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Abstract: We study a static portfolio optimization problem with two risk measures: a principle risk measure in the
objective function and a secondary risk measure whose value is controlled in the constraints. This problem is of interest
when it is necessary to consider the risk preferences of two parties, such as a portfolio manager and a regulator, at the
same time. A special case of this problem where the risk measures are assumed to be coherent (positively homogeneous)
is studied recently in a joint work of the author. The present paper extends the analysis to a more general setting by
assuming that the two risk measures are only quasiconvex. First, we study the case where the principal risk measure is
convex. We introduce a dual problem, show that there is zero duality gap between the portfolio optimization problem and
the dual problem, and finally identify a condition under which the Lagrange multiplier associated to the dual problem
at optimality gives an optimal portfolio. Next, we study the general case without the convexity assumption and show
that an approximately optimal solution with prescribed optimality gap can be found by using the well-known bisection
algorithm combined with a duality result that we prove.

Key words: Portfolio optimization, quasiconvex risk measure, minimal penalty function, maximal risk function,
Lagrange duality, bisection method

1. Introduction
Risk measures are functionals that are defined on a linear space of real-valued random variables hosted by
a common probability space. In the context of financial mathematics, each random variable can denote the
uncertain future worth of an investor’s position, and a risk measure assigns a (deterministic) extended real
number to the random variable; this number quantifies the initial capital that is needed for compensating the
risk of the position.

Introduced in [3], risk measures have been studied extensively in the financial mathematics literature over
the last two decades. In [3], the so-called coherent risk measures are studied within an axiomatic framework; we
provide the mathematical formulations of these axioms in Section 2 for the convenience of the reader. Among
the properties of a coherent risk measure, positive homogeneity imposes that the risk of a financial position is
scalable by the size of the position. While some classical risk measures such as negative expected value and
average value-at-risk (see [7, Example 4.40]) enjoy this property, positive homogeneity can be found restrictive
from a financial point of view. To this end, convex risk measures provide a richer class of risk measures in which
positive homogeneity is not taken for granted. A classical example of a convex but not coherent risk measure
is the entropic risk measure, which has a simple expression of the log-sum-exp form (see Example 6.1). The
reader is referred to [7, Chapter 4] for a detailed discussion on convex risk measures.
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The convexity property of a risk measure is often motivated by the statement “Diversification does not
increase risk”, which formulates the role of allocating one’s capital into a variety of investment opportunities.
More recently, it has been argued that quasiconvexity can be used as a relaxed alternative for convexity as it still
captures the idea behind diversification. Therefore, quasiconvex risk measures, as argued in [5] and [6], cover a
wider range of functionals that can be used for risk measurement purposes; these include certainty equivalents
(see [6, Example 8] and Section 6.2) and economic indices of riskiness (see [6, Example 3]) in addition to convex
(and coherent) risk measures described above.

A rich class of problems where risk measures appear naturally is that of portfolio optimization problems.
In these problems, one wishes to minimize or control the risk associated to a portfolio that consists of multiple
risky assets. Assuming special families of asset return distributions, the works [10, 11, 13] study static portfolio
optimization problems with a single coherent risk measure that appears in the objective function. More recently,
in the previous work [2] of the author, joint with Aktürk, a static portfolio optimization problem with two
coherent risk measures is formulated. In this problem, the decision maker aims to minimize the value of a
principle risk measure, e.g., the risk measure of the portfolio manager, while keeping the value of a secondary
risk measure, e.g., the risk measure declared by a regulatory authority, below a critical threshold. In [2], a
complete analysis of this problem is provided for the general case of arbitrary asset return distributions and
arbitrary coherent risk measures that satisfy certain regularity conditions.

On the other hand, the use of quasiconvex risk measures in portfolio optimization is relatively new. In
[12], a static portfolio optimization problem is studied, where the objective function is the composition of a
quasiconvex risk measure and a concave functional that is defined on a space of portfolios, and this composition
is to be minimized over a convex compact set of portfolios. The main result [12, Theorem 4] provides a
sufficient condition for a portfolio to be optimal in terms of a set relation between normal cones and generalized
subdifferentials for quasiconvex functions. In particular, the derivations rely on the dual representations for
quasiconvex risk measures developed in [6] as well as the general duality theory for quasiconvex functions
initiated earlier in [14]. In [9], quasiconvex risk measures are used in a dynamic portfolio optimization problem
in continuous time in order to model ambiguity-averse preferences. The work [9] also makes use of the dual
representation results of [6].

The aim of the present paper is to extend the static portfolio optimization problem in [2] by assuming
that both the principle and the secondary risk measures are quasiconvex. In particular, we cover the case
where the two risk measures are convex. It should be noted that the extension from the coherent case to
the quasiconvex case requires entirely different duality arguments, explaining the mathematical originality of
the present paper. On the other hand, compared to the portfolio optimization problem in [12] with a single
quasiconvex risk measure and a general convex set constraint, our problem assumes that the constraint has a
special structure induced by the secondary risk measure. This structure makes it possible to formulate a more
explicit dual problem with a linear inequality constraint.

The rest of the paper is organized as follows. After reviewing some basic notions about quasiconvex risk
measures in Section 2 and introducing the primal problem in Section 3, we break down the analysis of the
problem into two steps. First, in Section 4, we work under the assumption that the principle risk measure is a
convex functional (not necessarily translative though). We formulate the dual problem in Section 4.1 and prove
that (Theorem 4.8) there is zero duality gap between the primal and dual problems. In Section 4.2, we impose
further structural properties on the principle risk measure and prove that (Theorem 4.11), at optimality, a
Lagrange multiplier attached to the linear inequality constraint of the dual problem yields an optimal portfolio

696



ARARAT/Turk J Math

vector for the primal problem. Next, in Section 5, we remove the convexity assumption and reformulate the
quasiconvex portfolio optimization problem via a family of convex feasibility problems parametrized by a decision
variable of the quasiconvex problem. Similar to the results of Section 4, we provide a duality-based method
to solve each of these feasibility problems. Then, we employ the well-known bisection method that iterates
through different values of the parameter of the feasibility problems and stops with prescribed suboptimality in
finitely many iterations. Hence, combining the duality result with the bisection method provides a way to find
an approximately optimal solution for the portfolio optimization problem with two quasiconvex risk measures.
In Section 6, we consider convex risk measures and certainty equivalents in order to illustrate the use of the
dual problems, and we discuss the validity of some technical assumptions stated in Section 4 and Section 5.
Finally, Section 7 concludes the paper.

2. Quasiconvex risk measures
In this section, we fix the notation for the rest of the paper and review some preliminary notions related to risk
measures. For the latter, we focus on the more recent quasiconvex framework studied in [5, 6].

Let n ∈ N := {1, 2, . . .} . We assume that the standard Euclidean space Rn is equipped with an arbitrary
norm |·| and the usual inner product defined by xTz :=

∑n
i=1 xizi for x, z ∈ Rn . We denote by Rn

+ the positive
orthant in Rn , that is, the set of all x = (x1, . . . , xn)

T ∈ Rn with xi ≥ 0 for each i ∈ {1, . . . , n} .
To introduce the probabilistic setup, let (Ω,F ,P) be a probability space and denote by L0

n the set of all
F -measurable random variables taking values in Rn , where two elements are considered identical if they are
equal P -almost surely. For each X ∈ L0

n , we define

‖X‖p := (E [|X|p])
1
p

for p ∈ [1,+∞) and
‖X‖p := inf{c ≥ 0 | P{|X| ≤ c} = 1}

for p = +∞ . Let p ∈ [1,+∞] . The space Lp
n := {X ∈ L0

n | ‖X‖p < +∞} is a Banach space equipped with the
norm ‖·‖p . For brevity, let Lp := Lp

1 ; for Y1, Y2 ∈ Lp , we write Y1 ≤ Y2 if P {Y1 ≤ Y2} = 1 , which yields the
cone Lp

+ := {Y ∈ Lp | 0 ≤ Y } .
Let Y = Lp , where p ∈ [1,+∞] . We assume that Y is equipped with the strong topology induced by

the norm ‖·‖p if p < +∞ and with the weak∗ topology σ(L∞, L1) if p = +∞ . Under this topology, we denote
by Y∗ the topological dual space of Y with the bilinear duality mapping 〈·, ·〉 : Y∗ ×Y → R . Hence, Y∗ = Lq

with 〈V, Y 〉 = E [V Y ] for every V ∈ Y∗, Y ∈ Y , where q ∈ [1,+∞] is the conjugate exponent of p , that is,
1
p + 1

q = 1 . In all cases, we consider Y∗ with the weak topology σ(Y∗,Y) = σ(Lq, Lp) .

For a functional ρ : Y → R̄ := [−∞,+∞] , let us consider the following properties.

(i) Monotonicity: Y1 ≤ Y2 implies ρ(Y1) ≥ ρ(Y2) for every Y1, Y2 ∈ Y .

(ii) Quasiconvexity: It holds ρ(λY1 + (1− λ)Y2) ≤ max {ρ(Y1), ρ(Y2)} for every Y1, Y2 ∈ Y and λ ∈ (0, 1) .

(iii) Convexity: It holds ρ(λY1 + (1 − λ)Y2) ≤ λρ(Y1) + (1 − λ)ρ(Y2) for every Y1, Y2 ∈ Y and λ ∈ (0, 1)

(with the inf-addition convention (+∞) + (−∞) = +∞ for the right hand side of the inequality).
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(iv) Translativity: It holds ρ(Y + y) = ρ(Y )− y for every Y ∈ Y and y ∈ R .

(v) Positive homogeneity: It holds ρ(λY ) = λρ(Y ) for every Y ∈ Y and λ > 0 .

For each t ∈ R , let us define
A t := {Y ∈ Y | ρ(Y ) ≤ t} ,

which is called the acceptance set of ρ at level t . It is easy to check that

ρ(Y ) = inf
{
t ∈ R | Y ∈ A t

}
, Y ∈ Y, (2.1)

where inf ∅ := +∞ as a convention. Note that ρ satisfies quasiconvexity if and only if A t is convex for each
t ∈ R . The functional ρ is called a quasiconvex risk measure if it satisfies (i) and (ii), a convex risk measure if it
satisfies (i), (ii), (iii), (iv), and a coherent risk measure if it satisfies (i), (ii), (iii), (iv), (v). Hence, a coherent risk
measure is necessarily a convex risk measure, and a convex risk measure is necessarily a quasiconvex risk measure.
In addition, convexity implies quasiconvexity; and, under monotonicity, quasiconvexity and translativity imply
convexity; see [7, Exercise 4.1.1]. Hence, when working within the general framework of quasiconvex risk
measures, one does not assume translativity.

In the current paper, we study a static portfolio optimization problem with two quasiconvex risk mea-
sures. In order to formulate certain dual problems associated to the portfolio optimization problem, the dual
representations of these risk measures will have a crucial role. We review the dual representation result of [6]
next. To that end, let Y∗

+ := Lq
+ .

Definition 2.1 [6, Definition 9] A function β : (Y∗
+ \{0}) × R → R̄ is called a maximal risk function if it

satisfies the following properties.

(a) β is increasing (nondecreasing) and left-continuous in the second argument.

(b) β is jointly quasiconcave.

(c) It holds β(λV, λs) = β(V, s) for every V ∈ Y∗
+, s ∈ R, λ > 0 .

(d) It holds lims→−∞ β(V1, s) = lims→−∞ β(V2, s) for every V1, V2 ∈ Y∗
+ .

(e) The right-continuous version (V, s) 7→ β+(V, s) := infs′>s β(V, s
′) of β is (weakly) upper semicontinuous in

the first argument.

Thanks to property (c) in Definition 2.1, one can simply work with the restriction of β on the set Y∗,1
+ ×R ,

where
Y∗,1
+ := Lq,1

+ :=
{
Y ∈ Lq

+ | E[Y ] = 1
}
. (2.2)

Let ρ be a lower semicontinuous quasiconvex risk measure. We define the minimal penalty function
α : Y∗

+ × R → R̄ of ρ by
α(V, t) := sup

Y ∈A t

E [−V Y ] , V ∈ Y∗
+, t ∈ R.

For each t ∈ R , the acceptance set A t is a closed convex subset of Y , hence it is characterized by its support
function V 7→ α(V, t) . Consequently, the risk measure ρ is uniquely determined by its minimal penalty function
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α . In quasiconvex analysis, it is sometimes useful to work with the left-continuous version α− of α (with respect
to the second variable) defined by

α−(V, t) := sup
t′<t

α(V, t′), V ∈ Y∗
+, t ∈ R. (2.3)

From the proof of [6, Theorem 3], it follows that

α−(V, t) = sup
Y ∈A t−

E [−V Y ] , V ∈ Y∗
+, t ∈ R,

where, for each t ∈ R , A t− is the strict acceptance set at level t defined by

A t− := {Y ∈ Y | ρ(Y ) < t} .

For convenience, we recall the following result from [6], which provides a precise formula to recover ρ from α

or α− .

Proposition 2.2 [6, Theorem 3] Let ρ : Y → R̄ be a lower semicontinuous quasiconvex risk measure with
minimal penalty function α . Then, there exists a unique maximal risk function β such that

ρ(Y ) = sup
V ∈Y∗

+\{0}
β(V,E[−V Y ]), Y ∈ Y.

Moreover, such β is given as the left-continuous pseudo-inverse of α or that of α− with respect to the second
variable, that is,

β(V, s) = inf {t ∈ R | s ≤ α(V, t)} = inf
{
t ∈ R | s ≤ α−(V, t)

}
for every V ∈ Y∗

+ and s ∈ R .

3. Portfolio optimization problem
In this section, we formulate and study a risk-averse portfolio optimization problem with two quasiconvex risk
measures.

We suppose that there are n risky assets with possibly correlated returns in a static model as in [2]. To
that end, let X = (X1, . . . , Xn)

T ∈ Lp
n be a random vector, where p ∈ [1,+∞] . For each i ∈ {1, . . . , n} , the

component Xi denotes the return of the ith asset as a multiple of the initial price of that asset. In this static
model, a portfolio is naturally defined as a vector w ∈ Rn with

∑n
i=1 wi = 1 , where, for each i ∈ {1, . . . , n} ,

wi denotes the weight of the corresponding asset in the portfolio, which is based on the asset prices at the
beginning of the investment period. Hence, prohibiting short-selling, the set of all portfolios is defined as

W :=
{
w ∈ Rn

+ | 1Tw = 1
}
, (3.1)

where 1 = (1, . . . , 1)T ∈ Rn .
Given a portfolio w ∈ W , note that the corresponding return wTX is in Y = Lp .
To model risk-aversion, suppose that we have two proper lower semicontinuous quasiconvex risk measures

ρ1, ρ2 : L
p → R̄ . The portfolio manager aims to choose a portfolio w ∈ W that minimizes the type 1 risk

ρ1(w
TX) while satisfying the type 2 risk constraint

ρ2(w
TX) ≤ r,
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where r ∈ R is a fixed threshold for this type of risk. Hence, the porfolio optimization problem of interest is
formulated as

minimize ρ1(w
TX) (P(r))

subject to ρ2(w
TX) ≤ r

w ∈ W.

We denote by p(r) the optimal value of (P(r)) .
As in [2], the motivation to use two risk measures comes from decision making under two risk perceptions.

For instance, the portfolio manager may choose the portfolio by using ρ1 as a suitable risk measure for her own
risk perception; however, there might be an obligation to consider the opinion of a regulatory authority whose
risk perception is encoded by ρ2 . In another setting, the portfolio manager may wish to work with two risk
measures but the principle risk measure ρ1 may have higher seniority than ρ2 . In particular, this framework
covers as special cases the problem of maximizing expected return subject to a quasiconvex risk constraint
(arbitrary ρ2 ) if we take ρ1(Y ) = E [−Y ] for each Y ∈ Lp , as well as the problem of minimizing a quasiconvex
risk measure (arbitrary ρ1 ) while maintaining a sufficiently high expected return if we take ρ2(Y ) = E [−Y ]

for each Y ∈ Lp . In the general case, while the previous work [2] is restricted to coherent risk measures (e.g.,
negative expected value, average value-at-risk), the current work covers a much larger class of risk measures
as it allows for both convex (translative) risk measures (e.g., entropic risk measure, utility-based shortfall risk
measures) as well as quasiconvex and non-convex (non-translative) risk measures (e.g., certainty equivalent,
economic index of riskiness). Some detailed examples will be studied in Section 6.

For each j ∈ {1, 2} , let us denote by A t
j the acceptance set of ρj at level t ∈ R and by αj the minimal

penalty function of ρj . In view of Proposition 2.2, there exists a unique maximal risk function βj such that ρj

admits the dual representation

ρj(Y ) = sup
V ∈Lq

+\{0}
βj(V,E [−V Y ]), Y ∈ Lp, (3.2)

and we have βj(V, s) = inf {t ∈ R | s ≤ αj(V, t)} for every V ∈ Lq
+ , s ∈ R . Let us also define gj : Rn → R̄ by

gj(w) = ρj(w
TX), w ∈ Rn, (3.3)

which is a quasiconvex function.
We present the analysis of (P(r)) in the next two sections.

4. Analysis of the problem when the principle risk measure is convex

In this section, we analyze the porfolio optimization problem (P(r)) under the following assumption.

Assumption 4.1 ρ1 satisfies convexity.

Note that Assumption 4.1 does not ensure that ρ1 is a convex risk measure in general as the latter
terminology assumes translativity in addition to convexity (see Section 2).
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4.1. First main result: establishing strong duality

As a preparation for Theorem 4.8, we first introduce an auxiliary problem that will show up in the derivation
of dual problem. For each V1, V2 ∈ Lq

+ , let us define

hP (V1, V2) := inf
{
t+ E[−V2X]Tw | α−

1 (V1, t) ≥ E[−V1X]Tw, w ∈ W, t ∈ R
}
. (4.1)

For the first result of this section (Proposition 4.4 below), we need the following continuity assumption
on the maximal risk function of ρ1 ; note that this assumption also appears as part of [9, Assumption 3.2] in
the context of a dynamic portfolio optimization problem. Recall (2.2) for the definition of Lq,1

+ .

Assumption 4.2 β1 is jointly (weakly) upper semicontinuous on Lq,1
+ × R .

Before stating Proposition 4.4, we introduce a restrictive finiteness assumption which will be removed
later in Section 4.2; see Remark 4.5 for a discussion on this assumption.

Assumption 4.3 For every w ∈ W , V1 ∈ Lq,1
+ and V2 ∈ Lq

+ , it holds β1(V1,E[−V1w
TX]) ∈ R and

α2(V2, r) ∈ R .

The next result establishes the connection between (P(r)) and hP .

Proposition 4.4 Suppose that Assumption 4.1, Assumption 4.2, Assumption 4.3 hold. Then,

p(r) = sup
V1,V2∈Lq

+

(
hP (V1, V2)− α2(V2, r)

)
.

Proof Let IA r
2

be the convex analytic indicator function of A r
2 , that is, IA r

2
(Y ) = 0 whenever Y ∈ A r

2 and
IA r

2
(Y ) = +∞ whenever Y ∈ Lp \ A r

2 . Then, using [17, Theorem 2.3.3, (2.33)], Proposition 2.2 and property
(c) in Definition 2.1, we obtain

p(r) = inf
{
ρ1(w

TX) | ρ2(wTX) ≤ r, w ∈ W
}

= inf
{
ρ1(w

TX) | wTX ∈ A r
2 , w ∈ W

}
= inf

w∈W

(
ρ1(w

TX) + IA r
2
(wTX)

)
= inf

w∈W

 sup
V1∈Lq,1

+

β1

(
V1,E[−V1w

TX]
)
+ sup

V2∈Lq
+

(
E[−V2w

TX]− α2(V2, r)
)

= inf
w∈W

sup
V1∈Lq,1

+ ,V2∈Lq
+

b(w, V1, V2),

where

b(w, V1, V2) := β1

(
V1,E[−V1w

TX]
)
+ E[−V2w

TX]− α2(V2, r), w ∈ W, V1 ∈ Lq,1
+ , V2 ∈ Lq

+.
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For fixed w ∈ W, V1 ∈ Lq,1
+ , clearly V2 7→ E[−V2w

TX]− α2(V2, r) is concave and upper semicontinuous by the

properties of support function. Let w ∈ W, V2 ∈ Lq
+ . For each V1, V

′
1 ∈ Lq,1

+ and λ ∈ (0, 1) , we have

β1

(
λV1 + (1− λ)V ′

1 ,E[−(λV1 + (1− λ)V ′
1)w

TX]
)

= β1

(
λV1 + (1− λ)V ′

1 , λE[−V1w
TX] + (1− λ)E[−V ′

1w
TX]

)
≥ min

{
β1

(
V1,E[−V1w

TX]
)
, β1

(
V ′
1 ,E[−V ′

1w
TX]

)}
by the joint quasiconcavity of β1 . Hence, the function V1 7→ β1

(
V1,E[−V1w

TX]
)

is quasiconcave. We claim
that this function is also weakly upper semicontinuous. To that end, let (Vα)α∈I be a weakly convergent
net in Lq,1

+ with some index set I and limit V . Hence, (E[−Vαw
TX])α∈I converges to E[−V wTX] . So

(Vα,E[−Vαw
TX])α∈I is a weakly convergent net in Lq,1

+ × R with limit (V,E[−V wTX]) . By Assumption 4.2,
we get

lim sup
α∈I

β1(Vα,E[−Vαw
TX]) ≤ β1(V,E[−V wTX]).

Hence, the claim follows. Since β1 is increasing and left-continuous in the second argument, it is also lower
semicontinuous (indeed continuous by Assumption 4.2). Hence, for fixed V1 ∈ Lq,1

1 , V2 ∈ Lq
+ , the function

w 7→ β1

(
V1,E[−V1w

TX]
)

is lower semicontinuous (indeed continuous) and quasiconvex on W . Note that W

is a convex and compact set. Finally, by Assumption 4.3, b is real-valued on W × Lq,1
+ × Lq

+ . Therefore, by
Sion’s minimax theorem [16, Corollary 3.3] and property (c) in Definition 2.1, we may write

p(r) = sup
V1∈Lq,1

+ ,V2∈Lq
+

inf
w∈W

b(w, V1, V2)

= sup
V1∈Lq,1

+ ,V2∈Lq
+

(
inf

w∈W

(
β1(V1,E[−V1X]Tw) + E[−V2X]Tw

)
− α2(V2, r)

)

= sup
V1,V2∈Lq

+

(
inf

w∈W

(
β1(V1,E[−V1X]Tw) + E[−V2X]Tw

)
− α2(V2, r)

)

= sup
V1,V2∈Lq

+

(
inf

w∈W

(
inf
{
t ∈ R | α−

1 (V1, t) ≥ E[−V1X]Tw
}
+ E[−V2X]Tw

)
− α2(V2, r)

)
= sup

V1,V2∈Lq
+

(
hP (V1, V2)− α2(V2, r)

)
,

where hP (V1, V2) is defined by (4.1). 2

Remark 4.5 In the proof of Proposition 4.4, the only role of Assumption 4.3 is to ensure that the function b has
finite values so that Sion’s minimax theorem can be applied. In cases where Assumption 4.3 is not valid, the proof
of Proposition 4.4 can be seen as a heuristic argument to come up with a dual formulation of (p(r)) . Thanks
to Theorem 4.11 below, it turns out that the conclusion of Proposition 4.4 is still valid without Assumption 4.3.

Let V1, V2 ∈ Lq
+ . Note that hP (V1, V2) is the optimal value of a finite-dimensional optimization problem

which is in general nonconvex due to the inequality constraint when ρ1 is only assumed to be a quasiconvex risk
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measure. However, under Assumption 4.1, as argued in the proof of [6, Proposition 6], the function t 7→ α−
1 (V1, t)

is concave and the optimization problem in hP (V1, V2) becomes convex. Before proceeding further, we introduce
an additional assumption related to the asymptotic behavior of α−

1 .

Assumption 4.6 For each V1 ∈ Lq
+ , it holds

lim
t→∞

α−
1 (V1, t) = +∞.

To formulate the next proposition, let us define

α∗
1(V1, z) := inf

t∈R

(
tz − α−

1 (V1, t)
)
= inf

t∈R
(tz − α1(V1, t)) , V1 ∈ Lq

+, z ∈ R.

Note that z 7→ −α∗
1(V1,−z) is the conjugate function of α−

1 (and also of α1 ) with respect to the second
variable. Since t 7→ α−

1 (V1, t) is an increasing function, it is easy to check that α∗
1(V1, z) = −∞ whenever

z < 0 . Moreover, under Assumption 4.1, for each V1 ∈ Lq
+ , the function t 7→ α−

1 (V1, t) is concave and upper
semicontinuous so that Fenchel–Moreau theorem [17, Theorem 2.3.3] gives

α−
1 (V1, t) = inf

z≥0
(tz − α∗

1(V1, z)) , V1 ∈ Lq
+, t ∈ R. (4.2)

The following special value of α∗
1 will play an important role in the dual problem of (P(r)) :

α̃1(V1) := α∗
1(V1, 1) = inf

t∈R

(
t− α−

1 (V1, t)
)
, V1 ∈ Lq

+. (4.3)

Using this quantity, let us define, for each V1, V2 ∈ Lq
+ ,

hD(V1, V2) := sup {α̃1(xV1)− y | xE[V1X] + E[V2X] ≤ y1, x > 0, y ∈ R} ,

where the inequality constraint is understood in the componentwise manner. As the proof of the next result
shows, the dual of the problem in hP (V1, V2) gives rise to hD(V1, V2) .

Proposition 4.7 Suppose that Assumption 4.1 and Assumption 4.6 hold, and let V1, V2 ∈ Lq
+ . Then,

hP (V1, V2) = hD(V1, V2).

Proof As noted above, the problem defining hP (V1, V2) is a convex optimization problem under Assump-
tion 4.1. By Assumption 4.6, there exists w0 ∈ W and t0 ∈ R such that α−

1 (V1, t
0) > E[−V1X]Tw0 (indeed,

for every w0 ∈ W such t0 ∈ R exists). Hence, Slater’s condition holds for this convex optimization problem
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and we have

hP (V1, V2) = sup
x≥0,
y∈R

inf
w∈Rn

+,t∈R:
α−

1 (V1,t)∈R

(
t+ E[−V2X]Tw + x(−α−

1 (V1, t) + E[−V1X]Tw) + y(1Tw − 1)
)

= sup
x≥0,
y∈R

inf
w∈Rn

+,t∈R:
α−

1 (V1,t)∈R

(
t− xα−

1 (V1, t) + (xE[−V1X] + E[−V2X] + y1)Tw − y
)

= sup
x>0,
y∈R

inf
w∈Rn

+,t∈R:
α−

1 (V1,t)∈R

(
t− α−

1 (xV1, t) + (xE[−V1X] + E[−V2X] + y1)Tw − y
)

= sup
x>0,
y∈R

{α̃1(xV1)− y | xE[V1X] + E[V2X] ≤ y1} .

Let us justify each passage in the above derivation: the first equality is by strong duality for convex optimization,
the second is by simple manipulations, the third excludes the case x = 0 from further consideration since in
this case the infimum yields −∞ , the fourth is by evaluating the infimum with respect to w ∈ Rn

+ and t ∈ R .
Therefore, hP (V1, V2) = hD(V1, V2) . 2

We are ready to prove the first main result of the paper, which establishes strong duality between (P(r))

and a new problem, which we refer to as the dual problem of (P(r)) .

Theorem 4.8 Suppose that Assumption 4.1, Assumption 4.2, Assumption 4.3, Assumption 4.6 hold, and
consider the problem

maximize α̃1(V1)− α2(V2, r)− y (D(r))

subject to E[V1X] + E[V2X] ≤ y1

V1, V2 ∈ Lq
+, y ∈ R,

where the inequality constraint is understood in the componentwise sense. Then, (P(r)) and (D(r)) have the
same optimal value p(r) .

Proof Combining Proposition 4.4 and Proposition 4.7, we obtain

p(r) = sup
V1,V2∈Lq

+

(
hD(V1, V2)− α2(V2, r)

)
= sup

V1,V2∈Lq
+

(sup {α̃1(xV1)− y | E[xV1X] + E[V2X] ≤ y1, x > 0, y ∈ R} − α2(V2, r))

= sup
{
α̃1(xV1)− α2(V2, r)− y | E[xV1X] + E[V2X] ≤ y1, V1, V2 ∈ Lq

+, x > 0, y ∈ R
}

= sup
{
α̃1(V1)− α2(V2, r)− y | E[V1X] + E[V2X] ≤ y1, V1, V2 ∈ Lq

+, y ∈ R
}
,

which coincides with the optimal value of (D(r)) . 2

It is worth noting that the dual problem (D(r)) is a convex optimization problem thanks to Assump-
tion 4.1.
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4.2. Second main result: establishing optimality

While Theorem 4.8 provides strong duality between (P(r)) and (D(r)) , it does not make a statement on how
to find an optimal portfolio w∗ ∈ W for (P(r)) . The aim of Theorem 4.11, the second main result of the
paper, is to find such w∗ in relation to (D(r)) .

As a preparation, we recall some well-known concepts and facts from convex analysis. To that end,
let us fix an arbitrary Hausdorff locally convex topological real vector space X with topological dual X ∗ and
bilinear duality mapping 〈·, ·〉 : X ∗×X → R . For our purposes, the following special cases of X are particularly
important:

(i) X = Rn with the usual topology, which yields X ∗ = Rn together with 〈z, x〉 = zTx for every x, z ∈ Rn .

(ii) X = Lq with q ∈ [1,+∞) with the weak topology σ(Lq, Lp) , which yields X ∗ = Lp together with
〈Y, U〉 = E [UY ] for every U ∈ Lq , Y ∈ Lp . (Recall that p, q are conjugate exponents.)

(iii) X = L∞ with the weak∗ topology σ(L∞, L1) , which yields X ∗ = L1 together with 〈Y, U〉 = E [UY ] for
every U ∈ L∞ , Y ∈ L1 .

Consider a set A ⊆ X . The function IA : X → R ∪ {+∞} defined by

IA(x) =

{
0 if x ∈ A,

+∞ if x ∈ X \A,

is called the indicator function of A ; note that A is a convex set if and only if IA is a convex function. For a
point x ∈ A , the convex cone

N (A, x) := {z ∈ X ∗ | ∀x′ ∈ A : 〈z, x〉 ≥ 〈z, x′〉}

is called the normal cone of A at x . Let g : X → R ∪ {+∞} be a function. Given x ∈ X , the set

∂g(x) := {z ∈ X ∗ | ∀x′ ∈ X : g(x′) ≥ g(x) + 〈z, x′ − x〉}

is called the subdifferential of g at x . If A is a nonempty convex set, then by [17, Section 2.4], ∂IA(x) = NA(x)

for every x ∈ A , and ∂IA(x) = ∅ for every x ∈ X \A . The function g∗ : X ∗ → R̄ defined by

g∗(z) := sup
x∈X

(〈z, x〉 − g(x)) , z ∈ X ∗

is called the conjugate function of g . We have

z ∈ ∂g(x) ⇔ x ∈ ∂g∗(z) (4.4)

for every x ∈ X , z ∈ X ∗ such that g is lower semicontinuous at x . If A is a nonempty closed convex set, then
it is well-known that σA := (IA)

∗ is the support function of A defined by

σA(z) := sup
x∈A

〈z, x〉 , z ∈ X ∗.

From the above definitions, it is clear that, for a point x ∈ A , we have

N (A, x) = {z ∈ X ∗ | σA(z) = 〈z, x〉} . (4.5)
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Consider the problem of minimizing g over A . Suppose that g is proper convex and let x ∈ A with
g(x) < +∞ . By Pshenichnyi–Rockafellar theorem [17, Theorem 2.9.1], if

∂g(x) ∩ −N (A, x) 6= ∅, (4.6)

then x is a minimizer of g over A , that is, g(x) = infx′∈A g(x′) ; the converse holds if g is continuous at x .
The next lemma is devoted to the calculation of a certain subdifferential that is relevant to (P(r)) .

Lemma 4.9 Suppose that Assumption 4.1 holds. Let w ∈ Rn be such that g1(w) = ρ1(w
TX) < +∞ . Then,{

E [−V X] | β1(V,−wTE[V X]) = g1(w), V ∈ Lq
+

}
⊆ ∂g1(w).

Proof Thanks to Assumption 4.1, the function g1 defined by (3.3) is convex. Let us define a continuous linear
operator L : Rn → Lp by

Lw′ := XTw′, w′ ∈ Rn.

Then, its adjoint operator L∗ : Lq → Rn is given by

L∗V = E [V X] , V ∈ Lq.

Since g1 = ρ1 ◦ L and ρ1 is finite at wTX , by [17, Theorem 2.8.3(iii)], we have{
L∗V | V ∈ ∂ρ1(w

TX)
}
=
{
E [V X] | V ∈ ∂ρ1(w

TX)
}
⊆ ∂g1(w). (4.7)

On the other hand, the subdifferential of the convex lower semicontinuous function ρ1 at a point Y ∈ Lp

is given by
∂ρ1(Y ) =

{
−V | β1(V,E [−V Y ]) = ρ1(Y ), V ∈ Lq

+

}
, (4.8)

that is, it is the set of maximizers in the dual representation (3.2). Taking Y = wTX in (4.8) and combining
it with (4.7) yield the claim of the lemma. 2

Let Lq
++ := {V ∈ Lq

+ | P{V = 0} = 0} . The next assumption is a constraint qualification for (D(r)) .

Assumption 4.10 There exist V1, V2 ∈ Lq
++ such that α̃1(V1) ∈ R , α2(V2, r) ∈ R .

We are ready to prove the second main theorem of the paper, which establishes for (P(r)) the optimality
of a Lagrange multiplier associated to (D(r)) .

Theorem 4.11 Suppose that Assumption 4.1, Assumption 4.2, Assumption 4.6, Assumption 4.10 hold, and
there exists an optimal solution (V ∗

1 , V
∗
2 , y

∗) ∈ Lq
+×Lq

+×R for (D(r)) . Then, there exists an optimal Lagrange
multiplier w∗ ∈ Rn associated to the inequality constraint of (D(r)) . Moreover, every w∗ ∈ Rn that is the
Lagrange multiplier of the equality constraint of (D(r)) at optimality is an optimal solution for (P(r)) , and
(P(r)) and (D(r)) have the same optimal value p(r) .

Proof Let (V ∗
1 , V

∗
2 , y

∗) ∈ Lq
+ ×Lq

+ ×R be an optimal solution for (D(r)) . Let us denote by d(r) the optimal
value of (D(r)) . By Assumption 4.10, Slater’s condition holds, that is, there exist V1, V2 ∈ Lq

++ , y ∈ R such
that α̃1(V1) ∈ R , α2(V2, r) ∈ R and

max
i∈{1,...,n}

(E [V1Xi] + E [V2Xi]) < y
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since we may simply take y := maxi∈{1,...,n} (E [V1Xi] + E [V2Xi]) + 1 . Hence, by [4, Corollary 4.8], there is
zero duality gap between (D(r)) and its Lagrange dual problem, and we may write

d(r) = inf
w∈Rn

+

sup
V1,V2∈Lq

+,y∈R

(
α̃1(V1)− α2(V2, r)− y − wT (E [V1X] + E [V2X]− y1)

)
= inf

w∈Rn
+

sup
V1,V2∈Lq

+,y∈R

(
α̃1(V1)− α2(V2, r)− y + E[−V1w

TX] + E[−V2w
TX] + ywT1

)
. (4.9)

Moreover, [4, Corollary 4.8] also ensures that there exists an optimal Lagrange multiplier w∗ ∈ Rn so that

d(r) = sup
V1,V2∈Lq

+,y∈R

(
α̃1(V1)− α2(V2, r)− y + E[−V1(w

∗)TX] + E[−V2(w
∗)TX] + y(w∗)T1

)
,

and (V ∗
1 , V

∗
2 , y

∗) is an optimal solution of the above concave maximization problem.
Let w ∈ Rn

+ . Note that the inner (maximization) problem in (4.9) is easily separated into three terms as

sup
V1∈Lq

+

(
α̃1(V1) + E[−V1w

TX]
)
+ sup

V2∈Lq
+

(
−α2(V2, r) + E[−V2w

TX]
)
+ sup

y∈R
y(wT1− 1). (4.10)

From the last term in (4.10), it follows immediately that

sup
y∈R

y(wT1− 1) = IW(w).

In particular, if w = w∗ , then we must have w∗ ∈ W . It is also easy to check that

y∗1 ∈ N (W, w∗). (4.11)

For the first term in (4.10), note that

ρ1(w
TX) = sup

V1∈Lq
+

β1

(
V1,E[−V1w

TX]
)

= sup
V1∈Lq

+

inf
{
t ∈ R | α−

1 (V1, t) ≥ E[−V1w
TX]

}
= sup

V1∈Lq
+,x≥0

inf
t∈R:

α−
1 (V1,t)∈R

(
t+ xE[−V1w

TX]− xα−
1 (V1, t)

)
= sup

V1∈Lq
+,x≥0

inf
t∈R:

α−
1 (V1,t)∈R

(
t+ E[−xV1w

TX]− α−
1 (xV1, t)

)
= sup

V1∈Lq
+

inf
t∈R:

α−
1 (V1,t)∈R

(
t+ E[−V1w

TX]− α−
1 (V1, t)

)
= sup

V1∈Lq
+

(
α̃1(V1) + E[−V1w

TX]
)
.

The steps of this calculation are justified by following the same arguments as in the proof of Proposition 4.7,
hence we omit this justification for brevity. In particular, when w = w∗ , by the optimality of V ∗

1 and property
(c) of the definition of maximal risk function, we have

g1(w
∗) = ρ1((w

∗)TX) = α̃1(V
∗
1 ) + E[−V ∗

1 (w
∗)TX] = β1

(
V ∗
1 ,E[−V ∗

1 (w
∗)TX]

)
.
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By Lemma 4.9, it follows that
E[−V ∗

1 X] ∈ ∂g1(w
∗). (4.12)

For the second term in (4.10), we first note that V2 7→ α2(V2, r) is closely related to the support function
of the closed convex set A r

2 ; indeed, we have

α2(V2, r) = sup
Y ∈A r

2

E[−V2Y ] = σA r
2
(−V2), V2 ∈ Lq

+.

Hence, by the conjugate duality between indicator function and support function, we have

sup
V2∈Lq

+

(
−α2(V2, r) + E[−V2w

TX]
)
= IA r

2
(wTX) = I{g2≤r}(w),

where {g2 ≤ r} := {w ∈ Rn | g2(w) ≤ r} . In particular, when w = w∗ , by the first-order condition, we have

−(w∗)TX ∈ ∂α2(V
∗
2 , r), (4.13)

where the subdifferential is with respect to the first variable. Hence, by (4.4), (4.13) is equivalent to

−(w∗)TX ∈ −∂σA r
2
(−V ∗

2 )

as well as to
−V ∗

2 ∈ ∂IA r
2
((w∗)TX).

In particular, ∂IA r
2
((w∗)TX) 6= ∅ so that (w∗)TX ∈ A r

2 , that is, g2(w
∗) ≤ r , and

−V ∗
2 ∈ ∂IA r

2
((w∗)TX) = N (A r

2 , (w
∗)TX).

So
sup

w∈Rn : g2(w)≤r

wTE[−V ∗
2 X] = sup

w∈Rn : g2(w)≤r

E[−V ∗
2 w

TX] ≤ sup
Y ∈A r

2

E[−V ∗
2 Y ] = E[−V ∗

2 (w
∗)TX],

which implies that the inequality in the middle is indeed an equality. Therefore, the equality of the first and
last quantities yields

E[−V ∗
2 X] ∈ N ({g2 ≤ r}, w∗). (4.14)

Combining the results for the three terms of (4.10) for a generic w ∈ Rn
+ , we see that

d(r) = inf
w∈Rn

+

(
ρ1(w

TX) + IA r
2
(wTX) + IW(w)

)
= inf

{
ρ1(w

TX) | ρ2(wTX) ≤ r, w ∈ W
}
= p(r),

establishing the strong duality between (P(r)) and (D(r)) .
Note that the inequality constraint in (D(r)) ensures that

wTE[V ∗
1 X] ≤ wT(E[−V ∗

2 X] + y∗1), w ∈ W. (4.15)

Moreover, the complementary slackness condition for this constraint yields

(w∗)TE[V ∗
1 X] = (w∗)T(E[−V ∗

2 X] + y∗1). (4.16)
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On the other hand, bringing together (4.11) and (4.14) gives

E[−V ∗
2 X] + y∗1 ∈ N ({g2 ≤ r}, w∗) +N (W, w∗) = ∂I{g2≤r}(w

∗) + ∂IW(w∗)

⊆ ∂(I{g2≤r} + IW)(w∗)

= ∂I{g2≤r}∩W(w∗)

= N ({g2 ≤ r} ∩W, w∗).

In the above calculation, only the passage to the second line is nontrivial and it is justified by the rules of
subdifferential calculus; see, for instance, [15, Theorem 23.8]. Hence, by (4.15) and (4.16), we have

σ{g2≤r}∩W(E[V ∗
1 X]) ≤ σ{g2≤r}∩W(E[−V ∗

2 X] + y∗1) = (w∗)T (E[−V ∗
2 X] + y∗1) = (w∗)TE[V ∗

1 X].

Hence, by (4.5), we conclude that E[V ∗
1 X] ∈ N ({g2 ≤ r} ∩W, w∗) , that is,

E[−V ∗
1 X] ∈ −N ({g2 ≤ r} ∩W, w∗).

Combining this with (4.12), we obtain

E[−V ∗
1 X] ∈ ∂g1(w

∗) ∩ −N ({g2 ≤ r} ∩W, w∗).

By (4.6), this implies that w∗ is a minimizer of g1 over {g2 ≤ r} ∩ W , that is, w∗ is an optimal solution of
(P(r)) . 2

Remark 4.12 It should be noted that we do not work under Assumption 4.3 in Theorem 4.11, hence the
strong duality established by Theorem 4.8 is not taken for granted; instead we re-establish strong duality in
Theorem 4.11. Then, the reader might naturally question the need for Theorem 4.8. As noted in Remark 4.5,
in the absence of Assumption 4.3, the arguments in the proof of Proposition 4.4 (and Theorem 4.8) can be seen
as a heuristic way to derive the dual problem (D(r)) . Theorem 4.11 provides the formal justification of this
heuristic approach without using Sion’s minimax theorem.

5. Analysis of the problem when the principle risk measure is quasiconvex

In this section, we remove Assumption 4.1 and study (P(r)) with ρ1 being a quasiconvex risk measure.
Recalling (2.1), we may write

p(r) = inf
{
ρ1(w

TX) | ρ2(wTX) ≤ r, w ∈ W
}

= inf
{
t ∈ R | wTX ∈ A t

1 , wTX ∈ A r
2 , w ∈ W

}
= inf

t∈R
(t+ f(t, r)) = inf

t∈R:f(t,r)<+∞
(t+ f(t, r)) , (5.1)

where
f(t, r) := inf

w∈W

(
IA t

1
(wTX) + IA r

2
(wTX)

)
, t ∈ R. (5.2)

Note that, for each t ∈ R , f(t, r) is closely related to the feasibility problem

Find w ∈ W such that wTX ∈ A t
1 ∩ A r

2 . (FP (t, r))
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Indeed, if there exists w ∈ Rn solving (FP (t, r)) , then f(t, r) = 0 ; otherwise, f(t, r) = +∞ . The expression in
(5.2) formulates (FP (t, r)) as an optimization problem whose optimal value is f(t, r) ; this problem is convex
because A t

1 ,A
r
2 are convex sets. Hence, in view of (5.1), the quasiconvex portfolio optimization problem (P(r))

is characterized by a family of convex optimization problems; this is a well-known paradigm in quasiconvex
programming as discussed recently in [1, Section 2.1].

We introduce an analogue of Assumption 4.10 that will be needed in recovering a solution for (FP (t, r)) .

Assumption 5.1 Given t ∈ R , there exist V1, V2 ∈ Lq
++ such that α1(V1, t) ∈ R , α2(V2, r) ∈ R .

In the next theorem, following a similar path as in Section 4 (see Theorem 4.8, Theorem 4.11), we provide
a dual formulation of f(t, r) and a method to calculate a solution for (FP (t, r)) .

Theorem 5.2 Let t ∈ R and consider the problem

maximize − α1(V1, t)− α2(V2, r)− y (FD(t, r))

subject to E[V1X] + E[V2X] ≤ y1

V1, V2 ∈ Lq
+, y ∈ R.

(i) Then, (FP (t, r)) and (FD(t, r)) have the same optimal value f(t, r) .

(ii) Suppose that Assumption 5.1 holds for t and there exists an optimal solution (V t
1 , V

t
2 , y

t) for (FD(t, r)) .
Then, there exists an optimal Lagrange multiplier wt ∈ Rn associated to the inequality constraint of
(FD(t, r)) . Moreover, every wt ∈ Rn that is the Lagrange multiplier of the inequality constraint of
(FD(t, r)) at optimality is an optimal solution for (FP (t, r)) .

Proof We first prove (i) under the additional assumption that α1(V1, t) ∈ R, α2(V2, r) ∈ R for all V1, V2 ∈ Lq
+ .

Since A t
1 ,A

r
2 are closed convex subsets of Lp , similar to the proof of Proposition 4.4, we have

f(t, r) = inf
w∈W

(
IA t

1
(wTX) + IA r

2
(wTX)

)
= inf

w∈W

(
sup

V1∈Lq
+

(
E[−V1w

TX]− α1(V1, t)
)
+ sup

V2∈Lq
+

(
E[−V2w

TX]− α2(V1, r)
))

= inf
w∈W

sup
V1∈Lq

+,V2∈Lq
+

vt,r(w, V1, V2),

where

vt,r(w, V1, V2) := E[−V1w
TX] + E[−V2w

TX]− α1(V1, t)− α2(V2, r), w ∈ W, V1 ∈ Lq
+, V2 ∈ Lq

+.

By the properties of support function, it is clear that (V1, V2) 7→ vt,r(w, V1, V2) is concave and upper semicon-
tinuous for fixed w ∈ W . On the other hand, for fixed (V1, V2) ∈ Lq

+ × Lq
+ , the function w 7→ vt,r(w, V1, V2) is

continuous and affine, hence lower semicontinuous and convex. Since W is a convex compact set and vt,r has fi-
nite values thanks to our additional assumption, we may apply the standard minimax theorem [16, Corollary 3.3]
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and get

f(t, r) = sup
V1∈Lq

+,V2∈Lq
+

inf
w∈W

vt,r(w, V1, V2)

= sup
V1∈Lq

+,V2∈Lq
+

(
inf
{
(E[−V1X] + E[−V2X])

T
w | 1Tw = 1, w ∈ Rn

+

}
− α1(V1, t)− α2(V2, r)

)
.

Note that the inner minimization problem is a finite-dimensional linear optimization problem with nonempty
feasible region. Hence, by linear programming duality, we may pass to its dual formulation, which yields

f(t, r) = sup
V1∈Lq

+,V2∈Lq
+

(sup {−y | E[V1X] + E[V2X] ≤ y1, y ∈ R} − α1(V1, t)− α2(V2, r))

= sup
{
−α1(V1, t)− α2(V2, r)− y | E[V1X] + E[V2X] ≤ y1, V1, V2 ∈ Lq

+, y ∈ R
}
,

which coincides with the optimal value of (FD(t, r)) .

Next, we prove (i) without the additional assumption and we also prove (ii). Let f̃(t, r) be the optimal
value of (FD(t, r)) . Let (V t

1 , V
t
2 , y

t) ∈ Lq
+×Lq

+×R be an optimal solution for (FD(t, r)) . By Assumption 5.1,
there exist V1, V2 ∈ Lq

++ such that α1(V1, t) ∈ R and α2(V2, r) ∈ R . Similar to the proof of Theorem 4.11,
it follows that Slater’s condition holds for (FD(t, r)) ; hence, by strong duality for convex optimization, there
exists an optimal Lagrange multiplier wt ∈ Rn such that

f̃(t, r) = inf
w∈Rn

sup
V1,V2∈Lq

+,y∈R

(
−α1(V1, t)− α2(V2, r)− y − wT (E[V1X] + E[V2X]− y1)

)
= inf

w∈Rn
sup

V1,V2∈Lq
+,y∈R

(
−α1(V1, t)− α2(V2, r)− y − E[V1w

TX] + E[V2w
TX] + ywT1

)
= sup

V1,V2∈Lq
+,y∈R

(
−α1(V1, t)− α2(V2, r)− y − E[V1(w

t)TX]− E[V2(w
t)TX] + y(wt)T1

)
= sup

V1∈Lq
+

(
−α1(V1, t)− E[V1(w

t)TX]
)
+ sup

V2∈Lq
+

(
−α2(V2, r)− E[V2(w

t)TX]
)
+ sup

t∈R
y
(
(wt)T1− 1

)
.

Then, following similar arguments as in the proof of Theorem 4.11, it can be checked that f̃(t, r) = f(t, r) so
that (i) holds without the additional assumption. Moreover, it can be checked that

wt ∈ W, yt1 ∈ N (W, wt), −(wt)TX ∈ ∂α1(V
t
1 , t), (wt)TX ∈ ∂α2(V

t
2 , r).

These imply that
E[−V t

1X] ∈ −N ({g1 ≤ t}, wt), E[−V t
2X] ∈ −N ({g2 ≤ r}, wt),

and finally we obtain
E[−V t

1X] ∈ −N ({g1 ≤ t} ∩ {g2 ≤ r} ∩W, wt).

Hence, we conclude that wt solves the feasibility problem (FP (t, r)) and (ii) holds. 2

Let dom g1 := {w ∈ Rn | g1(w) ∈ R} . The next assumption will be useful when devising a method to
find an approximately optimal solution for (P(r)) .
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Assumption 5.3 It holds 1 ∈ dom g1 and dom g1 ∩ {g2 ≤ r} ∩W 6= ∅ . In other words, g1(1) = ρ1(1
TX) ∈ R

and there exists w0 ∈ W such that ρ1((w
0)TX) ∈ R and ρ2((w

0)TX) ≤ r .

Finally, we discuss a simple method to solve (P(r)) with the help of Theorem 5.2. To that end, note
that

p(r) = inf {g1(w) | g2(w) ≤ r, w ∈ W} .

Since {g2 ≤ r}∩W is a convex compact set and g1 is a lower semicontinuous function, (P(r)) has an optimal
solution, that is, there exists w∗ ∈ W such that g2(w

∗) ≤ r and

g1(w
∗) = p(r).

Moreover, under Assumption 5.3, we also have

p(r) = g1(w
∗) ≤ g1(w

0) < +∞.

On the other hand, by the monotonicity of ρ1 and Assumption 5.3,

−∞ < g1(1) = ρ1(1
TX) ≤ ρ1((w

∗)TX) = g1(w
∗) = p(r).

Hence, p(r) ∈ R with finite upper bound u1 := g1(w
0) and finite lower bound ℓ1 := g1(1) . Let ε > 0 . Using

these bounds, the well-known bisection algorithm (see [1, Section 3]) can be employed to find an ε -optimal
solution for (P(r)) as follows. At each iteration k ∈ N , we start with ℓk, uk ∈ R such that ℓk ≤ p(r) ≤ uk

and we let

tk :=
ℓk + uk

2
.

Then, under Assumption 4.10, we solve the feasibility problem (FP (tk, r)) , that is, we calculate f(tk, r) . If
f(tk, r) = 0 , then we have ℓk ≤ p(r) ≤ tk , in which case we proceed to the next iteration using ℓk+1 := ℓk

and uk+1 := tk . Otherwise, we have f(tk, r) = +∞ and tk ≤ p(r) ≤ uk , in which case we proceed to the next
iteration using ℓk+1 := tk and uk+1 := uk . We stop this procedure at the first iteration number K for which
uK − ℓK ≤ ε . It can be checked that

K ≤
⌈
log2

(
g1(w

0)− g1(1)

ε

)⌉

so that the algorithm stops after finitely many iterations. Then, we may apply Theorem 5.2 and find an optimal
Lagrange multiplier wtK , which also solves (FP (tK , r)) . Hence, wtK ∈ W , g2(w

tK ) ≤ r and

p(r) ≤ g1(w
tK ) ≤ tK ≤ p(r) + ε,

which shows that wtK is an ε -optimal solution for (P(r)) .

6. Examples

In this section, we consider some well-known classes of quasiconvex risk measures as special cases of ρ1 and ρ2 .
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6.1. Convex risk measures
Let ρ be a lower semicontinuous convex risk measure on Lp with ρ(0) ∈ R and acceptance set family (A t)t∈R .
Since ρ is translative, its acceptance set A := A 0 at level 0 determines ρ completely. As a result, the dual
representation in Proposition 2.2 reduces to a simpler form which we derive here for the convenience of the
reader. Let V ∈ Lq

+\{0} and t ∈ R . Then, by the translativity of ρ ,

α(V, t) = sup
Y ∈Lp : ρ(Y )≤t

E[−V Y ] = sup
Y ∈Lp : ρ(Y+t)≤0

E[−V Y ] = sup
Y ∈Lp : Y+t∈A

E[−V Y ] = γ(V ) + tE[V ],

where
γ(V ) := sup

Y ∈A
E[−V Y ].

The function γ : Lq
+\{0} → R̄ is called the minimal penalty function of ρ in the sense of convex risk measures

(not to be confused with the minimal penalty function α in the sense of quasiconvex risk measures); it follows
from the definition that γ is convex and lower semicontinuous. Since V 6= 0 , we have E[V ] > 0 . From this and
the above expression for α , it is evident that t 7→ α(V, t) is concave (indeed affine) and continuous with

lim
t→∞

α−(V, t) = lim
t→∞

α(V, t) = +∞

(see Assumption 4.6); and t 7→ α(V, t) has its true inverse given by

β(V, s) =
s− γ(V )

E[V ]
, s ∈ R.

Moreover, for each a ∈ R , the set

{
(V, s) ∈ Lq,1

+ × R | β(V, s) ≥ a
}
=
{
(V, s) ∈ Lq,1

+ × R | γ(V ) + aE[V ]− s ≤ 0
}

is closed by the lower semicontinuity of γ ; therefore, β is jointly upper semicontinuous on Lq,1
+ × R (see

Assumption 4.2). On the other hand, we have

α̃(V ) := inf
t∈R

(t− α(V, t)) = inf
t∈R

((1− E[V ])t− γ(V )) =

{
−γ(V ) if E[V ] = 1,

−∞ else.

Now suppose that, in (P(r)) , both ρ1 and ρ2 are convex risk measures with respective minimal penalty
functions γ1 and γ2 in the sense of convex risk measures. Then, by the above discussion, Assumption 4.1,
Assumption 4.2 and Assumption 4.6 hold, and the dual problem (D(r)) can be rewritten as

maximize − γ1(V1)− γ2(V2)− rE[V2]− y

subject to E[V1X] + E[V2X] ≤ y1

E[V1] = 1

V1, V2 ∈ Lq
+, y ∈ R.
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Example 6.1 For this example, we assume that p = +∞ (and q = 1). For each j ∈ {1, 2} , let us suppose
that ρj is the entropic risk measure with risk aversion parameter rj > 0 (see, for instance, [7, Example 4.34]),
that is,

ρj(Y ) =
1

rj
logE

[
e−rjY

]
, Y ∈ L∞.

In this case, it is well-known that γj is the relative entropy function given by

γj(V ) =
1

rj
E
[
V log

(
V

E[V ]

)]
=

1

rj
(E[V log(V )]− E[V ] log(E[V ])) , V ∈ L1

+\{0} .

Note that Assumption 4.10 is satisfied here: by taking V1 = V2 ≡ 1 , we have α̃1(V1) = 0 ∈ R and
α2(V2, r) = r ∈ R . Moreover, (D(r)) takes the form

maximize − 1

r1
E[V1 log(V1)]−

1

r2
E[V2 log(V2)] +

1

r2
E[V2] log(E[V2])− rE[V2]− y

subject to E[V1X] + E[V2X] ≤ y1

E[V1] = 1

V1, V2 ∈ L1
+, y ∈ R.

In the case of a finite probability space, this problem can be solved numerically using, for instance, the convex
optimization package CVX∗ (see [8]) as it is able to work with the convex function z 7→ z log(z) on R+ . As
is standard in convex optimization, these packages also provide the value of the Lagrange multiplier w∗ that
corresponds to the inequality constraint in (D(r)) at (approximate) optimality. By Theorem 4.11, such w∗ is
an (approximately) optimal solution of (P(r)) .

6.2. Certainty equivalents
Certainty equivalents form an important class of quasiconvex risk measures. We briefly recall their definitions
and properties; see [6, Example 8] for more details. To avoid integrability issues, we assume that p = +∞
(hence q = 1) in all examples although, in each example, a larger Lp space can be considered depending on
the nature of the loss function.

Let ℓ : R → (−∞,+∞] be a convex lower semicontinuous increasing function that is differentiable on
dom ℓ := {y ∈ R | ℓ(y) < +∞} , we call ℓ a loss function. Let ρ be the certainty equivalent corresponding to ℓ ,
that is,

ρ(Y ) = ℓ−1 (E[ℓ(−Y )]) , Y ∈ L∞,

where ℓ−1 is the left-continuous inverse of ℓ . The minimal penalty function of ρ is given by

α(V, t) = E
[
V h

(
λ(V, t)

V

E[V ]

)]
, V ∈ L1

+\{0} , t ∈ R, (6.1)

where h is the right-continuous inverse of the derivative ℓ′ of ℓ , and λ(V, t) > 0 is a multiplier that is determined
by the equation

E
[
ℓ

(
h

(
λ(V,m)

V

E[V ]

))]
= ℓ+(t), (6.2)

∗Grant M, Boyd SP (2020). CVX: Matlab Software for Disciplined Convex Programming [online]. Version 2.2. Website
http://cvxr.com/cvx [accessed 27 November 2020].
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where ℓ+ is the right-continuous version of ℓ .
Next, we consider some special cases of ℓ for which more explicit forms of α can be obtained.

Example 6.2 Suppose that ℓ is the quadratic loss function given by

ℓ(y) =

{
1
2y

2 + y if y ≥ −1,

− 1
2 else.

Let V ∈ L1
+\{0} , t, s ∈ R . After elementary calculations, we may solve (6.2) for λ(V, t) and use the resulting

expression in (6.1) to get

α(V, t) =

{
(1 + t) ‖V ‖2 − E[V ] if t > −1,

−E[V ] else,
β(V, s) =

{
s+E[V ]
∥V ∥2

− 1 if s > −E[V ],

−∞ else.

In particular, as in Section 6.1, it is easy to verify that Assumption 4.2 and Assumption 4.6 hold for α1 = α .

Example 6.3 Suppose that ℓ is the logarithmic loss function given by

ℓ(y) =

{
− log(−y) if y < 0,

+∞ else.

Let V ∈ L1
+\{0} , t, s ∈ R . Then, after some elementary calculations, we obtain

α(V, t) =

{
teE[log(V )] if t < 0,

+∞ else,
β(V, s) =

{
se−E[log(V )] if s < 0,

0 else.

It follows that Assumption 4.2 and Assumption 4.6 hold for α1 = α .

We conclude this section with an example where ρ1, ρ2 are assumed to be certainty equivalents whose
respective loss functions ℓ1, ℓ2 are among the two examples described above, which illustrates a possible special
form of (FD(t, r)) .

Example 6.4 Suppose that ℓ1 is the quadratic loss function in Example 6.2 and ℓ2 is the logarithmic loss
function in Example 6.3. Assume that r < 0 and take t ∈ R . If t ≤ −1 , then (FD(t, r)) can be rewritten as

maximize − E[V1]− reE[log(V2)] − y

subject to E[V1X] + E[V2X] ≤ y1

V1, V2 ∈ L1
+, y ∈ R.

If t ∈ (−1, 0) , then (FD(t, r)) becomes

maximize (1 + t) ‖V1‖2 − E[V1]− reE[log(V2)] − y

subject to E[V1X] + E[V2X] ≤ y1

V1, V2 ∈ L1
+, y ∈ R.
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Finally, if t ≥ 0 , then (FD(t, r)) becomes

maximize (1 + t) ‖V1‖2 − E[V1]− y

subject to E[V1X] + E[V2X] ≤ y1

V1, V2 ∈ L1
+, y ∈ R.

As noted in Example 6.2, Assumption 4.2 and Assumption 4.6 hold in this case. Moreover, Assumption 5.1
holds for every t ∈ R trivially since α1 and α2 are real-valued. Then, Theorem 5.2 is applicable and we may
apply the procedure described at the end of Section 5 to find an approximately optimal portfolio for (P(r)) .

7. Conclusion
In this paper, we study a static portfolio optimization problem with two quasiconvex risk measures: one in the
objective function and one in the constraints. When the former risk measure is a convex functional, the portfolio
optimization problem is convex and we are able to identify an optimal portfolio as a Lagrange multiplier of the
corresponding dual problem at optimality. In the general quasiconvex case, the portfolio optimization problem
is characterized by a family of convex feasibility problems each of which can be solved with the help of its own
dual problem. Our analysis shows that it is possible to find an approximately optimal solution for the portfolio
optimization problem by solving a finite number of these convex feasibility problems.
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