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Abstract: This work develops scattering and spectral analysis of a discrete impulsive Sturm–Liouville equation with
spectral parameter in boundary condition. Giving the Jost solution and scattering solutions of this problem, we find
scattering function of the problem. Discussing the properties of scattering function, scattering solutions, and asymptotic
behavior of the Jost solution, we find the Green function, resolvent operator, continuous and point spectrum of the
problem. Finally, we give an example in which the main results are made explicit.
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1. Introduction
Discrete impulsive equations, that is, difference equations involving impulsive effect, appear as a natural
description of observed evolution phenomena of several real world problems. It is well-known that the theory of
impulsive difference equations takes form under favor of the theory of the differential equations with impulses. In
that way, for the mathematical theory of such impulsive equations, we refer to the monographs [2, 3, 7, 22, 27] .
Impulsive difference equations are a basic tool to study dynamics that are subjected to sudden changes in
their states. The theory of these equations has been motivated by a number of applied problems arising, in
particular, in control theory, mechanical systems with impact, biological systems such as heart beats, blood
flows, population dynamics, theoretical physics, chemistry, pharmacokinetics, mathematical economy, electric
technology, metallurgy, ecology, infectious diseases, medicine, industrial robotics, biotechnology processes,
engineering, navigational control of ships, and aircraft (see [4, 10, 11, 15, 17, 18, 20, 21, 23, 26]) .

The theory of difference equations with impulses is a new and important branch of difference equations.
In spite of its importance, the studies on spectral and scattering analysis of impulsive problems have been
inadequate. Although there are many books and papers devoted to scattering analysis of differential and
difference equations [1, 8, 9, 13, 14, 19] , there are only a few study about impulsive cases of such equations in
literature [5, 6, 12, 25] . Because of this reason, scattering analysis of such equations have became a popular
topic for mathematicians. None of the mentioned studies given in the literature about scattering problems
of impulsive equations do not consist a spectral parameter in boundary condition. In this study, we will be
interested in spectral properties and scattering solutions of discrete impulsive Sturm–Liouville equation with
spectral parameter in boundary condition. As a result of this, the problem becomes more applicable in many
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parts of physics, mathematics, and other disciplines. Also, it creates different perspective for the solution
method.

Let us consider an impulsive discrete Sturm–Liouville boundary value problem (IBVP) generated by the
following difference equation

an−1yn−1 + bnyn + anyn+1 = λyn, n ∈ N \ {m0 − 1, m0, m0 + 1} (1.1)

with the boundary condition
(µ0 + λµ1) y1 + (ν0 + λν1) y0 = 0 (1.2)

and the impulsive conditions

ym0+1 = γ1ym0−1 (1.3)

ym0+2 = γ2ym0−2, γ1γ2 ̸= 0, γ1, γ2 ∈ R

where λ = 2 cos z is a spectral parameter, µ0ν1 − µ1ν0 ̸= 0 for i = 0, 1 , µi, νi are real numbers, {an}n∈N∪{0}

and {bn}n∈N are real sequences satisfying the condition

∑
n∈N

n (|1− an|+ |bn|) <∞. (1.4)

Throught this work, we will assume that an ̸= 0 for all n ∈ N∪{0} . The paper consists, besides this introductory
section, of six sections. Section 2 is an auxiliary section that we give some basic notations and definitions. In
Section 3, we find the Jost solution and scattering solutions of (1.1)–(1.3). By using the properties of these
solutions, we get the scattering function of IBVP (1.1)–(1.3) and we investigate the properties of scattering
function. In Section 4, we give the resolvent operator and continuous spectrum of (1.1)–(1.3). Also, we give
an asymptotic equation to get the properties of eigenvalues in this section. In Section 5, we are interested
in unperturbated impulsive boundary value problem of (1.1)–(1.3). Discussing the properties of Jost solution
and scattering function of this unperturbed problem, we determine the region of eigenvalues and continuous
spectrum of this problem. Finally, in Section 6, we made some conclusions.

2. Preliminaries
Let us define two semi-strips

D0 :=

{
z ∈ C : Im z > 0, − π

2
≤ Re z ≤ 3π

2

}

and D := D0 ∪
[
−π
2
,
3π

2

]
. Assume that P (z) = {Pn (z)} and Q(z) = {Qn (z)} are the fundamental solutions

of (1.1) for z ∈ D and n = 0, 1, . . . ,m0 − 1 satisfying the initial conditions

P0 (z) = 0, P1 (z) = 1

and

Q0 (z) =
1

a0
, Q1 (z) = 0,
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respectively. For each n ≥ 0, Pn (z) is polynomial of degree (n− 1) and is called a polynomial of the first kind
and Qn (z) is a polynomial of degree (n− 2) and is known as a polynomial of the second kind.

It is well-known that the wronskian of two solutions y = {yn (z)} and u = {un (z)} of the equation (1.1)
defined by the following equation is independently of n .

W [y, u] := an [yn (z)un+1 (z)− yn+1 (z)un (z)] .

It is clear from that the solutions P (z) and Q (z) are linear independent solutions of (1.1) because the wronskian
of these solutions is equal to −1 for all z ∈ C . Moreover, Pn (z) and Qn (z) are entire functions with respect
to z . Note that, we can write the other solution of (1.1) as a linear combination of fundamental solutions and
by using the boundary condition, we can express this solution as

ψn (z) = − (ν0 + λν1)Pn (z) + a0 (µ0 + λµ1)Qn (z) , n = 0, 1, . . . ,m0 − 1. (2.1)

On the other hand, we will show by e (z) = {en (z)} , n = m0 + 1,m0 + 2, . . . the bounded solution of (1.1)
satisfying the condition lim

n→∞
e−inzen (z) = 1, z ∈ D . The solution e (z) is represented by

en (z) = ρne
inz

(
1 +

∞∑
m=1

Anme
imz

)
, n = m0 + 1,m0 + 2, . . .

in literature [22] , where ρn and Anm are given in terms of the sequences {an} and {bn} as

ρn :=

∞∏
k=n

a−1
k ,

An1 := −
∞∑

k=n+1

bk,

An2 :=

∞∑
k=n+1

1− a2k + bk

∞∑
p=k+1

bp

 ,

An,m+2 := An+1,m +

∞∑
k=n+1

{(
1− a2k

)
Ak+1,m − bkAk,m+1

}

for m ≥ 1 . The function en (z) is analytic according to z in C+ := {z ∈ C : Im z > 0} , continuous in
C+ := {z ∈ C : Im z ≥ 0} and 2π periodic. The equation (1.1) also has an unbounded solution. We will
show the unbounded solution by ên (z) for n = m0 + 1,m0 + 2, . . . providing lim

n→∞
einz ên (z) = 1 , z ∈ C+. It

is evident from the definitions of en (z) , ên (z) and wronskian that

W [en (z) , ên (z)] = −2i sin z (2.2)

for n = m0 + 1,m0 + 2, . . . and z ∈ D\ {0, π} .
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3. Jost solution, Jost function, scattering solutions and scattering function of discrete ımpulsive
equation

In this section, we present some new definitions and results about scattering solutions and scattering function
of the IBVP (1.1)–(1.3). Using P (z), Q(z) and e (z) , we define the following solution of (1.1)–(1.3)

En (z) =

{
α (z)Pn (z) + β (z)Qn (z) ; n = 1, 2, . . . ,m0 − 1

en (z) ; n = m0 + 1,m0 + 2, . . .
(3.1)

for z in D , where α and β are z -dependent coefficients. The impulsive conditions (1.3) imply

Em0−1 (z) =
1

γ1
Em0+1 (z)

Em0−2 (z) =
1

γ2
Em0+2 (z)

and
1

γ1
em0+1 (z) = α (z)Pm0−1 (z) + β (z)Qm0−1 (z) (3.2)

1

γ2
em0+2 (z) = α (z)Pm0−2 (z) + β (z)Qm0−2 (z) .

By using (3.2) and the definition of wronskian, we obtain the coefficients α and β uniquely

α (z) = −am0−2

γ1γ2
[γ1em0+2 (z)Qm0−1 (z)− γ2em0+1 (z)Qm0−2 (z)] (3.3)

β (z) =
am0−2

γ1γ2
[γ1em0+2 (z)Pm0−1 (z)− γ2em0+1 (z)Pm0−2 (z)] (3.4)

for z ∈ D . The function E (z) = {En (z)} is the Jost solution of IBVP (1.1)–(1.3), where α (z) and β (z)

defined as in (3.3) and (3.4), respectively. Since Pn (z) = Pn (−z) and Qn (z) = Qn (−z) for z ∈ D , we obtain
that α (−z) = α (z) and β (−z) = β (z) .

It is clear from the definition of wronskian and en (z) that for all z ∈
[
−π
2
,
3π

2

]
\ {0, π} , we write

W [en (z) , en (−z)] = −2i sin z. (3.5)

Next, we consider another solution F (z) = {Fn (z)} of (1.1)-(1.3) by

Fn (z) :=

{
ψn (z) , n = 1, 2, . . . ,m0 − 1

δ (z) en (z) + d (z) en (−z) , n = m0 + 1,m0 + 2, . . .
(3.6)

for z ∈
[
−π
2
,
3π

2

]
\ {0, π} . By (1.3) and (3.5), it is easy to get

δ (z) = − am0+1

2i sin z
[γ1em0+2 (−z)ψm0−1 (z)− γ2em0+1 (−z)ψm0−2 (z)] (3.7)

and
d (z) =

am0+1

2i sin z
[γ1em0+2 (z)ψm0−1 (z)− γ2em0+1 (z)ψm0−2 (z)] (3.8)
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for z ∈
[
−π
2
,
3π

2

]
\ {0, π} .

Corollary 3.1 Since ψn (z) = ψn (−z) , for all z ∈
[
−π
2
,
3π

2

]
\ {0, π} the coefficients d (z) and δ (z) have the

following relationship
d (z) = δ (−z) = δ (z). (3.9)

Lemma 3.2 The wronskian of the solutions E (z) and F (z) is given by

W [En (z) , Fn (z)] :=

{ am0−2

am0+1

2i sin z
γ1γ2

d (z) , n = 1, 2, . . . ,m0 − 1

−2i sin zd (z) , n = m0 + 1,m0 + 2, . . .

for z ∈
[
−π
2
,
3π

2

]
\ {0, π} .

Proof Using the definition of wronskian for n = 1, 2, . . . ,m0 − 1, we find

W [En (z) , Fn (z)] = a0 [E0 (z)F1 (z)− E1 (z)F0 (z)]

= a0 [α (z)P0 (z) + β (z)Q0 (z)]ψ1 (z)

− a0 [α (z)P1 (z) + β (z)Q1 (z)]ψ0 (z) .

Since P0 (z) = 0 , P1 (z) = 1 , Q0 (z) =
1

a0
and Q1 (z) = 0 , it follows from that

W [En (z) , Fn (z)] = β (z)ψ1 (z)− a0α (z)ψ0 (z)

= − (ν0 + λν1)β (z)− a0α (z) (µ0 + λµ1)

for n = 0, 1, . . . ,m0 − 1 . If we apply the definitions of α (z) , β (z) and d (z) given in (3.3), (3.4), (3.6) and
(3.8), respectively, we find

W [En (z) , Fn (z)] =
am0−2

am0+1

2i sin z

γ1γ2
d (z) for n = 0, 1, . . . ,m0 − 1.

Similarly, we obtain
W [En (z) , Fn (z)] = −2i sin zd (z) for n = m0 + 1,m0 + 2, . . .

by using (3.5) and (3.8). This completes the proof. 2

Note that, using the boundary condition (1.2) and (3.1), we define the function J :

J (z) = (µ0 + λµ1)E1 + (ν0 + λν1)E0

= α (z) (µ0 + λµ1) +
β (z)

a0
(ν0 + λν1) .

Analogously to the Sturm–Liouville equation, the function J is called the Jost function of (1.1)–(1.3). The
function J is analytic in C+ and continuous in C+ . It is evident that

J (−z) = α (−z) (µ0 + λµ1) +
β (−z)
a0

(ν0 + λν1) (3.10)
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Lemma 3.3 For all z ∈
[
−π
2
,
3π

2

]
\ {0, π} , there is a following relation between the function J and d (z)

J (z) = − 1

a0

am0−2

am0+1

2i sin z

γ1γ2
d (z) . (3.11)

Proof It follows from (2.1), (3.9) and (3.10) that

d (z) =
am0+1

2i sin z
[γ1em0+2 (z)ψm0−1 (z)− γ2em0+1 (z)ψm0−2 (z)]

=
am0+1

2i sin z

{
− (ν0 + λν1)

β (z) γ1γ2
am0−2

+ a0 (µ0 + λµ1)α (z)
γ1γ2
am0−2

}
=
am0+1

2i sin z

γ1γ2
am0−2

{− (ν0 + λν1)β (z) + a0 (µ0 + λµ1)α (z)}

= −a0
am0+1

am0−2

γ1γ2
2i sin z

[
1

a0
(ν0 + λν1)β (z) + (µ0 + λµ1)α (z)

]
= −a0

am0+1

am0−2

γ1γ2
2i sin z

J (z) .

It completes the proof of Lemma 3.3. 2

Theorem 3.4 For all z ∈
[
−π
2
,
3π

2

]
\ {0, π} , d (z) ̸= 0 .

Proof Assume that, there exists a z0 in
[
−π
2
,
3π

2

]
\ {0, π} such that d (z0) = 0 . As a result of Corollary

3.1, it gives that δ (z0) = d (z0) = 0 . It follows from that Fn (z0) = 0 for all n ∈ N ∪ {0} , but this is a trivial

solution of IBVP (1.1)–(1.3). Since this is contradictory, d (z) is not equal to zero for all z ∈
[
−π
2
,
3π

2

]
\ {0, π} .

2

In the following, we can give a definition for scattering function due to the existence of Theorem 3.4.

Definition 3.5 The function

S (z) :=
J (z)

J (z)
, z ∈

[
−π
2
,
3π

2

]
\ {0, π}

is called the scattering function of IBVP (1.1)–(1.3).

It easy to see from Lemma 3.3 and Definition 3.1 that the scattering function can be rewritten in terms
of d (z) as

S (z) =
J (z)

J (z)
=
J (−z)
J (z)

= −d (−z)
d (z)

(3.12)

for all z ∈
[
−π
2
,
3π

2

]
\ {0, π} .
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Theorem 3.6 The function S (z) satisfies

S (−z) = S−1 (z) = S (z)

for all z ∈
[
−π
2
,
3π

2

]
\ {0, π} and |S (z)| = 1 .

Proof Using the definition of function J and (3.12), we get

S (−z) = J (z)

J (−z)

=
α (z) (µ0 + λµ1) +

β (z)

a0
(ν0 + λν1)

α (−z) (µ0 + λµ1) +
β (−z)
a0

(ν0 + λν1)

=
J (z)

J (z)

= S−1 (z)

= S (z)

for all z ∈
[
−π
2
,
3π

2

]
\ {0, π} . Finally, it is obvious that; since |S (z)|2 = S (z)S (z) , (3.12) gives us

|S (z)| = J (z)

J (−z)
J (−z)
J (z)

= 1.

It completes the proof of theorem. 2

4. Resolvent operator, eigenvalues and continuous spectrum of IBVP

Let us define a solution G (z) = {Gn (z)} of (1.1)-(1.3)

Gn (z) :=

{
ψn (z) , n = 1, 2, . . . ,m0 − 1

q (z) en (z) + k (z) ên (z) , n = m0 + 1,m0 + 2, . . .
(4.1)

for all z ∈ D , where ên (z) denotes the unbounded solution of (1.1) given in Section 2. Similar to previous
solutions, it is possible to find the coefficients q (z) and k (z) uniquely. By using impulsive condition (1.3), we
get

q (z) = − am0+1

2i sin z

[
γ1 (z)ψm0−1 (z) êm0+2 (z)− γ2ψm0−2 (z) êm0+2 (z)

]
(4.2)

and
k (z) =

am0+1

2i sin z
[γ1ψm0−1 (z) em0+2 (z)− γ2ψm0−2 (z) em0+1 (z)] (4.3)

for z ∈ D . Note that for all z ∈ D , k (z) = d (z) . It follows from (3.1) and (4.1) that for all z ∈ D ,

W [En (z) , Gn (z)] =

{ am0−2

am0+1

2i sin z
γ1γ2

d (z) , n = 1, 2, . . . ,m0 − 1

−2i sin zd (z) , n = m0 + 1,m0 + 2, . . .
. (4.4)
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It is evident that for z ∈
[
−π
2
,
3π

2

]
\ {0, π} above wronskian is same with the W [En (z) , Fn (z)] given in

Lemma 3.2.

Theorem 4.1 For all z ∈ D\ {0, π} and d (z) ̸= 0 , the resolvent operator of IBVP (1.1)–(1.3) is defined by

Rλgn :=

∞∑
k=1

Rnk (z) gk, {gk} ∈ l2 (N) ,

where

Rnk (z) =

{
− GkEn

W [Ek,Gk]
; k ≤ n

− GnEk

W [Ek,Gk]
; k > n

is the Green function of the IBVP (1.1)–(1.3) for k, n ̸= m0 .

Proof It is necessary to solve the equation

▽ (an △ yn) + hnyn − λyn = gn (4.5)

to get the Green function of IBVP (1.1)-(1.3), where hn = an−1+an+bn , △ is the forward difference operator,
▽ is the backward difference operator defined by △yn = yn+1 − yn and ▽yn = yn − yn−1 , respectively. Since
En (z) and Gn (z) are the fundamental solutions of IBVP (1.1)-(1.3), we can write the general solution of
y = {yn (z)} of (4.5)

yn (z) = cnEn (z) + tnGn (z) , (4.6)

where cn , tn are coefficients and are different from zero. Using the method of variation of parameters, we get
cn and tn by

cn = −
n∑

k=1

Gkgk
W [Ek, Gk]

, k ̸= m0 (4.7)

tn = −
∞∑

k=n+1

Ekgk
W [Ek, Gk]

, k ̸= m0. (4.8)

It follows from (4.6), (4.7) and (4.8) that the Green function of (1.1)–(1.3) is Rnk (z) given in Theorem 4.1 and
it is easy to write the resolvent operator of IBVP (1.1)–(1.3) by using Green function. 2

Theorem 4.1 is a main tool to define the set of eigenvalues of IBVP (1.1)–(1.3). By using this theorem
and the definition of eigenvalues, we write the set of eigenvalues of (1.1)–(1.3) generated by σd as

σd = {λ = 2 cos z : z ∈ D0, d (z) = 0} .

Theorem 4.2 Assume (1.4). Then d (z) satisfies the following asymptotic equation for all z ∈ D0

d (z) = e4iz (B + o (1)) , |z| → ∞, B ̸= 0.
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Proof Since the polynomial function Pn (z) is of (n− 1) . degree and the polynomial function Qn (z) is of
(n− 2) . degree according to λ , we can immediately obtain that

lim
|z|→∞

{
ψn (z) e

inz
}
= − υ1

a1a2 . . . an−1
, n = 1, 2, . . . ,m0 − 1 (4.9)

and
lim

|z|→∞

{
en (z) e

−inz
}
= ρn, n = 1, 2, . . . ,m0 − 1 (4.10)

by using (1.2), (2.1) and (3.8), where ρn :=

( ∞∏
k=n

ak

)−1

.

It follows from (3.8), (4.9) and (4.10) that

d (z) =
am0+1

2i sin z

{
γ1ψm0−1 (z) e

i(m0−1)zem0+2 (z) e
−i(m0+2)ze3iz−

γ2ψm0−2 (z) e
i(m0−2)zem0+1 (z) e

−i(m0+1)ze3iz

}
and

d (z) e−4iz =
am0+1

2i sin z

{
−γ1

υ1
a1a2 . . . am0−2

ρm0+2 +
γ2υ1

a1a2 . . . am0−3
ρm0+1

}
.

Last equation gives

d (z) e−4iz =
B

(e2iz − 1)
, (4.11)

where

B = −am0+1υ1γ1ρm0+1

(a1a2 . . . am0−3)

(
am0+1

am0−2
− γ2
γ1

)
.

Using (4.11), we get lim
|z|→∞

d (z) e−4iz = B for all z ∈ D0 and it completes the proof of theorem. 2

Theorem 4.2 shows that the set of eigenvalues of IBVP (1.1)-(1.3) is bounded under the condition (1.4).
If we denote the continuous spectrum of (1.1)-(1.3) by σc , we can give the following Theorem.

Theorem 4.3 Under the condition (1.4), σc (L) = [−2, 2] , where L denotes the operator generated by the
IBVP (1.1)-(1.3).

Proof Let us introduce the operators L1 and L2 generated by the following difference expressions in l2 (N)
together with (1.2) and (1.3)

(L1y)n = yn−1 + yn+1, N\ {m0 − 1, m0 + 1}

(L2y)n = (an−1 − 1) yn−1 + bnyn + (an − 1) yn+1, N\ {m0 − 1, m0, m0 + 1} ,

respectively. It is clear from that L = L1 + L2 and L2 is a compact operator in l2 (N) under the assumption
(1.4) (see [24]). We also can write L1 = L3 + L4 , where L3 is a selfadjoint operator with σc (L3) = [−2, 2]

and L4 is a finite dimensional operator in l2 (N) . Since L4 is a finite dimensional operator in l2 (N) , it is a
compact operator, and so, the sum of two compact operators L2 + L4 is also a compact operator. It follows
from that L = L3 + L4 + L2 and by using Weyl theorem [16] of a compact perturbation, we obtain that
σc (L3) = σc (L) = [−2, 2] . 2
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5. Unperturbed ımpulsive equation
In this part, we will define an unperturbed discrete impulsive Sturm–Liouville equation and we will discuss
our main results given in previous sections for this unperturbed problem. In that way, it gives an opportunity
to readers applying the main results on a simple example. Let us consider the following unperturbed discrete
impulsive problem

yn−1 + yn+1 = 2 cos zyn, n ∈ N\ {2, 3, 4}

(µ0 + λµ1) y1 + (ν0 + λν1) y0 = 0 (5.1)

y4 = γ1y2

y5 = γ2y1,

where µ0 , µ1, ν0 , ν1, γ1 , γ2 ∈ R and γ1γ2 ̸= 0 . It is evident that in the problem (1.1)-(1.3), we suppose
an ≡ 1 , bn ≡ 0 for all n ∈ N , m0 = 3 for the problem (5.1). Then, the solution en (z) turns into einz , and the
fundamental solutions Pn (z) and Qn (z) of (1.3) have the following values for n = 0, 1, 2 .

P0 (z) = 0, P1 (z) = 1, P2 (z) = λ

Q0 (z) =
1

a0
, Q1 (z) = 0, Q2 (z) = − 1

a0
.

Thus, by using (3.1) and (3.8), we find d (z) and Jost solution of this problem

d (z) =
a4

2i sin z
[γ1e5 (z)ψ2 (z)− γ2e4 (z)ψ1 (z)] (5.2)

En (z) =

{
α (z)Pn (z) + β (z)Qn (z) ; n = 1, 2

en (z) ; n = 4, 5, 6, . . .
.

From the equation (5.2), we obtain the scattering function of (5.1)

S (z) = −e−8iz

[
γ1ψ2 (z) e

−iz − γ2ψ1 (z)

γ1ψ2 (z) eiz − γ2ψ1 (z)

]
.

Moreover, continuous spectrum of the problem (5.1) is [−2, 2] from Theorem 4.3. To get the eigenvalues of the
problem (5.1), it is necessary to find the zeros of d (z) for z ∈ D0. Because from the definition of eigenvalues,
we write

σd = {λ = 2 cos z : z ∈ D0, d (z) = 0} (5.3)

for this problem, where d (z) is defined by (5.2). By using the values of Pi (z) , Qi (z) ; i = 1, 2 we obtain

ψ1 (z) = −(ν0 + λν1),

ψ2 (z) = −λ(ν0 + λν1)− (µ0 + λµ1).

It follows from last equations and (5.2) that

d (z) =
a4

2i sin z

{
γ1[−λ(ν0 + λν1)− (µ0 + λµ1)]e

5iz + γ2(ν0 + λν1)e
4iz
}
. (5.4)
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Equation (5.4) implies that d (z) = 0 if and only if

γ2
γ1

= λeiz +
µ0 + λµ1

ν0 + λν1
eiz. (5.5)

For the simplicity on calculations, if we choose µ1 = ν0 = 1 and ν1 = µ0 = 0 in (5.5), we find

e2iz =
γ2
2γ1

− 1.

Let γ2 = 2aγ1, a ∈ R. By using last equation, we get e2iz = a− 1. It gives us

2izk = ln |a− 1|+ iArg (a− 1) + 2ikπ, k ∈ Z

i.e.,

zk = − i

2
ln |a− 1|+ 1

2
Arg (a− 1) + kπ, k ∈ Z. (5.6)

It is clear from (5.3) and (5.6) that the boundary value problem (5.1) has eigenvalues if and only if ln |a− 1| < 0.

It implies that −1 < a− 1 < 1. Consequently, the necessary condition for the IBVP (5.1) to have an eigenvalue
is that 0 < a < 2. These eigenvalues are real and lie on (−∞,−2) ∪ (2,∞) . Note that, since the impulsive
conditions do not work when a = 0, the problem turns in to classical selfadjoint Sturm–Liouville problem, so
a ̸= 0. On the other hand, a ̸= 2. Because, when a is equal to 2, we get zk = kπ, k ∈ Z in (5.6). But only for

k = 0, 1; z0 and z1 ∈
[
−π
2
,
3π

2

]
. For k = 0, we obtain λ0 = 2 ; for k = 1, we obtain λ1 = −2. Since λ = ±2

are in continuous spectrum, they are not eigenvalues of (5.1).

6. Conclusions
This work is the first that informs readers about the scattering solutions of an discrete impulsive Sturm–Liouville
equation with a boundary condition dependent on spectral parameter. These solutions help to find the scattering
function of the problem by using the properties of scattering function. After finding the scattering function of
this problem, we also find the resolvent operator, continuous spectrum, and discrete spectrum of the problem.
As a result, discussing the main results, we are interested in an unperturbed equation as an example. This study
will be a reference for researchers who study on scattering theory. On the other hand, for µ0 = µ1 = ν1 = 0,

ν0 ̸= 0 and m0 = 3, the impulsive boundary value problem (1.1)–(1.3) can be written in the following form of
boundary value problem

an−1yn−1 + bnyn + anyn+1 = λyn, n ≥ 5

γ2a1y4 + γ1 (b1 − λ) y5 = 0

which is not an impulsive problem. But if m0 can be chosen large enough, it can not be written in the form that
is not an impulsive problem. Moreover, since the wronskian of the impulsive problem (1.1)-(1.3) is a constant
on the left-side of m0 and it is a different constant on the right-side of m0, the proof of the finiteness of the
eigenvalues of the problem (1.1)-(1.3) is difficult, even if it has not been solved yet.
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