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Abstract: Let B(X) be the algebra of all bounded linear operators on an infinite-dimensional complex Banach space
X , and denote by rT (x) the local spectral radius of any operator T ∈ B(X) at any vector x ∈ X . In this paper, we
characterize surjective maps φ on B(X) satisfying

rφ(T )φ(A)+φ(A)φ(T )(x) = 0 if and only if rTA+AT (x) = 0

for all x ∈ X and A, T ∈ B(X) .

Key words: Nonlinear preservers, quasinilpotent part, local spectral radius, Jordan product

1. Introduction
Let X be an infinite-dimensional complex Banach space and let B(X) be the algebra of all bounded linear
operators on X . The local resolvent set of an operator T ∈ B(X) at a vector x ∈ X , ρT (x) , is the set of all λ in
C for which there exist an open neighborhood Uλ of λ and a function f : Uλ −→ X such that(T −µ)f(µ) = x

for all µ ∈ C . Its complement in C , denoted by σT (x) , is called the local spectrum of T at x , and is a closed
subset (possibly empty) of σ(T ) , the spectrum of T . The local spectral radius of an operator T ∈ B(X) at a
point x ∈ X is defined by:

rT (x) = lim sup
n→+∞

∥ Tnx ∥ 1
n .

The quasinilpotent part of an operator T ∈ B(X) is defined by:

H0(T ) = {x ∈ X : lim sup
n→+∞

∥ Tnx ∥ 1
n= 0}.

For more information on general local spectral theory, the interested reader may consult the remarkable
books in [2] and [20].

Over the last years, the study of additive and linear local spectra preserver problems has attracted the
attention of many authors. Bourhim and Ransford [12] were the first ones to consider this type of preserver
problems. They studied additive maps on B(X) preserving the local spectrum at each point x ∈ X and showed
that if φ : B(X) −→ B(X) is an additive map satisfying σφ(T )(x) = σT (x) for all T ∈ B(X) and for all
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x ∈ X , then φ is the identity on B(X) . These results opened the way for some authors to consider a more
general problem of characterizing additive or linear maps on matrices or operators preserving different local
spectral sets and quantities such as the local spectrum, the local spectral radius and the local inner spectral
radius; see for instance [1, 4–13, 15–19] and the references therein.

In [16], Costara described surjective linear maps on B(X) which preserve operators of local spectral
radius zero at points of X . He showed, in particular, that if φ is a surjective linear map on B(X) such that
for every x ∈ X and T ∈ B(X) , we have:

rφ(T )(x) = 0 if and only if rT (x) = 0

then there exists a nonzero scalar α ∈ C such that φ(T ) = αT for all T ∈ B(X) .
In [7], Bourhim and Mashreghi obtained a similar result to that in [16] without assuming that φ is linear.

They proved that if φ is a surjective map on B(X) that satisfies:

rφ(T )−φ(S)(x) = 0 if and only if rT−S(x) = 0 ,

for every x ∈ X and T, S ∈ B(X) , then there are a nonzero scalar α ∈ C and an operator A ∈ B(X) such
that φ(T ) = αT +A for all T ∈ B(X) .

This result was extended by Elhodaibi and Jaatit in [17] to maps φ assumed to be nonsurjective. For
generalized product of operators, Abdelali et al. showed in [1] that a surjective map φ on B(X) satisfies:

rφ(T1)∗···∗φ(Tk)(x) = 0 ⇐⇒ rT1∗···∗Tk
(x) = 0

for all x ∈ X and all T1, T2, · · · , Tk ∈ B(X) if and only if there exists a map γ : B(X) −→ C\{0} such that
φ(T ) = γ(T )T for all T ∈ B(X) .

In this paper, we show that a surjective map φ on B(X) satisfies:

rφ(T )φ(A)+φ(A)φ(T )(x) = 0 if and only if rTA+AT (x) = 0 (x ∈ X and A, T ∈ B(X)

if and only if there exists a function γ : B(X) −→ C\{0} such that φ(T ) = γ(T )T for all T ∈ B(X) .

2. Preliminaries
For any operator T ∈ B(X) , let N(T ) be the kernel of T and ran(T ) be its range. For a subspace Y of X ,
denote by dim(Y ) and codim(Y ) its dimension and codimension, respectively.

Let x be a nonzero vector in X and f be a nonzero functional in the topological dual X∗ of X . We
denote, as usual, by x⊗ f the rank-one operator given by (x⊗ f)z = f(z)x for z ∈ X . Note that x⊗ f is an
idempotent operator if and only if f(x) = 1 , and it is nilpotent if and only if f(x) = 0 . For a positive integer
n , let Fn(X) be the set of all operators in B(X) of rank at most n .

The quasinilpotent part of a rank-one operator is given by:

H0(x⊗ f) =

{
X if f(x) = 0

N(f) if f(x) ̸= 0

For the proof of the mains result, we need some auxiliary lemmas. The first one summaries some elementary
properties of the quasinilpotent following parts of operators.
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Lemma 2.1 (See [2]) Let T ∈ B(X) . The following statements hold.

1. N(T ) ⊆ H0(T ) .

2. H0(λT ) = H0(T ) for all nonzero scalar λ ∈ C .

3. H0(T
n) = H0(T ) for all n ∈ N∗ .

4. T is quasinilpotent if and only if H0(T ) = X .

5. Let M be a finite dimensional subspace of X such that TM = M then M ∩ H0(T ) = {0} and
dim(M) ≤codim(H0(T )) .

In this lemma, the last assertion is obvious.
The next lemma characterizes rank-one operators A ∈ B(X) in terms of the quasinilpotent following

parts of the Jordan product of A with any operator T ∈ B(X) .

Lemma 2.2 For a nonzero operator A ∈ B(X) , the following statements are equivalent:

1. A is a rank-one operator.

2. codim(H0(AT + TA)) ≤ 2 for all T ∈ B(X) .

Proof (1) =⇒ (2) : Let A be a rank-one operator and write A = x⊗f with f ∈ X∗, x ∈ X and let T ∈ B(X)

be an arbitrary operator. Then N(f) ∩N(T ∗f) ⊂ H0(AT + TA) and thus codim(H0(AT + TA)) ≤ 2 .

(2) =⇒ (1) : Assume that rank(A) ≥ 2 , and let us show that there exists T ∈ B(X) such that codim(H0(AT +

TA)) ≥ 3 .
Firstly, suppose that rank(A) ≥ 3 . Let y1 = Ax1, y2 = Ax2 , and y3 = Ax3 such that {y1, y2, y3} are

linearly independent. Take an operator T ∈ B(X) such that

Ty1 = x1, T y2 = x2 and Ty3 = x3, (2.1)

and set R = AT + TA .
Case 1: Assume that dim(span{x1, x2, x3, y1, y2, y3}) = 3 .
Let α1, α2, α3 ∈ C be such that x1 = α1y1 + α2y2 + α3y3 . We have Tx1 = α1x1 + α2x2 + α3x3 ,

ATx1 = α1y1 +α2y2 +α3y3 = x1 and TAx1 = x1 . We do the same calculations for x2 , x3 , and {x1, x2, x3} ⊆
N(R− 2I).

Set M =span{x1, x2, x3} and dimM = 3 then we have ranM = M and codim(H0(R)) ≥ 3 .
Case 2: Assume that dim(span{x1, x2, x3, y1, y2, y3}) = 4 =dim( span{x1, y1, y2, y3}) .
In this case, we can choose easily an operator T ∈ B(X) satisfying both (2.1) and Tx1 = 0 . Then there

exist α1, α2 ∈ C such that Rx2 = −α1x1 + 2x2 and Rx3 = −α2x1 + 2x3 . Hence: Rx1 = x1

Rx2 = −α1x1 + 2x2

Rx3 = −α2x1 + 2x3
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the matrix of R in basis {x1, x2, x3} is

1 −α1 −α2

0 2 0
0 0 2

 .

Set M =span{x1, x2, x3} and dimM = 3 then we have ranM = M and codim(H0(R)) ≥ 3 .
Case 3: Assume that dim(span{x1, x2, x3, y1, y2, y3}) = 5 =dim(span{x1, x2, y1, y2, y3}) .
In this case, we choose T ∈ B(X) to be an operator satisfying both (2.1) and Tx1 = 0, Tx2 = 0 . Then

there exist α1, α2 ∈ C such that Rx3 = −α1x1 − α2x2 + 2x3 . Hence: Rx1 = x1

Rx2 = x2

Rx3 = −α1x1 − α2x2 + 2x3

As before, codim(H0(R)) ≥ 3 .
Case 4: Assume that dim(span{x1, x2, x3, y1, y2, y3}) = 6 .
In this case, we choose T ∈ B(X) to be an operator satisfying both (2.1) and Tx1 = 0, Tx2 = 0, Tx3 = 0 .

We have:  Rx1 = x1

Rx2 = x2

Rx3 = x3

Then {x1, x2, x3} ⊆ N(R− I) . Set M =span{x1, x2, x3} and dimM = 3 then we have ranM = M and
codim(H0(R)) ≥ 3 .

Secondly, suppose that rank(A) = 2 then N(A) ̸= 0 .
Set A such that y1 = Ax1 , y2 = Ax2 , and {y1, y2} are linearly independent. Take an operator T ∈ B(X)

with the following properties

Ty1 = x1 and Ty2 = x2, (2.2)

and consider the following operator R = AT + TA .
Assume that dim(span{x1, x2, y1, y2}) = 2 , we can replace x1 by x1 + z with z ∈ N(A) a nonzero

vector such that {x1 + z, y1, y2} are linearly independent. Then without loss of generality, we may assume that
{x1, y1, y2} and {x1, x2, y1} are linearly independent. Thus, we distinguish two cases:

Case 1: Assume that dim(span{x1, x2, y1, y2}) = 3 .
In this case, we choose T ∈ B(X) to be an operator satisfying both (2.2) and Tx1 = 0 . Take α1, α2, β1, β2, β3 ∈
C satisfying x2 = α1x1+β1y1+β2y2 and Ay1 = α2y1+β3y2 , ATy1 = y1 then TAx2 = x2 , Tx2 = β1x1+β2x2 ,
and ATx2 = β1y1 + β2y2 = x2 − αx1 . Hence:

 Rx1 = x1

Rx2 = −α1x1 + 2x2

Ry1 = α2x1 + β3x2 + y1

As before, codim(H0(R)) ≥ 3 .
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Case 2: Assume that dim(span{x1, x2, y1, y2}) = 4 . In this case, we choose T ∈ B(X) to be an operator
satisfying both (2.2) and Tx1 = 0, Tx2 = 0 . Let α, β ∈ C such that Ay1 = αy1 + βy2 .

We have Rx1 = x1 , Rx2 = x2 , and ATy1 = y1 . Then: Rx1 = x1

Rx2 = x2

Ry1 = αx1 + βx2 + y1

As before, codim(H0(R)) ≥ 3 . 2

In terms of the quasinilpotent following parts of the Jordan product of operators, the last lemma
characterizes when two operators in B(X) are scalar multiple of each other.

Lemma 2.3 For two operators A,B in B(X)\{0} , the following statements are equivalent.

1. B = λA for some nonzero scalar λ ∈ C .

2. H0(AT + TA) = H0(BT + TB) for all T ∈ F2(X) .

In particular if A has a finite rank then we can replace F2(X) by F1(X) .

Proof (1) =⇒ (2) For some nonzero scalar λ ∈ C we have B = λA , then

H0(BT + TB) = H0(λAT + λTA) = H0(λ(AT + TA)) = H0(AT + TA)

(2) =⇒ (1) Let A,B ∈ B(X) be two operators such that

H0(BT + TB) = H0(AT + TA)

for all T ∈ F2(X) . If A = 0 , then H0(BT + TB) = X for all T ∈ F2(X) , and σBT+TB(x) = {0} for all
nonzero x ∈ X and all T ∈ F2(X) . By [6, Corollary 4.4], we conclude that B = 0 . Similarly, if B = 0 , then
A = 0 ; thus, we may and shall assume that both A and B are nonzero operators.

Assume that there exists a nonzero vector x ∈ X such that {x,Ax,Bx} are linearly independent. Then
there exists a linear functional f ∈ X∗ such that f(x) = f(Ax) = 0 and f(Bx) = 1 . We choose T = x ⊗ f

and set R = Ax⊗ f + x⊗A∗f, S = Bx⊗ f + x⊗B∗f . It follows that ran(R) =span{x,Ax} and{
Rx = 0

RAx = f(A2x)x

Therefore, R is nilpotent and H0(R) = X . We have Sx = (BT + TB)x = (Bx ⊗ f + x ⊗ B∗f)x = x ,
and then

x ̸∈ H0(BT + TB) = H0(AT + TA) = X .

This contradiction shows that Bx ∈ span{x,Ax} for all x ∈ X . Now, we shall discuss three cases:
Case 1: If A = µI for some nonzero scalar µ ∈ C and there exists x ∈ X such that x and Bx are

linearly independent. Take T = x⊗ f such that f(x) = 0 and f(Bx) = 1 , R is nilpotent and Sx = x . This is
a contradiction then B = νI , with ν ∈ C\{0} .
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For A ̸∈ CI , B = αI + λA for some (α, λ) ∈ C× C∗ , see [21, Lemma 2.4] . Without loss of generality,
we can choose λ = 1 .

Case 2: There exists a nonzero vector x ∈ X such that {x,Ax,A2x} are linearly independent, and
there exists a linear functional f ∈ X∗ such that f(Ax) = f(A2x) = 0 and f(x) ̸= 0 , take T = x⊗ f then we
have S = R+ 2αT and R is a rank two operator, S is less than rank two operator. We have:

R2 = (Ax⊗ f + x⊗A∗f)(Ax⊗ f + x⊗A∗f)

= f(Ax)Ax⊗ f + f(x)Ax⊗A∗f + f(A2x)x⊗ f + f(Ax)x⊗A∗f

= f(x)Ax⊗A∗f.

Also:

S2 = (Ax⊗ f + x⊗A∗f + 2αx⊗ f)(Ax⊗ f + x⊗A∗f + 2αx⊗ f)

= f(x)(Ax+ 2αx)⊗ (A∗f + 2αf).

Then R is nilpotent. H0(S) = H0(R) = X ; therefore, for z = Ax + 2αx , we have S2z = 0 then
4α2f(x)2 = 0 ; hence, α = 0 .

Case 3: If not then for all x ∈ X , A2x ∈ span{x,Ax} , we omit the proof for this, A2 = aA + bI for
some a, b ∈ C , see [21, Lemma 2.4].

If b = 0 , then there exists f ∈ X∗ and x ∈ X such that f(x) ̸= 0 and f(Ax) = 0 ; hence, f(A2x) = 0 ,
see case 2 . Without loss of generality we can choose b = 1 . Hence, in this case, we infer that A2 = aA + I

and there exists x ∈ X such that x and Ax are linearly independent. Consequently, there exist two linear
functionals (f, g) ∈ (X∗)2 such that f(Ax) = g(x) = 0 and f(x) ̸= 0, g(Ax) ̸= 0 , take T = x⊗ f +Ax⊗ g we
have:

R = TA+AT

= (x⊗ f +Ax⊗ g)A+A(x⊗ f +Ax⊗ g)

= x⊗A∗f +Ax⊗A∗g +Ax⊗ f +A2x⊗ g

= x⊗ (A∗f + g) +Ax⊗ (f +A∗g + ag).

Also:

S = R+ 2αT

= x⊗ (A∗f + g + 2αf) +Ax⊗ (f +A∗g + ag + 2αg).

Set t = f(x) + g(Ax) , we have:{
Sx = 2αf(x)x+ tAx

SAx = tx+ 2(a+ α)g(Ax)Ax

the matrix of S in basis (x,Ax) is U =

(
2αf(x) t

t 2(a+ α)g(Ax)

)
, we have:

det(U) = −4α(a+ α)f(x)2 + 4α(a+ α)f(x)t− t2.
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• If α ̸= −a and α ̸= 0 , we choose t ̸= 0 such that S is a noninvertible operator.
Also we have: {

Rx = tAx
RAx = tx+ 2ag(Ax)Ax

the matrix of R in basis (x,Ax) is
(
0 t
t 2ag(Ax)

)
, then R is an invertible operator and codim(H0(R)) ≥ 2 ,

this is a contradiction.
• If α = −a ̸= 0 and t = 0 then: {

RAx = 2ag(Ax)Ax
SAx = 0.

Therefore, Ax /∈ H0(R) and Ax ∈ H0(S) . This contradiction completes the proof. 2

3. The main result
In this section, we state and prove the main result of this paper that gives a complete description of all surjective
maps on B(X) satisfying

rφ(T )φ(A)+φ(A)φ(T )(x) = 0 if and only if rTA+AT (x) = 0.

for all x ∈ X and T,A ∈ B(X) . Note that there is a similarity in the proof of the next theorem and of the
theorem 1.1 in [1]. However, their proof does not apply to our case.

Theorem 3.1 Let X be an infinite dimensional complex Banach space and φ : B(X) −→ B(X) be a surjective
map. Then the following assertions are equivalent:

1. For every x ∈ X and T,A ∈ B(X) , we have

rφ(T )φ(A)+φ(A)φ(T )(x) = 0 ⇐⇒ rTA+AT (x) = 0.

2. For every x ∈ X and T,A ∈ B(X) , we have

H0(φ(T )φ(A) + φ(A)φ(T )) = H0(TA+AT ).

3. There exists a function γ : B(X) −→ C\{0} such that φ(T ) = γ(T )T for all T ∈ B(X).

Proof Since the equivalence (1) ⇔ (2) and the implication (3) ⇒ (2) are obvious, we only need to establish
the implication (2) ⇒ (3) . Therefore, assume that

H0(φ(A)φ(T ) + φ(T )φ(A)) = H0(AT + TA)

for all A, T ∈ B(X) , and note that the proof breaks down into four steps.
Step 1: φ(A) = 0 ⇐⇒ A = 0 and φ(0) = 0 .
Let us show that φ(0) = 0 . We have:
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H0(φ(T )φ(0) + φ(0)φ(T )) = H0(T0 + 0T ) = X = H0(φ(T )0 + 0φ(T ))

for all T ∈ B(X) . Lemma 2.3 and the surjectivity of φ entail that φ(0) = 0 .
Similarly, if φ(A) = 0 then A = 0 .
Step 2: φ preserves rank-one operators in both directions.

Let A ∈ B(X) be a rank-one operator, then by Step 1 we have φ(A) ̸= 0 and by Lemma 2.2

codim(H0(TA+AT )) ≤ 2 for every T ∈ B(X) , since φ is surjective and

H0(TA+AT ) = H0(φ(T )φ(A) + φ(A)φ(T ))

then:

codim((H0(φ(T )φ(A) + φ(A)φ(T ))) ≤ 2

and φ(A) is a rank-one operator.
Let φ(A) be a rank-one operator. Similarly, as above, we establish that A is a rank-one operator.
Step 3: For every rank-one operator A ∈ B(X) , there is a nonzero scalar α ∈ C such that φ(A) = αA .
Let x ∈ X and f ∈ X∗ . By Step 2, there exist y ∈ X and g ∈ X∗ such that φ(x⊗ f) = y ⊗ g .
Case 1: If f(x) ̸= 0 , then we have:

N(f) = H0(x⊗ f) = H0(2(x⊗ f)2)

= H0(x⊗ fx⊗ f + x⊗ fx⊗ f)

= H0(φ(x⊗ f)φ(x⊗ f) + φ(x⊗ f)φ(x⊗ f))

= H0(2(y ⊗ g)2)

= H0(2g(y)y ⊗ g).

This shows that g(y) ̸= 0 and N(f) = H0(y ⊗ g) = N(g) . Therefore, g = αf for a nonzero scalar α ∈ C .
Without loss of generality, we may and shall assume that f = g , and φ(x⊗ f) = yx,f ⊗ f for certain nonzero
vector yx,f ∈ X .

We claim that x and yx,f are linearly dependent. If not, take h ∈ X∗ such that h(x) = 1 and h(yx,f ) = 0 ,
observe that φ(x⊗h) = yx,h⊗h , take S = x⊗fx⊗h+x⊗hx⊗f and R = yx,f ⊗fyx,h⊗h+yx,h⊗hyx,f ⊗f .

We have Sx = 2f(x)x and R = f(yx,h)yx,f ⊗ h is nilpotent; hence, x ̸∈ H0(S) = H0(R) = X . This
contradiction shows that yx,f and x are linearly dependent, and φ(x ⊗ f) = α(x ⊗ f) for certain nonzero
α ∈ C .

Case 2: If f(x) = 0 , then:

X = H0(x⊗ f) = H0(2(x⊗ f)2)

= H0(x⊗ fx⊗ f + x⊗ fx⊗ f)

= H0(φ(x⊗ f)φ(x⊗ f) + φ(x⊗ f)φ(x⊗ f))

= H0(2(y ⊗ g)2)

= H0(2g(y)y ⊗ g).

Hence, g(y) = 0 .
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If g and f are linearly independent. Let z ∈ X and h ∈ X∗ such that, f(z) = h(z) = h(x) = 1 and
g(z) = 0 . Take R = x⊗ fz ⊗ h+ z ⊗ hx⊗ f and S = y ⊗ gz ⊗ h+ z ⊗ hy ⊗ g = h(y)z ⊗ g .
Then Rx = x ; hence, x ̸∈ H0(R) = H0(S) = X . This contradiction asserts that g = αf for a nonzero scalar
α ∈ C . Without loss of generality, we may and shall assume that f = g .

We claim that x and yx,f are linearly dependent. If not, let z ∈ X and h ∈ X∗ such that f(z) = h(z) =

h(x) = 1 and h(yx,f ) = 0 , observe that φ(x⊗ f) = yx,f ⊗ f .
For R = x⊗fz⊗h+z⊗hx⊗f and S = yx,f ⊗fz⊗h+z⊗hyx,f ⊗f , we have Rx = x and S = yx,f ⊗h is

nilpotent; hence, x ̸∈ H0(R) = H0(S) = X . This contradiction shows that yx,f and x are linearly dependent,
and φ(x ⊗ f) = α(x ⊗ f) for certain nonzero α ∈ C . As a consequence, see Lemma 2.3 , for a finite rank
operator A , there exists a nonzero scalar α such that φ(A) = αA .

Step 4: φ(T ) = γ(T )T for all T ∈ B(X) .
For every rank two operator A ∈ B(X) and every T ∈ B(X)\{0} , we have:

H0(TA+AT ) = H0(φ(T )φ(A) + φ(A)φ(T ))

= H0(αφ(T )A+ αAφ(T ))

= H0(α(φ(T )A+Aφ(T )))

= H0(φ(T )A+Aφ(T )).

By Step 1 and Lemma 2.3 , we see that φ(T ) and T are linearly dependent. Therefore, there exists a
function γ : B(X) −→ C\{0} such that φ(T ) = γ(T )T for all T ∈ B(X) . 2
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