hypersurface of the (n + 1) -dimensional
Euclidean space En+1 with the origin in its interior and g = gd the homogeneous function of M . Suppose that
M satisfies one of the conditions (V ∗) , (A∗) , (C∗) , and (I∗) . Then, M satisfies the following condition:

(C) K(p)|∇g(p)|n+2 is a nonzero constant on M,
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where K(p) is the Gauss-Kronecker curvature of M at p and ∇g(p) the gradient of g at p .

Proof. It follows from Lemma 8 or Lemma 9 in [6] that if M satisfies one of conditions (V ∗) and (A∗) , then
it satisfies condition (C).

Note that the outward unit normal to the hypersurface M is given by N = ∇g/|∇g| . For a fixed point
p ∈ M and a sufficiently small t(> 0) , the hyperplane parallel to the tangent hyperplane Φ of M at p and
passing through the point p − tN(p) is tangent to a homothetic hypersurface (say, g−1(h) = Mh1/d ) of M at
some point v ∈ Mh1/d . Hence, the nonnegative function h = h(t)(< 1) is defined on an interval [0, ϵ) with
h(0) = 1 and the following holds:

Vp(t) = V ∗
p (h(t)), Ap(t) = A∗

p(h(t)), Cp(t) = C∗
p (h(t)) (2.5)

and
Ip(t) = I∗p (h(t)). (2.6)

On the other hand, since the homogeneous function g of M is of degree d > 0 , we have ∇g(hp) =

hd−1∇g(p) . Hence. we get v = h1/dp ∈Mh1/d . It follows from the Euler Identity ⟨p,∇g(p)⟩ = dg(p)(= d) that

h(p) =
d

|∇g(p)|
. (2.7)

This shows that

h(t) =

(
1− 1

d
|∇g(p)|t

)d

. (2.8)

Now, suppose that M satisfies condition (C∗) for arbitrary positive number h with h < 1 . Then, we
get

Cp(t) = C∗
p (h(t)) = γ(h(t)), (2.9)

where γ(h) is a nonnegative function with γ(1) = 0 . Hence, one obtains

1

(
√
t)n

Cp(t) =
γ(h)

(
√
1− h1/d)n

(√
1− h(t)1/d

t

)n

=
γ(h)

(
√
1− h1/d)n

(
|∇g(p)|

d

)n/2

,

(2.10)

where the second equality follows from (2.8).

Let us put limh→1 γ(h)/(
√
1− h1/d)n = γ , which is independent of p ∈ M . Then it follows from (3) in

Lemma 2.1, (2.7) and (2.10) that

K(p)|∇g(p)|n+2 =
2nω2

nd
n+2

(n+ 1)2γ2
, (2.11)

which is constant on the hypersurface M .
The remaining cases can be treated similarly. This completes the proof. □
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3. Proper affine hyperspheres

For strictly convex hypersurfaces, there are naturally two types of proper affine hyperspheres, depending on
whether the affine normal points toward or away from the center. For an elliptic affine hypersphere, such as an
ellipsoid, the affine normals point inward toward the center. Hyperbolic affine hyperspheres have affine normals
which point away from the center. One component of a hyperboloid of two sheets is the quadric example of a
hyperbolic affine hypersphere ([17]).

In order to prove Theorem A, we need some equivalent conditions for a hypersurface in the (n + 1) -
dimensional Euclidean space En+1 to be a proper affine hypersphere. For a function g : U ⊂ En+1 → R defined
on an open set U ⊂ En+1 , we define

ψg(p) = det

(
D2g(p) (∇g(p))T
∇g(p) 0

)
, (3.1)

where D2g(p) is the Hessian matrix of g at p ∈ En+1 (cf. [3]). Then, we have the following.

Lemma 3.1. We fix a regular value k of a function g : U ⊂ En+1 → R . Then, the level hypersurface
Mk = g−1(k) is a proper affine hypersphere, centered at the origin, if and only if the function g satisfies for all
p ∈Mk ,

ψg(p) = a ⟨p,∇g(p)⟩n+2
, (3.2)

where a is a nonzero constant and ∇g(p) denotes the gradient of g at p .

Proof. See the proof of Proposition 1 of [3]. □

Next, we prove the following lemma, which gives a geometric meaning of ψg(p) for p ∈Mk .

Lemma 3.2. For a regular value k of a function g : U ⊂ En+1 → R , we have for all p ∈Mk ,

ψg(p) = (−1)n+1K(p)|∇g(p)|n+2, (3.3)

where K(p) denotes the Gauss-Kronecker curvature of Mk = g−1(k) at p .

Proof. We fix a point p ∈ Mk . By a Euclidean motion of coordinates, without loss of generality, we may
assume that

∇g(p) = (0, 0, · · · , 0, |∇g(p)|). (3.4)

Hence, the level hypersurface Mk = g−1(k) is, at least locally, the graph of a function f : V ⊂ En → R which
satisfies p = (q, f(q)), q ∈ V and fi(q) = 0 for i = 1, · · · , n , where we denote by fi the derivative of f with
respect to xi . Differentiating g(x, f(x)) = k with respect to xi and xj for i, j = 1, · · · , n successively, we get

gij(x, f(x)) + gin+1(x, f(x))fj(x)

+{gn+1j(x, f(x)) + gn+1n+1(x, f(x))fj(x)}fi(x) + gn+1(x, f(x))fij(x) = 0,
(3.5)

where gij denotes the derivative of gi with respect to xj , and so on.
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At the point p = (q, f(q)) ∈Mk , it follows from (3.4) and (3.5) that

gij(p) = −gn+1(p)fij(q) = −|∇g(p)|fij(q). (3.6)

Thus, we obtain

ψg(p) = det

(
D2g(p) (∇g(p))T
∇g(p) 0

)

= −|∇g(p)|2 det

g11(p) · · · g1n(p)
...

...
gn1(p) · · · gnn(p)


= (−1)n+1|∇g(p)|n+2 det(fij(q)).

(3.7)

Since fi(q) = 0 for i = 1, · · · , n , the Gauss-Kronecker curvature K(p) of Mk at p is given by ([1] or [21, p.
93])

K(p) = det(fij(q)). (3.8)

Together with (3.7), (3.8) completes the proof. □

Combining Lemmas 3.1 and 3.2, we obtain the following which will be used in the proof of Theorem A.

Proposition 3.3. For a regular value k of a function g : U ⊂ En+1 → R , the level hypersurface Mk = g−1(k)

is a proper affine hypersphere, centered at the origin, if and only if for some nonzero constant a the function g

satisfies for all p ∈Mk ,
K(p)|∇g(p)|n+2 = a ⟨p,∇g(p)⟩n+2

, (3.9)

where K(p) denotes the Gauss-Kronecker curvature of Mk = g−1(k) at p .

4. Proofs
Suppose that M is a strictly convex and closed hypersurface in the (n+ 1) -dimensional Euclidean space En+1

with the origin in its interior and the outward unit normal N . We denote by g the homogeneous function of
M . That is, on the open set U = {tp|t > 0, p ∈M} = En+1 \ {0} the homogeneous function g is defined by

g(tp) = td, p ∈M, (4.1)

where d is a positive number. Since the function g is homogeneous of degree d (> 0) and the outward unit
normal N is given by N = ∇g/|∇g| , the Euler Identity shows that for all p ∈M

⟨p,∇g(p)⟩ = dg(p) = d. (4.2)

Together with (4.2), Proposition 3.3 implies the following.

Proposition 4.1. Suppose that M is a strictly convex and closed hypersurface in the (n + 1) -dimensional
Euclidean space En+1 with the origin in its interior and g = gd the homogeneous function of M of degree d .
Then, the following are equivalent.
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(1) The hypersurface M is a proper affine hypersphere centered at the origin.

(2) The hypersurface M satisfies for some nonzero constant a

K(p)|∇g(p)|n+2 = a, (4.3)

where K(p) denotes the Gauss-Kronecker curvature of M at p .

First, we prove Theorem A as follows.
Let us denote by M a strictly convex and closed hypersurface in the (n+1) -dimensional Euclidean space

En+1 with the origin in its interior and g = gd the homogeneous function of M of degree d . Suppose that M
satisfies one of (1) , (2) , (3) , (4) , and (5) in Theorem A stated in Section 1. Then, it follows from Lemma 2.2
or (2.7) that it satisfies (6) in Theorem A. Hence, Proposition 4.1 shows that M is a proper affine hypersphere
centered at the origin. Since M is closed, the theorem of Blaschke and Deicke implies that M is an ellipsoid in
the (n + 1) -dimensional Euclidean space En+1 centered at the origin (cf. Section 2.4 of [17]). This completes
the proof of the only if part of Theorem A.

Conversely, in order to prove the if part of Theorem A, let us denote by E the ellipsoid centered at the
origin defined by

a21x
2
1 + · · ·+ a2nx

2
n + b2z2 = 1, (4.4)

where a1, . . . , an, b > 0 . For conveniences, we consider the homogeneous function g = g2 of degree 2 of the
ellipsoid M , which is given by

g(x1, . . . , xn, z) = a21x
2
1 + · · ·+ a2nx

2
n + b2z2. (4.5)

Then, for a positive number h with h < 1 the homothetic hypersurface g−1(h) = M√
h is an ellipsoid defined

by
a21x

2
1 + · · ·+ a2nx

2
n + b2z2 = h. (4.6)

It follows from the proof of Theorem 3 in [6] that for a positive number h with h < 1 the ellipsoid M

satisfies (V ∗) and (A∗) , respectively. Furthermore, if we replace ai with ai/b and k with 1/b2 in (3.38) of [6],
then we see that the ellipsoid E satisfies

K(p)|∇g(p)|n+2 = 2n+2 a
2
1 · · · a2n
b2n+4

, (4.7)

which is constant on the ellipsoid E . Hence, the ellipsoid E satisfies (1), (2) and (6) in Theorem A and hence
satisfies (5) in Theorem A.

Together with (4.2), (1.4) implies that

C∗
p (h) = 2

√
h

n+ 1

A∗
p(h)

|∇g(p)|
. (4.8)

This, together with (2) in Theorem A, shows that E satisfies (3) in Theorem A. Finally, it follows from (1.5)
that E satisfies (4) in Theorem A. This completes the proof of the if part of Theorem A.
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Now, we prove Theorem B as follows.
We denote by g = gd the homogeneous function of the boundary M of B . First, suppose that the

boundary M of B satisfies
Ip(t) = ϕ(p)tβ , (4.9)

where ϕ(p) denotes a function of p ∈M . Then we get from (2.4) that β = n/2 and

ϕ(p) =
(
√
2)nωn

(n+ 1)
√
K(p)

h(p), (4.10)

where ωn is the volume of the n -dimensional unit ball in the n -dimensional Euclidean space En .
In order to compute I∗p (h) , note that

Ip(t) = I∗p (h(t)), (4.11)

where the function h(t) is given by (2.8). Hence, we get

t =
d

|∇g(p)|
(1− h1/d). (4.12)

Together with (4.9) with β = n/2 , this implies

I∗p (h) = η(p)(1− h1/d)n/2, (4.13)

where we put

η(p) = ϕ(p)

(
d

|∇g(p)|

)n/2

. (4.14)

Since B is centrally symmetric with respect to the origin o , for the volume V of B we obtain

lim
h→0

I∗p (h) = V/2. (4.15)

It follows from (4.13) and (4.15) that the function η(p) is a constant V/2 . Hence, we see that I∗p (h) is
a function of h only, which is independent of the point p ∈ M . Therefore, Theorem A shows that M is an
n -dimensional ellipsoid in the (n+ 1) -dimensional Euclidean space En+1 centered at the origin.

For a fixed point p ∈M , let us put a = h(p) . Then (4.15) is nothing but the following:

Ip(a) = ϕ(p)(
√
a)n = V/2. (4.16)

Since B is centrally symmetric with respect to the origin, we also have (See (1.7) and (1.8) for t (> a) .)

lim
t→2a

Ip(t) = ϕ(p)(
√
2a)n = V. (4.17)

It follows from (4.16) and (4.17) that n = 2 ; hence, β = 1 and M is a 2-dimensional ellipsoid centered at the
origin in the 3 -dimensional Euclidean space E3 .
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Conversely, it is straightforward to show that the 2-dimensional ellipsoid given by

a2x2 + b2y2 + c2z2 = 1 (4.18)

satisfies
Ip(t) =

α

h(p)
t, (4.19)

where we put α = 2π/(3abc) . This completes the proof of Theorem B.

Finally, we prove Theorem C as follows. First, suppose that M satisfies

Vp(t) = ϕ

(
t

h(p)

)
, (4.20)

for a positive function ϕ . Note that it follows from (2.7) and (2.8) that

h(t) =

(
1− t

h(p)

)d

, (4.21)

which implies
t

h(p)
= 1− h1/d. (4.22)

Hence, we get
V ∗
p (h) = ϕ(1− h1/d). (4.23)

Thus, the volume function V ∗
p (h) does not depend on the point p ∈ M ; hence, Theorem A implies that M is

an n -dimensional ellipsoid. The remaining cases can be treated similarly. Therefore, the proof of the only if
part of Theorem C is completed.

Conversely, suppose that M is an n -dimensional ellipsoid centered at the origin. Then Theorem A shows
that V ∗

p (h) = α(h) for some function α . Hence, we have from (4.21) that

Vp(t) = V ∗
p (h(t)) = α (h(t)) = ϕ

(
t

h(p)

)
, (4.24)

where ϕ is the function defined by ϕ(s) = α((1 − s)d) . The remaining cases can be treated similarly. This
completes the proof of the if part of Theorem C.
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