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1. Introduction
The aim of this paper is to generalize Dynnikov coordinates to a genus-1 surface with n (n ≥ 2) punctures and
one boundary component. The Dynnikov coordinate system [4] is an effective way to coordinate an integral
lamination on a finitely punctured disk Dn (n ≥ 3) . It provides a bijection between the isotopy classes of
integral laminations and Z2n−4 \ {0} . The Dynnikov coordinate system has been extensively used to solve
various dynamical and combinatorial problems such as the word problem in the braid group [2, 3], calculating
the topological entropies of pseudo-Anosov braids [7, 9] and computing the geometric intersection number of
two integral laminations on Dn [11].

Throughout the paper, Sn shall denote a genus-1 surface with n (n ≥ 2) punctures and one boundary
component. To coordinate an integral lamination given on Sn , a system consisting of 3n + 2 arcs and a
simple closed curve on Sn is used. Given an integral lamination L (or a measured foliation F ), first, we have
introduced a vector in Z3n+3

≥0 \ {0} (or R3n+3
≥0 \ {0}) using the geometric intersection numbers (or the measure

assigned to these curves) with the curves in our system. To uniquely determine every lamination, we have
defined the Dynnikov coordinates on Sn by considering the linear combinations of these intersection numbers
(see Section 2).

2. Dynnikov coordinates on Sn

In this section, we describe the Dynnikov coordinates on Sn . For this, we use the model shown in Figure 1.
Here the arcs αi (1 ≤ i ≤ 2n) and βi (1 ≤ i ≤ n+ 1) are similar to the Dn case. Thus, the endpoints of these
arcs are either on the boundary or on the puncture. While c is the longitude of the torus, γ is the arc whose
both endpoints are on the boundary. Moreover, note that γ intersects c once transversally.

Let Ln be the set of integral laminations (an integral is a finite union of mutually disjoint essential simple
closed curves up to isotopy; for example, you can see Figure 2) on Sn and L ∈ Ln . An integral lamination is
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Figure 1. Curves on Sn .

generally disconnected. However, when this integral lamination consists of only one closed curve, it becomes
connected. Throughout the paper, we always work with the minimal representative (an integral lamination in
the same isotopy class intersecting minimally with coordinate curves) of L and denote it by L . Let the vector
(α1, · · · , α2n;β1, · · · , βn+1; γ; c) ∈ {Z3n+3

≥0 } \ {0} show the intersection numbers of L with the corresponding
arcs and the simple closed curve c . For example, (4, 1, 3, 2, 4, 1; 3, 5, 5, 3; 3; 1) are the intersection numbers of
the integral lamination L depicted in Figure 2.

3
5 5
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4 3
4

1 2 1

1

3

Figure 2. Intersection numbers of the integral lamination L with the coordinate curves.

2.1. Path components on Sn

In this section, we shall introduce the path components of an integral lamination L on Sn and derive formulas
for the number of these components.

Let Ui (1 ≤ i ≤ n) be the region that is bounded by βi and βi+1 (see Figure 3) and G be the region
bounded by β1 , βn+1 and the boundary of Sn (∂Sn ) (see Figures 4 and 5). Each component of L ∩ Ui and
L∩G is called the path component of L in Ui and G , respectively. Since L is minimal, there are 4 types of path
components in Ui (1 ≤ i ≤ n) as on the disk [10] (see Figure 3). An above component has endpoints on βi and
βi+1 and intersects α2i−1 . A below component has endpoints on βi and βi+1 and intersects α2i . A left loop
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component has both endpoints on βi+1 and intersects α2i−1 and α2i (see Figure 3a). A right loop component
has both endpoints on βi and intersects α2i−1 and α2i (see Figure 3b). There are 6 types of path components
in G . The first three of these are curve c , front genus component and back genus component. The curve c is
the longitude of the torus (see Figure 4a). The front genus component has both endpoints on βn+1 and does
not intersect the curve c (see Figure 4b). The back genus component has both endpoints on β1 and does not
intersect the curve c (see Figure 4c). The other three components are called twisting, which have endpoints
on β1 and βn+1 and intersect the curve c (see Figure 5). These components are nontwist, negative twist, and
positive twist components. The nontwist component does not make any twist (see Figure 5a). The negative
twist component makes clockwise twist (see Figure 5b). The positive twist component makes counterclockwise
twist (see Figure 5c).

Ui Ui

(a) (b)

α 2i
α2i

α 2i−1
α 2i−1

β i
β i β i+1

β i+1

Δ2i−1
Δ2i−1

Δ2 i
Δ2i

Figure 3. Above and below components, left and right loop components in the region Ui .

The twist number of a twisting component is the signed number of intersections with the curve γ .

Remark 2.1 Since an integral lamination L ∈ Ln consists of simple closed curves that do not intersect each
other, there cannot be both curve c and twisting components at the same time in the region G (see Figure 6).
Also note that there are a monotype front genus and a monotype back genus component in the region G .

Remark 2.2 If L contains the p(c) copies of the curve c , then let

c = −p(c), (2.1)

where p(c) > 0 . Moreover, let c+ give the number of the twisting components in the region G . From Remark 2.1,
there cannot be both the curve c and the twisting components at the same time. Therefore, c+ is defined by
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Figure 4. (a) c curves, (b) front genus component, (c) back genus component in the region G .
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Figure 5. (a) Nontwist component, (b) negative twist component, (c) positive twist component.

γ

c

β n +1 β1

Figure 6. The integral lamination does not contain both the curve c and the twisting components at the same time.

max(c, 0) throughout the paper. That is, if the integral lamination contains the twisting components, then c > 0

and the number of the twisting components is c+ ; if the integral lamination contains the curve c , then c < 0

and the number of the copies of curve c is given by p(c) ; and if the integral lamination contains neither twisting
components nor curve c , then c = 0 .

Remark 2.3 Since an integral lamination does not contain any self-intersections, the directions of the twists
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have to be the same. Moreover, in the region G , the difference between the twist numbers of two different
twisting components cannot be greater than 1 (see Figure 7).

γ

β n +1
β1

Figure 7. If the difference between the twist numbers of two twisting components is greater than one, then they
intersect.

If we denote the smaller twist number by t and the bigger twist number by t + 1 , then the total twist
number T in G is the sum of the twist numbers of such components. Hence, if the difference between the twist
numbers of any two twisting components is 0 , then

T = tc+.

On the other hand, if the difference between the twist numbers of any two twisting components is 1 , then

T = m(t+ 1) + (c+ −m)t,

where m ∈ Z≥0 is the number of the twisting components with the twist number t+1 , and c+−m is the number
of the twisting components with the twist number t .

Remark 2.4 Although T gives the total twist number in G , it cannot show the directions of the twists by
itself. Therefore, we first calculate the number T , and then we add a sign in front of T , denoting the negative
direction by −T and the positive direction by T . However, since only the total number of the twists is required
in the formulas throughout the paper, |T | shall be used as the total number of the twists in order not to cause
any confusion.

Now, we calculate the path components of L in G :

Lemma 2.5 Let L be given with the intersection numbers (α;β; γ; c) , and the number of the front genus
components and the number of the back genus components be l and l′ , respectively. Then,

l =
βn+1 − c+

2
and l′ =

β1 − c+

2
.

Proof The arc βn+1 intersects only with twisting (see Figure 5) and front genus (see Figure 4b) components.
Since βn+1 intersects once with each twisting component and twice with each front genus component, βn+1 =

c+ +2l . From here, l = βn+1−c+

2 is derived. Similarly, β1 intersects only with twisting (see Figure 5) and back
genus (see Figure 4c) components. Since β1 intersects once with each twisting component and twice with each

back genus component, β1 = c+ + 2l′ . Therefore, l′ = β1−c+

2 is derived. 2
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In the following lemma, we calculate the total twist number of the twisting components:

Lemma 2.6 Let L be given with the intersection numbers (α;β; γ; c) , denoting the signed total twist number
of the twisting components by T . We have

|T | =

{
0 if c+ = 0,

γ − βn+1−c+

2 − β1−c+

2 if c+ ̸= 0.
(2.2)

The sign of the negative twist component is −1 and the sign of the positive twist component is 1 .

Proof Let us denote the total twist number of twisting components of L by |T | . Note that the curve γ

intersects once with curve c (see Figure 4a) and it intersects once with each front and back genus components (see
Figures 4b and 4c, respectively). Moreover, γ intersects by the total number of twists of twisting components
(see Figure 5) with L . However, from Remark 2.1, there cannot be twists and curve c at the same time.
Therefore, when c+ ̸= 0 , we have

γ = l + l′ + |T |, (2.3)

where l , l′ , and |T | denote the number of front genus, back genus components, and the total twist number of
twisting components, respectively. From Lemma 2.5,

γ =
βn+1 − c+

2
+

β1 − c+

2
+ |T |.

Hence,

|T | = γ − βn+1 − c+

2
− β1 − c+

2
.

2

By using the following lemma, we calculate the number of the curves c (see Figure 4a).

Lemma 2.7 Let L be given with the intersection numbers (α;β; γ; c) . We find the number of the curves c in
L with

p(c) =

{
γ − βn+1

2 − β1

2 if c+ = 0,
0 if c+ ̸= 0. (2.4)

Proof Whenever c+ = 0 , we can write γ = l + l′ + p(c) . From Lemma 2.5,

l =
βn+1

2
and l′ =

β1

2
.

Hence, p(c) = γ − βn+1

2 − β1

2 is derived. 2

The twist numbers of each twisting component of an integral lamination whose intersection numbers are
given are found by using Remark 2.3 and Lemma 2.6. We find these twist numbers with the following lemma.

Lemma 2.8 Let L be given with the intersection numbers (α;β; γ; c) . Let |T | and m be the total twist number
and the number of twisting components, each with t+ 1 twists, respectively. In this case,

m ≡ |T | (mod c+) and t =
|T | −m

c+
, (2.5)
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where c+ ̸= 0 .

Proof From Remark 2.3,
|T | = m(t+ 1) + (c+ −m)t.

From here, we have
|T | = m+ tc+.

Hence,

m ≡ |T | (mod c+) and t =
|T | −m

c+

are derived.
2

Remark 2.9 The intersection numbers (α;β; γ; c) may not always give an integral lamination because inter-
section numbers may not provide the conditions given in Lemma 2.11 or Lemma 2.12, and the triangle inequality
in each region bounded by α2i−1 , α2i , βi or by α2i−1 , α2i , βi+1 .

As an example, we shall show that we cannot construct an integral lamination having the intersection
numbers (1, 1, 1, 1, 1, 1; 0, 2, 0, 2; 2; 1) because, according to Lemma 2.5, the number of front genus and back
genus components are respectively

l =
β4 − c+

2
=

2− 1

2
=

1

2
/∈ Z≥0 and l′ =

β1 − c+

2
=

0− 1

2
= −1

2
/∈ Z≥0.

In such a case, an integral lamination cannot be constructed as shown in Figure 8.

0 2 0 2

1

1 1

1

1

1

1

2

Figure 8. The arc βi and α2i ∪ α2i−1 are each even; however, c is odd.

Remark 2.10 In each region Ui , for 1 ≤ i ≤ n let the number of the loop components be denoted by |bi| ,
where

bi =
βi − βi+1

2
. (2.6)

If bi < 0 , the loop component is called left; if bi > 0 , the loop component is called right [4].
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Lemma 2.11 ([9]) The following equalities hold for each Ui :
When there is a left loop component,

α2i + α2i−1 = βi+1

α2i + α2i−1 − βi = 2|bi|;

when there is a right loop component,
α2i + α2i−1 = βi

α2i + α2i−1 − βi+1 = 2|bi|;

when there are no loop components,
α2i + α2i−1 = βi = βi+1.

Lemma 2.12 Let L be given with the intersection numbers (α;β; γ; c) . Then for each 1 ≤ i ≤ n , βi − βi+1

and α2i − α2i−1 − c+ are even.

Proof From Lemma 2.5, since

βn+1 = c+ + 2l,

if c+ is even (odd), βn+1 is even (odd). Similarly, since

β1 = c+ + 2l′,

if c+ is even (odd), β1 is even (odd). Moreover, from [4], the number of the loop components is given by

bi =
βi − βi+1

2
(1 ≤ i ≤ n).

Thus, we obtain

βi+1 = βi − 2

i∑
j=1

bj .

Therefore, if c+ is even (odd), each βi (1 ≤ i ≤ n + 1) is even (odd). From Lemma 2.11, when there is the
right loop component, α2i + α2i−1 = βi ; when there is the left loop component, α2i + α2i−1 = βi+1 . Hence,
when c+ is even (odd), α2i + α2i−1 is even (odd). Therefore, α2i + α2i−1 − c+ is always even.

2

Lemma 2.13 ([4]) Let L ∈ Ln be given with the intersection numbers (α;β; γ; c) . For each 1 ≤ i ≤ n , the
number of above, ua

i , and below, ub
i , components in Ui can be found by

ua
i = α2i−1 − |bi| and ub

i = α2i − |bi|.

Remark 2.14 The intersection numbers of two different integral laminations might be equal.

668



MERAL/Turk J Math

2

2

2

4

2

2

2

2

2

4
2

4 2

2

2

4

2 2

2

2 2

4
2

4

(a)
(b)

Figure 9. Two different integral laminations with the same intersection numbers.

For example, while the intersection numbers of two integral laminations given in Figure 9 are (2, 2, 2, 2, 2, 2; 2, 4, 2, 4; 4; 2) ,
since the twisting components of the integral lamination in Figure 9a twist in the negative direction and the
twisting components of the integral lamination in Figure 9b twist in the positive direction, these integral lami-
nations are different. We can derive an injective function from the intersection numbers (α;β; γ; c) by giving a
direction to the twisting components.

Let mi = min(α2i − |bi|, α2i−1 − |bi|) and set 2ai = α2i − α2i−1 − c+ for 1 ≤ i ≤ n . By Lemma 2.12, ai

is an integer. By similar calculations as in the case of the disk, we can derive the intersection number with αi

on Sn in the following way:
For each 1 ≤ i ≤ 2n ,

αi =

{
2(−1)ia⌈i/2⌉+(−1)ic++β⌈i/2⌉

2 if b⌈i/2⌉ ≥ 0,
2(−1)ia⌈i/2⌉+(−1)ic++β(1+⌈i/2⌉)

2 if b⌈i/2⌉ ≤ 0,
(2.7)

where ⌈x⌉ is the smallest integer greater than or equal to x .
Now, we derive the intersection number with βi on Sn . Let l , l′ , and mi (1 ≤ i ≤ n) show the front

genus, back genus, and the minimum of above and below component numbers, respectively. Since L cannot
contain a parallel to the boundary, at least one of mi , l or l′ has to be 0 . There are two cases:

Case 1: Assume at least one of mi = 0 for 1 ≤ i ≤ n . In this case

βn+1 = max
1≤k≤n

2max(bk, 0) + |2ak + c+| − 2

n∑
j=k

bj

 (2.8)

and

βn+1 ≥ max(c+, c+ − 2

n∑
i=1

bi). (2.9)

An example for this case is depicted in Figure 10.
Case 2: If mi ̸= 0 for any 1 ≤ i ≤ n : In this case, an integral lamination contains curves whose above

and below component numbers are different from 0 (see Figures 11a and 11b). Moreover, at least one of the
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Figure 10. An integral lamination with mi ̸= 0 for i = 1, 2 .

(a) (b)

Figure 11. Integral laminations with each mi different from 0 .

front genus or the back genus component numbers must be 0 . Otherwise, this curve system contains curves
parallel to the boundary as shown in Figure 12.

Figure 12. A curve system with a curve parallel to the boundary.

Therefore, there are three possibilities:

(i) If l = l′ = 0 and
∑n

i=1 bi = 0,

(ii) If l > 0 , l′ = 0 and
∑n

i=1 bi < 0,

(iii) If l = 0 , l′ > 0 and
∑n

i=1 bi > 0.
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Combining cases (i), (ii), and (iii), we get

βn+1 =

 c+ − 2
∑n

i=1 bi if
∑n

i=1 bi < 0,
c+ if

∑n
i=1 bi > 0,

c+ if
∑n

i=1 bi = 0.
(2.10)

Since each mi > 0 for 1 ≤ i ≤ n , we have

βn+1 ≥ max
1≤k≤n

2max(bk, 0) + |2ak + c+| − 2

n∑
j=k

bj

 . (2.11)

In terms of brevity, let

κ := max
1≤k≤n

2max(bk, 0) + |2ak + c+| − 2

n∑
j=k

bj

 .

From inequalities (2.9) and (2.11), we have

βn+1 = max(c+, c+ − 2

n∑
i=1

bi, κ). (2.12)

From Equation (2.6), for each 1 ≤ i ≤ n ,

βi = 2

n∑
j=i

bj + βn+1. (2.13)

Now, we derive the intersection number with γ on Sn . Since each path component in the region G ,
except nontwist components (see Figure 5a), intersects the arc γ once, we have

γ = l + l′ + p(c)

if p(c) ̸= 0 . From Remark 2.1, when p(c) = 0 , we have

γ = l + l′ + |T |.

Recall that from Equation (2.1), p(c) = −c . Therefore,

γ =

{
|T |+ l + l′ if c > 0,
|c|+ l + l′ if c ≤ 0.

(2.14)

By Lemma 2.5, Equations (2.12) and (2.13), we have

γ =

{
|T |+

∑n
j=1 bj +max(c+, c+ − 2

∑n
i=1 bi, κ)− c+ if c > 0,

|c|+
∑n

j=1 bj +max(c+, c+ − 2
∑n

i=1 bi, κ)− c+ if c ≤ 0.
(2.15)

Above we have expressed the intersection numbers with the arcs αi , βi , and γ in terms of ai , bi , and
T . Note that T = 0 when c ≤ 0 for an integral lamination.

Now, we can define the Dynnikov coordinate system on Sn , which bijectively coordinates the set Ln .
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Definition 2.15 Let Vn = {(a; b;T ; c) : c ≤ 0 and T ̸= 0} ∪ {0}. The Dynnikov coordinate function Φ : Ln →
Z2n+2 \ Vn on Sn is defined by

Φ(L) = (a; b;T ; c) = (a1, · · · , an; b1, · · · , bn;T ; c),

where for each 1 ≤ i ≤ n ,

ai =
α2i − α2i−1 − c+

2
, bi =

βi − βi+1

2
(2.16)

and

|T | =

{
0 if c+ = 0,

γ − βn+1−c+

2 − β1−c+

2 if c+ ̸= 0.
(2.17)

Example 2.16 We calculate the Dynnikov coordinates of the integral lamination shown in Figure 2.
Since (α1, α2, α3, α4, α5, α6;β1, β2, β3, β4; γ; c) = (4, 1, 3, 2, 4, 1; 3, 5, 5, 3; 3; 1), from Equations (2.16)

a1 =
α2 − α1 − c+

2
=

1− 4− 1

2
= −2,

a2 =
α4 − α3 − c+

2
=

2− 3− 1

2
= −1,

a3 =
α6 − α5 − c+

2
=

1− 4− 1

2
= −2,

b1 =
β1 − β2

2
=

3− 5

2
= −1,

b2 =
β2 − β3

2
=

5− 5

2
= 0,

b3 =
β3 − β4

2
=

5− 3

2
= 1.

Moreover, since c+ = max(c, 0) = max(1, 0) = 1 , from Equation (2.17),

|T | = γ − β4 − c+

2
− β1 − c+

2
= 3− 3− 1

2
− 3− 1

2
= 1.

Since the twisting component twists in the negative direction, we derive T = −1 . Hence, we find

Φ(L) = (−2,−1,−2;−1, 0, 1;−1; 1).

The following theorem gives the inversion of the Dynnikov coordinate function on Sn .
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Theorem 2.17 Let (a; b;T ; c) ∈ Z2n+2 \ Vn . Then, the vector (a; b;T ; c) corresponds to one and only one
integral lamination L ∈ Ln whose intersection numbers are given by

βi = 2

n∑
j=i

bj +max(c+, c+ − 2

n∑
i=1

bi, κ), βn+1 = max(c+, c+ − 2

n∑
i=1

bi, κ), (2.18)

αi =

{
2(−1)ia⌈i/2⌉+(−1)ic++β⌈i/2⌉

2 if b⌈i/2⌉ ≥ 0,
2(−1)ia⌈i/2⌉+(−1)ic++β(1+⌈i/2⌉)

2 if b⌈i/2⌉ ≤ 0,
(2.19)

and

γ =

{
|T |+

∑n
j=1 bj +max(c+, c+ − 2

∑n
i=1 bi, κ)− c+ if c > 0,

|c|+
∑n

j=1 bj +max(c+, c+ − 2
∑n

i=1 bi, κ)− c+ if c ≤ 0,
(2.20)

where

κ = max
1≤k≤n

2max(bk, 0) + |2ak + c+| − 2

n∑
j=k

bj

 .

Proof Let L ∈ Ln be an integral lamination whose Dynnikov coordinates are Φ(L) = (a; b;T ; c) . First, we
shall show that the Dynnikov coordinate function Φ : Ln → Z2n+2 \ Vn is injective. We have already shown
in this paper that the intersection numbers corresponding to the minimal representative L ∈ L are as given in
Equations (2.18), (2.19), and (2.20). Then, the numbers of above, below, right loop or left loop components
in each region Ui , the numbers of curves c , front genus, back genus, twisting components, the total twist of
twisting components and the number of twists of each twisting component, the direction of these twists in the
region G are calculated as given in above and the path components in the regions Ui and G are combined
uniquely up to isotopy by giving a direction to the twisting components. Hence, Φ is injective.

Now, we see that the function Φ: Ln → Z2n+2 \ Vn is surjective. Let (a; b;T ; c) ∈ Z2n+2 \ Vn . We shall
show that the intersection numbers (α;β; γ; c) defined by Equations (2.18), (2.19), and (2.20) correspond to an
integral lamination L ∈ Ln such that Φ(L) = (a; b;T ; c) . First, it is easy to see that an integral lamination
L with the intersection numbers (α;β; γ; c) should satisfy Φ(L) = (a; b;T ; c) . In order to get an integral
lamination, we draw nonintersecting path components in each region and join them together. 2

Example 2.18 Let the Dynnikov coordinates of the integral lamination L ∈ L3 on S3 be

Φ(L) = (a; b;T ; c) = (−2,−2,−1; 0,−1,−1;−5; 3).

We find the intersection numbers corresponding to the minimal representative L .
Since c = 3 > 0 , p(c) = 0 , and c+ = 3 . From Theorem 2.17, the intersection numbers α , β , and γ are

found as follows:
When we substitute the given Dynnikov coordinates to the equation

κ = max
1≤k≤3

2max(bk, 0) + |2ak + c+| − 2

3∑
j=k

bj

 ,

673



MERAL/Turk J Math

we find κ = 5 . From here,

β4 = max(c+, c+ − 2

3∑
i=1

bi, κ)

= max(3, 3− 2(0− 1− 1), 5) = 7;

hence, β4 = 7 . From Equation (2.13), we derive

β1 = 2(b1 + b2 + b3) + β4 = 2(0− 1− 1) + 7 = 3.

In a similar vein, we have β2 = 3 and β3 = 5 . From Equation (2.19), we find α1 = 2 , α2 = 1 , α3 = 3 ,
α4 = 2 , α5 = 3 and α6 = 4 . Since c > 0 , from Equation (2.20),

γ = |T |+
3∑

j=1

bj +max(c+, c+ − 2

3∑
i=1

bi, κ)− c+

= |T |+ b1 + b2 + b3 +max(c+, c+ − 2(b1 + b2 + b3), κ)− c+

= 5 + 0− 1− 1 + max(3, 3− 2(0− 1− 1), 5)− 3 = 7.

Now, we calculate the number of the path components in the regions G and Ui . Since c+ = 3 and
T = −5 , there are 3 twisting components and the total number of twists is 5 (see Remark 2.2 and Lemma 2.6),
and observe that the twisting components twist in the negative direction. By Lemma 2.8, there are 2 twisting
components, which each twisting component does 2 twists, and there is 1 twisting component doing 1 twist as
depicted in Figure 13. Each of the purple and pink twisting components does 2 twists and the green twisting
component does 1 twist. According to Lemma 2.5,

l =
β4 − c+

2
=

7− 3

2
= 2 and l′ =

β1 − c+

2
=

3− 3

2
= 0.

That is, there are 2 front genus components; however, there is not any back genus component (Figure 13). From
Equation (2.6),

b1 =
β1 − β2

2
=

3− 3

2
= 0.

Similarly, we have b2 = −1 and b3 = −1 . Namely, there are no loop components in the region U1 , 1 left loop
component in the region U2 , and 1 left loop component in the region U3 (Figure 13). The numbers of above
and below components in each Ui are:

ua
1 = α1 − |b1| = 2− 0 = 2 and ub

1 = α2 − |b1| = 1− 0 = 1.

Thus, there are 2 above components and 1 below component in U1 . Similarly, we find 2 above components and
1 below component in U2 , and 2 above and 3 below components in U3 (Figure 13). The integral lamination L

in Figure 14 is derived uniquely by combining the calculated path components (Figure 13) up to isotopy. The
integral lamination in this example (Figure 14) is a disconnected integral lamination consisting of two connected
components (green and purple essential simple closed curves).
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G

Figure 13. Path components in each Ui and G
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Figure 14. Φ(L) = (a; b;T ; c) = (−2,−2,−1; 0,−1,−1;−5; 3) .
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Figure 15. Φ(L) = (a; b;T ; c) = (0, 0, 0; 1, 0,−1;−2; 1) .
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An integral lamination is connected if it consists of only one closed curve. For example, the inte-
gral lamination L on S3 in Figure 15 is a connected integral lamination which has Dynnikov coordinates
(0, 0, 0; 1, 0,−1;−2; 1) defined in Definition 2.15.

We can draw the integral lamination corresponding to the coordinates ai , bi , T , and c in a unique way.
That is, geometrically, ai helps us find the difference between the below and above component numbers in the
region Ui . bi gives the loop component numbers in that region and the sign of bi indicates that these loop
components are left or right. T is the total number of twists in the region G of this integral lamination, and the
sign of T tells the direction of these twists which is negative or positive. If c > 0 , there are twisting components
in this lamination, and the number of c is the number of these components. If c < 0 , there are curves c and
the absolute value of c gives the number of these curves. If c = 0 , there are not both twisting components
and curve c in this lamination. For example, since a1 = −2 in Example 2.18, we see that ub

1 + 1 = ua
1 . Thus,

in the region U1 , the number of above components is 1 more than the number of below components. Since
b2 = −1 , there is 1 left loop component in U2 . Since c = 3 , there are 3 twisting components in this lamination.
Moreover, since T = −5 in G , the total twist number of these twisting components is 5 and the direction of
these twists is negative. In line with this information, when we place the path components on the surface S3

and join them together, one and only one integral lamination is derived as we proved in Theorem 2.17. After the
integral lamination is obtained in this way, it is understood that this lamination is disconnected or connected.

Remark 2.19 The Dynnikov coordinates for the integral laminations on Sn obtained can be extended in a
natural way to the Dynnikov coordinates of the measured foliations on Sn .
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