
Turk J Math
(2021) 45: 961 – 970
© TÜBİTAK
doi:10.3906/mat-2012-77

Turkish Journal of Mathematics

http :// journa l s . tub i tak .gov . t r/math/

Research Article

Almost quasi clean rings

Tufan ÖZDİN∗

Department of Mathematics, Erzincan Binali Yıldırım University, Erzincan, Turkey

Received: 19.12.2020 • Accepted/Published Online: 26.02.2021 • Final Version: 26.03.2021

Abstract: The element q of a ring R is called quasi-idempotent element if q2 = uq for some central unit u of R ,
or equivalently q = ue , where u is a central unit and e is an idempotent of R . In this paper, we define that the ring
R is almost quasi-clean if each element of R is the sum of a regular element and a quasi-idempotent element. Several
properties of almost-quasi clean rings are investigated. We prove that every quasi-continuous and nonsingular ring is
almost quasi-clean. Finally, it is determined that the conditions under which the idealization of an R -module M is
almost quasi clean.
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1. Introduction
For a ring R , an element a of R is called clean if it can be written as the sum of a unit and an idempotent. A
ring R is clean if each element of R is clean. Clean rings were defined by W. K. Nicholson in [13] in relation
to exchange rings. In [11] McGovern introduced almost clean ring as each element of its is the sum of regular
element (neither a left nor a right zero divisor) and an idempotent. Clearly a clean ring is almost clean ring.
Exchange rings and clean rings have been extensively studied by many authors (for example, see [7, 9, 10]).

An element a in a ring R is called strongly regular if a ∈ a2R ∩Ra2 . By [14], a ∈ R is strongly regular
if and only if a = ue = eu where e2 = e and u is a unit in R if and only if a2 = ua = au for a unit u

in R . Tang and Su in [Quasi-clean rings and strongly quasi-clean rings, preprint] introduced the notion of a
quasi-idempotent element in which a special kind of strongly regular elements is a natural generalization of
idempotent: An element q of a ring R is called quasi-idempotent if q2 = uq for some central unit u of R , or
equivalently, q = ue , where e2 = e ∈ R and u is a central unit of R .

The paper consists of three parts. In section 2, we defined a ring R as an almost quasi-clean ring if each
of its element can be written as the sum of a regular element (neither a left nor a right zero-divisor) and a
quasi-idempotent. We give characterizations of almost quasi-clean rings and discuss various consequences. For
example, we show that all right quasi-continuous and right nonsingular rings are almost quasi-clean, also an
abelian Rickart ring has an almost quasi-clean decomposition. In the last section, we give some conditions in
which the idealization and the trivial extension of an R -module M is almost quasi-clean.

In this paper, a ring R is an associative ring with identity. We write Z(R) , U(R) , UC(R) , Reg(R) ,
Id(R) and nil(R) to denote the set of all zero divisors, the set of all unit elements, the set of central unit
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elements, the set of regular elements, and the set of idempotent elements of R , respectively. Also we denote
Jacobson radical of R by J(R) .

Let R be a ring. In this paper, we also use annr(x) and annl(x) to denote the right and left annihilator
of an element x of R . The maximal right ring of quotients are denoted by Qr

max(R) . In this paper, every
module is the right module.

2. Almost quasi-clean rings

Definition 2.1 An element q of a ring R is called quasi-idempotent if q2 = uq for some central unit u of R .
The element q is called a u-idempotent. The set of quasi-idempotent of R is denoted by QId(R) .

A quasi-idempotent is a strongly regular element, but the converse is clearly not true. If q is a quasi-
idempotent, then (u−1q)2 = u−1q is an idempotent. So we have that an element q is a quasi-idempotent if and
only if q = ue , where e is an idempotent and u is a unit in R .

If q is a u -idempotent, i.e. q2 = uq and q = ue where e is an idempotent, we have a direct sum
decomposition of R :

R = qR⊕ (u− q)R = eR⊕ (1− e)R,

where qR = eR , (u− q)R = (1− e)R and u− q = u(1− e) is also a u− idempotent.

Definition 2.2 An element a of a ring R is called almost quasi-clean if a is a sum of a quasi-idempotent and
a regular element. A ring R is called almost quasi-clean if each of its elements is almost quasi-clean.

A ring R is called a quasi-Boolean ring if every element of R is quasi-idempotent. Boolean rings and
any direct product of fields are quasi-Boolean. Note that the class of quasi-Boolean rings is closed under
homomorphic images and direct products.

Example 2.3 Clean rings, almost clean rings, quasi-Boolean rings, weakly clean rings, and quasi-clean rings
are almost quasi-clean.

If R is quasi-clean, then each of its homomorphic image is also quasi-clean. We next show that the
homomorphic image of an almost quasi-clean ring does not need to be almost quasi-clean.

Example 2.4 Let R = K[x, y] where K is any field. Certainly, K[x, y] being a domain is almost quasi-clean.
Let R = R/((x) ∩ (x − 1) ∩ (y)) . Here, x and x− 1 are both zero divisor elements of R , so R is not almost
quasi-clean.

In the following proposition, we collect some basic properties of almost quasi-clean rings.

Proposition 2.5 Let R and Rα denote rings.

1. R = Πα∈IRα is almost quasi-clean if and only if each Rα is almost quasi-clean.

2. R is an almost quasi-clean ring if and only if the power series R[[x]] is almost quasi-clean.

3. If R is an almost quasi-clean ring, then R[[{Xα}]] an is almost quasi-clean ring.
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Proof (1) ( :⇒) For α ∈ I , let xα ∈ Rα . Then x := (x1, · · · , xα, · · · ) ∈ R can be written as x = r + q

where r ∈ Reg(R) and q ∈ QId(R) . Since Reg(R) = Πα∈IReg(Rα) , we get rα ∈ Reg(Rα) for each α ∈ I .
Also, if q ∈ QId(R) then q = ue where u ∈ UC(R) and e ∈ Id(R) . Because of u ∈ UC(R) there exist v ∈ R

such that uv = 1R . Then (u1, · · · , uα, · · · )(v1, · · · , vα, · · · ) = (1R1 , · · · , 1Rα , · · · ) which implies, for each α ∈ I ,
uαvα = 1Rα

. Hence uα ∈ U(Rα) . Similarly, uα ∈ C(Rα) for each α ∈ I . Thus, uα ∈ UC(Rα) for each
α ∈ I . In the same way, if e = (e1, · · · , eα, · · · ) ∈ Id(R) then, for each α ∈ I , eα ∈ Id(Rα) . Consequently,
we get xα = rα + uαeα = rα + qα where rα ∈ Reg(Rα) and qα ∈ QId(Rα) for each α ∈ I . So Rα is almost
quasi-clean.
(⇐:) Let x := (xα) ∈ R = Πα∈IRα . For each α ∈ I , write xα = rα + qα where rα ∈ Reg(Rα) and
qα ∈ QId(Rα) . Let qα ∈ QId(Rα) = uαeα , where uα ∈ UC(Rα) and eα ∈ Id(Rα) . Then xα = rα + uαeα .
Since rα ∈ Reg(Rα) , there exist 0 ̸= yα ∈ Rα such that rαyα = 0 . So r := (rα) ∈ Reg(R) . On the other hand,
u := (uα) ∈ UC(R) and e := (eα) ∈ Id(R) . Hence we have an almost quasi-clean representation x = r + ue ,
as desired.
(2) ( :⇒) Let f(x) ∈ R[[x]] . Then f(x) =

∑∞
i=0 rix

i = r0 + r1x+ r2x
2 + · · · . Since R is an almost quasi-clean

ring, we have the representation r0 = r + q where r ∈ Reg(R) and q ∈ QId(R) . Hence r0 = r + ue where
u ∈ UC(R) and e ∈ Id(R) . Now

f(x) =

∞∑
i=0

rix
i = r0 + r1x+ r2x

2 + · · · = r + ue+ r1x+ r2x
2 + ... = ue+ g(x),

where g(x) = r + r1x + r2x
2 + ... . If g(x) /∈ Reg(R[[x]]) , then there exist h(x) =

∑∞
i=0 hix

i ̸= 0 such that
g(x)h(x) = 0 . Thus rh(x) = 0 and then rhi = 0 for all i . Since r ∈ Reg(R) , for all i , hi must be zero, which
is a contradiction. So g(x) ∈ Reg(R[[x]]) . Since u ∈ UC(R) ⊆ UC(R[[x]]) and e ∈ Id(R) ⊆ Id(R[[x]]) , we
obtain that R[[x]] is almost quasi-clean.
(⇐:) Since R[[x]] ∼= {(a0, a1, ...)⌊ai ∈ R} = Πi≥0R , we obtain R is almost quasi-clean by (1).
(3) Let f(x) ∈ R[[{Xα}]] . Then f = f0 + f ′ where f0 ∈ R and f ′ ∈ ({Xα}) . Since f0 ∈ R , we can write
f0 = r + q where r ∈ Reg(R) and q ∈ QId(R) . Hence f0 = r + q = r + ue where u ∈ UC(R) and e ∈ Id(R) .
Now

f = r + ue+ f ′ = (r + f ′) + ue

where r + f ′ ∈ Reg(R[[{Xα}]]) . Since u ∈ UC(R) ⊆ UC(R[[{Xα}]]) and e ∈ Id(R) ⊆ Id(R[[{Xα}]]) , we
obtain that R[[{Xα}]] is almost quasi-clean. 2

Let us recall a few definitions in module theory. Let R be a ring. Recall the following conditions for a
right R module M :

(C1) Every submodule of M is essential inside a (direct) summand of M .

(C2) Every submodule of M that is isomorphic to a summand of M is itself a summand of M .

(C3) If A and B are summands of M with A ∩B = 0 , then A⊕B is also a summand of M

M is called a CS module if it satisfies the condition (C1) . M is called continuous if it satisfies (C1)

and (C2) . M is called a quasi-continuous module if it satisfies (C1) and (C3) . A ring R is right CS (right
quasi-continuous or right continuous) if RR is CS (quasi-continuous or continuous). It is well known that a
continuous module is quasi-continuous.
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Proposition 2.6 Let R be a ring that can be embedded in a quasi clean-ring has the same quasi idempotents
as R , then R is almost quasi clean.

Proof Let S be denote a quasi-clean ring with the same quasi idempotent as R in which R embeds. Let
a ∈ R . Then a ∈ S . Thus, a = u + q where u ∈ U(S) and q ∈ QId(S) . By hypothesis, q ∈ QId(R) . Thus,
u = a− q ∈ R . Now we show that u ∈ Reg(R) . Suppose that u /∈ Reg(R) . Then there exist a nonzero element
x in R such that xu = 0 . Since x and u in R , x, u ∈ S and xu ∈ S as well. Also u ∈ U(S) there exist v ∈ S

such that uv = 1 . Then
xu = 0 ⇒ (xu)v = 0 ⇒ x = 0

a contradiction. So, u ∈ Reg(R) . Hence R is almost quasi-clean. 2

Proposition 2.7 If R is quasi-continuous and nonsingular, then R is almost quasi-clean.

Proof If R is nonsingular, then Qr
max(R) is regular and self injective. Thus, Qr

max(R) is quasi-clean by [5,
Corollary 3.2] and by Example 2.3. Then, R is almost quasi-clean by Proposition 2.6. 2

In [4, Theorem 1], Camillo and Khurana showed that a ring a R is unit regular if and only if every
element a of R has a clean decomposition a = e+ u such that aR∩ eR = 0 . The following theorem was given
by Tang and Su in [Quasi-clean rings and strongly quasi-clean rings, preprint] as a theorem.

Theorem 2.8 A ring R is unit regular if and only if every element of a of R has a quasi-clean decomposition
a = u+ q such that aR ∩ qR = 0 .

Corollary 2.9 If R is quasi-continuous and Qr
max(R) is unit-regular ring, then every element a of R has

almost quasi-clean decomposition a = r + q such that aR ∩ qR = 0 .

Proof Since Qr
max(R) is unit-regular ring, then each element a of Qr

max(R) has a quasi-clean decomposition
a = u + q such that aQr

max(R) ∩ qQr
max(R) = 0 where u ∈ U(Qr

max(R)) and q ∈ QId(Qr
max(R)) . Then,

aR ∩ qR = 0 as well. Since R is quasi-continuous, q ∈ QId(R) . Thus, u ∈ R and it has to be regular just like
proof of Proposition 2.6. Thus a = u+ q is almost a quasi-clean decomposition such that aR ∩ qR = 0 . 2

Recall that a ring R is abelian ring if every idempotent is central. An element in an abelian Rickart ring,
which has not to be commutative, is a product of a regular element and an idempotent.

Theorem 2.10 Let R be an abelian ring. Then R is Rickart if and only if every element a of R has an
almost quasi-clean decomposition a = r + q such that aR ∩ qR = 0 .

Proof (⇒:) Let R be an abelian Rickart ring. If a ∈ R , then annr(a) = eR for some idempotent element
e ∈ R . Let us take q = ue for some u ∈ UC(R) . In this case, a = q + (a− q) . We claim that a− q is regular
element in R . Let (a− q)r = 0 for r ∈ R . Since e ∈ annr(a) , ae = 0 ⇒ aq = 0 and so a(u− q) = au . Thus,
0 = (u− q)(a− q)r = (u− q)ar = a(u− q)r = aur . Since u ∈ UC(R) there exist v ∈ R such that uv = 1 = vu .
Then, ar = 0 , which implies r ∈ annr(a) = eR ⊆ qR . Otherwise, we have 0 = q(a−q)r = qar−q2r = aqr−uqr ,
then uqr = 0 and qr = 0 . So (u− q)r = ur then r ∈ (1− e)R . Therefore, r ∈ eR∩ (1− e)R = 0 . Hence, a− q

is right regular element in R . Since R is abelian Rickart ring, a− q is left regular element in R .
We also claim that aR ∩ qR = 0 . Let x ∈ aR ∩ qR Then there exist r1, r2 ∈ R such that x = ar1 = qr1 .
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Since q ∈ QId(R) , q = ue where u ∈ UC(R) and e ∈ Id(R) . Also we have xe = ar1e = aer1 = 0 and
xe = qr2e = uer2e = ue2r2 = uer2 = qe = x . Hence, xe = x = 0 .
(⇐:) Suppose that a of R has a almost quasi-clean decomposition a = r + q such that aR ∩ qR = 0 where
q ∈ QId(R) and r ∈ Reg(R) . Since q ∈ QId(R) , there exist a central unit u and an idempotent e in R

such that q = ue . Now we show that annr(a) = eR . Let x ∈ annr(a) . Then 0 = ax = rx + qx and so
erx + eqx = 0 = erx + qx , since eq = eue = ue2 = ue = q . Thus we have that rx + qx = erx + qx , which
implies that rx = erx . Because of R is abelian we get rex = rx . So x = ex , since r ∈ Reg(R) . Thus, we have
x ∈ eR and so annr(a) ⊆ eR .
On the other hand, let x ∈ eR . Then for some y ∈ R , x = ey . We have, ax = aey = ae(uu−1)y =

(r + q)e(uu−1)y = reuu−1y + qeuu−1y = rqu−1y + qy = q(ru−1y + y) ∈ aR ∩ qR = 0 . Thus ax = 0 and so
x ∈ annr(a) . Therefore, annr(a) = eR and so R is right Rickart. Because of R is abelian, R is left Rickart.
2

We notice that let R be presimplifiable, if 1 ̸= e ∈ Id(R) , then e ∈ Z(R) ⊆ J(R) which implies e = 0 .
Hence, such rings R are indecomposable.

Proposition 2.11 Let R be a ring. If Z(R) ⊆ J(R) , then R is an indecomposable almost quasi-clean ring.

Proof Suppose x ∈ Reg(R) . Then x = x + 0 = x + u0 where u ∈ UC(R) and 0 ∈ Id(R) (that is,
u0 = q ∈ QId(R)). Thus R is an indecomposable almost quasi-clean ring by the previous sentence and the
almost clean decomposition.

Suppose that x is not regular element of R . Then x ∈ Z(R) ⊆ J(R) . Hence x − 1 := u ∈ U(R) . If
we take v = 1 and e = 1 then we can write x = u + 1 = u + 1.1 = u + ve where u ∈ U(R) ⊆ Reg(R) ,
v = 1 ∈ UC(R) (and hence q = ve ∈ QId(R)) and 1 ∈ Id(R) . 2

3. The almost quasi-clean property over commutative rings

In [3, Theorem 3], the authors proved that a commutative indecomposable ring R is clean if and only if R is a
local ring. Ahn and Anderson [1, Corollary 1.4] obtained that a commutative indecomposable ring R is weakly
clean if and only if R is a local ring or an indecomposable ring with exactly two maximal ideals in which 2 is a
unit.

Proposition 3.1 If R is Rickart ring, then R is almost quasi-clean ring.

Proof Let R be a Rickart ring. By [11, Proposition 15], for a regular element r in R and an idempotent e in
R , any element x in R can be written as x = re . To take, for some u ∈ UC(R) , q = u(1− e) . Let v = re− q ,
then x = v + q . Now we will show that v ∈ Reg(R) . Suppose that sv = 0 for some nonzero element s ∈ R .
Then, we obtain that

sx = sv + sq ⇒ sre = sq

; hence, sre = 0 = sq . Since r ∈ Reg(R) , we get se = 0 . Thus, s ∈ Ann(1− e) = (e) and we can write s = te

for some t ∈ R . So, 0 = se = (te)e = te2 = te = s is a contradiction. Hence, v is a regular element in R .
Then, x = v + q where v ∈ Reg(R) and q ∈ QId(R) , R is almost quasi-clean ring. 2

Theorem 3.2 The following conditions are equivalent for a commutative ring R :
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(1) R is an indecomposable almost quasi-clean ring;

(2) For x ∈ R , either x or x− u is regular where u ∈ UC(R) .

(3) For ideals I and J of R consisting of zero divisor, I + J ̸= R

Proof (1) ⇒ (2) Let R be an indecomposable almost quasi-clean ring. Then, every element x in R can be
written x = r + q , where r ∈ Reg(R) and q ∈ QId(R) . Let q = ue where u ∈ UC(R) and e ∈ Id(R) . Then
x = r+ue . If e = 0 , then x = r+u0 = r ∈ Reg(R) . If e = 1 , then x = r+u1 = r+u ⇒ r = x−u ∈ Reg(R) ,
as desired.
(2) ⇒ (1) First, we show that R is an indecomposable ring. Now, assume that 1 ̸= e ∈ Id(R) . Then,
e(e − 1) = 0 . By the hypothesis, by taking u = 1 , e or e − 1 is regular, we get e = 0 . Thus R is
indecomposable.
Now, we show that R is almost quasi-clean. If x is a regular element in R , then, x = x + 0 = x + u.0 where
u ∈ UC(R) and 0 ∈ Id(R) . If x − v is a regular for v ∈ UC(R) , then there exists an r ∈ Reg(R) such that
x− v = r . So x = r + v = r + v.1 where 1 ∈ Id(R) . Hence R is almost quasi-clean.
(3) ⇒ (2) Suppose that I and J are ideals consisting of zero divisor and I+J = R . So, i+ j = u where i ∈ I ,
j ∈ J and u ∈ UC(R) . Then, i and −j = i− u are both zero divisor. Hence both i and i− u are not regular
in R . It is a contradiction.
(2) ⇒ (3) Let x ∈ R and suppose that, for a u ∈ UC(R) , x and x − u are both not regular elements. Then
(x) + (x− u) ̸= R , a contradiction. 2

Let R be a ring and M be an R -bimodule. The set pairs (r,m) with r ∈ R and m ∈ M under
coordinate wise addition and multiplication defined by

(r,m)(r′,m′) = (rr′, rm′ + r′m)

for all r, r′ ∈ R and m,m′ ∈ M . Then T (R,M) is called the trivial extension of R by M . We have the
followings:

Z(M) = {r ∈ R | ∃0 ̸= m ∈ M such that rm = 0}

C(M) = {r ∈ R |m ∈ M such that rm = mr}

U(M) = {r ∈ R | ∃m ∈ M such that rm = m}.

Recall that a Morita context is a 4 -tuple
(
A M
N B

)
, where A and B are rings, AMB and BNA are bimodules,

and there exist context products M ×N → A and N ×M → B written multiplicatively as (w, z) = wz and

(z, w) = zw , such that
(
A M
N B

)
is an associative ring with the obvious matrix operations. A Morita context(

A M
N B

)
is called trivial if the context products are trivial, i.e. MN = 0 and NM = 0 . We have

(
A M
N B

)
∼= T (A×B,M ⊕N),
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where
(
A M
N B

)
is a trivial Morita context by [8]. Furthermore, if q = ue , where u ∈ UC(R) and e ∈ Id(R) ,

then {(u, 0) | u ∈ UC(R) ∩ UC(M)} ⊆ UC(T (R,M)) . For (x,m) ∈ T (R,M) ,

(u, 0)(x,m) = (ux, um+ 0m) = (x,m) = (xu, x0 + um) = (x,m)(u, 0),

so {(u, 0) | u ∈ UC(R) ∩ UC(M)} ⊆ UC(T (R,M)) . As Id(T (R,M)) = {(e, 0) ∈ R(M) | e ∈ Id(R)} , we get

QId(T (R,M)) = {(q, 0) ∈ T (R,M) | q ∈ QId(R)}.

Theorem 3.3 The trivial extension T (R,M) is almost quasi-clean if and only if each x ∈ R can be written in
the form x = r + q where r ∈ R− (Z(R) ∪ Z(M)) and q ∈ QId(R) .

Proof (:⇒) Let x ∈ R . Then (x, 0) = (r, 0)+ (q, 0) , where (r, 0) ∈ Reg(T (R,M)) and (e, 0) ∈ Id(T (R,M)) .
Let (q, 0) = (u, 0)(e, 0) , where (u, 0) ∈ UC(T (R,M)) and (e, 0) ∈ Id(T (R,M)) . By [1, Theorem 2.11], if
(r, 0) ∈ Reg(T (R,M)) then r ∈ R− (Z(R) ∪ Z(M)) . Thus we get x = r + ue , as desired.
(⇐:) Let x ∈ R and m ∈ M . Write, x = r + q where r ∈ R − (Z(R) ∪ Z(M)) and q ∈ QId(R) . Let q = ue ,
where u ∈ UC(T (R,M)) and e ∈ Id(R) . Then, x = r+ue , and hence, (x,m) = (r,m)+(u, 0)(e, 0) as desired.

2

Theorem 3.4 If R is a ring with Z(R) closed under addition then R is almost quasi-clean ring.

Proof If x /∈ Z(R) then x ∈ Reg(R) . So, x = x + 0 where 0 ∈ QId(R) . For u ∈ UC(R) , suppose that
u ∈ Z(R) . Since u ∈ Z(R) , there exist non-zero element a in R such that ua = 0 .

Also, since u ∈ UC(R) then there exists v ∈ R such that uv = 1 = vu . Then we get, v(ua) = 0 ⇒
(vu)a = 0 ⇒ a = 0 , a contradiction. Hence u /∈ Z(R) .

Let x ∈ Z(R) then, for u ∈ UC(R) , x − u /∈ Z(R) . So, x = (x − u) + u , where x − u ∈ Reg(R) and
u ∈ QId(R) . Hence R is almost quasi-clean. 2

Theorem 3.5 Let P1 and P2 be prime ideals of a ring R such that Z(R) = P1 ∪ P2 and nil(R) = P1 ∩ P2 .
Then R is almost quasi-clean ring.

Proof If P1 and P2 are comparable, the result follows from Theorem 3.4. Now we show that x ∈
(P1 ∪P2) \ (P1 ∩P2) is almost quasi-clean. Since, P1 ∪P2 = (P1 \P2)∪ (P2 \P1) and (P1 \P2)∩ (P2 \P1) = ∅ ,
without lost of generality we may assume that x ∈ P1 \ P2 . First of all assume that R is not indecomposable.
To take q ∈ QId(R) , q = ue where u ∈ UC(R) and e ∈ Id(R) which is non-trivial idempotent in P2 \ P1 .
Since e ∈ P1 \P2 , q ∈ P1 \P2 . Then x = (x−q)+q where x−q ∈ Z(R) (i.e. x−q ∈ Reg(R)) and q ∈ QId(R) .
Now assume that R is indecomposable. Then, R\ (P1∩P2) is indecomposable, so P1+P2 ̸= R . Now, for some
u ∈ UC(R) , x− u ∈ P1 . If (x− u) ∈ P2 , then u = x− (x− u) ∈ P1 + P2 , so 1 ∈ P1 + P2 is a contradiction.
Thus, (x− u) /∈ P1 ∪ P2 = Z(R) . Hence, x = (x− u) + u where (x− u) ∈ Reg(R) and u ∈ QId(R) . 2

Theorem 3.6 Let R be an integral domain and M be an R−module.

(1) If Z(M) = P a prime ideal then T (R,M) is almost quasi-clean.

967



ÖZDİN/Turk J Math

(2) T (Z,M) is almost quasi-clean if and only if Z(M) = (p) where p is prime, possibly 0 .

Proof
(1) If Z(M) = P a prime ideal, then Z(T (R,M)) = T (P,M) is prime ideal. By Theorem 3.4, T (R,M) is
almost quasi-clean.
(2) (⇐ :) This follows from (1).
( :⇒) Suppose that (p) ∪ (q) = Z(M) where p and q are different with each other (nonzero) primes. Choose
x ∈ Z with x ≡ 0 ( mod p) and x ≡ 1 ( mod q) by Chinese Remainder Theorem. Then, x−0, x−1 ∈ Z(M) ,
so we cannot write x = r + q where r ∈ Reg(R) and q ∈ {0, 1} ⊆ QId(Z) = {−1, 0, 1} . 2

Corollary 3.7 The idealization T (Z,Zn) is almost quasi-clean if and only if n = pα where p is prime integer
and α ≥ 1

Note that let R be a ring and Un(R) (resp. Ln(R)) the ring of n × n upper (resp. lower) triangular
matrices over R .

Proposition 3.8 For A = [aij ] ∈ Un(R) (resp. A ∈ Ln(R)), if A ∈ QId(Un(R)) (resp. A ∈ QId(Ln(R)))
then, for i = 1, ...n , aii ∈ QId(R) . Also, if for i = 1, ...n , aii ∈ QId(R) then diag(a11, . . . , ann) ∈ QId(Un(R))

(resp. diag(a11, . . . , ann) ∈ QId(Ln(R))).

Proof Without losing generality, we do upper triangular case. Let A = [aij ] ∈ QId(Un(R)) . Note that
A ∈ UC(Un(R)) if and only aii ∈ UC(R) . Also, if A ∈ Id(Un(R)) then aii ∈ Id(R) and if aii ∈ Id(R)

then diag(a11, . . . , ann) ∈ Id(Un(R)) . If A ∈ QId(Un(R)) then A = UE where U = [uij ] ∈ UC(Un(R))

and E = [eij ] ∈ Id(Un(R)) . Since U = [uij ] ∈ UC(Un(R)) and E = [eij ] ∈ Id(Un(R)) , uii ∈ UC(R) and
eii ∈ Id(R) . Because of aii = uiieii where uii ∈ UC(R) and eii ∈ Id(R) , for all 1 ≤ i ≤ n , aii ∈ QId(R) .
Also, let aii ∈ QId(R) . Then there exist ui ∈ UC(R) and ei ∈ Id(R) such that aii = uiei for all 1 ≤ i ≤ n .
So, a11 · · · 0

... . . . ...
0 · · · ann

 =

u1e1 · · · 0
... . . . ...
0 · · · unen

 =

u1 · · · 0
... . . . ...
0 · · · un


e1 · · · 0

... . . . ...
0 · · · en


where U = diag(u1, · · · , un) ∈ UC(Un(R)) and E = diag(e1, · · · , en) ∈ Id(Un(R)) . Hence diag(a11, · · · , ann) ∈
QId(Un(R)) 2

Theorem 3.9 R is almost quasi-clean ring if and only if Un(R) (resp. Ln(R)) is almost quasi-clean.

Proof Without lose generality we do upper triangular case. Note that A ∈ Un(R)) is a regular element if
and only if for i = 1, ...n , aii ∈ Reg(R) .
(:⇒) Suppose that R is almost quasi-clean ring. Let A = [aij ] ∈ Un(R) . Since R is almost quasi-clean, we can
write aii = ri + qi where ri ∈ Reg(R) and qi ∈ QId(R) . Put,

R =


r1 a12 · · · a1n
0 r2 · · · a2n
...

... . . . ...
0 0 · · · rn

 and Q =


q1 0 · · · 0
0 q2 · · · 0
...

... . . . ...
0 0 · · · qn

 .
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Then A = R+Q where R ∈ Reg(Un(R)) and Q ∈ QId(Un(R)) by proposition 3.8.

(⇐:) Let Un(R) be almost quasi-clean and a ∈ R . Then

a · · · 0
... . . . ...
0 · · · 0

 ∈ Un(R) can be written

a · · · 0
... . . . ...
0 · · · 0

 =

R+Q where R = [rij ] ∈ Reg(Un(R)) and Q = [qij ] ∈ OId(Un(R)) . Then, a = r11 + q11 where r11 ∈ Reg(R)

and q11 ∈ QId(R) . Hence R is almost quasi-clean. 2

Theorem 3.10 Let R be an elementary divisor ring, which is every matrix over R is a diagonal reduction,
and Mn(R) the ring of n× n matrices over R . If R is almost quasi-clean, then Mn(R) is almost quasi-clean
for all n ∈ N .

Proof Let M ∈ Mn(R) . Then we have some invertible P,Q ∈ Mn(R) such that PMQ = diag(d1, · · · , dn) .
Because the R is almost quasi-clean, for each i , di = ri + qi where ri ∈ Reg(R) and qi ∈ QId(R) . Hence,

PMQ = diag(r1 + q1, · · · rn + qn) = diag(r1, · · · , rn) + diag(q1, · · · , qn).

By Proposition 3.8, diag(r1, · · · , rn) ∈ Reg(Mn(R)) and diag(q1, · · · , qn) ∈ QId(Mn(R)) . Therefore, Mn(R)

is almost quasi-clean. 2
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