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Abstract: This article deals with second-order weak subdifferential. Firstly, the concept of second-order weak subdiffer-
ential is defined. Next, some of its properties are investigated. The necessary and sufficient condition for a second-order
weakly subdifferentiable function to have a global minimum has been proved. It has been proved that a second-order
weakly subdifferentiable function is both lower semicontinuous and lower Lipschitz.
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1. Introduction
Let (X, ∥.∥X) be a real normed space and let X∗ be the topological dual of X. Let (x∗, c) ∈ X∗ × R+ , where
R+ is the set of nonnegative real numbers.

Definition 1.1 [11, 15] Let F : X → R ∪ {+∞} be a function and let x̄ ∈ X be given. The set

∂F (x̄) = {x∗ ∈ X : ⟨x∗, x− x̄⟩ ≤ F (x)− F (x̄) , for all x ∈ X}

is called the subdifferential of F at x̄ ∈ X.

Definition 1.2 [3, 4, 11] Let F : X → R be a single-valued function and x̄ ∈ X be given, where F (x̄) is
finite. A pair (x∗, c) ∈ X∗ × R+ is called the weak subgradient of F at x̄ if

F (x)− F (x̄) ≥ ⟨x∗, x− x̄⟩ − c ∥x− x̄∥ , for all x ∈ X. (1.1)

The set
∂wF (x̄) =

{
(x∗, c) ∈ X∗ × R+ : F (x)− F (x̄) ≥ ⟨x∗, x− x̄⟩ − c ∥x− x̄∥ ,∀x ∈ X

}
(1.2)

of all weak subgradients of F at x̄ is called the weak subdifferential of F at x̄. If ∂wF (x̄) ̸= ∅, then F is called
weakly subdifferentiable at x̄ .

The concept of subgradient has an important place in convex and nonsmooth analysis. A nonconvex set
has no supporting hyperplane at each boundary point. For this reason, most researches have generalized the
concept of subgradient for nonconvex optimality problems [6, 7, 16, 17]. The concept of weak subdifferential,
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which is a generalization of the classical subdifferential, was first introduced by Azimov and Gasimov [3].
Kasımbeyli and İnceoğlu [11] examined the properties of weak subdifferentials. Kasımbeyli and Mammadov
proposed relations between the directional derivatives, the weak subdifferentials, and the radial epiderivatives
for nonconvex real-valued functions [12]. Kasımbeyli and Mammadov generalized the well-known necessary and
sufficient optimality condition of nonsmooth convex optimization to the nonconvex case by using the notion
of weak subdifferentials [13]. Cheraghi et al. presented the necessary and sufficient conditions for a weakly
subdifferentiable function with global minimum [5]. In [9], Farajzadeh and Cheraghi investigated the relation
between weak subdifferential and augmented normal cone. Meherrem and Polat proposed necessary optimality
conditions by using the weak sunbdifferentials [14]. Anh introduced higher-order weak subdifferential and
higher radial epiderivative concepts and investigated the relation between the higher-order weak subdifferential
and higher-order radial epiderivative [2]. Motivated by the work in [2], we propose the second-order weak
subdifferential and examine some important properties of the weak subdifferentials.

2. Second-order weak subdifferentials
In this section the second-order weak subdifferential concept was defined and some of its properties were
investigated. The relationship between with lower Lipschitz function and second-order weak subdifferential
was proved. Firstly, we introduce the second-order weak subdifferential and give an example.

Definition 2.1 Let F : X → R be a single-valued function and x̄ ∈ X be given, where F (x̄) is finite. A pair
(x∗, c) ∈ X∗ × R+ is called the second-order weak subgradient of F at x̄ if

F (x)− F (x̄) ≥ ⟨x∗, x− x̄⟩2 − c ∥x− x̄∥2 , for all x ∈ X. (2.1)

The set

∂2
wF (x̄) =

{
(x∗, c) ∈ X∗ × R+ : F (x)− F (x̄) ≥ ⟨x∗, x− x̄⟩2 − c ∥x− x̄∥2 ,∀x ∈ X

}
(2.2)

of all second-order weak subgradients of F at x̄ is called the second-order weak subdifferential of F at x̄. If
∂2
wF (x̄) ̸= ∅, then F is called second-order weakly subdifferentiable at x̄ .

Example 2.2 Let F : R → R and F (x) = x2 . Then it follows from definition of the second-order weakly
subdifferentiable that

(a, c) ∈ ∂2
wF (0) ⇔ (a, c) ∈ R× R+and x2 ≥ a2x2 − cx2, for all x ∈ R.

Hence, the second-order weak subdifferential can be written as

∂2
wF (0) =

{
(a, c) ∈ R× R+ : a2 ≤ c+ 1

}

The following theorem is a version of Theorem 3 given in [11], formulated for the second-order weak
subdifferential.

Theorem 2.3 Let the second-order weak subdifferential ∂2
wF (x̄) of the function F : X → R be not empty.

Then the set ∂2
wF (x̄) is closed and convex.
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Proof Firstly, we show that ∂2
wF (x̄) is closed. Let {(x∗

n, cn)} ⊂ ∂2
wF (x̄) and let (x∗

n, cn) → (x∗, c) . We have
to prove that (x∗, c) ∈ ∂2

wF (x̄) . Suppose to the contrary that (x∗, c) /∈ ∂2
wF (x̄) . Then

F (x)− F (x̄) ≤ −c ∥x− x̄∥2 + ⟨x− x̄, x∗⟩2 , for some x ∈ X (2.3)

and by the inclusion {(x∗
n, cn)} ⊂ ∂2

wF (x̄) ,

F (x)− F (x̄) ≥ −cn ∥x− x̄∥2 + ⟨x− x̄, x∗
n⟩

2
, for all x ∈ X. (2.4)

In inequality (2.4) by letting to the limit as n → ∞, we obtain

F (x)− F (x̄) ≥ −c ∥x− x̄∥2 + ⟨x− x̄, x∗⟩2 , for all x ∈ X. (2.5)

However, inequality (2.5) contradicts with inequality (2.3) .
Now we prove the convexity condition. For (x∗

1, c1) ∈ ∂2
wF (x̄) , (x∗

2, c2) ∈ ∂2
wF (x̄) and λ ∈ [0, 1] , we

have
F (x)− F (x̄) ≥ −c1 ∥x− x̄∥2 + ⟨x− x̄, x∗

1⟩
2
, ∀x ∈ X (2.6)

and
F (x)− F (x̄) ≥ −c2 ∥x− x̄∥2 + ⟨x− x̄, x∗

2⟩
2
, ∀x ∈ X (2.7)

Since λ ≥ λ2 and (1− λ) ≥ (1− λ)
2 , we have from the inequalities (2.6) and (2.7)

λ (F (x)− F (x̄)) ≥ −c1λ ∥x− x̄∥2 + λ ⟨x− x̄, x∗
1⟩

2
, ∀x ∈ X

≥ −c1λ ∥x− x̄∥2 + λ2 ⟨x− x̄, x∗
1⟩

2
, ∀x ∈ X

= −c1λ ∥x− x̄∥2 + ⟨x− x̄, λx∗
1⟩

2
, ∀x ∈ X (2.8)

and

(1− λ) (F (x)− F (x̄)) ≥ −c2 (1− λ) ∥x− x̄∥2 + (1− λ) ⟨x− x̄, x∗
2⟩

2
, ∀x ∈ X

≥ −c2 (1− λ) ∥x− x̄∥2 + (1− λ)
2 ⟨x− x̄, x∗

2⟩
2
,∀x ∈ X

= −c2 (1− λ) ∥x− x̄∥2 + ⟨x− x̄, (1− λ)x∗
2⟩

2
,∀x ∈ X (2.9)

By collecting side by side the inequalities (2.8) and (2.9) , we obtain

F (x)− F (x̄) ≥ (−c1λ+ c2 (1− λ)) ∥x− x̄∥2 + ⟨x− x̄, λx∗
1 + (1− λ)x∗

2⟩
2
, ∀x ∈ X.

It follows from that
λ (x∗

1, c1) + (1− λ) (x∗
2, c2) ∈ ∂2

wF (x̄)

This completes the proof. 2

Proposition 2.4 Let F,G : X → R and F + G : X → R single-valued functions being second-order weakly
subdifferentiable at x̄ ∈ X . Then ∂2

wF (x̄) + ∂2
wG (x̄) ⊂ ∂2

w (F +G) (x̄) .
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Proof Take arbitrary (x∗
1, c1) ∈ ∂2

wF (x̄) , (x∗
2, c2) ∈ ∂2

wG (x̄) . Since (x∗
1, c1) ∈ ∂2

wF (x̄) , (x∗
2, c2) ∈ ∂2

wG (x̄) ,
we have, by the definition of the second-order weak subgradient,

F (x)− F (x̄) ≥ −c1 ∥x− x̄∥2 + ⟨x− x̄, x∗
1⟩

2
, ∀x ∈ X (2.10)

and
G (x)−G (x̄) ≥ −c2 ∥x− x̄∥2 + ⟨x− x̄, x∗

2⟩
2
, ∀x ∈ X (2.11)

By collecting side by side inequalities (2.10) and (2.11) , we obtain

(F (x) +G (x))− (F (x̄)−G (x̄)) ≥ −c1 ∥x− x̄∥2 + ⟨x− x̄, x∗
1⟩

2 − c2 ∥x− x̄∥2 + ⟨x− x̄, x∗
2⟩

2
, ∀x ∈ X

(F (x) +G (x))− (F (x̄)−G (x̄)) ≥ − (c1 + c2) ∥x− x̄∥2 + ⟨x− x̄, x∗
1 + x∗

2⟩
2
, ∀x ∈ X

Thus, (x∗
1 + x∗

2, c1 + c2) ∈ ∂2
w (F +G) (x̄) , and then we obtain ∂2

wF (x̄) + ∂2
wG (x̄) ⊂ ∂2

w (F +G) (x̄) . 2

If F is second-order weakly subdifferentiable and second-order positively homogeneous function, the
following equality conditions hold.

Proposition 2.5 Let F : X → (−∞,+∞] be second-order weakly subdifferentiable at x̄ ∈ X and αx̄ ∈ X and
second-order positively homogeneous function. Then ∂2

wF (αx̄) = ∂2
wF (x̄) .

Proof Since F : X → R is second-order weakly subdifferentiable at x̄ ∈ X and αx̄ ∈ X and second-order
positively homogeneous function

(x∗, c) ∈ ∂2
wF (αx̄) ⇔ F (αx)− F (αx̄) ≥ −c ∥αx− αx̄∥2 + ⟨αx− αx̄, x∗⟩2 , ∀x ∈ X

⇔ α2 (F (x)− F (x̄)) ≥ α2
(
−c ∥x− x̄∥2 + ⟨x− x̄, x∗⟩2

)
, ∀x ∈ X

⇔ (x∗, c) ∈ ∂2
w (F ) (x̄)

This proves the proposition. 2

Proposition 2.6 Let F : X → (−∞,+∞] be second-order weakly subdifferentiable at x̄ ∈ X . F has a global
minimum at x̄ ∈ X if and only if (0, c) ∈ ∂2

wF (x̄) , for all c ≥ 0 .

Proof F has a global minimum at x̄ ∈ X

⇔ F (x) ≥ F (x̄) , ∀x ∈ X

⇔ F (x)− F (x̄) ≥ 0, ∀x ∈ X

⇔ F (x) ≥ F (x̄)− c ∥x− x̄∥2 + ⟨x− x̄, 0⟩2 , ∀x ∈ X

⇔ (0, c) ∈ ∂2
wF (x̄) .

2

Proposition 2.7 Let F,G : X → R and F be second-order weakly subdifferentiable at x̄ ∈ X , G− F attains
a global minimum at x̄ . Then G is second-order weakly subdifferentiable at x̄ ∈ X and ∂2

wF (x̄) ⊂ ∂2
wG (x̄) .
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Proof Since F is second-order weakly subdifferentiable at x̄ ∈ X ,

F (x)− F (x̄) ≥ −c ∥x− x̄∥2 + ⟨x− x̄, x∗⟩2 , ∀x ∈ X. (2.12)

By the assumption, we have

(G− F ) (x) ≥ (G− F ) (x̄) , ∀x ∈ X (2.13)

G (x)−G (x̄) ≥ F (x)− F (x̄) ,∀x ∈ X. (2.14)

By inequalities (2.12) and (2.14) , we have

G (x)−G (x̄) ≥ −c ∥x− x̄∥2 + ⟨x− x̄, x∗⟩2 , ∀x ∈ X

Hence, G is second-order weakly subdifferentiable at x̄ ∈ X and

∂2
wF (x̄) ⊂ ∂2

wG (x̄) .

2

Now, we recall the definition of lower Lipschitz function.

Definition 2.8 [4, 11] A function F : X → (−∞,+∞] is called lower locally Lipschitz at x̄ ∈ X, if there exist
a nonnegative number L ( Lipschitz constant ) and a neighborhood N (x̄) of x̄ such that

F (x)− F (x̄) ≥ −L ∥x− x̄∥ , for all x ∈ N (x̄) . (2.15)

If the above inequality holds true for all x ∈ X then F is called lower Lipschitz at x̄ with the Lipschitz constant
L .

The following theorem describes the relationship between the function a and the second-order weak
subdifferentiable.

Theorem 2.9 Let F : X → (−∞,+∞] function and let x̄ ∈ X be given where F (x̄) is finite. If F is
second-order weakly subdifferentiable at x̄ , then F is lower Lipschitz at x̄ .

Proof Let F be lower Lipschitz at x̄ with the Lipschitz constant c . By the definition of Lipschitz function,
we have

F (x)− F (x̄) ≥ −c ∥x− x̄∥ ≥ −c ∥x− x̄∥2 + ⟨0, x− x̄⟩2 , for all x ∈ X

2

Before giving the relationship between the lower semicontinuous function and the second-order weakly
differentiability, we recall the definition of the semicontinuous function.

Definition 2.10 [11, 15] A function F : X → (−∞,+∞] is lower semicontinuous at x̄ ∈ X if

lim
x→x̄

infF (x) ≥ F (x̄) .

Proposition 2.11 Let F : X → (−∞,+∞] function be second-order weak subdifferentiable at x̄ ∈ X . Then
F is lower semicontinuous at x̄ ∈ X .
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Proof Since F : X → (−∞,+∞] function is second-order weak subdifferentiable at x̄ ∈ X , ∂2
wF ̸= ∅ . Then

there exists the pair (x∗, c) ∈ X∗ × R such that

F (x)− F (x̄) ≥ −c ∥x− x̄∥2 + ⟨x− x̄, x∗⟩2 , for all x ∈ X. (2.16)

In both sides of inequality (2.16) by letting to the limit inferior as x → x̄ , we obtain

lim
x→x̄

infF (x) ≥ F (x̄) .

This completes the proof. 2
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