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Abstract: We study some classical operators defined on the weighted Bergman Fréchet space Ap
α+ (resp. weighted

Bergman (LB)-space Ap
α− ) arising as the projective limit (resp. inductive limit) of the standard weighted Bergman

spaces into the growth Fréchet space H∞
α+ (resp. growth (LB)-space H∞

α− ), which is the projective limit (resp. inductive
limit) of the growth Banach spaces. We show that, for an analytic self map φ of the unit disc D , the continuities of
the weighted composition operator Wg,φ , the Volterra integral operator Tg , and the pointwise multiplication operator
Mg defined via the identical symbol function are characterized by the same condition determined by the symbol’s state
of belonging to a Bloch-type space. These results have consequences related to the invertibility of Wg,φ acting on a
weighted Bergman Fréchet or (LB)-space. Some results concerning eigenvalues of such composition operators Cφ are
presented.

Key words: Weighted composition operator, Volterra operator, multiplication operator, Fréchet spaces, (LB)-spaces,
weighted spaces of analytic functions

1. Introduction
Let H(D) denote the Fréchet space of all analytic functions f : D → C equipped with the topology of uniform
convergence on the compact subsets of the unit disc D := {z ∈ C : |z| < 1} . Let φ be an analytic self map
on D , and let g : D → C be an analytic map. The main focus of this note is, when they are defined between
projective (or inductive) limits of different well-known Banach spaces of analytic functions, to give a relation
between the continuity of the Volterra integral operator

Tg(f)(z) =

∫ z

0

f(t)g′(t)dt, z ∈ D, (1.1)

the pointwise multiplication operator

Mg(f)(z) = g(z)f(z), z ∈ D, (1.2)

and the weighted composition operator

Wg,φ(f)(z) = (Mg ◦ φ ◦ f)(z) = g(z)f(φ(z)), z ∈ D (1.3)
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in terms of conditions formulated for g and φ . For 1 < p < ∞ and −1 < α < ∞ , the Bergman space of
standard weight Ap

α = Ap
α(D) of the unit disc is given by

Ap
α := {f ∈ H(D) : ||f ||p,α =

(
(α+ 1)

∫
D
|f(z)|pdsα(z)

)1/p

< ∞}, (1.4)

where dsα(z) = (1− |z|2)αds(z) , and ds(z) = 1
πdxdy . Each Ap

α is a closed subspace of Lp(D,ds(z)) in which
the polynomials are dense [18, Section 1.1]. The weighted Bergman space Ap

α is a Banach space with the norm
||·||p,α . Classical Bergman space Ap(D) corresponds to the case α = 0 . If p = ∞ we obtain the growth Banach
space

H∞
α := {f ∈ H(D) : ||f ||−α := sup

z∈D
|f(z)|(1− |z|2)α < ∞}, (1.5)

endowed with the norm ||·||−α . These Banach spaces, as well as their intersections and unions, play a significant
role in connection with the interpolation and sampling of analytic functions. See [18, Section 4.3]. They arise
as special cases of weighted Banach spaces H∞

v of analytic functions on D , which was pioneered by the work
of Shields and Williams [25], and then have been investigated by many authors, e.g. [7, 8, 23]. An analytic
function f said to belong to the Bloch space Bα if

||f ||Bα
= sup

z∈D
|f ′(z)|(1− |z|2)α < ∞.

Indeed, ||·||Bα
defined above is a seminorm. We shall use the notation A ≲ B if there is a constant c > 0 not

depending on A or B such that A ≤ cB . We write A ≍ B whenever A ≲ B and B ≲ A . The Bloch space Bα

is a Banach space when normed with ||f || := |f(0)| + ||f ||Bα
. By [18, Proposition 1.13], given α > 0 for every

f ∈ H(D) one has
sup
z∈D

|f(z)|(1− |z|2)α ≍ sup
z∈D

|f ′(z)|(1− |z|2)α+1. (1.6)

We refer the reader to [28] for a detailed treatment of Bloch spaces. It is also possible to define these spaces
with the weight (1− |z|)α instead of (1− |z|2)α . Since 1− |z| ≤ 1− |z|2 ≤ 2(1− |z|) , these spaces coincide and
the norms are equivalent. In this paper, the operators we shall investigate will be defined on weighted Bergman
Fréchet and (LB)-spaces, which arise as intersections and unions of standard weighted Bergman spaces. For
1 < p < ∞ , and 0 < α < ∞ they are defined as follows:

Ap
α+ := {f ∈ H(D) :

(∫
D
|f(z)|pdsµ(z)

)1/p

< ∞, ∀µ > α}

=
⋂
µ>α

Ap
µ =

⋂
n∈N

Ap

(α+ 1
n )

= proj
n∈N

Ap

(α+ 1
n )
, (1.7)

Ap
α− := {f ∈ H(D) :

(∫
D
|f(z)|pdsµ(z)

)1/p

< ∞, for some µ < α}

=
⋃
µ<α

Ap
µ =

⋃
n∈N

Ap

(α− 1
n )

= ind
n∈N

Ap

(α− 1
n )
, (1.8)

where the inductive limit is taken over all n ∈ N such that (α− 1
n ) > 0 . The paper [20] gives a description

of intersections and unions of weighted Bergman spaces of order 0 < p < ∞ . Unlike those, we treat the space
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Ap
α+ as a Fréchet space when equipped with the locally convex topology generated by the increasing system of

norms

|||f |||p,α,n :=

(∫
D
|f(z)|pds(α+ 1

n )(z)

)1/p

, n ∈ N, (1.9)

for f ∈ Ap
α+ and each n ∈ N . We note that for 0 < µ < γ < ∞ , the natural inclusion map ιµ,γ : A

p
µ → Ap

γ is
compact. See e.g. [21, Proposition 3.1]. Hence, Ap

α+ is a Fréchet-Schwartz space. The space Ap
α− is a complete

(DFS)-space endowed with the finest locally convex topology, such that ιµ,γ is continuous. It is also a regular
(LB)-space, since every bounded set B ⊆ Ap

α− is contained and bounded in the Banach space Ap
µ , for some

0 < µ < α . Let us also remark that, for α > 0 we have Ap
α− ⊂ Ap

α ⊂ Ap
α+ with continuous inclusions. Some

other properties of Ap
α+ and Ap

α− were given in author’s work [21] where these spaces were first introduced
in locally convex setup. The Volterra integral operator defined between different weighted Bergman Fréchet or
(LB)-spaces has been investigated by the author in [22]. Given 0 < α < ∞ ,

H∞
α+ := {f ∈ H(D) : sup

z∈D
|f(z)|(1− |z|2)µ < ∞,∀µ > α}

= proj
n∈N

H∞
(α+ 1

n ) (1.10)

H∞
α− := {f ∈ H(D) : sup

z∈D
|f(z)|(1− |z|2)µ < ∞, for some µ < α}

= ind
n∈N

H∞
(α− 1

n ). (1.11)

Then H∞
α+ is a Fréchet space when endowed with the locally convex topology generated by the increasing

sequence of norms
|||f |||n := sup

z∈D
|f(z)|(1− |z|2)(α+ 1

n ), n ∈ N,

for f ∈ H∞
α+ . For any pair 0 < µ < α < ∞ , the canonical inclusion map ιµ,α : H

∞
µ → H∞

α is compact [10,
Theorem 3.3]. Hence, both H∞

α+ , and H∞
α− are Schwartz spaces. The regular (LB)-space H∞

α− is endowed with
the finest locally convex topology making ιµ,α continuous. Several important properties of growth Fréchet and
(LB)-spaces can be found in [2, 11, 12]. The Volterra integral operator acting on a growth Fréchet or (LB)-space
has been investigated by Bonet [9] in terms of continuity, compactness, and spectrum. For a study of weighted
composition operators acting on these spaces, see [17].

In Section 2, we first deal with operators defined from Ap
α+ (resp. Ap

α− ) into H∞
β+ (resp. H∞

β− ). If
we pick the symbol function g : D → C in such a way that it belongs to the Bloch-type space Bτ , for every
positive τ > β + 1 − (2 + α)/p , we show that the continuity of Volterra integral operator Tg : A

p
α+ → H∞

β+ is
equivalent to the continuity of pointwise multiplication operator Mg : A

p
α+ → H∞

β+ , and the continuity of the
weighted composition operator Wg,φ : A

p
α+ → H∞

β+ provided that φ(0) = 0 . When we take another weighted
Bergman Fréchet space (resp. (LB)-space) as the range space, we show that the symbol function g belonging
to the growth Fréchet space H∞

γ+ , where γ = (2 + β)/q − (2 + α)/p , characterizes the continuity of the
pointwise multiplication operator Mg : A

p
α+ → Aq

β+ as well as the Volterra integral operator Tg : A
p
α+ → Aq

β+ .
The same condition is also valid for the (LB)-space case. On the other hand, the continuity criterion for the
weighted composition operator in between is different in this case. We give this condition in Section 3 as a
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straightforward generalization of the well-known characterizations of Čučković and Zhao [26] related to Carleson
measures. Fortunately, resting on the arguments of Bourdon [13], the condition g ∈ H∞

γ+ , which is equivalent
to continuity of pointwise multiplication and Volterra integral operators between Ap

α+ and Aq
β+ answers the

question of invertibility for the weighted composition operator Wg,φ acting on Ap
α+ (in this case, γ = 0),

whenever φ is an automorphism of D . Finally, we give some results concerning the eigenvalues of composition
operators Cφ acting on Ap

α+ or Ap
α− in connection with their essential spectral radius defined on the Banach

space Ap
α .

2. Continuous Volterra, multiplication, and weighted composition operators between weighted
Fréchet and (LB)-spaces

Let us note that the continuity and compactness of Wg,φ : A
p
α → H∞

β was described in [24, Theorem 3.1], and
in [27, Theorem 2.2] for more general weights, that is, Wg,φ : A

p
w → H∞

v . In [14] and [15] weighted composition
operators Wg,φ : X → H∞

v are investigated in a uniform approach covering a large family of Banach spaces
of analytic functions concerning the space X . Before we start our discussion on operators between Fréchet or
(LB)-spaces, we need to prove the following result concerning related Banach spaces.

Proposition 2.1 Let g be an analytic function. Let φ be an analytic self map on D satisfying φ(0) = 0 .
Given 1 ≤ p < ∞ and −1 < α, β < ∞ , let γ := β + 1 − 2+α

p be nonnegative. Then, the following statements
are equivalent.

(1) The symbol g belongs to the Bloch space Bγ .

(2) The Volterra operator Tg : A
p
α → H∞

β is continuous.

(3) The pointwise multiplication operator Mg : A
p
α → H∞

β is continuous.

(4) The weighted composition operator Wg,φ : A
p
α → H∞

β is continuous.

Proof (1) ⇒ (2). Note that for 1 < p < ∞ for any f ∈ H(D) , we have (see e.g. [18, p. 39])

|f(z)|p(1− |z|2)t ≲
∫
D
|f(w)|p(1− |w|2)t−2ds(w), t ∈ R. (2.1)

We also mention that (see e.g. [5, Lemma 2]) for every f ∈ H(D) we have

∫
D
|f(z)|p(1− |z|2)αds(z) ≲ |f(0)|p +

∫
D
|f ′(z)|p(1− |z|2)p+αds(z). (2.2)
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Now let g ∈ Bγ . Then, for any f ∈ Ap
α by (2.1) we have

||Tgf ||p−β = sup
z∈D

∣∣∣∣∫ z

0

f(ξ)g′(ξ)dξ
∣∣∣∣p(1− |z|2)pβ

≲
∫
D

∣∣∣∣∫ w

0

f(ξ)g′(ξ)dξ
∣∣∣∣p(1− |w|2)pβ−2ds(w)

≲ |f(0)|p +
∫
D

∣∣∣∣∣
(∫ w

0

f(ξ)g′(ξ)dξ
)′
∣∣∣∣∣
p

(1− |w|2)pβ−2+pds(w)

= |f(0)|p +
∫
D
|f(w)g′(w)|p(1− |w|2)pβ−2+pds(w)

≤ |f(0)|p +
∫
D
|f(w)|p|g′(w)|p(1− |w|2)pβ−2+p+α−αds(w)

≤ |f(0)|p + sup
w∈D

|g′(w)|p(1− |w|2)p(β+1)−(2+α)

∫
D
|f(w)|p(1− |w|2)αds(w)

= |f(0)|p + 1

α+ 1
||g||pBγ

||f ||pp,α < ∞,

where the second inequality is due to (2.2). Hence Tg : A
p
α → H∞

β is continuous.

(2) ⇒ (1). For w ∈ D , let us pick

fw(z) :=

(
1− |w|2

(1− wz)2

) 2+α
p

.

A canonical calculation yields (see e.g. [28, p. 52]) ||fw||pp,α = 1 . Since Tg : A
p
α → H∞

β is continuous, by (1.6)
we obtain

||fw||p,α ≳ ||Tgfw||−β ≃ ||Tgfw||Bβ+1
.

Then, for any w ∈ D , the latter yields,

1 ≳ sup
z∈D

|(Tgfw)
′(z)|(1− |z|2)β+1 ≥ |(Tgfw)

′(w)|(1− |w|2)β+1

=

∣∣∣∣∣
(∫ w

0

fw(ξ)g
′(ξ)dξ

)′
∣∣∣∣∣(1− |w|2)β+1

= |fw(w)g′(w)|(1− |w|2)β+1

= |g′(w)|

(
1− |w|2

|1− ww|2

) 2+α
p

(1− |w|2)β+1

= |g′(w)|(1− |w|2)γ . (2.3)

Since w ∈ D was arbitrary, by (2.3), ||g||Bγ
≲ 1 . This proves (1).

(1) ⇔ (3). Follows by (1.6) and the previous result in [24, Corollary 3.3].
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(1) ⇒ (4). We make use of the following well-known estimate. For any f ∈ Ap
α ,

|f(z)| ≲
||f ||p,α

(1− |z|2)
2+α
p

, ∀z ∈ D. (2.4)

Note that, by Schwartz’s lemma, one has |φ(z)| ≤ |z| . Hence,

sup
z∈D

1− |z|2

1− |φ(z)|2
< ∞. (2.5)

Let g ∈ Bγ . Then, by (1.6), for any f ∈ Ap
α we have

||Wg,φf ||−β = sup
z∈D

|Wg,φf(z)|(1− |z|2)β

= sup
z∈D

|g(z)f(φ(z))|(1− |z|2)β

≍ sup
z∈D

|g(z)||f(φ(z))|(1− |z|2)γ−1+ 2+α
p

≤ ||g||Bγ
sup
z∈D

|f(φ(z))|(1− |z|2)
2+α
p

≤ ||g||Bγ
||f ||p,α sup

z∈D

(
1− |z|2

1− |φ(z)|2

) 2+α
p

< ∞,

where the second inequality is due to (2.4), and the last one is by (2.5).
(4) ⇒ (1). Let Wg,φ : A

p
α → H∞

β be continuous. Given w = φ(z0) ∈ D for a fixed z0 ∈ D , let us define

hw(z) :=

(
1− |w|2

(1− wz)2

) 2+α
p

,

for which ||hw||p,α = 1 . Then, continuity of Wg,φ : A
p
α → H∞

β and (1.6) imply

1 = ||hw||p,α ≳ ||Wg,φhw||−β = sup
z∈D

|g(z)hw(φ(z))|(1− |z|2)β

≍ sup
z∈D

|g(z)| |hw(φ(z))|(1− |z|2)γ−1+ 2+α
p

= |g(z0)|(1− |z0|2)γ−1hw(φ(z))(1− |z|2)
2+α
p

= |g(z0)|(1− |z0|2)γ−1

(
1− |w|2

|1− wφ(z)|2
(1− |z|2)

) 2+α
p

≥ |g(z0)|(1− |z0|2)γ−1

(
1− |z0|2

1− |φ(z0)|2

) 2+α
p

≍ |g(z0)|(1− |z0|2)γ−1,

for an arbitrary z0 ∈ D , by (2.5). Hence, g ∈ Bγ . 2

The following result is well-known. For a proof, see e.g. [3, Lemma 25].
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Lemma 2.2 Let E = projm Em and F = projn Fn be Fréchet spaces such that E (resp. F ) is the intersection
of the sequence of Banach spaces Em (resp. Fn ), E is dense in Em and Em+1 ⊂ Em with continuous inclusion
for each m (resp. F is dense in Fn and Fn+1 ⊂ Fn with continuous inclusion for each n). Let T : E → F be
a linear operator. Then

(i) T is continuous if and only if for each n , there is m such that T has a unique continuous linear extension
Tm,n : Em → Fn .

(ii) Assume T is continuous. Then, T is bounded if and only if there is m such that for each n , T has a
unique continuous linear extension Tm,n : Em → Fn .

The following lemma for (LB)-spaces is also known. A proof can be seen in [4, Lemma 4.1].

Lemma 2.3 Let E = indm Em and F = indn Fn be (LB)-spaces such that E (resp. F ) is the union of the
sequence of Banach spaces Em (resp. Fn ). Let T : E → F be a linear operator. Then

(i) T is continuous if and only if, for all m ∈ N , there exists n ∈ N such that T (Em) ⊂ Fn and T : Em → Fn

is continuous.

(ii) Let T be continuous and let F be regular. Then, T is bounded if and only if there exists n ∈ N such that
for all m , T (Em) ⊂ Fn and T : Em → Fn is continuous.

With the help of Lemma 2.2 and Lemma 2.3 we extend Proposition 2.1 to the setup of Fréchet and
(LB)-spaces.

Proposition 2.4 Given 1 < p < ∞ and 0 < α, β < ∞ , let γ := β + 1 − 2+α
p be non-negative. Let φ be an

analytic self map on D satisfying φ(0) = 0 . Then, the following statements are equivalent.

(1) The symbol g ∈ H(D) satisfies

g ∈
⋂
τ>γ

Bτ . (2.6)

(2) The Volterra operator Tg : A
p
α+ → H∞

β+ is continuous.

(3) The Volterra operator Tg : A
p
α− → H∞

β− is continuous.

(4) The pointwise multiplication operator Mg : A
p
α+ → H∞

β+ is continuous.

(5) The pointwise multiplication operator Mg : A
p
α− → H∞

β− is continuous.

(6) The weighted composition operator Wg,φ : A
p
α+ → H∞

β+ is continuous.

(7) The weighted composition operator Wg,φ : A
p
α− → H∞

β− is continuous.

Proof (1) ⇔ (2) ⇔ (4). By Lemma 2.2, the Volterra operator Tg : A
p
α+ → H∞

β+ (resp. the pointwise

multiplication operator Mg : A
p
α+ → H∞

β+ ) is continuous if and only if for every ε > 0 there exists δ̃ ∈ (0, ε]
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such that Tg : A
p

α+δ̃
→ H∞

β+ε (resp. Mg : A
p

α+δ̃
→ H∞

β+ε ) is continuous. By Proposition 2.1 this is equivalent

to say that
g ∈ Bγ+ε−δ, (2.7)

where δ := δ̃
p < ε . Clearly (2.7) is equivalent to (2.6).

(1) ⇒ (3). Suppose (2.6) holds. Then, for every ε ∈ (0,min{α+1
p2 , β

p−1}) we have g ∈ Bγ+ε . Then, given

−1 < µ := α− p2ε pick η := β − (p− 1)ε . We see that γ + ε = η + 1− 2+µ
p , which yields g ∈ Bη+1− 2+µ

p
. By

Proposition 2.1 this is equivalent that Tg : A
p
µ → H∞

η is continuous. In the light of Lemma 2.3, Tg : A
p
α− → H∞

β−

is continuous.
(3) ⇒ (1). Let Tg : A

p
α− → H∞

β− be continuous. Then, for every ε ∈ (0, α+1
p ) , there exists δ ∈

(0,min{ε, β
p }) such that Tg : A

p
α−ε → H∞

β−δ is continuous. Without loss of any generality, let γ + ε
p − δ ≥ 0 ,

since otherwise g is constant so there is nothing to prove. By Proposition 2.1 this is equivalent that g ∈
Bγ+ ε

p−δ ⊆ Bγ+ε−δ . Hence g satisfies (2.7), equivalently (2.6).

(1) ⇔ (5). Identical to (1) ⇔ (3).
(1) ⇔ (6). Suppose that φ satisfies (2.5). The symbol function g satisfying (2.6) is equivalent to say that

for every ε > 0 , there exists δ̃ ∈ (0, ε] such that g ∈ Bγ+ε−δ̃ . Equivalently, by Proposition 2.1, the weighted

composition operator Wg,φ : A
p
α+δ → H∞

β+ε is continuous, for δ = δ̃
p . By Lemma 2.2, this is equivalent to say

that Wg,φ : A
p
α+ → H∞

β+ is continuous.

(1) ⇒ (7). If g satisfies (2.6), for every ε ∈ (0, 2+α
2p ) one has g ∈ Bγ+ε ⊆ Bβ+1−ε , since 2+α

p > 2ε .

Then, by (1.6) g ∈ H∞
β−ε and the rest follows very similar to Fréchet case.

(7) ⇒ (1). The weighted composition operator Wg,φ : A
p
α− → H∞

β− is continuous if and only if, for
every ε ∈ (0, α+ 1) , there exists δ ∈ (0,min{ε, β}] such that Wg,φ : A

p
α−ε → H∞

β−δ is continuous if and only if
g ∈ Bγ+ ε

p−δ ⊆ Bγ+ε−δ , by Proposition 2.1. This is equivalent to (2.7) hence to (2.6). 2

Proposition 2.5 Let 1 < p ≤ q < ∞ , and 0 < α, β < ∞ . Let γ := 2+β
q − 2+α

p be non-negative. Then, for an
analytic map g : D → C , the following statements are equivalent.

(1) The symbol g belongs to the growth Fréchet space H∞
γ+ .

(2) The pointwise multiplication operator Mg : A
p
α+ → Aq

β+ is continuous.

(3) The pointwise multiplication operator Mg : A
p
α− → Aq

β− is continuous.

(4) The Volterra operator Tg : A
p
α+ → Aq

β+ is continuous.

(5) The Volterra operator Tg : A
p
α− → Aq

β− is continuous.

Proof (1) ⇒ (2). Let Mg : A
p
α+ → Aq

β+ be continuous. Then, for every ε > 0 given µ := β + qε there exists
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α < η < α+ qε such that Mg : A
p
η → Aq

µ is continuous. Hence, for every z ∈ D

|g(z)|(1− |z|2)γ+ε = |g(z)|(1− |z|2)
2+µ
q − 2+α

p

< |g(z)|(1− |z|2)
2+µ
q − 2+η

p < ∞.

So by [26, Theorem 9], g ∈ H∞
γ+ε . Hence, g ∈ H∞

γ+ .
(2) ⇒ (1). Let g ∈ H∞

γ+ . Then, for every ε > 0 there exists δ ∈ (0, ε] such that we have g ∈ H∞
γ+ε−δ .

Given µ := β + qε , define η := α+ pδ . Observe that for every z ∈ D ,

|g(z)|(1− |z|2)
2+µ
q − 2+η

p = |g(z)|(1− |z|2)γ+ε−δ < ∞.

So g ∈ H∞
2+µ
q − 2+η

p

. By [26, Theorem 9], Mg : A
p
η → Aq

µ is continous. Therefore, Mg : A
p
α+ → Aq

β+ is continuous.

(3) ⇒ (1). Let Mg : A
p
α− → Aq

β− be continuous. Then, for every ε > 0 , given −1 < µ := α − pε there
exists −1 < β − pε < η < β such that Mg : A

p
µ → Aq

η is continuous. Then, for every z ∈ D ,

|g(z)|(1− |z|2)γ+ε < |g(z)|(1− |z|2)
2+η
q − 2+µ

p < ∞.

So, by [26, Theorem 9], g belongs to H∞
γ+ε and hence to H∞

γ+ .

(1) ⇒ (3). Suppose that g ∈ H∞
γ+ . Let x = min{(α+1) q−1

pq , (β +1) q−1
q } . Then, for every ε ∈ (0, x) we

have g ∈ H∞
γ+ε . Given −1 < µ := α− pq

q−1ε , pick −1 < η := β − q
q−1ε . Then, for every z ∈ D ,

|g(z)|(1− |z|2)
2+η
q − 2+µ

p = |g(z)|(1− |z|2)γ+
q

q−1 ε−
1

q−1 ε

= |g(z)|(1− |z|2)γ+ε < ∞.

Hence, g ∈ H∞
2+η
q − 2+µ

p

. By [26, Theorem 9], Mg : A
p
µ → Aq

η is continuous. Therefore, Mg : A
p
α− → Aq

β− is

continuous.
(1) ⇔ (4) ⇔ (5). Follows by (1.6), Proposition 2.5, and [22, Proposition 2.2]. 2

Proposition 2.5 will help us characterize the invertibility of a weighted composition operator acting on a
weighed Bergman Fréchet or a weighted Bergman (LB)-space. See Proposition 3.7. The following statement is
derived from [26, Theorem 11] via Lemma 2.2. Its (LB)-space version can be produced in an analogue way.

Proposition 2.6 Let g be an analytic function on D . Let 1 ≤ q < p < ∞ , and α, β > 0 . Then, the following
statements are equivalent.

(1) The multiplication operator Mg : A
p
α+ → Aq

β+ is continuous.

(2) For every µ > β , there exists ν ∈ (α, α+µ− β) such that g ∈ As
η , where 1

s = 1
q −

1
p and η = s

(
µ
q − ν

p

)
.

3. Weighted composition operators between weighted Bergman Fréchet and (LB)-spaces

3.1. Continuous weighted composition operators between different weighted Bergman Fréchet or
(LB)-spaces

An operator T on a Fréchet space X into itself is called bounded (resp. compact) if there exists a neighborhood
U of the origin of X such that TU is a bounded (resp. relatively compact) set in X . The following result is a
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consequence of [26, Theorem 1] along with Lemma 2.2 and Lemma 2.3.

Proposition 3.1 Let 1 < p ≤ q < ∞ and 0 < α, β < ∞ . Let g : D → C be an analytic function and let
φ : D → D be an analytic self map. Then,

(1) The weighted composition operator Wg,φ : A
p
α+ → Aq

β+ is continuous if and only if for every µ > β there
exists η ∈ (α, α+ µ− β) such that

sup
z∈D

∫
D

(
1− |z|2

|1− zφ(w)|2

) 2+η
p q

|g(w)|qdsµ(w) < ∞. (3.1)

(2) The weighted composition operator Wg,φ : A
p
α− → Aq

β− is continuous if and only if for every ζ ∈ (0, α)

there exists θ ∈ [ζ, α) such that

sup
z∈D

∫
D

(
1− |z|2

|1− zφ(w)|2

) 2+ζ
p q

|g(w)|qdsθ(w) < ∞. (3.2)

Similarly, we obtain the following proposition via Lemma 2.2 and [26, Theorem 3]. An (LB)-space version
can be easily derived.

Proposition 3.2 Let 1 < q < p < ∞ and 0 < α, β < ∞ . Let g : D → C be an analytic function and let
φ : D → D be an analytic self map. Then, the following statements are equivalent.

(1) The weighted composition operator Wg,φ : A
p
α+ → Aq

β+ is continuous.

(2) For every µ > β there exists ν ∈ (α, α+ µ− β) such that for s := p
p−q we have

∫
D

(1− |z|2)2+ν

|1− zφ(w)|4+2ν |g(w)|
qdsµ(w) ∈ As

ν .

Lemma 3.3 (i) Let E = projm Em and F = projn Fn be Fréchet spaces such that E (resp. F ) is the
intersection of the sequence of Banach spaces Em (resp. Fn ), E is dense in Em and Em+1 ⊂ Em with
continuous inclusion for each m (resp. F is dense in Fn and Fn+1 ⊂ Fn with continuous inclusion for
each n). Let T : E → F be a linear operator. Assume T is continuous. Then T is bounded if and only
if there is m such that for each n , T has a unique continuous linear extension Tm,n : Em → Fn .

(ii) Let X = indXn and Y = indYm be two (LB)-spaces which are increasing unions of Banach spaces
X = ∪∞

n=1Xn and Y = ∪∞
m=1Ym . Let T : X → Y be a continuous linear map. Assume that Y is a

regular (LB)-space. Then, T is bounded if and only if there exists m ∈ N such that T (Xn) ⊂ Ym and
T : Xn → Ym is continuous for all n ≥ m .

The following proposition is a consequence of [26, Corollary 1] and Lemma 3.3.

Proposition 3.4 Let 1 < p ≤ q < ∞ and 0 < α, β < ∞ . Let g : D → C be an analytic function and let
φ : D → D be an analytic self map. Then,
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(1) The weighted composition operator Wg,φ : A
p
α+ → Aq

β+ is compact if and only if it is continuous and there
exists µ > α such that for each η ∈ (α, µ] we have

sup
z∈D

∫
D

(
1− |z|2

|1− zφ(w)|2

) 2+µ
p q

|g(w)|qdsη(w) < ∞. (3.3)

(2) The weighted composition operator Wg,φ : A
p
α− → Aq

β− is compact if and only if it is continuous and there
exists ζ ∈ (0, α) such that for each θ ∈ [ζ, α) we have

sup
z∈D

∫
D

(
1− |z|2

|1− zφ(w)|2

) 2+θ
p q

|g(w)|qdsζ(w) < ∞. (3.4)

Proof

(1) Given α, β > 0 , let Wg,φ : A
p
α+ → Aq

β+ be bounded. Since Ap
α+ is a Schwartz space, this is equivalent to

assume that Wg,φ is compact. Lemma 3.3(i) applied to Ap
α+ this is equivalent that there exists µ > α such

that for all β < η < β + µ − α , the weighted composition operator Wg,φ : A
p
µ → Aq

η is continuous. This is
equivalent, by [26, Theorem 1], that (3.3) holds.

(2) Very similar to part (1) if we apply Lemma 3.3(ii) and [26, Theorem 1].

2

3.2. Invertible weighted composition operators acting on a weighted Bergman Fréchet or (LB)-
space

The characterizations of invertible weighted composition operators on the Fréchet space Ap
α+ and on the (LB)-

space Ap
α− are consequences of the following results by Bourdon [13, Theorem 2.2; Corollary 2.3]. These

arguments were also used to characterize invertible weighted composition operators acting on the growth Fréchet
space H∞

α+ and the growth (LB)-space H∞
α− in [17, Proposition 4].

Theorem 3.5 Suppose that E is a space of analytic functions on D such that

(i) Wg,φ maps E to E .

(ii) E contains a nonzero constant function.

(iii) E contains a function of the form z → z + c for some constant c .

(iv) There is a dense subset S of the unit circle such that, for each point in S , there is a function in E that
does not extend analytically to a neighborhood of that point.

If Wg,φ : E → E is invertible, then φ is an automorphism of D .

Theorem 3.6 If E, g and φ satisfy the hypotheses of Lemma 3.5, and for each f ∈ E we have f ◦ h ∈ E for
all automorphism h of D , then Wg,φ is invertible on E if and only if φ is an automorphism of D and both g

and 1/g map E into E .
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Whenever it is continuous, that is, (3.1) or (3.2) is satisfied, Wg,φ fulfills hypothesis (i) of Theorem 3.5.
Hypotheses (ii) and (iii) are verified by both Ap

α+ and Ap
α− , since they contain the constants and polynomials.

For hypothesis (iv), let us consider the function fw,s : D → C given by fw,s :=
1

(w−z)s , for w ∈ ∂D and s > 0 .

It is easy to see that fw,s ∈ Ap
α+ and fw,s ∈ Ap

α− . However, in any neighborhood U of w , we see that
fa,s /∈ H(D) for any a ∈ U . So it does not extend analytically to any neighborhood of w (cf. [17, Remark 2]).

Proposition 3.7 Let g, φ ∈ H(D) and φ(D) ⊂ D . Let 1 < p < ∞ , and 0 < α < ∞ . Then, the following
statements are equivalent.

(1) g ∈ H∞
0+ , and 1/g ∈ H∞

0+ .

(2) The weighted composition operator Wg,φ : A
p
α+ → Ap

α+ is invertible.

(3) The weighted composition operator Wg,φ : A
p
α− → Ap

α− is invertible.

Proof Since both Ap
α+ and Ap

α− satisfy all hypotheses of Theorem 3.5, we apply Theorem 3.6 to reach that
Wg,φ is invertible if and only if φ is an automorphism of D and Mg and M1/g are continuous on Ap

α+ (resp.
Ap

α− ). Hence the conclusion follows from proposition 2.5. 2

3.3. Some results on eigenvalues of composition operators acting on a weighted Bergman Fréchet
or (LB)-space

For T ∈ L(E) , the resolvent set ρ(T ;E) of T consists of all λ ∈ C such that R(λ, T ) := (λI − T )−1 exists in
L(E) . The set σ(T ;E) := C \ ρ(T ) is called the spectrum of T . The point spectrum σpt(T ;X) of T consists
of all λ ∈ C such that (λI − T ) is not injective. The essential norm ||T ||e,X of an operator T on a Banach
space X is the distance of the operator to the set of compact operators on X . The essential spectral radius is

given by re(T ;X) = limn ||Tn||1/ne,X . The following lemma is well known. For a proof, see [19, Lemma 2.4] and
[17, Lemma 3.4].

Lemma 3.8 Let X ⊂ H(D) be a continuously included subspace of holomorphic functions containing the
polynomials. Let φ, g ∈ H(D) with φ(D) ⊂ D and φ(0) = 0 . Suppose that φ is not a constant function. Then,

σpt(Wg,φ;X) ⊆ {g(0)φ′(0)j}∞j=0.

The following lemma is due to [19, Lemma 2.3].

Lemma 3.9 Let X ⊂ H(D) be a continuously included subspace of holomorphic functions containing the
polynomials. Let g, φ ∈ H(D) with φ(D) ⊂ D , g ̸≡ 0 , and φ(0) = 0 . Then,

(i) g(0) ∈ σ(Wg,φ;X) .

(ii) For every j ∈ N we have g(0)φ′(0)j ∈ σ(Wg,φ;X) .

Proposition 3.10 Let 1 < p < ∞ , and 0 < α < ∞ . Suppose that φ ∈ H(D), φ(D) ⊂ D , 0 < |φ′(0)| < 1 , and
φ is not a rotation. Then,
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(1) The point spectrum of the composition operator Cφ : A
p
α+ → Ap

α+ satisfies the inclusions

{φ′(0)j}∞j=0 \B(0, re(Cφ, A
p
α)) ⊂ σpt(Cφ;A

p
α+) ⊂ {φ′(0)j}∞j=0.

(2) The point spectrum of the composition operator Cφ : A
p
α− → Ap

α− satisfies the inclusions

{φ′(0)j}∞j=0 \B(0, re(Cφ, A
p
α)) ⊂ σpt(Cφ;A

p
α−) ⊂ {φ′(0)j}∞j=0.

Proof

(1) By Lemma 3.8 we immediately obtain σpt(Cφ;A
p
α+) ⊂ {φ′(0)j}∞j=0 . So the inclusion on the right hand

side follows. For the other inclusion, first let us note that the essential spectral radius re(Cφ;A
p
α) < 1 , by

[6, Theorem 2.8]. In the light of that, we are allowed to fix a j ∈ N such that
∣∣φ′(0)j

∣∣ > re(Cφ;A
p
α) so that

φ′(0)j /∈ σess(Cφ;A
p
α) . Then, by Lemma 3.9 we obtain φ′(0)j ∈ σ(Cφ;A

p
α) . If we apply [1, Theorem 7.44] this

implies φ′(0)j ∈ σpt(Cφ;A
p
α) . This means there exists f0 ∈ Ap

α such that Cφf0 = φ′(0)jf0 , in Ap
α . But since

Ap
α ⊂ Ap

α+ , the latter holds also in Ap
α+ . Therefore φ′(0)j ∈ σpt(Cφ;A

p
α+) , as well.

(2) Similar to part (1), the right hand side inclusion follows immediately by Lemma 3.8. For the other inclusion,
fix 0 < β < α < β + 1 < ∞ so that by [16, Proposition 3.6; 3.8],

re(Cφ;A
p
β) ≤ lim

n→∞

 lim
s→1

sup
|z|≥s

(
1− |z|2

1− |φn(z)|2

)β+1
1/n

≤ lim
n→∞

 lim
s→1

sup
|z|≥s

(
1− |z|2

1− |φn(z)|2

)α+2
1/n

≤ re(Cφ;A
p
α).

Then let us first fix j ∈ N such that
∣∣φ′(0)j

∣∣ > re(Cφ;A
p
α) . Then we find β < α satisfying

∣∣φ′(0)j
∣∣ > re(Cφ;A

p
β)

to immediately apply Lemma 3.9 and [1, Theorem 7.44] to get
∣∣φ′(0)j

∣∣ ∈ σ(Cφ;A
p
β) and

∣∣φ′(0)j
∣∣ ∈ σpt(Cφ;A

p
β) ,

respectively. That implies there exists g0 ∈ Ap
β such that Cφg0 =

∣∣φ′(0)j
∣∣g0 in Ap

β . But since Ap
β ⊂ Ap

α− , the

same holds in Ap
α− as well. Therefore

∣∣φ′(0)j
∣∣ ∈ σpt(Cφ;A

p
α−) .

2
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