
Turk J Math
(2021) 45: 919 – 928
© TÜBİTAK
doi:10.3906/mat-2012-11

Turkish Journal of Mathematics

http :// journa l s . tub i tak .gov . t r/math/

Research Article

New oscillation criteria for differential equations with sublinear and superlinear
neutral terms

Ali MUHIB1,2,∗, Elmetwally M. ELABBASY1, Osama MOAAZ1
1Department of Mathematics, Faculty of Science, Mansoura University, Mansoura, Egypt

2Department of Mathematics, Faculty of Education -Al-Nadirah, Ibb University, Ibb, Yemen

Received: 03.12.2020 • Accepted/Published Online: 16.02.2021 • Final Version: 26.03.2021

Abstract: The aim of this article is to establish some new oscillation criteria for the differential equation of even-order
of the form

(r (l) (y(n−1) (l))α)′ + f(l, x(τ(l))) = 0,

where y (l) = x (l) + p (l)xβ (σ1 (l)) + h (l)xδ (σ2 (l)) . By using Riccati transformations, we present new conditions for
oscillation of the studied equation. Furthermore, two illustrative examples showing applicability of the new results are
included.
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1. Introduction
In this work, we study the oscillatory properties of solutions of the even-order nonlinear differential equation
with sublinear and superlinear neutral terms of the form

(
r (l)

((
x (l) + p (l)xβ (σ1 (l)) + h (l)xδ (σ2 (l))

)(n−1)
)α)′

+ f(l, x(τ(l))) = 0, (1.1)

where l ≥ l0 , n is an even natural number. Through the work, we assume the following

(B1) α, β , and δ are ratios of odd natural numbers with 0 < β < 1 and δ ≥ 1;

(B2) r ∈ C ([l0,∞) ,R+) , r′ (l) ≥ 0, and

S (l, l0) :=

∫ l

l0

1

r1/α (ξ)
dξ → ∞ as l → ∞;

(B3) p, h ∈ C [l0,∞) , p (l) ≥ 0, and h (l) ≥ 0;

(B4) τ, σ1, σ2 ∈ C ([l0,∞) ,R) , τ (l) ≤ l, τ ′ > 0, σ1 (l) ≤ l, σ2 (l) ≤ l, and liml→∞ τ (l) = liml→∞ σ1 (l) =

liml→∞ σ2 (l) = ∞;

∗Correspondence: muhib39@yahoo.com
2010 AMS Mathematics Subject Classification: 34C10, 34K11

This work is licensed under a Creative Commons Attribution 4.0 International License.
919

https://orcid.org/0000-0003-3844-7820
https://orcid.org/0000-0002-9864-3615
https://orcid.org/0000-0003-3850-1022


MUHIB et al./Turk J Math

(B5) f ∈ C ([l0,∞)× R,R) and there exists a function q ∈ C ([l0,∞) , [0,∞)) such that |f (l, x)| ≥ q (l) |x|γ

where γ is a ratios of odd natural numbers.

To facilitate calculations, we will denote the corresponding function of the solution x by

y := x+ p ·
(
xβ ◦ σ1

)
+ h ·

(
xδ ◦ σ2

)
.

By a solution of (1.1), we mean a function x ∈ C ([lx,∞)) , lx ≥ l0, with y, r (l) (y′ (l))α ∈ C1 ([lx,∞)) , and
it satisfies (1.1) on [lx,∞) . We focus in our study on the solutions that satisfy sup {|x (l)| : l ≥ l0} > 0, for every
l ≥ lx . Such a solution of (1.1) is called oscillatory if it is neither eventually positive nor eventually negative;
otherwise, it is called nonoscillatory. The equation itself is termed oscillatory if all its solutions oscillate.

Differential equations with neutral delay have many applications including population dynamics, auto-
matic control, mixing liquids, and vibrating masses attached to an elastic bar; see Hale [6]. In recent decades,
there has been an increasing interest in studying the oscillation theory of solutions of differential equations
of different orders, see for example, [1–3, 8–16, 18, 19]. Most of these papers studied the neutral differential
equations with corresponding function of the form

z := x+ p · (x ◦ σ) .

Graef et al. [4] related the oscillatory properties of solutions of even-order differential equations with
unbounded neutral term of the form

z(n) (l) +

∫ b

a

q (l, ξ)xα (g (l, ξ)) dξ = 0,

where σ (l) ≥ l, g (l, ξ) ≤ l, and τ is strictly increasing. Graef et al. [5] studied the oscillation of even-order
sublinear neutral differential equation

(
x (l) + p (l)xβ (σ (l))

)(n)
+ q (l)xα (τ (l)) = 0,

where σ (l) ≤ l.

The purpose of the article is to study the oscillatory properties of solutions of (1.1). By using Riccati
transformations, we present new oscillation conditions for (1.1). Our results extend and complement the previous
related results in [4, 5]. Examples are provided to illustrate the importance of the new results.

2. Some preliminary lemmas
Next, we state some preliminary lemmas, which will be necessary in the proofs of our main results.

Lemma 2.1 [17] Let f ∈ Cn ([l0,∞) , (0,∞)) and f (n) (l) is of one sign for all large l . Then, there are a
lx ≥ l0 and a η ∈ [0, n] is an integer , with n+ η even for f (n) (l) ≥ 0 , or n+ η odd for f (n) (l) ≤ 0 such that

η > 0 implies f (k) (l) > 0 for l ≥ lx, k = 0, 1, ..., η − 1,

and
η ≤ n− 1 implies (−1)

η+k
f (k) (l) > 0 for l ≥ lx, k = η, η + 1, ..., n− 1.
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Lemma 2.2 [7] If A ≥ 0, B ≥ 0 and 0 < κ < 1, then

Aκ − κABκ−1 − (1− κ)Bκ ≤ 0.

Moreover, the equality is satisfied if and only if A = B .

Lemma 2.3 [17] Assume that y is a positive function and differentiable n times on [l1,∞) . If y(n) (l) ≤ 0

and y(n) (l) ̸= 0 on any interval [l∗,∞) , l∗ ≥ l0 and y(n−1) (l) ≥ 0 for all l ≥ ly ≥ l1, then there exist a
constant λ ∈ (0, 1) and a positive constant N such that

y′ (λl) ≥ Nln−2
∣∣∣y(n−1) (l)

∣∣∣ ,
for l ≥ ly .

Lemma 2.4 [20] Assume that K and E are real, E > 0 . Then

Kw − Ew(α+1)/α ≤ αα

(α+ 1)α+1

Kα+1

Eα
.

3. Main results
Now, we present the main theorems which give oscillation criteria for solutions of (1.1). To facilitate calculations,
we adopt the following notations:

φ (l) : = ϵγ
∫ ∞

l

q (u)Ω (u) du,

ϖ (l) : = αλNτn−2 (l) τ ′ (l) r−1/α (l)

and

Ω(l) =

{
kγ−α
1 if γ ≥ α;

kγ−α
3

(
ln−2

)γ−α
Sγ−α (l, l1) if γ < α,

where ϵ, λ ∈ (0, 1) , N, k1 , and k3 are positive real constants.

Theorem 3.1 Assume that
lim
l→∞

h (l)
(
ln−2S (l, l0)

)δ−1
= lim

l→∞
p (l) = 0. (3.1)

If

lim inf
l→∞

1

φ (l)

∫ ∞

l

ϖ (ξ)φ(α+1)/α (ξ) dξ >
α

(α+ 1)
(α+1)/α

, (3.2)

for some ϵ ∈ (0, 1) , k1, k2 > 0 and for all λ ∈ (0, 1) , N > 0 , then (1.1) is oscillatory.

Proof Assume that x is a nonoscillatory solution of equation (1.1). Hence, there exists a l1 ≥ l0 such that
x (l) > 0, x (τ (l)) > 0, x (σ1 (l)) > 0, and x (σ2 (l)) > 0 for l ≥ l1 . From (1.1), it follows that

(r (l) (y(n−1))α)′ ≤ −q (l)xγ(τ(l))), (3.3)

921



MUHIB et al./Turk J Math

for l ≥ l1 . Using Lemma 2.1 and taking into account the fact that r′ (l) ≥ 0 , we get that there exists a l2 ≥ l1

such that

y′ (l) > 0, y(n−1) (l) > 0,
(
r (l)

(
y(n−1) (l)

)α)′
≤ 0, and y(n) (l) ≤ 0, (3.4)

for l ≥ l2 . Since x (l) ≤ y (l) , we have, from the definition of y , that

x (l) = y (l)− p (l)xβ (σ1 (l))− h (l)xδ (σ2 (l))

≥ y (l)− p (l) yβ (l)− h (l) yδ (l)

= y (l)− h (l)
y (l)

y1−δ (l)
− p (l)

[
yβ (l)− y (l)

]
− p (l) y (l) . (3.5)

Using Lemma 2.2 with κ = β, A = y and B = β1/(1−β) , we obtain that

yβ (l)− y (l) ≤ (1− β)ββ/(1−β). (3.6)

Combining (3.6) and (3.5), we arrive at

x (l) ≥ y (l)

[
1− h (l)

y1−δ (l)
− p (l) (1− β)ββ/(1−β)

y (l)
− p (l)

]
. (3.7)

Since y (l) > 0 and y′ (l) > 0 on [l2,∞) , there exists a k1 > 0 such that

y (l) ≥ k1, for l ≥ l2, (3.8)

so
yγ−α (l) ≥ kγ−α

1 , for γ ≥ α. (3.9)

Since
(
r (l) (y(n−1) (l))α

)′ ≤ 0 , there exist a k2 > 0 and l3 ≥ l2 such that

r (l) (y(n−1) (l))α ≤ k2, for l ≥ l3. (3.10)

Integrating (3.10) from l3 to l for a total of n− 1 times, we have

y (l) ≤ k3l
n−2S (l, l3) , for l ≥ l3. (3.11)

Thus,

yγ−α (l) ≥ kγ−α
3

(
ln−2

)γ−α
Sγ−α (l, l3) , when γ < α. (3.12)

Therefore, combining (3.9) and (3.12), we arrive at

yγ−α (l) ≥ Ω(l) , (3.13)

In view of (3.8) and (3.11), inequality (3.7) becomes

x (l) ≥
[
1− h (l)

(
k3l

n−2S (l, l3)
)δ−1 − p (l)

(
(1− β)ββ/(1−β)

k1
+ 1

)]
y (l)

≥
[
1− k4

(
h (l)

(
ln−2S (l, l3)

)δ−1
+ p (l)

)]
y (l) , (3.14)
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where

k4 = max

(
kδ−1
3 ,

(1− β)ββ/(1−β)

k1
+ 1

)
.

From (3.1), for any ϵ ∈ (0, 1) there exists lϵ ≥ l3 such that

x (l) ≥ ϵy (l) for l ≥ lϵ,

which, with liml→∞ τ (l) = ∞ , gives

x (τ (l)) ≥ ϵy (τ (l)) for l ≥ l4 ≥ lϵ. (3.15)

Taking into account y(n−1) (l) y(n) (l) ≤ 0 , and using Lemma 2.3, we have that there exist λ ∈ (0, 1) and N > 0

such that
y′ (λl) ≥ Nln−2y(n−1) (l) . (3.16)

Now, we set

Ψ(l) =
r (l)

(
y(n−1) (l)

)α
yα (λτ (l))

. (3.17)

By differentiating Ψ and and using (3.3), we arrive at

Ψ′ (l) =

(
r (l)

(
y(n−1) (l)

)α)′
yα (λτ (l))

−
αr (l)

(
y(n−1) (l)

)α
y′ (λτ (l))λτ ′ (l)

yα+1 (λτ (l))

≤ −q (l)x
γ (τ (l))

yα (λτ (l))
−
αr (l)

(
y(n−1) (l)

)α
y′ (λτ (l))λτ ′ (l)

yα+1 (λτ (l))
,

which with (3.15) gives

Ψ′ (l) ≤ −q (l) ϵ
γyγ (τ (l))

yα (λτ (l))
−
αr (l)

(
y(n−1) (l)

)α
y′ (λτ (l))λτ ′ (l)

yα+1 (λτ (l))
. (3.18)

From (3.13) and (3.16), (3.18) becomes

Ψ′ (l) ≤ −q (l) ϵγyγ−α (τ (l))−
αNτn−2 (l)λτ ′ (l) r (l)

(
y(n−1) (l)

)α+1

yα+1 (λτ (l))

≤ −q (l) ϵγΩ(l)− αNτn−2 (l)λτ ′ (l)

r1/α (l)
Ψ(α+1)/α (l) . (3.19)

Integrating (3.19) from l to ∞ , and using the facts Ψ > 0 and Ψ′ < 0 , we get

−Ψ(l) ≤ −
∫ ∞

l

q (ξ) ϵγΩ(ξ) dξ −
∫ ∞

l

αNτn−2 (ξ)λτ ′ (ξ)

r1/α (ξ)
Ψ(α+1)/α (ξ) dξ.

Furthermore, we may write

Ψ(l)

φ (l)
≥ 1 +

1

φ (l)

∫ ∞

l

αNτn−2 (ξ)λτ ′ (ξ)

r1/α (ξ)
φ (ξ)

(α+1)/α

(
Ψ(ξ)

φ (ξ)

)(α+1)/α

dξ. (3.20)
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If we set κ = inf l≥l Ψ(l) /φ (l) , then obviously κ ≥ 1 . Hence, it follows from (3.2) and (3.20) that

κ ≥ 1 + α

(
κ

α+ 1

)1+1/α

.

Or, equivalent

κ

α+ 1
≥ 1

α+ 1
+

α

α+ 1

(
κ

α+ 1

)1+1/α

,

this contradicts with the acceptable value for κ ≥ 1 and α > 0 . Therefore, the proof is complete. 2

Corollary 3.2 Assume that (3.1) holds. If

∫ ∞

l0

q (l) dl = ∞, (3.21)

then (1.1) is oscillatory.

Proof Assume that x is a nonoscillatory solution of equation (1.1). Proceeding as in the proof of Theorem
3.1, we arrive at (3.19) for l ≥ l1 . It is easy to see that

(
αNτn−2 (l)λτ ′ (l)

)
Ψ(α+1)/α (l) /r1/α (l) > 0. Hence,

(3.19) reduces to
Ψ′ (l) ≤ −q (l) ϵγΩ(l) .

Integrating this inequality from l1 to l , and using (3.21), we get that Ψ(l) → −∞ as l → ∞ . However, this
contradicts the positivity of Ψ . Therefore, the proof is complete. 2

Define a sequence of functions {υn (l)}∞n=0 by and

υ0 (l) : = φ (l)

υn (l) : =

∫ ∞

l

ϖ (ξ) υ
(α+1)/α
n−1 (ξ) dξ + υ0 (l) , n = 1, 2, 3, .... (3.22)

We see that by induction υn (l) ≤ υn+1 (l) , n = 1, 2, 3, ... .

Lemma 3.3 Assume that x is an eventually positive solution of (1.1), υn (l) and Ψ(l) are defined as in
(3.22) and (3.17), respectively. Then υn (l) ≤ Ψ(l) , there exists a function υ ∈ C ([l0,∞) , (0,∞)) such that
liml→∞ υn (l) = υ (l) and

υ (l) =

∫ ∞

l

ϖ (ξ) υ(α+1)/α (ξ) dξ + υ0 (l) . (3.23)

Proof Assume that x is an eventually positive solution of (1.1). Proceeding as in the proof of Theorem 3.1,
we arrive at (3.19). Integrating (3.19) from l to ζ , we get

Ψ(ζ)−Ψ(l) ≤ −
∫ ζ

l

ϵγq (ξ)Ω (ξ) dξ −
∫ ζ

l

ϖ (ξ)Ψ(α+1)/α (ξ) dξ, (3.24)
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so

Ψ(ζ)−Ψ(l) ≥
∫ ζ

l

ϖ (ξ)Ψ(α+1)/α (ξ) dξ. (3.25)

If ∫ ∞

l

ϖ (ξ)Ψ(α+1)/α (ξ) dξ = ∞. (3.26)

then liml→∞ Ψ(l) = ∞ , which contradicts the fact that Ψ′ (l) < 0 . Therefore,∫ ∞

l

ϖ (ξ)Ψ(α+1)/α (ξ) dξ <∞. (3.27)

From (3.24) and (3.27), we have

Ψ(l) ≥ φ (l) +

∫ ∞

l

ϖ (ξ)Ψ(α+1)/α (ξ) dξ = υ0 (l) +

∫ ∞

l

ϖ (ξ)Ψ(α+1)/α (ξ) dξ,

that is
Ψ(l) ≥ φ (l) = υ0 (l) .

Next, by induction, we have that Ψ(l) ≥ υn (l) for l ≥ l0 , n = 1, 2, 3, ... . Since the sequence {υn (l)}∞n=0

monotone increasing and bounded above, we get that υn (l) converges to υ (l) . Letting n → ∞ in (3.22) and
using Lebesgue’s monotone convergence theorem, we arrive at (3.23). Hence, the proof is complete. 2

Theorem 3.4 Let υn (l) be defined as in (3.22). If there exist a l1 ≥ l0 and n ≥ 0 such that∫ ∞

l1

q (l)Ω (l) exp

(∫ l

l1

ϖ (ξ) υ1/αn (ξ) dξ

)
dl = ∞, (3.28)

for some ϵ ∈ (0, 1) , k1, k2 > 0 and for all λ ∈ (0, 1) , N > 0 , then (1.1) is oscillatory.

Proof Assume that x is an eventually positive solution of (1.1). Proceeding as in the proof of Theorem 3.1,
we arrive at (3.4). Using Lemma 3.3, we have that (3.23) holds. Thus,

υ′ (l) = −ϖ (l) υ(α+1)/α (l)− ϵγq (l)Ω (l) .

It follows from υn (l) ≤ υ (l) that

υ′ (l) ≤ −ϖ (l) υ1/αn (l) υ (l)− ϵγq (l)Ω (l) .

This implies, for l ≥ l1,

υ (l) ≤ exp

(
−
∫ l

l1

ϖ (ξ) υ1/αn (ξ) dξ

)(
υ (l1)−

∫ l

l1

ϵγq (ξ)Ω (ξ) exp

(∫ ξ

l1

ϖ (u) υ1/αn (u) du

)
dξ

)
;

thus, ∫ l

l1

ϵγq (ξ)Ω (ξ) exp

(∫ ξ

l1

ϖ (u) υ1/αn (u) du

)
dξ ≤ υ (l1) <∞,

which contradicts (3.28). Therefore, the proof is complete. 2
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Theorem 3.5 Assume that (3.1) holds. If there exist a function ψ ∈ C1 ([l0,∞) ,R+) such that

lim sup
l→∞

∫ l

l0

(
ψ (ξ) q (ξ) ϵγΩ(ξ)− 1

(α+ 1)
α+1

(ψ′ (ξ))
α+1

ϖα (ξ)

)
dξ = ∞. (3.29)

for some ϵ ∈ (0, 1) , k1, k2 > 0 and for all λ ∈ (0, 1) , N > 0 , then (1.1) is oscillatory.

Proof Assume that x is an eventually positive solution of (1.1). Proceeding as in the proof of Theorem 3.1,
we arrive at (3.19). Then,

q (l) ϵγΩ(l) ≤ −Ψ′ (l)−ϖ (l)Ψ(α+1)/α (l) . (3.30)

Multiplying inequality (3.30) by ψ (ξ) and integrating from l1 to l , we have

∫ l

l1

ψ (ξ) q (ξ) ϵγΩ(ξ) dξ ≤ −
∫ l

l1

ψ (ξ)ϖ (ξ)Ψ(α+1)/α (ξ) dξ −
∫ l

l1

ψ (ξ)Ψ′ (ξ) dξ

≤ −ψ (l)Ψ (l) + ψ (l1)Ψ (l1) +

∫ l

l1

ψ′ (ξ)Ψ (ξ) dξ −
∫ l

l1

ψ (ξ)ϖ (ξ)Ψ(α+1)/α (ξ) dξ.

Using Lemma 2.4 with K = ψ′ (l) , E = ψ (l)ϖ (l) and w = Ψ(l) , we have

∫ l

l1

(
ψ (ξ) q (ξ) ϵγΩ(ξ)− 1

(α+ 1)
α+1

(ψ′ (ξ))
α+1

ϖα (ξ)

)
dξ ≤ ψ (l1)Ψ (l1) <∞.

Taking the lim sup on both sides of the above inequality, we arrive at a contradiction with (3.29). Therefore,
the proof is complete. 2

Corollary 3.6 Assume that (3.1) holds. If there exist a function ψ ∈ C1 ([l0,∞) , R+) such that

lim sup
l→∞

∫ l

l0

ψ (ξ) q (ξ) ϵγΩ(ξ) dξ = ∞

and

lim sup
l→∞

∫ l

l0

(ψ′ (ξ))
α+1

ϖα (ξ)
dξ <∞,

then (1.1) is oscillatory.

4. Examples
In this section, we will show some applications of our main results.

Example 4.1 Let us consider the following equation:

((x (l) + 1

l
x1/3

(
l

5

)
+

1

1 + l9
x3
(
l

3

))′′′
)5
′

+
q0
l2
x5
(
l

4

)
= 0, (4.1)
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where l ≥ 1. Here, r (l) = 1, n = 4, p (l) = 1/l, h (l) = 1/
(
1 + l9

)
, q (l) = q0/l

2, q0 > 0, τ (l) = l/4,

σ1 (l) = l/5, σ2 (l) = l/3, α = 5, γ = 5, 0 < β = 1/3 < 1 and δ = 3 ≥ 1. By simple calculations, one can
deduce that

lim
l→∞

h (l)
(
ln−2S (l, l0)

)δ−1
= 0

and
lim
l→∞

p (l) = 0.

Now, by choosing ψ (l) = l, we have that

lim sup
l→∞

∫ l

l0

(
ψ (ξ) q (ξ) ϵγΩ(ξ)− 1

(α+ 1)
α+1

(ψ′ (ξ))
α+1

ϖα (ξ)

)
dξ

= lim sup
l→∞

∫ l

l0

ξ q0
ξ2
ϵ5 − 1

66
1(

Nξ (ξ/4)
2
λ 1

4

)5
 dξ = ∞

Then, using Theorem 3.5, equation (4.1) is oscillatory.

Example 4.2 Let us consider the following equation:l((x (l) + 1

l2
x1/5

(
l√
10

)
+

1

1 + l20
x21/3

(
l√
2

))′′′
)3
′

+
1

l5
x7
(

l√
5

)
= 0, (4.2)

where l ≥ 1. Here, r (l) = l, n = 4, p (l) = 1/l2, h (l) = 1/
(
1 + l20

)
, q (l) = 1/l5, τ (l) = l/

√
5, σ1 (l) = l/

√
10,

σ2 (l) = l/
√
2, α = 3, γ = 7, 0 < β = 1/5 < 1 and δ = 21/3 ≥ 1. By simple calculations, one can deduce that

lim
l→∞

h (l)
(
ln−2S (l, l0)

)δ−1
= 0

and
lim
l→∞

p (l) = 0.

Furthermore, we choose ψ (l) = l5, it is easy to verify that

lim sup
l→∞

∫ l

l0

ψ (ξ) q (ξ) ϵγΩ(ξ) dξ = lim sup
l→∞

∫ l

l0

ϵ2dξ = ∞

and

lim sup
l→∞

∫ l

l0

(ψ′ (ξ))
α+1

ϖα (ξ)
dξ = lim sup

l→∞

∫ l

l0

ξ
(
5ξ4
)4(

Nξ5
(
ξ/
√
5
)2
λ
(
1/
√
5
))3 dξ <∞,

where ϵ2 = ϵ7k41. Hence, by Corollary 3.6, the equation (4.2) is oscillatory.
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