Turkish Journal of Mathematics Turk J Math

(2021) 45: 718 — 741

© TUBITAK

T U B | TAK Research Article doi:10.3906/mat-2011-19

http://journals.tubitak.gov.tr/math/

Gauss—Bonnet theorems and the Lorentzian Heisenberg group

Tong WU®, Sining WEI®, Yong WANG"
School of Mathematics and Statistics, Northeast Normal University, Changchun, China

Received: 09.11.2020 . Accepted/Published Online: 17.01.2021 . Final Version: 26.03.2021

Abstract: In this paper, we compute sub-Riemannian limits of Gaussian curvature for a C?-smooth surface in the
Lorentzian Heisenberg group for the second Lorentzian metric and the third Lorentzian metric and signed geodesic

curvature for C?-smooth curves on surfaces. We get Gauss—Bonnet theorems in the Lorentzian Heisenberg group for

the second Lorentzian metric and the third Lorentzian metric.
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1. Introduction

In [6], Diniz and Veloso prove a version of the Gauss—Bonnet theorem in sub-Riemannian Heisenberg space
H'! and define a Gaussian curvature for nonhorizontal surfaces in sub-Riemannian Heisenberg space H'. The
definition was analogous to Gauss curvature of surfaces in R? with particular normal to surface and Hausdorff
measure of area. The image of Gauss map was in the cylinder of radius one. In [2], Balogh et al. propose a
suitable candidate for the notion of intrinsic Gaussian curvature for Euclidean C?-smooth surface in the first
Heisenberg group H'. These results were then used to prove a Heisenberg version of the Gauss-Bonnet theorem.
In [10], Veloso verified that Gausssian curvature of surfaces and normal curvature of curves in surfaces introduced
by [6] and by [2] to prove Gauss-Bonnet theorems in Heisenberg space H! were unequal and he applied the same
formalism of [6] to get the curvatures of [2]. With the obtained formulas, it is possible to prove the Gauss—Bonnet
theorem as a straightforward application of Stokes theorem. In [8] Gilkey and Park use analytic continuation
to derive the Chern—Gauss—Bonnet theorem for pseudo-Riemannian manifolds with boundary directly from the
corresponding result in the Riemannian setting. In [9], Rahmani and Rahmani proved that there are three
different metrics of the sense of isometry in the Lorentzian groups. In [11], Wang and Wei gave sub-Riemannian
limits of Gaussian curvature for a C2-smooth surface in the Lorentzian Heisenberg group for the first Lorentzian
metric and the Lorentzian group of rigid motions of the Minkowski plane away from characteristic points and
signed geodesic curvature for C?-smooth curves on surfaces. And they got Gauss-Bonnet theorems in the
Lorentzian Heisenberg group for the first Lorentzian metric and the Lorentzian group of rigid motions of the
Minkowski plane. In this paper, we will use similar methods to show that Gauss—Bonnet theorem holding in

the Lorentzian Heisenberg group for the second Lorentzian metric and for the third Lorentzian metric.
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The Riemannian approximation scheme used in [2], can in general depend upon the choice of the
complement to the horizontal distribution. In the context of H' the choice which they have adopted is
rather natural. The existence of the limit defining the intrinsic curvature of a surface depends crucially on
the cancellation of certain divergent quantities in the limit. Such cancellation stems from the specific choice of
the adapted frame bundle on the surface, and on symmetries of the underlying left-invariant group structure on
the Heisenberg group. In [2], they proposed an interesting question which is solved in this paper to understand
to what extent similar phenomena hold in other sub-Riemannian geometric structures. The main results of this
paper are Gauss—Bonnet type theorems for Lorentzian surfaces in Lorentzian Heisenberg group for the second
Lorentzian metric and the Lorentzian Heisenberg group for the third Lorentzian metric.

In Section 2, we compute the sub-Riemannian limit of curvature of curves in the Lorentzian Heisenberg
group for the second Lorentzian metric. In Section 3, we compute sub-Riemannian limits of geodesic curvature of
curves on Lorentzian surfaces and the Riemannian Gaussian curvature of surfaces in the Lorentzian Heisenberg
group for the second Lorentzian metric. We prove the Gauss—Bonnet theorem in the Lorentzian Heisenberg group
for the second Lorentzian metric. In Section 4, we compute the sub-Riemannian limit of curvature of curves
in the Lorentzian Heisenberg group for the third Lorentzian metric. In Section 5, we compute sub-Riemannian
limits of geodesic curvature of curves on Lorentzian surfaces and the Riemannian Gaussian curvature of surfaces
in the Lorentzian Heisenberg group for the third Lorentzian metric. We prove the Gauss—Bonnet theorem in

the Lorentzian Heisenberg group for the third Lorentzian metric.

2. The sub-Riemannian limit of curvature of curves in the Lorentzian Heisenberg group for the
second Lorentzian metric
In this section we prepare some basic notions in the Lorentzian Heisenberg group. Let H be the Heisenberg

group where the noncommutative group law is given by
(@,9,2) * (2,y,2) = (@T+2,Y+y,Z+ 2 — Ty +a7).
Let
Xl :8{c1a X2 :aafz 7'%183637 X3 :81'37 (21)

then
aml == Xla axg = X2 + (£1X3, aI:; = X37 (22)

and span{ Xy, Xo, X3} = TH. Let H = span{ X3, X5} be the horizontal distribution on H. Let wy = dx;, ws =
dxe, w = x1dxs+drs. Then H = Kerw. For the constant L > 0, let g1, = w1 Qwi +we Qws — Lw®w, g = g1

be a Lorentzian metric on H(see [9]). We call (H, g;,) a Lorentzian Heisenberg group and wirte H? instead of

(H, gz). Then Xl,XQ,fXV?) := L% X3 are orthonormal basis on TH? with respect to gr,. We have
(X1, Xo] = = X3, [X2,X3]=0, [Xi,X3]=0. (2.3)

We say that a nonzero vector x € H2 is spacelike, null or timelike if (x,x) >0, (x,x) =0 or (x,x) <0

respectively. The norm of the vector x € H2 is defined by |x|| = \/|(x,x)|. Let v: I — H2 be a regular
curve, where I is an open interval in R. The regular curve  is called a spacelike curve, timelike curve or null

curve if 7/(t) is a spacelike vector, timelike vector or null vector at any ¢ € I respectively.

Let VI be the Levi-Civita connection on H2? with respect to gr,. By the Koszul formula, we have

2AVE X, Xi)r = ([Xi, X], Xa)r — (X5, Xi), Xa) o + ([ Xk, X, Xj) 1, (2.4)
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where 4,7,k =1,2,3. By (2.3) and (2.4), we have

Lemma 2.1

1
7X37 (25)

1
V)( O 1 S] S 37 V§1X2 = —5)(37 V§(2X1 = 2

L L
Vi X3 =V, X = —5 X2, V5, X3 =V, Xy = 5 X1

Definition 2.2 Let v : I — H2 be a C'-smooth curve. We say that v is reqular if ¥ # 0 for every t € I.
Moreover we say that ~(t) is a horizontal point of v if

w(§(t)) = 71 (t)y2(t) +3(t) = 0.

We recall that in Riemannian geometry the standard definition of curvature for a curve v parametrized

by arc length is k,f = HV,%fyH . For curves with an arbitrary parametrization, we give the definitions as follows:

Definition 2.3 Let v: 1 — H? be a C*-smooth regular curve.

()If V%"y 1s a spacelike vector, the curvature k:ﬁ of v at ~(t) is defined as

VL. 2 VL.7. 2
K I 774HL7< A 73>L_ (2.6)
19117 (i

(2)If V%"y is a timelike vector, the curvature kﬁ of v at y(t) is defined as

\/ IVESIE | (VA9 9)%

NG =0
Lemma 2.4 Let v: 1 — H2 be a C*-smooth regular curve.
()If V%"y is a spacelike vector, then
d 2
k= {{h  Lial 07 + i~ L)) — £ [ (3 (0)] } (2.8)
(3443~ L)) = G+ Diaw((0)
+i2(%2 — Ly1w(¥())) — Lw(ﬁ(t))i(w(ﬁ(t)))} [+ 45 - L@ (30))7] 3}
In particular, if ¥(t) is a horizontal point of ~y, then
d 2 —2
b = {{7 3 - 1| L 60) } -+ 48] 29)

[N

B {["Yl’.h + 472"  [3 + 3] _3}}
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(2)If V,%"y is a timelike vector, then

ke = {— {h + Ljaw(H ()] + [ — Lyiw(3 (1)) = L [(i(w(v(t»)} } (2.10)
32 442 = L)) + G + Lyaw(3(2)))
9 (52 — Lhw(3(t))) — Lw@(t))jt(w(w)))} 32 442 — Lw(3(1)?] }

In particular, if ¥(t) is a horizontal point of vy, then

by = { {&% +45 - L [jt(w@(t)))} } i3] (2.11)

Nl

Co Lo 12 . . 9273
+ i + el - [32 + 48] 77

Proof By (2.2), we have

Y(t) = X1 + 52 Xa +w(§(1)) Xs. (2.12)
By Lemma 2.1 and (2.12), we have
L . . Yo (t
VEXy = 2 [ (03n(0) + (0] %o + 20 x, (213)
L . . y1(t
V§X2 =5 [Y1(t)¥2(t) +43(t)] X1 — 712( )X37
L . L.
ViXs = 590)X1 - S ()Xe.
By (2.12) and (2.13), we have
VE = i+ Lisw 0] X1+ b~ DG (0)) Xe + [ 0] Xa (214)
By Definition 2.3, (2.12) and (2.14), we get Lemma 2.4. O

Definition 2.5 Let v: I — H? be a C?-smooth regular curve. We define the intrinsic curvature k3° of v at
~(t) to be
kS = lmp ook,

if the limit exists.

We introduce the following notation: for continuous functions fi, fo : (0,4+00) = R,

fi(L) ~ f2(L), as L — +oo & limLﬂ+mM =1. (2.15)

fa(L)
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Lemma 2.6 Let v: I — H? be a C?-smooth regular curve. Then

(1)If VE5 is a spacelike vector, then

/A2 22
oo 71+72 .
kY =T——= if

WG @) w(§(t)) # 0;

N

ke = {524 42) - (34 4) = Givn +4a)? - (3 +49) )7

d

if W) =0 and —(w(3(?))) =0;

e eGm)
i = S i w(30) =0 and G((3(0) 20,

Therefore, this situation does not exist.
(2)If Véﬁ is a timelike vector, then

N
v

S i ) £ o

Therefore, this situation does not exist.

Nl

K= {= G+ 48) - 63+ 93) 7 G+ i) - (3 +93) )

if W) =0 and S ((3() = 0.

. B GwG®m)l iy d.
th—>+ooﬁ—Wa if w(¥(t)=0 and dt(w(’Y(t)))#O-

Proof Using the notation introduced in (2.15), when w(%(¢)) # 0, we have
(VE3, ViDL ~ W) GE +43)L% as L — +oc,
<;Y7;)/>L ~ 7Lw(;)/(t))23 as L — +-00,

(VE4,4)7 ~ O(L?) as L — +oc.

Therefore
<V§"y, V&YL,’WL — ;Y12 + ﬁ% as L — 400
1117 w(F(®)]? ’
VL . , . 2
7< <;77;>L — 0, as L — +o0.
» VL
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So by Definition 2.3, we have (2.16) and (2.19). (2.17) comes from (2.9) and %(w(*’y(t))) = 0. (2.20) comes

from (2.11) and 4 (w(¥(t))) =0. When w(§(t)) =0 and 2 (w(¥(t))) # 0, we have

. . d, ..
(VE9, Vi) ~ —LI @), as L +oo,
(Vﬁ"y,ﬁ)% =0(1) as L — +oo.

By (2.6), we get (2.18). O

3. Lorentzian surfaces and a Gauss—Bonnet theorem in the Lorentzian Heisenberg group for the
second Lorentzian metric

We will say that a surface ¥ C H2 is regular if ¥ is a C%-smooth compact and oriented surface. In particular

we will assume that there exists a C?-smooth function u : H? — R such that
Y = {(z1,22,73) € H} : u(z1,29,23) = 0}

and Vg2 u = ug, 0z, + Ug, 0, + UgyOzy # 0. A point z € ¥ is called characteristic if Vgu(z) = (0,0). Our
computations will be local and away from characteristic points of X.
Let us define first
p:=Xju, gq:=Xou, and r:= )?3u.
Because p?+¢% > 0, we say that ¥ C H2 is Horizontal spacelike surface. When L — +o0, then p?+¢*—r% > 0.
And we define

L=Vp+¢, =P+ -1 pi= % (3.1)

In particular, % + g2 = 1. These functions are well defined at every non-characteristic point. Let

__ I ~
v, =pr X1 +qrXo -7 X3, e =qXq —pXo, ex=7Tp pXi+TL qXo— ; X3, (3.2)

L
then vy is the unit spacelike normal vector to ¥ and e; is the unit spacelike vector, ey is the unit timelike

vector. {er, ez} are the orthonormal basis of ¥. We call ¥ a Lorentzian surface in tne Lorentzian Hersenberg
group.

Let 4 = Aer+Azea. If v: I — H2 be a C?-smooth timelike curve, then we define Jp,(§) := —Ajea—Ages .
If v: I — H? be a C*-smooth spacelike curve, then J (%) := Ajea+ Azer. Then (¥, J.(¥)) = 0 and (¥, JL(¥))
has the same orientation with {e1,es}.

For every U,V € T, we define Vg’LV = 7VEV where 7 : TH2 — TY is the projection. Then VT
is the Levi—Civita connection on ¥ with respect to the metric gr,. By (2.14), (3.2) and

VI = (VE er)per — (Vi ) pes, (3.3)
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we have
VIS = (@0 + Liaw(3 ()] = P2 — Dhw(3 ()]} ex (34)
— {7z Bl + Liaw(3 ()] + 72 72 — Liw(3(1))]
I oafd, .
it [GeGon] e

Moreover if w(¥(t)) = 0, then

C e . B I d, .
VI = ples — {7 7T e L [ S0 e (35)

Definition 3.1 Let X C H2 be a regular Lorentzian surface. Let v : 1 — X be a C%-smooth regular curve.

(1)If V?’Lf'y is spacelike vectors, the geodesic curvature k,ﬁz of v at y(t) is defined as

=L SL. .
L ||V'y ’YH%,L <v'y 77’7>§],L
k,%z] = 4 - T \3 . (36)
||’YH2,L <%’Y>2,L

(2)If V?’L’y is timelike vectors, the curvature kﬁ of v at v(t) is defined as

L. L. -
||V»y VHQE,L <Vay %7>22,L

k;LE = - —
” %2 N3

(3.7)

Definition 3.2 Let ¥ C H? be a reqular Lorentzian surface. Let v : I — X be a C?-smooth regular curve.

We define the intrinsic geodesic curvature ks of v at ~(t) to be

oo . 1 L
k,yﬁz — llmL‘)JrOOkf%Z?

if the limit exists.

Lemma 3.3 Let ¥ C H? be a regular Lorentzian surface. Let v : 1 — % be a C%-smooth regular curve.

(1)If V-E’Lﬁ is a spacelike vector, then

0 _M if wR .
B =0, if w((0)=0 and S (@(3(1) =0 (39)
L —d(w(A(#)))2
fimg g 22 = VBTN ) =0 and L) £ 0. (3.10)

VL @ — P2)” dt

724



WU et al./Turk J Math

Therefore, this situation does not exist.

(2)If V?’L’y is a timelike vector, then

— (P +7Y2)?

k’(;?z = W) ,if w(y(t)) #0; (3.11)
Therefore, this situation does not exist.
B =0, i w((0) =0 and S ((3(1) =0 (312)
b oo 22 = BCOOD] e ) 20 ana L) 200 (3.13)
VL (@ - ph)? dt
Proof By (2.12) and 4 € TY, we have
3= @~ Pier — ELEG(i(H)en (3.14)
By (3.4), we have
(V39, VIR L = (@[ + Lyaw(3(8)] = P12 — Liw(3(1))]} (3.15)

—{Tz P — Lypw(¥()] + 7L 72 — Lyaw(¥(1))]

i [Seaon])
Similarly, we have that when w(¥(£)) £ 0,
Gihns = @0~ i~ | ELR0)] ~ LGOI, s Lo toe (3.10
By (3.4) and (3.14), we have
(V39 A) s = @h — Ph) {7 [ + Daw(3 (1)) (3.17)

“plia = (O]} - | LRG| - 0T Pl + Daw(i(0)

VT Tl I + b [Sw6on] | ~ v,

where My does not depend on L. By Definition 3.1, (3.15)—(3.17), we get (3.8).
When w(¥(t)) = 0 and % (w(¥(t))) =0, we have

(V39 V) s = @ = P92)° + (L P+ 7T 32 (3.18)

~ (@5 —Pi)’, as L — +oo,
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&) eL = @n — D)% (3.19)
<V§’L7’W>E,L = (@1 —P¥2) - @ — PF2) (3.20)
By (3.18)-(3.20) and Definition 3.1, we get k3% = 0.
When w(3(8)) =0 and (w(3(©))) £ 0, we have

(V34,95 s ~ —LLE GO,
(Vi3 4)s. = O(1),

so we get (3.10). O

Definition 3.4 Let ¥ C H2 be a reqular surface. Let v : 1 — ¥ be a C?-smooth reqular curve. The signed

geodesic curvature ksg of v at ~(t) is defined as

(V4 JL () s L

kbs = -
19112

v,

(3.21)

Definition 3.5 Let ¥ C HZ be a reqular surface. Let 7 : [a,b] = ¥ be a C?-smooth reqular curve. We define

the intrinsic geodesic curvature k3% of v at the noncharacteristic point v(t) to be
) : L,
k:?; = thHJrook%;,
if the limit exists.

Lemma 3.6 Let ¥ C H? be a regular Lorentzian surface.

(1)If v : I — % be a spacelike C?-smooth regular curve, then

goos = P @ e ey 2o 3.22
W= i) # (3.22)
Therefore, the situation does not exist.
=0, i) =0, (1) =0 (3.23)
kL,s — = d w(A
i e = LA TEIEION i i) =0, (i) #0 (3.24)

(2)If v: I — % be a timelike C?-smooth regular curve , then

Pt
w(F®)]

007‘9 —
k%E -

ifw((t)) # 0. (3.25)
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. . ) . d .
4|z = \/ = @ + ), ifw(¥(t) =0, 5 wl®)) =0, (3.26)
Therefore, the situation does not exist.
. N . d .
llze =V = @h +Pi)" if w(?) =0, —(w(¥(1)#0. (3.27)
Therefore, the situation does not exist.
Proof For (1), by (3.14), we have
. l .
JL() = —TLL"‘W( (t)e1 + (@11 — Pie)ez. (3.28)
By (3.4) and (3.28), we have
l . . . .
(V358 JL()s = fTLLW(V( DA + Lyaw(y(t)] =P [F2 — Lyaw(¥(2))]} (329)

+@n = Pi) ATz Pl + Lpw(Y O] + 72 7152 — Lniw(7(2))]

I 1
—Lz { va—Lw (Y(t))* (P +T¥2), as L — +oo.

When w(¥(t)) =0 and 4 (w(¥(t))) =0, we get
(V254, JL () s =@ — Die) - {TL P + 7T @] ~O(L™7) as L — +oc. (3.30)

So k757 = 0. When w(¥(t)) =0 and 4 (w(%(t))) # 0, we have

d

(V355 JL () s ~ L% (75 —17’72)%(“1@(75))) as L — +o0. (3.31)

So we get (3.24). Similarly, we have (2). O

Next, we compute the sub-Riemannian limit of the Riemannian Gaussian curvature of surfaces in the Lorentzian

Heisenberg space. We define the second fundamental form T of the embedding of ¥ into H2 :

L _ <V£1ULael)>L7 (VELIUL,eQ»L
" _( (Vivp,e))r, (VEvr,ed))r )° (3.32)

Similarly to Theorem 4.3 in [5], we have

Theorem 3.7 The second fundamental form II* of the embedding of ¥ into H2 is given by

7L — ( Lr[Xl( p) + X2(q)], JTL<€17VH(H)>L*§ ) . (3.33)
T

(e1, V(PO = %4, —f(e2, Vi () + Xs(7D)
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The mean curvature Hy of ¥ is defined by

Hy = tr(IT5).
Define the curvature of a connection V by
R(X,Y)Z =VxVyZ -~ VyVxZ -V xy|Z. (3.34)
Let
ICZ’L(el, es) = —(RE’L(el, €2)e1,€2)s, L, ICL(el, e2) = —(RL(el,eg)el, €2) . (3.35)
By the Gauss equation, we have
KZE(er,e0) = KL (er, e0) + det(ITF). (3.36)

Proposition 3.8 Away from characteristic points, the horizontal mean curvature Hoo of ¥ C H is given by

Hoo =limp 1 ooHr = X1(}7) + Xz(@) (337)
Proof By
12 P g
(60, Vir(9)e = 5X1(7) + T X (7D) = O(L )
L
l —~
*L[Xl(f?) + Xo(q)] = X1(p) + X2(@),  X3(rz) =0, PL—D,
we get (3.37). O

By Lemma 2.1 and (3.35), we have

Lemma 3.9 Let H2 be the Lorentzian Heisenberg space, then

3 3
RE(X1, X2) X, = —7LXs, RE(X1, X2) Xy = 11X RE (X1, X2)X3 =0, (3.38)
L 1 L L L
RY(Xy, Xg) X1 = 7 LXs,  RY(Xy, X)Xz =0, RY(X1, X3) Xy = X0,
L L L L L?
R*(X2,X3)X1 =0, R"(X2,X3)Xs= ZXS’ R*(X3, X3)X3 = ZXQ-
Proposition 3.10 Away from characteristic points, we have
K*E(er,e9) = Ag+O(L™Y), as L — +oo, (3.39)
where
X3U (XgU)z
Ag :=—(e,V . 3.40
0 <61 H(‘VHU|)> + 2 ( )
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Proof By (3.2), we have
(RL(€1,62)€1762>L

l 1
=72 (R* (X1, X2) X1, Xo) 1 — 2E§L_EH<RL(X1, X2)X1,X3)1

I _

I 1 _
+2ET9L 2T (RY (X1, X2) Xo, X3)1, + (Eq)QL YRM (X, X3) X1, X3) 1

l _ —
_ Q(E)leqL YRE (X1, X3) Xo, Xa)r + (pg

By Lemma 3.9, we have

KE(e1,ep) = %(éf + ZLHQ.
By (3.33) and
Vu(rr) = L Vy( |§§;|) +O(L™") as L — +o0
we get
det(I1") = 7% — {e1, H(é(;ul» +O(L™Y) as L — +o0.

By (3.33),(3.42),(3.43) we get (3.39).

l
2L Y RY(Xa, X3) X2, X3) 1.

(3.41)

(3.42)

(3.43)

O

Let us first consider the case of a timelike curve v : I — H? . We define the Riemannian length measure

dSL = H’}/HLdt
Lemma 3.11 Let v: I — H2 be a C?-smooth timelike curve. Let

1
Vi —43) dt.

ds == |w(y(t))|dt,  ds:= m (_7

DN | =

Then

1 b
lim Oo—/ds :/ ds.
L—+ \/z : L .
When w(¥(t)) # 0, we have

1

dsp =ds+dsL™ '+ O(L72) as L — +.
ViR (L)

When w(¥(t)) =0, we have

Therefore, the situation does not exist.

(3.44)

(3.45)

(3.46)

(3.47)
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Proof We know that ||§(¢)||r = /=% — 43 + Lw(5(t))2, similar to the proof of Lemma 6.1 in [11], we can

prove (3.45). When w(%(t)) # 0, we have

%dsL = L (47— 43) + w(i(0)%dt.

Using the Taylor expansion, we can prove (3.45). From the denifition of dsy,, and w(%(t)) = 0, we get (3.47).

O

Proposition 3.12 Let ¥ C H2 be a regular Lorentzian C?-smooth surface. Let doy denote the surface

measure on X with respect to the Riemannian metric gr, . Let

X3u (X3u)2

doy, = (pwy — qw1) Aw, doy := =W A wg + 52

(Pwe — qu1) A w.
Then
1
ﬁdaz,L =doy +dosL™ '+ O(L™?), as L — 4oc.
If ¥ = f(D) with
f = fur,uz) = (f1, fo, f5) : D CR® — H7,

then

g 7= [ dov = [ {1 Fides = () (2]

Nl

+ [((F1)uz (f2)ur = (F2)ua (F1)u ) 1+ (f3)ur (F1)us — (fl)ul(fs)uf} dudus.

Proof We know that
g(X1,) = w1,  gr(Xo,:) =wz, gr(X3,:) = —Luw,

SO
. _ _ . _ _ [ 1
el =gr(e1,’) =qwi —Pw2, €5 =gr(ez,-) =TL w1 + 7L WQ_ELW'
Then
1d 1*/\* l(* *)A+1*A
—=ao = —=€ €y = — | pPpW2 — qW w —(=TrLw wa.
\/ZE,L \/Zl 2 le2 qwi \/ELI 2
By
_ (Xsu)L~2
L:

\/pz +q¢2 — L—l(Xgu)Q
and the Taylor expansion
1 1 1

L1 (X3u)’L™' +O(L™2) as L — +oo

we get (3.55). By (2.2), we have
fu1 = (fl)ulazl + (fQ)ulazg + (f-?))ulaitg
= (f)u X1 + (f2)ur X2 + VI [fi(f2)ur + (f3)un] X3,
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and
Fur = (F)us X1+ (£2)us Xo + VI [F1(F2)us + (f3)us] Xs. (3.54)
Let
X1, Xo, X3
v = (fl)uw (f2)u17 \/E [fl(f2)u1 + (fS)u1] : (355)
(fl)uzv (.f2)u27 \/Z [fl(fQ)uz + (f3)u2]

We know that

dos,p = \/—det(gi;)durduz,  gij = gr(fus fu;),  det(gij) = [|0z]7 = — (0L, v1),

so by the dominated convergence theorem, we get (3.51). O

Theorem 3.13 Let ¥ C H2 be a regular Lorentzian surface with finitely many boundary components (0%);,
i€{l,---,n}, given by C?-smooth reqular and closed timelike curves v; : [0,2n] — (0%);. Suppose that the
characteristic set O(X) satisfies H'(C(X)) = 0 and that ||Vgul|y' is locally summable with respect to the
2-dimensional Hausdorff measure near the characteristic set C(X), Let Ag be defined by (3.40) and dox be

defined by (3.48) and kzog be the sub-Riemannian signed geodesic curvature of ~y; relative to . Then we have

/ Apdos + / k2*3ds = 0. (3.56)
x i=1"7i

Proof Using the discussions in [2], we may assume that all points satisfy w(7;(t)) # 0 on ~;. Then by Lemma

3.6, we have

ks = k208 + O(L7Y). (3.57)

Yir 2 T i,

By the Gauss-Bonnet theorem (see [8] page 90 Theorem 1.4), we have

1 - 1
K3 —dos 1 + /kL —ds; = 0. 3.58
/Z Jrlome ; Ry (3.58)

So by (3.57),(3.58),(3.40),(3.48).(3.49), we get

(/ZAodazil

i=1

i

kjj;;ds> +O(L™ ) =0. (3.59)
Let L go to the infinity and using the dominated convergence theorem, then we get (3.56). O

Example 3.14 In H? , let u=23 + 23+ 23 —1 and >, = S?. Y is a regular surface. By (2.1), we get
X1(u) =2z1;  Xo(u) =229 — 22123. (3.60)
Solve the equations X1 (u) = Xo(u) = 0,then we get

(%) ={(0,0,1),(0,0,-1)}
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and H'(C()) = 0.

A parametrization of ¥ is
x1 = cos(p)cos(0), x2 = cos(p)sin(0), (3.61)

x3:$in(§0)7 fOT‘ (pe(_ga 3)7 06[03271-)'

Then
IVaullf = X1(u)? + Xo(u)? (3.62)
= 4xf +4(xq — xlx3)2
= 4cos(p)? + 4cos(p)?sin(p)?cos(0)? — 8cos(p)?cos(8)sin(yp)sin(6).
By the definitions of w; for 1 <j <3 and (3.48), we have

1

dos, = 7[(X1(u))dm2 - (Xz(u))dajﬂ A (z1dzo + dxs) (3.63)
IV rull
= ! cos(¢)? [1 — 2sin(8)cos(8)sin cos(0)?sin(p)?
= [Vaala 2c0%) [1 — 2sin(6) cos(8)sin() + cos(8)sin(p)?] do A dyp.

By (3.62) and (3.63), we have |Vgully' is locally summable around the isolated characteristic points with

respect to the measure dos;.

4. The sub-Riemannian limit of curvature of curves in the Lorentzian Heisenberg group for the
third Lorentzian metric
We consider the Lorentzian Heisenberg group for the third lorentzian metric, let H be the Heisenberg group

where the noncommutative group law is given by
(7,9,2) x (z,9,2) = (T+ 2, +y,Z+ 2 — Ty + 27).

Let

X, = 8:01, Xo = 8$2 + (1 — :131)87537 X3 = a:m - ;L‘lams. (41)
Then

811 = Xy, 81,2 =x1X9 + (1 — .’L'l)Xg, (r“)m3 =X, — X3, (42)

and span{Xj, Xo, X3} = TH. Let H = span{X;,X>} be the horizontal distribution on H. Let w; =
dry, we = wmidry + dxs, w = (1 — x1)dxe — dxs. Then H = Kerw. For the constant L > 0, let
gL = w1 Qw1 tws@ws—Lw®w, g = g1 be the third Lorentzian metric on H (see [8]). We call (H, g1,) a Lorentzian

Heisenberg group for the Lorentzian third metric and write H? instead of (H, gr). Then X1, Xs, )/5/3 = L2 X5

are orthonormal basis on TH? with respect to gr,. We have
[X1, Xo] = X3 — Xo, [X,X3] =0, [Xi1,X3]=X;5-X>. (4.3)

We say that a nonzero vector x € H3 is spacelike, null or timelike if (x,x) >0, (x,x) =0 or (x,x) <0

respectively. The norm of the vector x € H? is defined by |x|| = /|(x,x)|.
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Let v : I — H3 be a regular curve, where I is an open interval in R. The regular curve 7 is called a
spacelike curve, timelike curve or null curve if 7/(t) is a spacelike vector, timelike vector or null vector at any
t € I respectively.

Let VI be the Levi-Civita connection on H? with respect to gr,. By the Koszul formula and (4.3), we

have

Lemma 4.1 Let H} be the Lorentzian Heisenberg group for the third metric, then

L—1
V§(1X1 = 07 V§(1X3 = TX27V§(2X2 = _Xl’ (44)
L-1 —-L-1
V§(1X2 = T)(37 V§(2X1 = 5 X3+ X, V§(3X3 =—LXi,
V§(3X1 = TXQ — X3,V§(2X3 — V§(3X2 — _TXl'

Definition 4.2 Let v: I — H3 be a C'-smooth curve. We say that (t) is a horizontal point of ~ if
w((t)) = (1 = ())32(t) — 73(t) = 0.

Similar to the Definition 2.3 and Definition 2.5, we can define kf;‘ and k35° for the Lorentzian Heisenberg group

for the third Lorentzian metric, we have

Lemma 4.3 Let v: I — H3 be a C?-smooth regular curve.

(1)If V,%’y is a spacelike vector, then

/22 2
00 71 + Y3 - .
kY = if w((t) #0, (4.5)
T w3 (@)
. 2:9 .9 .. 2 .. .. . .. . 12
i — { [’71 — 7172 — 3 — 2717273] + [d1¥e + 193 + e + 12 + sl (4.6)
! {37 + (e + 42}
_hﬂ%—ﬁﬁ—ﬁ—%mwﬂ+WwﬁﬂﬁM%w+%%+%w+mw+%H}2
{32 + (1132 + 4)%}”
if w(E)=0 and d—(w(v(t))) =0,
kL — g w(v(®))? d
limy, oo —= = — - - , if wH(#) =0 and —(w(¥(t))) #0. (4.7
TTEVE 12+ (e +48)° | dt
Therefore, the situation does not exist.
(2)If Véﬁ is a timelike vector, then
2 2
0o -1 — . .
ko= YL ) £0, (4.8)

! lw(F@O)I
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. k2 s, FACIGION] , . d, .
lmy_yyoo—= = 5, if w =0 and —(w 0. 4.9
b2 = T i w(3(0) @GO # (1.9

Therefore, the situation does not exist.

Lo { [ =18 =93 = 2mdeds]” + g + s + e + A1 + 48l (4.10)
- . . . 2 .
! (37 + (142 +48))
. . 2 .2 .2 . . . . . . . . . . . . 2 %
L {0 [ = 9898 — 38 — 2y1drde] + (e + 4s) Indade + 14 + 1% + 1de + Hsl} }
. . . 3
{37 + (192 +4)%}
) . d, .
if wE)=0 and ﬁ(w(v(t))) =0,
kY FACIGION] d
limp 00—t = — DI (3() = 0 and —(w(3(t))) # 0. (4.11)
TV 2+ (e + 48) | dt
Proof By (4.2), we have
A(t) =1 X1 + (7172 + 7Y3) Xo + w(F () Xs. (4.12)
By Lemma 4.1 and (4.12), we have
. . L+1 . L+1 . . .
VEX) = |+ 4 alG(0)] Ko - | S Gk )+ el (0)] X, (113)
L . . L+1 -1,
ViyXo=—|m72+73+ B w(¥(t))| X1+ 5L N Xs,
L-1., L-1 . — 1.
ViXy = [ 5 Vst 5 M2 —Lw] X1+ Y1 Xo.
By (4.12) and (4.13), we have
VEY = [51 — 1943 — 43 — 2119298 + (—LA2 — M2 — Ys)w(3())] X2 (4.14)

+ 719291 + 1¥s + V2 + e + s + Lw(Y(t))] Xo

+ g wirin — T~ eG0) + L) Xs

By (4.12) and (4.14), when w(¥(t)) # 0, we have
(VES, VERY L ~ [32 +42] w(3(1))2L?, as L — +oo,
L~ fLw("y(t))z, as L — +oo,

(VE4, )7 ~ O(L?) as L — +o0.

Therefore
(V53 VE5)e [ 4]
[el53 w(¥(t))?”

as L — 400,
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(VE4,4)2
17112
So by (2.6), we have (4.5) and (4.8). (4.6) and (4.9) come from (4.12), (4.14), (2.6) and w(¥(t)) = 0 and
4 (w(%(t))) =0. When w(¥(t)) =0 and < (w(¥(t))) # 0, we have

—0, as L — 4o0.

(V4. VER)L ~ ~ LIS @), as L +oo,

&L = {% + (n2 +93)%},
(V%%ﬁ)% =0(1) as L — +oo.

By (2.6), we get (4.7). O

5. Lorentzian surfaces and a Gauss—Bonnet theorem in the Lorentzian Heisenberg group for the
second Lorentzian metric

We will consider a regular surface ¥; C H? and regular curve v C X;. We will assume that there exists a

C?-smooth function u : H3 — R such that
Y1 ={(21,22,23) € H% cu(wy, 29, x3) = 0}

Similar to Section 3, we define p,q,7,1,11,D,q, DL, 05,71, UL’61762’JL’k53217k$?217k’€:§17k:’?§§1. We call ¥ a

Lorentzian surface in the Lorentzian Heisenberg group for the third lorentzian metric. By (3.3) and (5.12), we

have
VIV = (G [ — 9393 — 4% — 2vdes + (Lo — o — v3) w(3(2)))] (5.1)
—PMmye + 193 + M2 + Vive + 3 + Lyiw(¥(E))]}er
—{FL P [ — 1% — 93 — 2n 9293 + (—Ly2 — Yo — 7s) w(¥(1))]

+7L @imde + 1ds + v + e + 3 4 Lyww(Y(t))]

l d, . 1., . 1. . L
+EL% a(w(v(t))) — TmYe = TN — ’Ylw(”Y(t))] } €2
= Niej + Naes.

By (4.12) and 4(t) € T3, we have

3(6) = [~ (ne + )] e — ELw(H(B)es (52)
We have

Lemma 5.1 Let ¥y C HS be a reqular Lorentzian surface. Let v : 1 — 31 be a C?-smooth reqular curve.
(1)If V?“L"y is a spacelike vector, then

o P+

5 = TG if w(¥(t)) #0, (5.3)
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S =0, if W) =0, and (1) =0,

Koo,/ @w®)?

limy 4 oo . — . .
VL [@n —5(em +73))°

dt

Therefore, the situation does not exist.

(2)If V?“Lﬁ is a timelike vector, then

[e's) _ _(ﬁ% +672)2

V.81 T Wv if W(’V(t)) # 0,

Therefore, the situation does not exist.

S =0, if WGH) =0, and S (@(H(H) =0,

kis, 14w )

limz, 400 —. — . ] )
VL (771 — P (Va1 + 73)]2

dt

Proof By (5.1), we have
(VIVE4, VP Ls, ~ LPw(3(t)? [@72 + ),
as L — 4o0.
By (5.2), we have that when w(§(¢)) # 0,
Fo A ~ —Lw@GO), as L — +oc.
By (5.1) and (5.2), we have

<V§1’L"Y7"Y>21,L ~ ML,

L if W) =0 and Lw(() £ 0.

wEB) =0 and L) £0.

(5.4)

(5.6)

(5.7)

where My does not depend on L. By Definition 3.1, (5.7) — (5.9), we get (5.3). When w(¥(t)) = 0 and

4 (W(3(1))) = 0, we have

(VE59, Vi ) sy ~ N

as L — 4o0,

.. . — . . 2
Y, )eL = (@ — P (e +193)]°,

<V§1"L"Y,"Y>21,L = [ —P(mv2 +73)] M1

(5.10)

(5.11)

(5.12)

By (5.10) — (5.12) and Definition 3.1, we get k5%, =0. When w(¥(¢)) =0 and 4 (w(%(t))) # 0, we have

d

(V59 VI ) e, ~ - Ll

Y

ICION)
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<v§1,L;Y7 ;Y>217L = 0(1)7

so we get (5.6).

Lemma 5.2 Let ¥y C HS be a reqular Lorentzian surface.

(1)If v : I — %1 be a spacelike C? -smooth curve, then

s ___THAPH
8 = i W) £0

Therefore, the situation does not exist.

d

R =0 if w3 (D) =0 and T (w(3(1) = 0;

V521

dt

L,s .
ks, _ | L (w(3(1)))]
VL [g%1 =P (mv2 +73))°

limyz_s oo if w@@)=0 and

2)If v : [a,b] — 31 be a timelike C? -smooth curve, then
(2)If ~

Oo’s—fM i w(A
S5 e L0070

Blles = =@ -5 Gom +3)P, if w(G(®)=0 and

Therefore, the situation does not exist.

s = \/f [@ — B (e +43))% if w(3(t) =0 and

Therefore, the situation does not exist.

Proof For (1), by (3.3) and (5.2), we have

J3) = =L LA 0)er + @~ (nve + )]

By (5.1) and (5.19), we have
(V35 T (D) z,m ~ LA(Y(1)? (@ + 7], as L
When w(¥(t)) =0 and % (w(¥(t))) =0, we get

(VEEY, TL()) e, ~ MoL ™% as L — +oo.

& (w() #0,

€9.

— F0o0.

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)
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So k7% = 0. When w(¥(t)) =0 and 4 (w(¥(t))) # 0, we have

90, as L - +oc. (5.22)

<V§I,L;77 JL(;Y)>L,21 ~ L2 [7 (’71’72 + 73) - q,yl] dt

So we get (5.15). O

Next, we compute the sub-Riemannian limit of the Riemannian Gaussian curvature of surfaces in the

Lorentzian Heisenberg group for the third Lorentzian metric. Similarly to Theorem 4.3 in [5], we have

Theorem 5.3 The second fundamental form IIE of the embedding of X1 into H3 is given by

h h
IIL — 11, 12 > 523
! ( ho1, haa )’ (5:23)
where

l 1
hi1 = E[Xl(@ + Xo(q)] +pr — pgrr L™ 2,

l _7L+1 o
hig = ha1 = —7L<€1>VH(7’L)>L +pr2L e 5 - P

L— L—1_ .
— i ——L77,

2L+1L_%

_1
2

+qL2L

2 l 12
has = — 5 <€2,VH( )1 + X3(7r) — prgrr — L~ +PL5
2 z B 2

5 1
+ToqpL™ — T2 —P.
Ir

Similar to Proposition 3.8, we have

Proposition 5.4 Away from characteristic points, the horizontal mean curvature H, of 1 C H3 is given by

H —Xl( )+X2( )+2p (524)

By Lemma 4.1, we have

Lemma 5.5 Let H3 be the Lorentzian Heisenberg group for the third metric, then

—3L2 2L 1 L—1 3L2_2L_1
RL(X17X2)X1 - + * X2 + X3, RL(Xl,XQ)X2 = 7)(17 (525)
4L L AL
L?+2L -3
RM (X1, X0) X3 = (L —1)X1, RM(Xy, X3)Xy = (1 - L)X, + Tar e
L?+20 -3
RE(X1, X5)Xa = (L= 1)X1,  R¥(X1, Xa)Xs = =X,
L2 —2L+1 L2 —2L+1
RL(X27X3)X1 = O’ RL(X27X3)X2 = T+X3a RL(XQaX3)X3 = T+X3
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Proposition 5.6 Away from characteristic points, we have

K> (e1,e5) = A+ O(L71). (5.26)
where
—  (X3u)? . Xsu P47 Xau - B )
4= - ¥l X X2(q)]- 2

Proof By (3.41) and Lemma 5.5, we have

32 —2L -1
JCHL 22 TeT L
(e1,€2) =T 1L

1 L2 +20 -3 _oIL?-20L+1
-2 L 2(L—-1 gl 4 p = = -
TLaL L™ 2 ( )+aL AL + L AL

Similar to (3.43), we have

L X
det(II¥) = -3t <e17vH(|V3Z|)> +P[X1(P) + X2(@) +P] + O(L™") as L — +oc. (5.28)
H
By (5.27) and (5.28), we have (5.26). O

Similar to (3.46) and (3.49), for the Lorentzian Heisenberg group for the third Lorentzian metric. Let

v:I— H3 be a timelike C?-smooth curve, we have

1 1
limL_H_ooﬁdsL = ds, th—H—ooﬁdo'El,L = dUEl' (529)

By (5.26), (5.29) and Lemma 5.2, similar to the proof of Theorem 3.13, we have

Theorem 5.7 Let 3y C H3 be a reqular Lorentzian surface with finitely many boundary components (0%1);,
i€ {l,---,n}, given by C%-smooth regular and closed timelike curves ~y; : [0,27] — (0%1);. Suppose that the
characteristic set C(31) satisfies H'(C(21)) = 0 and that ||[Vyu|ly' is locally summable with respect to the

2 -dimensional Hausdorff measure near the characteristic set C(X1), then
: K¥%dos, + / k223, ds = 0. (5.30)
1 i—1 77

Example 5.8 In H? , let u=a?+23+25—1 and Y, = S%. Y, is a reqular surface. By (4.1), we get
X1(u) =2x1; Xo(u) =2w9 +2(1 — x1)23. (5.31)

Solve the equations X1(u) = Xa(u) =0,

then we get

cm) = (0. - 2) 0.2 2

and HY(C(%1)) = 0.

A parametrization of % is

x1 = cos(p)cos(0), x9 = cos(p)sin(h), (5.32)
x3 = sin(yp), for p€ (—g, g), 6 € [0,2m).
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Then

IV ull3r = X1(u)? + Xa(u)? (5.33)
= 4%% +4 [1‘2 + (1 — $1)$3]2
2

= 4 4 4cos(ip)*cos(0)*sin(p)? — 8cos(p)cos(6)sin(p)

— 8cos(p)?sin(p)cos(6)sin(0) + 8cos(p)sin(p)sin(6).

By the definitions of w; for 1 < j <3 and (5.29), we have

where

dog, = —————[(Xy (w) (£rds + dzs) — (Xa(u))das] A [(1 — 21)dis — day (5.34)
IVaullg
1
= —mkos((p))\on A dp.
o = cos(p)? — 2cos(p)?cos(0)sin(p)sin(f) — 2cos(p)cos(8)sin(p)? (5.35)

+ 2cos(ip)sin(0)sin(p) + sin(p)? + cos(p)?sin(p)cos()?.

And Ny is a bounded smooth function on 1. By (5.33) and (5.34), we have ||Vgully' is locally summable

around the isolated characteristic points with respect to the measure dos, .
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