iübitak

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/
Research Article

Turk J Math
(2021) 45: $955-960$
© TÜBİTAK
doi:10.3906/mat-2010-22

Some properties of second-order weak subdifferentials

Gonca İNCEOĞLU* ${ }^{*}$,
Department of Mathematics and Science Education, Faculty of Education, Anadolu University, Eskişehir, Turkey

Received: 06.10.2020 • Accepted/Published Online: 25.02.2021 • Final Version: 26.03 .2021

Abstract

This article deals with second-order weak subdifferential. Firstly, the concept of second-order weak subdifferential is defined. Next, some of its properties are investigated. The necessary and sufficient condition for a second-order weakly subdifferentiable function to have a global minimum has been proved. It has been proved that a second-order weakly subdifferentiable function is both lower semicontinuous and lower Lipschitz.

Key words: Second-order weak subgradient, second-order weak subdifferential, lower semicontinuity, lower Lipschitz function

1. Introduction

Let $\left(X,\|\cdot\|_{X}\right)$ be a real normed space and let X^{*} be the topological dual of X. Let $\left(x^{*}, c\right) \in X^{*} \times \mathbb{R}_{+}$, where \mathbb{R}_{+}is the set of nonnegative real numbers.

Definition 1.1 [11, 15] Let $F: X \rightarrow \mathbb{R} \cup\{\mp \infty\}$ be a function and let $\bar{x} \in X$ be given. The set

$$
\partial F(\bar{x})=\left\{x^{*} \in X:\left\langle x^{*}, x-\bar{x}\right\rangle \leq F(x)-F(\bar{x}), \text { for all } x \in X\right\}
$$

is called the subdifferential of F at $\bar{x} \in X$.
Definition 1.2 [3, 4, 11] Let $F: X \rightarrow \mathbb{R}$ be a single-valued function and $\bar{x} \in X$ be given, where $F(\bar{x})$ is finite. A pair $\left(x^{*}, c\right) \in X^{*} \times \mathbb{R}_{+}$is called the weak subgradient of F at \bar{x} if

$$
\begin{equation*}
F(x)-F(\bar{x}) \geq\left\langle x^{*}, x-\bar{x}\right\rangle-c\|x-\bar{x}\|, \text { for all } x \in X \tag{1.1}
\end{equation*}
$$

The set

$$
\begin{equation*}
\partial^{w} F(\bar{x})=\left\{\left(x^{*}, c\right) \in X^{*} \times \mathbb{R}_{+}: F(x)-F(\bar{x}) \geq\left\langle x^{*}, x-\bar{x}\right\rangle-c\|x-\bar{x}\|, \forall x \in X\right\} \tag{1.2}
\end{equation*}
$$

of all weak subgradients of F at \bar{x} is called the weak subdifferential of F at \bar{x}. If $\partial^{w} F(\bar{x}) \neq \emptyset$, then F is called weakly subdifferentiable at \bar{x}.

The concept of subgradient has an important place in convex and nonsmooth analysis. A nonconvex set has no supporting hyperplane at each boundary point. For this reason, most researches have generalized the concept of subgradient for nonconvex optimality problems $[6,7,16,17]$. The concept of weak subdifferential,

[^0]which is a generalization of the classical subdifferential, was first introduced by Azimov and Gasimov [3]. Kasımbeyli and İnceoğlu [11] examined the properties of weak subdifferentials. Kasımbeyli and Mammadov proposed relations between the directional derivatives, the weak subdifferentials, and the radial epiderivatives for nonconvex real-valued functions [12]. Kasımbeyli and Mammadov generalized the well-known necessary and sufficient optimality condition of nonsmooth convex optimization to the nonconvex case by using the notion of weak subdifferentials [13]. Cheraghi et al. presented the necessary and sufficient conditions for a weakly subdifferentiable function with global minimum [5]. In [9], Farajzadeh and Cheraghi investigated the relation between weak subdifferential and augmented normal cone. Meherrem and Polat proposed necessary optimality conditions by using the weak sunbdifferentials [14]. Anh introduced higher-order weak subdifferential and higher radial epiderivative concepts and investigated the relation between the higher-order weak subdifferential and higher-order radial epiderivative [2]. Motivated by the work in [2], we propose the second-order weak subdifferential and examine some important properties of the weak subdifferentials.

2. Second-order weak subdifferentials

In this section the second-order weak subdifferential concept was defined and some of its properties were investigated. The relationship between with lower Lipschitz function and second-order weak subdifferential was proved. Firstly, we introduce the second-order weak subdifferential and give an example.

Definition 2.1 Let $F: X \rightarrow \mathbb{R}$ be a single-valued function and $\bar{x} \in X$ be given, where $F(\bar{x})$ is finite. A pair $\left(x^{*}, c\right) \in X^{*} \times \mathbb{R}_{+}$is called the second-order weak subgradient of F at \bar{x} if

$$
\begin{equation*}
F(x)-F(\bar{x}) \geq\left\langle x^{*}, x-\bar{x}\right\rangle^{2}-c\|x-\bar{x}\|^{2}, \text { for all } x \in X \tag{2.1}
\end{equation*}
$$

The set

$$
\begin{equation*}
\partial_{w}^{2} F(\bar{x})=\left\{\left(x^{*}, c\right) \in X^{*} \times \mathbb{R}_{+}: F(x)-F(\bar{x}) \geq\left\langle x^{*}, x-\bar{x}\right\rangle^{2}-c\|x-\bar{x}\|^{2}, \forall x \in X\right\} \tag{2.2}
\end{equation*}
$$

of all second-order weak subgradients of F at \bar{x} is called the second-order weak subdifferential of F at \bar{x}. If $\partial_{w}^{2} F(\bar{x}) \neq \emptyset$, then F is called second-order weakly subdifferentiable at \bar{x}.

Example 2.2 Let $F: \mathbb{R} \rightarrow \mathbb{R}$ and $F(x)=x^{2}$. Then it follows from definition of the second-order weakly subdifferentiable that

$$
(a, c) \in \partial_{w}^{2} F(0) \Leftrightarrow(a, c) \in \mathbb{R} \times \mathbb{R}_{+} \text {and } x^{2} \geq a^{2} x^{2}-c x^{2}, \text { for all } x \in \mathbb{R}
$$

Hence, the second-order weak subdifferential can be written as

$$
\partial_{w}^{2} F(0)=\left\{(a, c) \in \mathbb{R} \times \mathbb{R}_{+}: a^{2} \leq c+1\right\}
$$

The following theorem is a version of Theorem 3 given in [11], formulated for the second-order weak subdifferential.

Theorem 2.3 Let the second-order weak subdifferential $\partial_{w}^{2} F(\bar{x})$ of the function $F: X \rightarrow \mathbb{R}$ be not empty. Then the set $\partial_{w}^{2} F(\bar{x})$ is closed and convex.

Proof Firstly, we show that $\partial_{w}^{2} F(\bar{x})$ is closed. Let $\left\{\left(x_{n}^{*}, c_{n}\right)\right\} \subset \partial_{w}^{2} F(\bar{x})$ and let $\left(x_{n}^{*}, c_{n}\right) \rightarrow\left(x^{*}, c\right)$. We have to prove that $\left(x^{*}, c\right) \in \partial_{w}^{2} F(\bar{x})$. Suppose to the contrary that $\left(x^{*}, c\right) \notin \partial_{w}^{2} F(\bar{x})$. Then

$$
\begin{equation*}
F(x)-F(\bar{x}) \leq-c\|x-\bar{x}\|^{2}+\left\langle x-\bar{x}, x^{*}\right\rangle^{2}, \text { for some } x \in X \tag{2.3}
\end{equation*}
$$

and by the inclusion $\left\{\left(x_{n}^{*}, c_{n}\right)\right\} \subset \partial_{w}^{2} F(\bar{x})$,

$$
\begin{equation*}
F(x)-F(\bar{x}) \geq-c_{n}\|x-\bar{x}\|^{2}+\left\langle x-\bar{x}, x_{n}^{*}\right\rangle^{2}, \quad \text { for all } x \in X \tag{2.4}
\end{equation*}
$$

In inequality (2.4) by letting to the limit as $n \rightarrow \infty$, we obtain

$$
\begin{equation*}
F(x)-F(\bar{x}) \geq-c\|x-\bar{x}\|^{2}+\left\langle x-\bar{x}, x^{*}\right\rangle^{2}, \quad \text { for all } x \in X \tag{2.5}
\end{equation*}
$$

However, inequality (2.5) contradicts with inequality (2.3).
Now we prove the convexity condition. For $\left(x_{1}^{*}, c_{1}\right) \in \partial_{w}^{2} F(\bar{x}),\left(x_{2}^{*}, c_{2}\right) \in \partial_{w}^{2} F(\bar{x})$ and $\lambda \in[0,1]$, we have

$$
\begin{equation*}
F(x)-F(\bar{x}) \geq-c_{1}\|x-\bar{x}\|^{2}+\left\langle x-\bar{x}, x_{1}^{*}\right\rangle^{2}, \forall x \in X \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
F(x)-F(\bar{x}) \geq-c_{2}\|x-\bar{x}\|^{2}+\left\langle x-\bar{x}, x_{2}^{*}\right\rangle^{2}, \forall x \in X \tag{2.7}
\end{equation*}
$$

Since $\lambda \geq \lambda^{2}$ and $(1-\lambda) \geq(1-\lambda)^{2}$, we have from the inequalities (2.6) and (2.7)

$$
\begin{align*}
\lambda(F(x)-F(\bar{x})) & \geq-c_{1} \lambda\|x-\bar{x}\|^{2}+\lambda\left\langle x-\bar{x}, x_{1}^{*}\right\rangle^{2}, \forall x \in X \\
& \geq-c_{1} \lambda\|x-\bar{x}\|^{2}+\lambda^{2}\left\langle x-\bar{x}, x_{1}^{*}\right\rangle^{2}, \forall x \in X \\
& =-c_{1} \lambda\|x-\bar{x}\|^{2}+\left\langle x-\bar{x}, \lambda x_{1}^{*}\right\rangle^{2}, \forall x \in X \tag{2.8}
\end{align*}
$$

and

$$
\begin{align*}
(1-\lambda)(F(x)-F(\bar{x})) & \geq-c_{2}(1-\lambda)\|x-\bar{x}\|^{2}+(1-\lambda)\left\langle x-\bar{x}, x_{2}^{*}\right\rangle^{2}, \forall x \in X \\
& \geq-c_{2}(1-\lambda)\|x-\bar{x}\|^{2}+(1-\lambda)^{2}\left\langle x-\bar{x}, x_{2}^{*}\right\rangle^{2}, \forall x \in X \\
& =-c_{2}(1-\lambda)\|x-\bar{x}\|^{2}+\left\langle x-\bar{x},(1-\lambda) x_{2}^{*}\right\rangle^{2}, \forall x \in X \tag{2.9}
\end{align*}
$$

By collecting side by side the inequalities (2.8) and (2.9), we obtain

$$
F(x)-F(\bar{x}) \geq\left(-c_{1} \lambda+c_{2}(1-\lambda)\right)\|x-\bar{x}\|^{2}+\left\langle x-\bar{x}, \lambda x_{1}^{*}+(1-\lambda) x_{2}^{*}\right\rangle^{2}, \forall x \in X
$$

It follows from that

$$
\lambda\left(x_{1}^{*}, c_{1}\right)+(1-\lambda)\left(x_{2}^{*}, c_{2}\right) \in \partial_{w}^{2} F(\bar{x})
$$

This completes the proof.

Proposition 2.4 Let $F, G: X \rightarrow \mathbb{R}$ and $F+G: X \rightarrow \mathbb{R}$ single-valued functions being second-order weakly subdifferentiable at $\bar{x} \in X$. Then $\partial_{w}^{2} F(\bar{x})+\partial_{w}^{2} G(\bar{x}) \subset \partial_{w}^{2}(F+G)(\bar{x})$.

Proof Take arbitrary $\left(x_{1}^{*}, c_{1}\right) \in \partial_{w}^{2} F(\bar{x}),\left(x_{2}^{*}, c_{2}\right) \in \partial_{w}^{2} G(\bar{x})$. Since $\left(x_{1}^{*}, c_{1}\right) \in \partial_{w}^{2} F(\bar{x}),\left(x_{2}^{*}, c_{2}\right) \in \partial_{w}^{2} G(\bar{x})$, we have, by the definition of the second-order weak subgradient,

$$
\begin{equation*}
F(x)-F(\bar{x}) \geq-c_{1}\|x-\bar{x}\|^{2}+\left\langle x-\bar{x}, x_{1}^{*}\right\rangle^{2}, \forall x \in X \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
G(x)-G(\bar{x}) \geq-c_{2}\|x-\bar{x}\|^{2}+\left\langle x-\bar{x}, x_{2}^{*}\right\rangle^{2}, \forall x \in X \tag{2.11}
\end{equation*}
$$

By collecting side by side inequalities (2.10) and (2.11), we obtain

$$
\begin{aligned}
& (F(x)+G(x))-(F(\bar{x})-G(\bar{x})) \geq-c_{1}\|x-\bar{x}\|^{2}+\left\langle x-\bar{x}, x_{1}^{*}\right\rangle^{2}-c_{2}\|x-\bar{x}\|^{2}+\left\langle x-\bar{x}, x_{2}^{*}\right\rangle^{2}, \forall x \in X \\
& (F(x)+G(x))-(F(\bar{x})-G(\bar{x})) \geq-\left(c_{1}+c_{2}\right)\|x-\bar{x}\|^{2}+\left\langle x-\bar{x}, x_{1}^{*}+x_{2}^{*}\right\rangle^{2}, \forall x \in X
\end{aligned}
$$

Thus, $\left(x_{1}^{*}+x_{2}^{*}, c_{1}+c_{2}\right) \in \partial_{w}^{2}(F+G)(\bar{x})$, and then we obtain $\partial_{w}^{2} F(\bar{x})+\partial_{w}^{2} G(\bar{x}) \subset \partial_{w}^{2}(F+G)(\bar{x})$.
If F is second-order weakly subdifferentiable and second-order positively homogeneous function, the following equality conditions hold.

Proposition 2.5 Let $F: X \rightarrow(-\infty,+\infty]$ be second-order weakly subdifferentiable at $\bar{x} \in X$ and $\alpha \bar{x} \in X$ and second-order positively homogeneous function. Then $\partial_{w}^{2} F(\alpha \bar{x})=\partial_{w}^{2} F(\bar{x})$.

Proof Since $F: X \rightarrow \mathbb{R}$ is second-order weakly subdifferentiable at $\bar{x} \in X$ and $\alpha \bar{x} \in X$ and second-order positively homogeneous function

$$
\begin{array}{rlc}
\left(x^{*}, c\right) \in \partial_{w}^{2} F(\alpha \bar{x}) & \Leftrightarrow & F(\alpha x)-F(\alpha \bar{x}) \geq-c\|\alpha x-\alpha \bar{x}\|^{2}+\left\langle\alpha x-\alpha \bar{x}, x^{*}\right\rangle^{2}, \forall x \in X \\
& \Leftrightarrow & \alpha^{2}(F(x)-F(\bar{x})) \geq \alpha^{2}\left(-c\|x-\bar{x}\|^{2}+\left\langle x-\bar{x}, x^{*}\right\rangle^{2}\right), \forall x \in X \\
& \Leftrightarrow & \left(x^{*}, c\right) \in \partial_{w}^{2}(F)(\bar{x})
\end{array}
$$

This proves the proposition.

Proposition 2.6 Let $F: X \rightarrow(-\infty,+\infty$] be second-order weakly subdifferentiable at $\bar{x} \in X$. F has a global minimum at $\bar{x} \in X$ if and only if $(0, c) \in \partial_{w}^{2} F(\bar{x})$, for all $c \geq 0$.

Proof F has a global minimum at $\bar{x} \in X$

$$
\begin{aligned}
& \Leftrightarrow \quad F(x) \geq F(\bar{x}), \forall x \in X \\
& \Leftrightarrow \quad F(x)-F(\bar{x}) \geq 0, \forall x \in X \\
& \Leftrightarrow \quad F(x) \geq F(\bar{x})-c\|x-\bar{x}\|^{2}+\langle x-\bar{x}, 0\rangle^{2}, \forall x \in X \\
& \Leftrightarrow \quad(0, c) \in \partial_{w}^{2} F(\bar{x}) .
\end{aligned}
$$

Proposition 2.7 Let $F, G: X \rightarrow \mathbb{R}$ and F be second-order weakly subdifferentiable at $\bar{x} \in X, G-F$ attains a global minimum at \bar{x}. Then G is second-order weakly subdifferentiable at $\bar{x} \in X$ and $\partial_{w}^{2} F(\bar{x}) \subset \partial_{w}^{2} G(\bar{x})$.

Proof Since F is second-order weakly subdifferentiable at $\bar{x} \in X$,

$$
\begin{equation*}
F(x)-F(\bar{x}) \geq-c\|x-\bar{x}\|^{2}+\left\langle x-\bar{x}, x^{*}\right\rangle^{2}, \forall x \in X \tag{2.12}
\end{equation*}
$$

By the assumption, we have

$$
\begin{align*}
(G-F)(x) & \geq(G-F)(\bar{x}), \forall x \in X \tag{2.13}\\
G(x)-G(\bar{x}) & \geq F(x)-F(\bar{x}), \forall x \in X \tag{2.14}
\end{align*}
$$

By inequalities (2.12) and (2.14), we have

$$
G(x)-G(\bar{x}) \geq-c\|x-\bar{x}\|^{2}+\left\langle x-\bar{x}, x^{*}\right\rangle^{2}, \forall x \in X
$$

Hence, G is second-order weakly subdifferentiable at $\bar{x} \in X$ and

$$
\partial_{w}^{2} F(\bar{x}) \subset \partial_{w}^{2} G(\bar{x})
$$

Now, we recall the definition of lower Lipschitz function.
Definition 2.8 [4, 11] A function $F: X \rightarrow(-\infty,+\infty]$ is called lower locally Lipschitz at $\bar{x} \in X$, if there exist a nonnegative number L (Lipschitz constant) and a neighborhood $\mathcal{N}(\bar{x})$ of \bar{x} such that

$$
\begin{equation*}
F(x)-F(\bar{x}) \geq-L\|x-\bar{x}\|, \quad \text { for all } x \in \mathcal{N}(\bar{x}) \tag{2.15}
\end{equation*}
$$

If the above inequality holds true for all $x \in X$ then F is called lower Lipschitz at \bar{x} with the Lipschitz constant L 。

The following theorem describes the relationship between the function a and the second-order weak subdifferentiable.

Theorem 2.9 Let $F: X \rightarrow(-\infty,+\infty]$ function and let $\bar{x} \in X$ be given where $F(\bar{x})$ is finite. If F is second-order weakly subdifferentiable at \bar{x}, then F is lower Lipschitz at \bar{x}.

Proof Let F be lower Lipschitz at \bar{x} with the Lipschitz constant c. By the definition of Lipschitz function, we have

$$
F(x)-F(\bar{x}) \geq-c\|x-\bar{x}\| \geq-c\|x-\bar{x}\|^{2}+\langle 0, x-\bar{x}\rangle^{2}, \text { for all } x \in X
$$

Before giving the relationship between the lower semicontinuous function and the second-order weakly differentiability, we recall the definition of the semicontinuous function.

Definition 2.10 [11, 15] A function $F: X \rightarrow(-\infty,+\infty$] is lower semicontinuous at $\bar{x} \in X$ if

$$
\lim _{x \rightarrow \bar{x}} \inf F(x) \geq F(\bar{x})
$$

Proposition 2.11 Let $F: X \rightarrow(-\infty,+\infty]$ function be second-order weak subdifferentiable at $\bar{x} \in X$. Then F is lower semicontinuous at $\bar{x} \in X$.

Proof Since $F: X \rightarrow(-\infty,+\infty]$ function is second-order weak subdifferentiable at $\bar{x} \in X, \partial_{w}^{2} F \neq \emptyset$. Then there exists the pair $\left(x^{*}, c\right) \in X^{*} \times \mathbb{R}$ such that

$$
\begin{equation*}
F(x)-F(\bar{x}) \geq-c\|x-\bar{x}\|^{2}+\left\langle x-\bar{x}, x^{*}\right\rangle^{2}, \quad \text { for all } x \in X \tag{2.16}
\end{equation*}
$$

In both sides of inequality (2.16) by letting to the limit inferior as $x \rightarrow \bar{x}$, we obtain

$$
\lim _{x \rightarrow \bar{x}} \inf F(x) \geq F(\bar{x})
$$

This completes the proof.

References

[1] Aubin JP, Ekeland I. Applied Nonlinear Analysis. New York, NY, USA: Wiley-Interscience, John Wiley\& Sons, 1984.
[2] Anh NLH. Mixed type duality for set-valued optimization problems via higher-order radial epiderivatives. Numerical Functional Analysis and Optimization 2016; 37(7): 823-838. doi: 10.1080/01630563.2016.1179202
[3] Azimov AY, Gasimov RN. On weak conjugacy, weak subdifferentials and duality with zero gap in nonconvex optimization. International Journal of Applied Mathematics 1999; 4: 171-192.
[4] Azimov AY, Gasimov RN. Stability and duality of nonconvex problems via augmented Lagrangian. Cybernetics and Systems Analysis 2002; 38: 412-421. doi: 10.1023/A:1020316811823
[5] Cheraghi P, Farajzadeh AP, Milovanovic GV. Some notes on weak subdifferential. Filomat, 2017; 31(11): 3407-3420. doi: 10.2298/FIL1711407C
[6] Clarke FH. A new approach to Lagrange multipliers. Mathematicals of Operations Research 1976; 1: 165-174.
[7] Clarke FH. Optimization and Nonsmooth Analysis. New York, NY, USA: Wiley-İnterscience, 1983.
[8] Ekeland I, Temam R. Convex Analysis and Variational Problems. Amsterdam, the Netherlands: Elsevier North Holland, 1976.
[9] Farajzadeh AP, Cheraghi P. On optimality conditions via weak subdifferential and augmented normal cone. Iranian Journal of Operations Research 2018; 9(2): 15-30.
[10] Kasımbeyli R N. Radial epiderivatives and set valued optimization. Optimization 2009; 58(5): 519-532. doi: 10.1080/02331930902928310
[11] Kasımbeyli R, İnceoğlu G. The properties of the weak subdifferentials. Gazi University Journal of Science 2010; 23: 49-52.
[12] Kasimbeyli R, Mammadov M. On weak subdifferentials, directional derivatives and radial epiderivatives for nonconvex functions. SIAM Journal on Optimization 2009; 20(2): 841-855.
[13] Kasimbeyli R, Mammadov M. Optimality conditions in nonconvex optimization via weak subdifferentials. Nonlinear Analysis: Theory, Methods and Applications 2011; 74,(7): 2534-2547. doi: 10.1016/j.na.12.008
[14] Meherrem ŞF, Polat R. Weak subdifferential in nonsmooth analysis and optimization. Journal of Applied Mathematics 2011; 1-10. doi: 10.1155/2011/204613
[15] Rockafellar RT. Convex Analysis. Princeton, NY, USA: Princeton University Press, 1970.
[16] Rockafellar RT. Proximal subgradients, marginal values, and augmented Lagrangians in nonconvex optimization. Mathematics of Operations Research 1981; 6(3): 424-436. doi: 10.1287/moor.6.3.424
[17] Rockafellar RT. Lagrange multipliers and optimality. SIAM Review 1993; 35(2): 183-238.

[^0]: *Correspondence: gyildiri@anadolu.edu.tr
 2010 AMS Mathematics Subject Classification: Primary54C60;Secondary26E25; 47N10, 54H25.

