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Abstract: We investigate properties of order compact, unbounded order compact and relatively uniformly compact
operators acting on vector lattices. An operator is said to be order compact if it maps an arbitrary order bounded net
to a net with an order convergent subnet. Analogously, an operator is said to be unbounded order compact if it maps
an arbitrary order bounded net to a net with uo -convergent subnet. After exposing the relationships between order
compact, unbounded order compact, semicompact and GAM -compact operators; we study those operators mapping
an arbitrary order bounded net to a net with a relatively uniformly convergent subnet. By using the nontopological
concepts of order and unbounded order convergences, we derive new results related to these classes of operators.
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1. Introduction
Banach lattices can be equipped with various canonical convergence structures such as order, relatively uniform,
unbounded order and unbounded norm convergences. Although some of these convergences are not topological,
they share the common property that the underlying order structure plays a dominant role in deriving properties
related to operators acting on these lattices.

The notion of unbounded order convergence was initially introduced in [13] under the name individual
convergence, and, ”uo-convergence” was proposed firstly in [7]. Recently in [4, 6, 8–11, 17], see also the references
therein, further properties of various types of unbounded convergences are investigated.

In the present paper, we study compactness properties of operators between vector lattices by utilizing
various nontopological convergences. In addition to the fact that results obtained in the settings of vector
lattices will shed light on the case of operators on lattice-normed spaces, see [3, 5, 14]; the diversity of various
types of convergences on vector lattices allows one to derive further results in more general settings.

The structure of the present paper is as follows. In Section 2, we derive several properties of order
compact operators. We expose the relationships between order compact, order bounded, order continuous and
GAM -compact operators. In particular, as a consequence of our results we deduce that order compactness of
an operator is a natural and conceptual notion to study. In Section 3, we introduce the analogous notion of
uo -compact operators. One of the impetuses for studying uo -compact operators comes from the relationships
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between compact, order compact and uo -compact operators. In Section 4, we define the notion of relatively
uniformly compact operators and study some of its properties.

Throughout the paper, all vector lattices are Archimedean. Unexplained terminology about vector lattices
can be found in [1, 2, 16, 18].

2. Order compact operators

Definition 2.1 A net xα in a vector lattice E is order convergent to an element x ∈ E, in symbols xα
o−→ x ,

whenever there exists a net yα in E (with the same index set) satisfying |xα − x| ≤ yα ↓ 0, see [2, 12, 16, 18].

Example 2.2 In some cases, order convergence agrees with pointwise convergence. A sequence space is a linear
subspace λ of the vector space s of all real sequences x = (xn) such that λ contains c00, the space of those
sequences which vanish for all but finitely many indices. Sequence spaces are assumed by their canonical positive
cones. If an order bounded net xα in λ order converges to x ∈ λ then limα xα

n = xn for each n.

Definition 2.3 Let E and F be two vector lattices.

i. An operator T : E → F is called order continuous, see [2, Chapter 1.4], Txα
o−→ 0 in F whenever xα

o−→ 0

in E . If this condition holds for sequences then T is called sequentially order continuous (abbreviated as
σ -order continuous).

ii. An operator T : E → F is called order bounded if it maps order bounded sets in E to order bounded sets
in F .

Various results on the properties of order continuous, σ -order continuous and order bounded operators
can be found in [2, Chapter 1.4] and [18, Chapter 12].

Example 2.4 Some vector lattices formed by integrable real valued functions over a σ -finite measure space
can be used as the underlying space on which the class of σ -order continuous operators and the class of order
continuous operators do not coincide. Indeed, [2, Example 1.55] shows that a positive σ -order continuous
operator may not be order continuous even in the case that the underlying space upon which this operator acts is
the vector lattice of Lebesgue integrable real valued functions on [0, 1] . Since σ -order continuity of this operator
follows as a corollary of the Lebesgue dominated convergence theorem, this example provides a motivation to
study compactness properties for operators where compactness is related to nontopological convergences such as
order and unbounded order convergence.

Definition 2.5 Let E and F be two vector lattices.

i. An operator T : E → F is called order compact if for any order bounded net xα in E there exists a subnet
xαβ

and y ∈ F such that Txαβ

o−→ y in F .

ii. An operator T : E → F is called sequentially order compact if for any order bounded sequence xn in E
there exists a subsequence xnk

and y ∈ F such that Txnk

o−→ y in F .

Example 2.6 An example given in [5] shows that an order continuous operator need not be sequentially order
compact. Consider the identity operator I : L1[0, 1] → L1[0, 1]. It is clear that the identity operator I is
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both order bounded and order continuous. We denote by rn the n th Rademacher function. We recall that
rn : C[0, 1] → R where rn(t) = sgn(sin(2nπt)) for t ∈ [0, 1] and that |rn| = 1 for each n ≥ 1 . Assume there

exists rnk
such that rnk

o−→ r for some r . We have
∫ 1

0
rnk

rnm
dµ = 0 for every m > k . On the other hand,

we have rnk
rnm

o−→ rnk
r . It follows that

∫ 1

0
rnk

rdµ →
∫ 1

0
r2dµ = 0 . Hence, the identity operator I is not

sequentially order compact.

Example 2.7 A sequentially order compact operator need not be order compact. We denote by c the vector
lattice of all convergent sequences, see Example 2.2. Let fn be an order bounded positive sequence in c . Hence,
there is g such that 0 ≤ fn ≤ g for all n . Denote by fn(m) the m th coordinate of fn for m ≥ 1 . For any n,

there is an ≥ 0 such that for every ϵ > 0 the set {m : |fn(m)− an| ≥ ϵ} is finite. Because the sequence an can
be chosen as bounded, there is a subsequence ank

and a ≥ 0 such that ank
−→ a as k → ∞ . For each l, k ∈ N,

consider Al,nk
= {m : |fnk

(m) − ank
| ≥ 1/l} and A =

∪∞
l=1

∪∞
k=1 Al,nk

. If h = aχN\A then fnk

o−→ h because
order convergence in c agrees with pointwise convergence. Hence, the identity operator I : c → c is sequentially
order compact. On the other hand, let Λ be the set of all finite subsets of N . The set Λ is partially ordered
with respect to inclusion. For each α ∈ Λ we put fα = χN\α. It is clear that fα ∈ c and fα(m) ≤ 1 for all m .
For every subnet fαβ

we have fαβ
(m) ̸−→ 1. Hence, fαβ

does not converge in order. Therefore, I : c → c is not
order compact.

Example 2.8 An order compact operator between two vector lattices need not be sequentially order compact.
An example related to this fact can be found in [5, Example 7].

Lemma 2.9 Suppose that T : E → F is an operator between two vector lattices E and F . If T is order
compact then it is order bounded.

Proof Details of the proof can be found in [5, Theorem 2]. It uses the fact that an order convergent net has
an order bounded tail. 2

In view of Lemma 2.9, if T : E → F is an order compact operator, and, F is an order complete vector
lattice then for every order bounded net xα in E there exists some y ∈ F such that

inf
γ

sup
β≥γ

Txαβ
= sup

γ
inf
β≥γ

Txαβ
= y

where both β and γ run through the same index set.
We remark the obvious that order completeness of vector lattices can be dropped in items (i) and (ii)

of Proposition 2.10, see below. In view of the fact that monotonic nets of operators play an inevitable role
in studying the vector lattices form by these operators, items (iii) and (iv) of Proposition 2.10 abstract two
situations where monotonic nets of order compact operators appear.

Proposition 2.10 Suppose that T : E → F, L : F → G and R : G → E where E,F and G are order complete
vector lattices.

i. If T is order compact and L is order continuous then L ◦ T is order compact.

ii. If T is order compact and R is order bounded then T ◦R is order compact.
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iii. If T is a positive, order continuous and order compact operator and Rα ↓ 0 is a decreasing net of order
bounded operators then T ◦Rα ↓ 0 is a decreasing net of order compact operators.

iv. If T is positive, order continuous and order compact and Lα is a net of positive order continuous operators
satisfying Lα ↑ L for some L then Lα ◦ T ↑ L ◦ T and L ◦ T is order compact.

Proof (i.) Let xα be an order bounded net in E . Because T is order compact, there exists a subnet xαβ

and y ∈ F such that Txαβ

o−→ y . As L is order continuous, it follows that L(Txαβ
)

o−→ Lx. Hence, L ◦ T is
order compact.

(ii.) Let xα be an order bounded net in G . Because R is an order bounded operator, the net Rxα is
order bounded in E . As T is order compact, there exists a subnet xαβ

and y ∈ F such that T (R(xαβ
))

o−→ y .
This shows that T ◦R is order compact.

(iii.) By [2, Theorem 1.18], a net Rα of order bounded operators from G into E satisfies Rα ↓ 0 if and
only if Rα(x) ↓ 0 in E for each x ∈ G+ . As T : E → F is both order continuous and order compact, T ◦ Rα

is order bounded and order compact for each α , see also Lemma 2.9. It follows that for each x ∈ G+, we have
T (Rα(x))

o−→ 0 because T is order continuous. Since T is a positive operator we have T ◦Rα ↓ 0.

(iv.) As T and Lα are order continuous, the operator Lα ◦ T is order continuous for each α . It follows
from Lα ↑ L that Lα(Tx) ↑ LT (x) for every x ∈ E+. Hence, Lα ◦ T ↑ L ◦ T. It follows from [2, Theorem 1.57]
that the operator L ◦ T is both order continuous and order compact. 2

Proposition 2.11 Suppose that E is an order complete vector lattice. If T : E → E is sequentially order
compact, and, a strictly positive order continuous functional, see [11, Section 2.2], is left fixed by the adjoint
operator T ∗ then there exists a Banach lattice F containing E as a norm dense ideal such that T : E → F is
sequentially order compact.

Proof Let xn be an order bounded sequence in E . As the operator T : E → E is order compact there exists
a subsequence xnk

and y ∈ E such that Txnk

o−→ y in E . Denote by x∗ the strictly positive order continuous
functional which is left fixed by T ∗ . It follows from order continuity of both x∗ and lattice operations that
x∗(|Txnk

|) −→ x∗(|y|). Let F be the norm completion of E with respect to lattice norm ∥x∥F = x∗(|x|) for

x ∈ E . Hence, Txnk

∥·∥F−−−→ y in F . As F is a Banach lattice there exists a subsequence xnkm
such that

Txnkm

o−→ y in F , see [16, Theorem VII.2.1]. Hence, the operator T : E → F is sequentially order compact. 2

Definition 2.12 An operator T : E → F from a vector lattice E into a Banach space F is said to be
GAM -compact, see [3, 14], if for every order bounded set A in E , the set T (A) is relatively compact in F.

It follows that if E is an AM -space with a strong norm unit and F is a Banach lattice then a GAM -
compact operator T : E → F is compact. Following result can be used to produce examples of sequentially
order compact operators.

Theorem 2.13 Suppose that T : E → F is an operator where E is a vector lattice and F is a Banach lattice.
If T is GAM -compact then T is sequentially order compact.
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Proof Let xn be an order bounded sequence in E . Since T is GAM -compact there is a subsequence xnk

and y ∈ F such that ∥Txnk
− y∥F → 0 . As F is a Banach lattice, there exists a subsequence xnkm

such that

Txnkm

o−→ y in F , see [16, Theorem VII.2.1]. Hence, the operator T is sequentially order compact. 2

Following example shows that converse of Theorem 2.13 is not correct.

Example 2.14 The identity operator I : ℓ∞ → ℓ∞ is sequentially order compact. The standard basis {en : n ≥
1} is order bounded but not relatively compact in the norm topology of ℓ∞ . Hence, the operator I : ℓ∞ → ℓ∞

is not GAM -compact.

Proposition 2.15 Suppose that E is a Banach lattice, and, F is a σ -order continuous Banach lattice. If an
operator T : E → F is sequentially order compact then T is bounded.

Proof If T : E → F is not bounded then there exists a sequence xn in E such that ∥xn∥ ≤ 2−n and
∥Txn∥ −→ ∞. We observe that this sequence is order bounded. Since T is sequentially order compact, there
exists a subsequence xnk

and y ∈ F such that Txnk

o−→ y in F . Because F is a σ -order continuous Banach

lattice, Txnk

∥·∥−−→ y . This is a contradiction. 2

Corollary 2.16 Suppose that E and F are σ -order continuous Banach lattices. If an operator T : E → F is
sequentially order compact then T is sequentially order to norm continuous.

Proof Let xn be an order convergent sequence in E . Since E is σ -order continuous, the sequence xn is norm
convergent in E . As the operator T : E → F is bounded, Txn is norm convergent in F , see Proposition 2.15.
Hence, T : E → F is sequentially order to norm continuous. 2

Remark 2.17 We remark that the conclusions of both Proposition 2.15 and Corollary 2.16 are still correct
when the Banach lattices E and F are order continuous.

It is known that if we restrict order convergence on a vector lattice F onto a subspace K of F then the
resulting convergence on the subspace K differs from the original order convergence on F . When we compare
this perspective of unbounded order convergence and that of order convergence, we see that regular sublattices
hold a crucial role in preserving the order convergence.

Proposition 2.18 Suppose that E and F are vector lattices and that K is regular sublattice of F . If
T : E → K is an order compact operator then T : E → F is also an order compact operator. In particular, this
is the case if K is an order dense vector sublattice of F .

Proof Let xα be an order bounded net in E . Since T : E → K is order compact there exists a subnet xαβ

and y ∈ K such that Txαβ

o−→ y ∈ K . Because K is regular sublattice of F, we have Txαβ

o−→ y where order
convergence is considered in F , see [1, Theorem 1.20]. Therefore T : E → F is order compact. 2

Lemma 2.19 Let K be a regular order complete sublattice of F . Suppose that yα
o−→ y in F for some order

bounded net yα in K and some vector y ∈ F . Then y ∈ K and yα
o−→ y in K .

Proof Proof can be found in [10, Lemma 2.11]. 2
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Proposition 2.20 Suppose that E and F are vector lattices. If an operator T : E → F is order compact and
the range R(T ) is a subspace of a regular, majorizing and order complete sublattice K of F then T : E → K

is order compact.

Proof Let xα be an order bounded net in E . Because T : E → F is order compact, there exists a subnet
xαβ

and y ∈ F such that Txαβ

o−→ y in F . By Lemma 2.9, the operator T : E → F is order bounded. As xα is
order bounded in E, the subnet Txαβ

is also order bounded in F. Since K is majorizing and the range R(T )

is a subspace of K , the subnet Txαβ
is order bounded in K . It follows from Lemma 2.19 that Txαβ

o−→ y in
K . 2

Proposition 2.21 Suppose that E and F are vector lattices. If an operator T : E → F is both sequentially
order compact and order continuous, and, the range R(T ) is a subspace of a regular, majorizing and order
σ -complete vector sublattice K of F then T : E → K is sequentially order compact.

Proof Let xn be an order bounded sequence in E . Because T : E → F is sequentially order compact, there
exists a subsequence xnk

and y ∈ F such that Txnk

o−→ y in F . Because T : E → F is order continuous, the
operator T is order bounded. As xn is order bounded in E, the subsequence Txnk

is also order bounded in
F. Since K is majorizing, the subsequence Txnk

is order bounded in K . It follows from [4, Lemma 27] that

Txnk

o−→ y in K . 2

In Proposition 2.20, the conditions on K cannot be dropped. We give the details in the next example.

Example 2.22 The space c0 is a regular sublattice of ℓ∞ . Consider the operator T : C[0, 1] → c0 defined by

Tf = (f(1)− f(0), f(
1

2
)− f(0), f(

1

3
)− f(0), . . .)

for f ∈ C[0, 1] . We claim that T is not order bounded. To see this, assume by way of contradiction that
there exists some vector u = (u1, u2, ...) ∈ c0 satisfying | Tf |≤ u for all f ∈ [0,⊮] , where ⊮ denotes the
constant function one. For each n pick some fn ∈ [0,⊮] with fn(0) = 0 and fn(

1
n ) = 1 , and note that

1 = |fn( 1n ) − fn(0)| ≤ un holds. This shows that u ̸∈ c0 , which is a contradiction. Hence, T is not order
bounded, as claimed. In this case T : C[0, 1] → c0 is not order compact. However, T : C[0, 1] → l∞ is order
compact. Indeed, for every order bounded net fα in C[0, 1], there exists a subnet fαβ

and u ∈ ℓ∞ such that

Tfαβ

o−→ u.

The old nomenclature “normal lattice homomorphism”, see [1, 15] for details, can be thought as the
analogues of order continuous lattice homomorphism.

Definition 2.23 An operator π : E → F between two vector lattices E and F is called a normal lattice
homomorphism if π is a lattice homomorphism such that xα

o−→ 0 in E implies π(xα)
o−→ 0 in F .

Following result emphasizes the fact that the natural notion of order compact operators have the left
ideal property with respect to normal lattice homomorphisms.
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Corollary 2.24 Suppose that π : K → F is a normal lattice homomorphism and that T : E → K is order
compact where E,F and K are vector lattices. Then the operator π ◦ T : E → F is order compact.

Proof Since π : K → F is a normal lattice homomorphism, π is order continuous. Let xα be an order
bounded net in E . Since T : E → K is order compact, there exist a subnet xαβ

and y ∈ K such that

Txαβ

o−→ y ∈ K . Because π is normal lattice homomorphism, πTxαβ

o−→ πy, and hence, π ◦T is order compact,
see also Proposition 2.18. 2

Proposition 2.25 Let T : E → F, S : F/B → G, and π : F → F/B where E,F and G are vector lattices, B

is a band of F, and π denotes the canonical quotient operator. If T is order compact and S is order continuous
then the operator SπT is order compact. Same conclusion also holds if T is order continuous and S is order
compact.

Proof By [12, Theorem 18.13] and [15, Theorem D], the canonical quotient operator π : F → F/B is a normal
lattice homomorphism. If T : E → F is order compact and S : F/B → G is order continuous then the operator
Sπ is order continuous, and hence, SπT is order compact. If T : E → F is order continuous and S : F/B → G

is order compact then the operator πT is order continuous, and hence, SπT is order compact. Therefore, in
both cases the operator SπT is order compact. 2

3. Uo-compact operators

Definition 3.1 A net xα in E unbounded order convergent to x ∈ E if |xα − x| ∧ u
o−→ 0 for all u ∈ E+,

see [4, 6–11]. In this case, we say that xα uo-converges to x, and, we write xα
uo−→ x.

Example 3.2 The notion of unbounded order convergence in vector lattices is a generalization of almost
everywhere convergence. Let (Ω,Σ, µ) be a σ -finite measure space. A sequence xn in Lp(Ω) order converges to
x ∈ Lp(Ω) (1 ≤ p ≤ ∞) if and only if xn converges to x almost everywhere and there exists some z ∈ Lp(Ω)

such that |xn| ≤ z for all n . In the case p < ∞ , xn is unbounded order convergent to x if and only if xn

converges almost everywhere to x . In the cases of c0 and ℓp with 1 ≤ p ≤ ∞, uo-convergence of nets agrees
with pointwise convergence, see [11].

Definition 3.3 Let E and F be two vector lattices. An operator T : E → F is said to be uo-compact, if for
any order bounded net xα in E , there is a subnet xαβ

and y ∈ F such that Txαβ

uo−→ y in F .

Proposition 3.4 Suppose that T : E → F is an operator between vector lattices E and F . If T is order
compact then it is uo-compact.

Proof Let xα be an order bounded net in E . Since T is order compact, there exists a subnet xαβ
and y ∈ F

such that Txαβ

o−→ y in F . It follows that Txαβ

uo−→ y in F . This shows that the operator T : E → F is
uo -compact. 2

In view of Proposition 3.4, main examples of uo -compact operators are provided by order compact operators.
We recall that an operator T : E → F from a vector lattice E into a normed lattice F is called

semicompact, see [18, Chapter 18] and [3], if T maps order bounded subsets of E into almost order bounded
subsets of F .
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Proposition 3.5 Suppose that T : E → F is an operator where E is a Banach lattice and F is an order
continuous Banach lattice. If the operator T is both semicompact and sequentially uo-compact then T is
sequentially order compact.

Proof Let xn be an order bounded sequence in E. Since T : E → F is sequentially uo -compact, there is a
subsequence xnk

and y ∈ F such that Txnk

uo−→ y in F . As T is semicompact, the sequence Txnk
is almost

order bounded in F . It follows that Txnk

∥·∥−−→ y, see [11, Prop.3.7]. Hence, there is a further subsequence

xnkm
, see [16, Theorem VII.2.1], such that Txnkm

o−→ y . This shows that T : E → F is sequentially order
compact. 2

Proposition 3.6 Let E be a Banach lattice and F be a σ -order continuous normed lattice. If an operator
T : E → F is sequentially uo-compact and order bounded then T : E → F is GAM -compact.

Proof Let xn be an order bounded sequence in E . Since T is sequentially uo -compact, there exists a
subsequence xnk

and some y ∈ F such that Txnk

uo−→ y in F. By the σ -order continuity of the lattice norm of

F , we have Txnk

un−−→ y in F , see [8, Proposition 2.5]. Moreover, since T is order bounded, the sequence Txn

is order bounded in F . In particular, the subsequence Txnk
is almost order bounded in F . It follows that

Txnk

∥·∥−−→ y, see [8, Lemma 2.9]. Therefore, the operator T : E → F is GAM -compact. 2

Properties of uo -convergence on vector lattices can be used to obtain results on uo -continuous operators.
An operator T : E → F between two vector lattices is said to be uo -continuous if xα

uo−→ 0 implies Txα
uo−→ 0.

Proposition 3.7 Suppose that R : E → F, T : F → G, L : G → E where E,F and G are vector lattices.

i. If R is order bounded and T is uo-compact then T ◦R is uo-compact.

ii. If L is uo-continuous and T is uo-compact then L ◦ T is uo-compact.

iii. If T is a positive, order continuous and uo-compact operator and Rα ↓ 0 is a decreasing net of order
bounded operators then T ◦Rα ↓ 0 is a decreasing net of uo-compact operators.

Proof (i.) Let xα be an order bounded net in E . Since R is order bounded, Rxα is order bounded in F .
As T is uo -compact there exists a subnet Rxαβ

and y ∈ G such that TRxαβ

uo−→ y in G . Hence, the operator
T ◦R is uo -compact.

(ii.) Let xα be an order bounded net in F . Since T is uo -compact there is a subnet xαβ
and y ∈ G

such that Txαβ
→ y in G . As L is uo -continuous L(Txαβ

)
uo−→ L(y) . This shows that the operator L ◦ T is

uo -compact.
(iii.) By [2, Theorem 1.18], a net Rα of order bounded operators from E into F satisfies Rα ↓ 0 if and

only if Rα(x) ↓ 0 in F for each x ∈ E+ . As T : F → G is both order continuous and uo -compact, T ◦ Rα

is order bounded and uo -compact for each α , see also Lemma 2.9. It follows that for each x ∈ E+, we have
T (Rα(x))

o−→ 0 because T is order continuous. Since T is a positive operator we have T ◦Rα ↓ 0. 2

Following result can be used to produce examples of order compact operators, also see Theorem 2.13.
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Theorem 3.8 Let E be an AM -space with a strong norm unit, and, F a σ -order continuous Banach lattice.
If an operator T : E → F is sequentially order compact if and only if it is compact.

Proof Let xn be a norm bounded sequence in E . Because E is an AM -space with a strong norm unit, the
sequence xn is order bounded. As T : E → F is sequentially order compact, there exists a subsequence xnk

and y ∈ F such that Txnk

o−→ y. Since F is σ -order continuous Banach lattice, Txnk

∥·∥−−→ y in F . Hence,
T : E → F is compact. Conversely, let xn be an order bounded sequence in E. Because order bounded sets
are in particular norm bounded, the sequence xn is norm bounded. As T : E → F is compact there exists a

subsequence xnk
and y ∈ F such that Txnk

∥·∥−−→ y. It follows from [16, Theorem VII.2.1] that there exists a

further subsequence xnkm
such that Txnkm

o−→ y in F . Hence, the operator T : E → F is sequentially order
compact. 2

Theorem 3.9 Let F be a vector lattice, and K be a sublattice of F . Following statements are equivalent:

i. K is regular sublattice of F ,

ii. For any net yα in K , yα
uo−→ 0 in K implies yα

uo−→ 0 in F .

iii. For any net yα in K , yα
uo−→ 0 in K implies yα

uo−→ 0 in F .

Proof See [10, Theorem 3.2]. 2

Theorem 3.10 Suppose that E and F are vector lattices and that K is a regular sublattice of F . If T : E → K

is a uo-compact operator then T : E → F is again a uo-compact operator. Conversely, if an operator T : E → F

is uo-compact and the range R(T ) is a subspace of a uo-closed regular sublattice K of F then T : E → K is
uo-compact.

Proof Suppose that T : E → K is a uo -compact operator. Let xα be an order bounded net in E . There
exists a subnet xαβ

and y ∈ K such that Txαβ

uo−→ y in K . Since K is regular, by Theorem 3.9, Txαβ

uo−→ y

in F . This shows that the operator T : E → F is uo -compact.
For the second statement, let xα be an order bounded net in E . Since T : E → F is uo -compact, there

exists a subnet xαβ
and y ∈ F such that Txαβ

uo−→ y in F . Because the range of T is a subspace of the

uo -closed subspace K of F, we have y ∈ K. It follows from Txαβ

uo−→ y in F that Txαβ
− y

uo−→ 0 in F . By

Theorem 3.9, T (xαβ
)− y

uo−→ 0 in the regular sublattice K . Hence, T : E → K is uo -compact. 2

Following fact emphasizes the fact that the natural notion of uo -compact operators have the left ideal
property with respect to surjective normal lattice homomorphisms. A discussion related to surjectiveness of
vector lattice homomorphisms can be found in [15, p. 293].

Corollary 3.11 Suppose that π : K → F is a surjective normal lattice homomorphism and that T : E → K is
uo-compact where E,F and K are vector lattices. Then the operator π ◦ T : E → F is uo-compact.

Proof Since π : K → F is a normal lattice homomorphism, π is order continuous. Let xα be an order bounded
net in E . Since T : E → K is uo -compact, there exist a subnet xαβ

and y ∈ K such that Txαβ

uo−→ y ∈ K .
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Given u ∈ F+, let v ∈ K+ be such that π(v) = u . Hence, |Txαβ
− y| ∧ v

o−→ 0. It follows from normality of
π : K → F that

π(|Txαβ
− y| ∧ v) = |π(T (xαβ

))− π(y)| ∧ u
o−→ 0

where the limit is taken over β . Hence, the operator π ◦ T : E → F is uo -compact. 2

4. Relatively uniformly compact operators

Definition 4.1 A net xα in E relatively uniformly convergent to x ∈ E if there exists an element u ∈ E+

such that for every ϵ > 0 there exists some α0 such that |xα −x| ≤ ϵu for each α ≥ α0 , see [3, 12, 16]. In this
case, we say that the net xα is r -convergent to x, and, we write xα

r−→ x.

Example 4.2 Let (Ω,Σ, µ) be a σ -finite measure space. A sequence xn in Lp(Ω) relatively uniformly
convergent to some x ∈ Lp(Ω) (1 ≤ p ≤ ∞) if and only if the sequence xn is order convergent to x.

Definition 4.3 An operator T : E → F between two vector lattices is said to be relatively uniformly compact,
abbreviated as r -compact, if for every order bounded net xα in E there exists some subnet xαβ

and y ∈ F

such that Txαβ

r−→ y .

In view of Definition 4.3, an operator T : E → F is sequentially r -compact if for every order bounded sequence
xn in E there exists some subsequence xnk

and y ∈ F such that Txnk

r−→ y .
The following result is a special case of [3, Remark 4.i].

Proposition 4.4 Suppose that E and F are vector lattices. If T : E → F is r -compact then it is order
compact.

Proof Let xα be an order bounded net in E . As T : E → F is r -compact, there exists a subnet xαβ
and

y ∈ F such that Txαβ

r−→ y. This means that there exists some u ∈ F+ such that for every ϵ > 0 we have

|Txαβ
− y| ≤ ϵu. Hence, Txαβ

o−→ y in F . 2

In the following proposition, GAM -compactness of the operator can be replaced by AM -compactness
because neither norm completeness of the underlying spaces nor order boundedness of the operator are required.

Proposition 4.5 Suppose that E is a vector lattice and F is a Banach lattice. If T : E → F is r -compact
then it is GAM -compact.

Proof Let xα be an order bounded net in E . As the operator T : E → F is r -compact, there exists a subnet
xαβ

and y ∈ F such that Txαβ

r−→ y. This means that there exists some u ∈ F+ such that for every ϵ > 0 we
have |Txαβ

− y| ≤ ϵu. By considering the lattice norm on F, we conclude that ∥|Txαβ
− y|∥ ≤ ϵ∥u∥. Hence,

T : E → F is GAM -compact. 2

Proposition 4.6 Suppose that E and F are Banach lattices. If an operator T : E → F is compact then it is
sequentially relatively uniformly compact.
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Proof Let xn be an order bounded sequence in E . Hence, the sequence is norm bounded. As T : E → F is

compact, there exists a subsequence xnk
and y ∈ F such that xnk

∥·∥−−→ y in F . Hence, the sequence xnk
has

a further subsequence xnkm
such that Txnkm

r−→ y, see [18, Theorem 105.15]. This shows that the operator
T : E → F is relatively uniformly compact. 2

We recall from [16, Chapter VI.4] and [12, Theorem 84.3 ] that order convergence on a vector lattice F

is said to be stable if for every yn
o−→ 0 there exists 0 ≤ λn ↑ ∞ such that λnyn

o−→ 0. Order convergence on Lp

and ℓp for 1 ≤ p < ∞ is stable. Almost regular vector lattices, see [16, Chapter VI.4], are among those vector
lattices satisfying this stability assumption.

Proposition 4.7 Suppose that E is a vector lattice and F is an almost regular vector lattice. An operator
T : E → F is sequentially r -compact if and only if T is sequentially order compact.

Proof If F is an almost regular vector lattice then order convergence and relative uniform convergence are
equivalent for sequences, see [16, Chapter VI.4]. Therefore, the classes of sequentially r -compact operators and
sequentially order compact operators agree. 2

Proposition 4.8 Suppose that T : E → F is an order compact operator where E and F are vector lattices
and the order convergence on F is stable. In this case, T is sequentially order continuous.

Proof Because the order convergence on F is stable, order convergence and relatively uniform convergence
on F agree for sequences. By Lemma 2.9, the operator T : E → F is order bounded. By [18, Theorem 84.3 ],
the operator T is sequentially order continuous. 2

Corollary 4.9 Suppose that T : E → F is an operator where E is a vector lattice and the order convergence
on the Banach lattice F is stable. If T is GAM -compact then T is sequentially relatively uniformly compact.

Proof Let xn be an order bounded sequence in E . Since T is GAM -compact there is a subsequence xnk

and y ∈ F such that ∥Txnk
− y∥F → 0 . As F is a Banach lattice there exists a subsequence xnkm

such that

Txnkm

o−→ y in F , see [16, Theorem VII.2.1]. Because the order convergence on F is stable, Txnkm

r−→ y,

see [12, Theorem 84.3 ]. Hence, the operator T is sequentially relatively uniformly compact. 2

Proposition 4.10 Suppose that E is an AM -space with a strong norm unit and F is a Banach lattice. If
T : E → F is r -compact then it is compact.

Proof Let B be a norm bounded subset of E . Since E is an AM -space with a strong norm unit, the set B

is order bounded. Let xα be a net in B . As T : E → F is r -compact, there exists a subnet xαβ
and y ∈ F

such that Txαβ

r−→ y. Hence, Txαβ
−→ y in norm. It follows that the set T (B) is relatively compact in F .

Hence, the operator T : E → F is compact. 2

Example 4.11 There exists semicompact operators which are not relatively uniformly compact. Let K be an
infinite Hausdorff compact space. The identity operator I : C(K) → C(K) is semicompact but not compact.
Hence, it is not relatively uniformly compact.
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Example 4.12 There exists sequentially order compact operators which are not r -compact. Because ℓ∞ is an
atomic KB -space, the identity operator I : ℓ∞ → ℓ∞ is sequentially order compact but it is not r -compact.
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